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Abstract

A nonparametric Bayesian model for attribute-based ob-
ject recognition and image-based class attribute inference is
presented. This model draws on existing work in Bayesian
nonparametrics such as thefocused topic model[25]. The
model allows either the classification of objects or the in-
ference of attributes over known classes (or both simul-
taneously). Attributes inferred from image datasets allow
an improvement in classification accuracy when combined
with attributes from other sources, including “layperson”
knowledge and existing inference methods.

1. Introduction

Recent object recognition techniques provide effective
classification by using machine learning techniques (e.g.,
support vector machines), which operate over low-level im-
age features. These low-level features can be efficiently ex-
tracted from both labeled training examples and arbitrary
test images. Unfortunately, training models to recognize a
specific object class requires a large number of labeled im-
ages, and the work of gathering these examples makes ex-
tending recognition systems to cover new object classes a
difficult and time-consuming process.

Attribute-based recognition methods resolve this prob-
lem by placing an abstraction layer between low-level fea-
tures and high-level object recognition systems. Object
classes are assumed to possess “attributes” (fixed for each
class), with each attribute being recognizable through its
low-level features. The learned visual models for attributes
of the training classes can then be applied to recognize
newclasses, replacing the need to provide explicit class ex-
amples with the simpler task of describing new classes in
terms of a set of known attributes. Although this approach
eases the burden on users interested in detecting novel ob-
ject classes, existing attribute systems impose restrictions

on those new classes - they must be describable in terms of
only previously-trained attributes, and their attribute associ-
ations must be known in advance of recognition.

We have designed, implemented and tested a probabilis-
tic model for nonparametric Bayesian inference in the set-
ting of multimodal attribute-based object recognition. Our
model enables zero-shot recognition through cross-class at-
tribute transfer concurrent with attribute discovery. The
nonparametric design allows entirely new visual attributes
and object classes to be inferred from image data alone, or
with the aid of textual class examples. Our approach com-
bines the learning of bothclass-attribute associationsand
attribute appearance modelsinto a single probabilistic pro-
cedure. Among other advantages, this greatly reduces the
human effort needed to introduce new object classes to a
recognition system by allowing any combination of labeled
examples and partial sets of known attribute associations
(presence or absence) to be provided as input.

To evaluate this model, we created eight datasets for
attribute-based object recognition using images from Ima-
geNet [4] synsets, including known attributes for each cat-
egory. Preliminary tests show promise in two domains:
object recognition, including recognition in the zero-shot
learning setting, and attribute inference, wherein visually
significant class attributes are inferred from image data. At-
tributes inferred by our method produced classification re-
sults comparable to attributes chosen “by hand,” and pro-
vide new information not present in either hand-selected at-
tributes or attributes inferred using other existing methods.

2. Related Work

2.1. Attribute Methods

Attribute-based methods are a recent approach to vi-
sion tasks such as object recognition and face verifica-
tion [11, 10, 5]. These methods represent an object class
as a unique collection of attributes, possibly with associ-
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ated (nonnormalized) weights. TheDirect Attribute Pro-
jection(DAP) method of Lampert et al. [12] provides good
results for zero-shot learning by using per-class binary at-
tribute vectors in lieu of labeled images for text classes. At-
tribute methods allow zero-shot recognition through the use
of attribute detectors, which may be trained using examples
from other object classes than those to be recognized. For
example, a “stripe detector” trained on zebra images could
be used to detect a tiger’s stripes as well. DAP uses inde-
pendently trained SVMs as attribute detectors, combining
their outputs using a simple probabilistic formula.

Applying these detectors to a new object class requires
not only the prior construction of all necessary detectors,
but also requires knowledge of which attributes are asso-
ciated with the new class (and for some methods, the de-
gree of association). Human supervision shifts from the
task of finding and labeling class examples to providing ex-
pert knowledge of class/attribute associations. Automatic
inference of these attribute associations has been studied as
a separate task from classification, but not integrated with
the recognition step [2, 19, 18]. A major contribution of
this paper is to provide a unified model which probabilisti-
cally provides both the attributes belonging to a class and
the classification of example images (or documents).

Most attribute-based work has treated attributes as bi-
nary values, either present or absent for a given class or in a
given image. Another approach treats attributes as present
“by degrees,” either by their prominence and size (for exam-
ple, “nose” as an attribute of faces) or, more recently, by the
uncertainty of their presence when compared against other
examples. In particular, recent work by D. Parikh and K.
Grauman [17] using relative attributes (e.g., “bears are fur-
rier than giraffes”) for classification shows superior accu-
racy to existing methods using binary attributes. Our work
retains the binary assumption of earlier methods; the impli-
cations of relative attributes are discussed in Section 6.

2.2. Nonparametric Bayesian Methods

Bayesian inference requires a well-defined probabilistic
model for the observable data and any unknown parame-
ters. Unknown variables of interest—latent clusters, class
labels, etc.—are examined through their posterior probabil-
ities, conditioned on the observed data. Generative models
provide insight into the underlying structure of the data, but
this insight comes at the price of necessarily biasing infer-
ence towards certain interpretations of that data [15]; for
example, by presupposing that the observations fall into a
certain number of clusters.

Nonparametric (NP) Bayesian methods gain flexibility
and avoid dependence on parametric assumptions by using
Bayesian priors over not only parameter values, but overthe
number and meaning of the parameters themselves. These
methods provide the same insight into the data’s underlying

structure, but do so by inferring that structure from the data.
NP Bayesian inference has been applied to many di-

verse problems, from modeling language acquisition in
children [8] to database duplicate detection [14]. A hidden
Markov model using Bayesian nonparametrics for speaker
diarization gives state-of-the-art results on the benchmark
NIST rich transcriptions database [6]. Recent work has be-
gun applying NP Bayesian methods to problems in com-
puter vision, with promising results [16, 26, 22].

3. Generative Model

3.1. Model Overview

Nonparametric Bayesian inference provides a means to
automatically infer visually relevant class attributes concur-
rently with zero-shot classification. We model the visual
(and textual) features and underlying classification of (an-
notated resp.) images, and the attributes associated with
each object class, as the output of a unified generative pro-
cess. In nonparametric fashion, the number of topics and
categories is not specified in advance, emerging instead
from the data being modeled. We base ourmultimodal
focused attribute model(MFAM) on the IBP compound
Dirichlet process(ICD) of Williamson et al. [25]; the com-
plete generative story and technical details are given in Sec-
tions 3.3 and 3.4 respectively.

In short, the model defines a prior over distributions of
an infinite number of text- and image-generatingattributes,
and distributions over an infinite number of objectclasses,
with each class representing an independent sample of an
almost surely finite number of attributes. Classes produce
“documents,” which are represented as an unordered col-
lection of visual and textual “words” (e.g., word tokens, or
clustered visual descriptors). Documents may be individual
images with or without text annotation, text documents, a
web page with both text and images, etc., while words are
drawn from one or more fixed vocabularies. Each word in
a document derives from one of the class’s attributes, with
the total number of those words being generated according
to the summed “contribution strength” of the included top-
ics. For instance, the attribute “stripes” for the class “tiger”
could generate visual words in an image, as well as text (e.g.
“camouflage”) accompanying the image.

MFAM is applied by taking visual words extracted from
images, any accompanying text (and data from any addi-
tional modalities), and any known classes or attributes as
observed data. Following typical procedure, Gibbs sam-
pling [24] is used to approximate the posterior distribution
for unobserved variables: as in other NP Bayesian meth-
ods, inference using priors over infinite latent parameters is
tractable because only finitely many parameters are respon-
sible for any finite observation. MLE classification uses the
approximate per-document class distribution resulting from



sampling. In practice, unobserved class attributes tend to
stabilize very quickly, making a single-iteration snapshot
sufficient for attribute inference.

3.2. Nonparametric Background

Our generative model uses ICD [25] as its basis for in-
ference. ICD combines elements of a hierarchical Dirichlet
process (HDP) and the Indian buffet process (IBP) [9] into
an infinite latent topic model that decouples the between-
document frequency of a topic from its within-document
contribution.

TheDirichlet process(DP) [7] determines a distribution
over distributions:G0 ∼ DP(ζ0,H), with H the base prob-
ability measure andζ0 a concentration parameter. Draws
from the DP sample infinite mixtures of component distri-
butions, each drawn fromH, and mixed according toζ0. In
a hierarchical Dirichlet process [21], the per-data distribu-
tion Gm is sampled fromDP (ζ1, G0). In typical modeling
scenarios this distribution is over latent topics, which them-
selves are each associated with a distribution over words
(textual, visual, or other). One result of this hierarchical
construction is the lack of distinction between a compo-
nent’s weight between data points and its weight within
them: a component with low weight inG0 is unlikely to
contribute to many data points, and its contribution to those
where it appears will be small. As Williamson et al. argued
[25], this correlation is not always desirable: infrequent top-
ics may dominate those few documents where they appear.
By integrating anIndian buffet process(IBP) [9] into the
model this correlation is removed.

The Indian buffet process defines a distribution over bi-
nary matrices with infinite columns but almost surely finite
non-zero columns. For most IBP methods, including ICD,
the rows of these matrices represent documents, and the
columns represent latent topics—a1 indicates that a doc-
ument contains a topic. In ICD, a Dirichlet process de-
termines the contribution strengthφk of each componentk
when it is present, with IBP’s binary matrixB determining
the presence of that component in each document.

One derivation of IBP, with columns in order of strictly
decreasing expected sum, is obtained via a “stick-breaking”
construction [20]. For binary matrixB havingM rows (i.e.,
documents), and column (i.e., topic)k = 1, 2, . . .:

µk ∼ Beta(α, 1) (1)

πk =
k∏

i=1

µi (2)

bmk ∼ Bernoulli (πk) for m = 1, 2, . . . ,M (3)

Combining these, ICD samples topic distributionsθi

from Dirichlet(φ ◦ bi), with bi a row in B and ◦ the

Hadamard product. As IBP selects finite components for
each row,θi may be equivalently sampled as the normal-
ization of draws from independent Gamma distributions
Γ(φk · bik, 1) [25]. Williamson et al. used ICD as the basis
of their focused topic model(FTM); the differences between
it and MFAM are the following:

1. MFAM accounts for the presence of data in multiple
modalities (for example, text and images) without un-
wanted statistical effects for documents where some
kinds of data are absent.

2. FTM treats each document as an independent combi-
nation of latent topics; i.e., each row ofB corresponds
to a single document. MFAM generalizes this by al-
lowing documents to share a latent class—i.e., a row
in B—and thus share topics, where appropriate.

These differences provide MFAM with versatility FTM
lacks. Simultaneous operation over documents in different
modalities allows information transfer between multiple do-
mains: for example, text descriptions such as encyclopedia
entries may provide attribute information applicable to the
classification of even unannotated images. By assigning a
latent class to each document, MFAM allows similar docu-
ments to influence each other’s attribute assignments, a fea-
ture FTM lacks; additionally, MFAM is directly applicable
to image classification problems.

3.3. Multimodal Focused Attribute Model

α(π) γ

π φb

τ yα(τ)

∞

η

β

z w
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(m)
.,v

M

∞ V

Figure 1. A graphical model of our approach. Observed visual and
textual words are shown in green; object labels and class attributes,
which are quantities of interest but may also be included as partial
observations, are shown in blue.

A graphical model of our approach is given in Figure 1;
the complete generative process forM documents is:

1. For latent topicsk = 1, 2, . . .,

(a) Sample topic frequency with stick lengthπk us-
ing hyperparameterα(π)



(b) Sample the relative massφk ∼ Gamma(γ, 1)

(c) For vocabulariesv = 1, 2, . . . , V,

i. Sample the topic word distribution,βk,v ∼
Dirichlet(η)

2. For classesc = 1, 2, . . .,

(a) Sample class probability with stick lengthτc us-
ing hyperparameterα(τ)

(b) Sample a binary vectorbc according tobc,k ∼
Bernoulli(πk)

3. For postsm = 1, 2, . . . ,M ,

(a) Draw the class labelym ∼ τ

(b) Sample the topic distributionθm ∼ Dirichlet(bc ◦
φ)

(c) For vocabulariesv = 1, 2, . . . , V,

i. Draw rm,v ∼ Bernoulli(υv), the presence of
v in the post

ii. Draw the number of words,n(m)
.,v ∼

NB(
∑

k bymkφkνvrm,v, 1/2)

iii. For each wordwmvi, i = 1, 2, . . . n
(m)
.,v ,

A. Draw the attribute indexzmvi ∼ θm

B. Draw the wordwmvi ∼ βzmvi,v

Some important features of this generative process are:

• An attribute’s prevalence across classes isnot corre-
lated with its average proportion within documents
where it is present. FTM similarly decouples topic
prevalence across data and within data, although in that
model documents do not have labels.

• The number of word types in a vocabulary is not cor-
related with the number of word tokens generated in
documents representing it.

• Within a document, attributes contribute to all vocabu-
laries in the same underlying proportions.

• Within a class, attributes contribute to documents in
proportions that are conditionally independent given
bc · φ.

• Documents in entirely different modalities, for exam-
ple text and image data, can be generated within the
same class and using the same underlying attributes.

We take known class-attributes as partially observed
rows inB; inferred attributes will populate columns beyond
the observation. When a class including attributek gener-
ates a document,k contributes to that document’s words in
proportion toφk · νv, with v the vocabulary in question. A

given postm contains elements in vocabularyv with prob-
ability υv; i.e., some posts may be text-only, some image-
only.

Observed variables arew., the text and visual words in
each document;n., the number of those words; andr., rep-
resenting whether a given document contains an image, text,
or both. Partial observations include the class of each la-
beled document. As with many nonparametric Bayesian
models, inference is accomplished using Gibbs sampling
over the posterior probabilities of the latent and unobserved
variables. Closed-form solutions for the posterior are avail-
able for most of the latent variables; for the rest, approx-
imation methods are used. Approximations for otherwise
intractable posteriors are used frequently in nonparametric
Bayesian inference, with good results [21, 25, 15].

3.4. Sampling Unobserved Variables

To improve mixing time, we integrate outβ, θ andτ , and
sample onlyφ, π, B, z andy. Given the observed lengths
and word tokens of each document,υ and ν are condi-
tionally independent of the unobserved variables; maximum
likelihood estimates are taken before sampling begins.

3.4.1 Samplingφ and π

φ andπ are sampled conditioned onz, y andB. Adapting
terminology from [25], an attribute is “active” if at least one
element of its column inB is 1, and “inactive” otherwise.

The total number of words in themth document belong-
ing to vocabularyv and assigned to attributek, assum-
ing that vocabularyv is present in the document (which
has independent probabilityυv), is distributed according to
NB(bymkφkνv, 1/2). The joint probability ofφk and the to-
tal number of words assigned to thekth topic, proportional
to the probabilityφk, is

p(φk,n
(.)
k,. | Ψ)

=p(φk | γ)
M∏

m=1

V∏
v=1

p(n(m)
k,v | bym,k, φk, rm,v)

=
φγ−1

k e−φk

Γ(γ)
×

∏
m:bym,k=1

∏
v:rm,v=1

Γ(φkνv + n
(m)
k,v )

Γ(φkνv)Γ(n(m)
k,v − 1)2φkνv+n

(m)
k,v

Monte Carlo methods can be used to sample from the
posterior ofφk (and the posterior ofγ, if such sampling is
desired).

To sampleπk, Williamson et al. used a semi-ordered
stick breaking approach similar to that given by Teh et



al. [20]. We modify their approach to conform to our as-
sumption that the rows ofB represent object classes, not
documents. Active features are distributed according to

p(πk | B) ∼ Beta

(
C∑

c=1

bc,k, 1 + C −
C∑

c=1

bc,k

)
and inactive features are irrelevant in our sampling proce-
dure.

3.4.2 Samplingy

Our experiments deal primarily with object recognition, so
we do not allow our implementation to infer entirely new
classes. With this limitation, class labelsym can be sampled
from the multivariate Polya distribution:

p(ym = c | Ψ)

∝
[∫

τ

p(ym = c | τ)p(τ | δ, y−m)
]

×
[∫

θm

p(zm.. | θm)p(θm | bc, φ, z−m:y=c,.,.)
]

=MP (ym = c; δ, y−m)MP (zm..; bc · φ).

However, this formulation gives extremely poor mixing
results, especially for large documents—consider for exam-
ple that the posterior of any classc′ that lacks attributes
present inzm.. will be zero, even if that class could easily
explain the observed wordswm.. using other attributes.

Instead, we integrate overzm.. and sample the document
class conditioned on the observed words for that document.
This gives

p(ym =c | Ψ)

∝
[∫

τ

p(ym = c | τ)p(τ | δ, y−m)
]

×
[∫

θm

p(wm,.,.Ψ, θm)p(θm | φ, bc)
]

=MP (ym = c; δ, y−m)

×
∫

θm

p(wm..Ψ, θm)Dirichlet(θm;φ · bc)

wherep(wm,.,.Ψ, θm) is the product over vocabulariesv of
the multinomial p.d.f. with input distributionβ∗m,v,

β∗mvi =
∑

k

p(wi | η, z−m)θm,k.

The integration overθm is analogous to one used in La-
tent Dirichlet Allocation [3], where it is approximated using
variational inference. The same technique can be applied
here.

3.4.3 Samplingz

The conditional distribution of the topic assignment of word
wmvi depends on the attribute proportion for that document
θm, which we marginalize away:

p(zmvi = k | z¬(mvi), wmvi, w¬(mvi),Ψ)
∝p(wmvi | zmvi = k, z¬(mvi), w¬(mvi))
× p(zmvi = k | z¬(mvi),Ψ)

∝(n(wmvi)
k,¬(mvi) + η)MP (zmvi = k; bc · φ, zm.¬i)

where MP (zmvi = k; bc · φ, zm.¬i) is the probability
zmvi = k according to the multivariate Polya distribution
with prior bc · φ and observationszm.¬i, i.e., the other at-
tribute assignments for documentm.

Note that this straightforward sampling procedure differs
greatly from the approximation procedure used in FTM; this
difference arises from the fact that here we explicitly sample
B, whereas in FTMB is integrated out [25].

3.4.4 SamplingB

Active columns ofB, i.e., those columnsk whereφk and
πk are known, are sampled according to

p(Bc,k = 1|Ψ)

∝ πk

∏
m:ym=c

∫
θm

p(wm..Ψ¬c, θm)Dirichlet(θm;φ · b∗c)

where hereb∗c is bc with bc,k set to 1. The integration
is otherwise the same as used when samplingy, except
p(wm..Ψ¬c, θm) excludes all documents with labelc in cal-
culatingβ∗mvi.

The prior over the number of inactive columns to make
active in rowc is Poisson(α/|C|), from the Indian Buffet
Process model [9]. The posterior is thus:

p(l new columns forc)
∝Poisson(l | α/|C|)

×
∫

φl

p(φl | γ)
∫

θm

p(wm..Ψ¬c, θm)

Dirichlet(θm; [φφl] · [bc1l])

with the outer integration being over theφ values for thel
new attributes.



4. Datasets for Empirical Testing

Figure 2. Examples from two of eight datasets constructed from
the ILSVRC2010 dataset. Left: images from the “structures”
dataset; columns represent the classes “dock” and “library.” Right:
images from the “clothing” dataset; columns are “football helmet”
and “fur coat.”

We constructed eight themed image datasets, generally
applicable to attribute-based recognition tasks. Each dataset
is comprised of approximately 6,000 images taken from
50 object categories in ImageNet [4], along with a set of
between 20 and 60 manually-specified, theme-relevant at-
tributes and known class-attribute associations. We refer
to individual datasets by their theme, defined as the lowest
common ImageNet ancestor of all included categories. Ex-
amples are given in Figure 2. Local color histograms [23]
were extracted from the images across a 15-pixel grid, and
clustered using k-means into a 500 word color vocabulary.
SIFT [13] features, extracted from the same images and
quantized into 1,000 bins, were provided as part of the Im-
ageNet Large Scale Visual Recognition Challenge 2010 [1]
and taken as a second visual vocabulary.

Some examples of theme-relevant attributes include
“stripes”, “claws” and “aquatic” for theanimals dataset,
and “user-propelled,” “enclosed” and “war” for thevehicles
dataset. Unlike theAnimals with Attributes(AwA) dataset
by Lampert et al. [12], these attributes (and class-attribute
associations) represent layperson knowledge of the classes.
AwA used attributes and associations drawn from a large ex-
isting body of research. Obviously, attributes chosen with
care and expertise will be more effective for classification;
however, we believe this level of effort would be very rarely
justifiable in real-world zero-shot learning applications, as

textbfhand-selected “Yahoo/Flickr” “parts”
animal 0.321 0.194 0.145
clothing 0.235 0.156 0.141
device 0.246 0.102 0.129
equipment 0.343 0.360 0.191
implement 0.130 0.135 0.123
produce 0.297 0.175 0.123
structure 0.271 0.264 0.153
vehicle 0.314 0.272 0.211
Mean 0.270 0.207 0.152

Table 1. Multiclass accuracy for Direct Attribute Projection using
different attribute sets. Zero-shot classification with 40 training
and 10 test classes; chance is 0.1.

spending the required time collecting labeled examples of
the classes of interest would likely produce a better result.
Our “layperson knowledge” attributes are thus more repre-
sentative of real-world zero-shot learning scenarios.

We also considered existing methods for automatic at-
tribute discovery as an alternative to our hand-selected at-
tributes. The attribute discovery code provided by Rohrbach
et al. [18] was used to generate two attribute sets for each
of our datasets. The first, “parts,” was comprised of ob-
ject meronyms discovered within the WordNet hierarchy.
These meronyms represent object components which may
be represented as distinct image regions (e.g. the meronyms
“wing,” “tail ,” or “beak”) or more generally as a non-
localized influence on image color and texture (e.g. “thick
skin,” “hair”). The second attribute set, “Yahoo/Flickr,”
used the same list of attributes chosen by-hand when con-
structing the datasets, but with the class-attribute associa-
tions inferred using result counts from Flickr and Yahoo im-
age searches. This approach more closely simulates the typ-
ical usage case for image classification, where a user may
be willing to provide a list of candidate attributes, but not
a complete matrix of class-attribute associations. The spe-
cific procedure for generating class-attribute associations is
described in [18].

We compared DAP classification performance (with the
same 40 training, 10 test class split used in all later experi-
ments) over these three attribute sets, for each dataset. Com-
plete results are shown in Table 1; overall our hand-selected
attributes gave the best performance by a significant mar-
gin, and except where otherwise noted they were used for
all further experimental trials.

The images chosen did not have accompanying metadata
(e.g., text captions). As described above, our generative
model could easily account for such textual data as addi-
tional observations.



5. Experimental Results

We implemented MFAM for inference using Gibbs sam-
pling, using several approximations for efficiency and ease
of computation. We tested the model in two domains: zero-
shot learning via attributes, and automatic attribute infer-
ence.

5.1. Approximations Used

In samplingz, the countn(wmvi)
k,¬(mvi), the number of times

attributek has produced the word typewmvi across the en-
tire corpus with the exception of tokenwmvi itself, is up-
dated only once per document. For a large corpus with
many documents this should have very little effect on the
resulting probabilities, and empirical tests showed this opti-
mization does not effect classification results.

Although variational inference as described in the ap-
pendix of [3] can be used to approximate∫

θm

p(wm..Ψ, θm)Dirichlet(θm;φ · bc)

when samplingy andB, the current implementation instead
approximated the integration using random sampling ofθm.
Similarly, the outer integration overφl when sampling new
columns was approximated using random sampling.

5.2. Zero-shot Learning

For each dataset described above, we provided category
labels for images across 40 categories, and the full set of at-
tribute associations for all 50 categories. The number of ad-
ditional inferred attributes was limited to at most 10. We ran
Gibbs sampling for 400 total iterations; only images from
the 40 labeled classes were considered for the first 200, to
provide better initialization of latent parameters. All but the
last 100 iterations were discarded as burn-in; classification
used the mode of the sampled class labels.

The model produced image classification results with
an average multiclass accuracy of0.193 (chance: 0.1).
Cross-class zero-shot test accuracy on individual datasets
varied from0.2455 (animals) to0.104 (articles of cloth-
ing). These results, significantly better than chance for most
tested datasets, show that our model is capable of zero-shot
recognition through attribute transfer. However, applying
Direct Attribute Projection [12] to the same data produced
better results: an average multiclass accuracy of0.27, with
best performance of0.34 (equipment). Complete results are
shown in Table 2.

One possible advantage of Direct Attribute Projection
to account for this is, counter-intuitively, its independent
examination of each attribute. DAP determines the like-
lihood of an attribute’s presence through examination of
every available image descriptor (visual word), whereas
MFAM, by assigning attributes to visual words, makes the

MFAM DAP
animal 0.246 0.321
clothing 0.105 0.235
device 0.147 0.246
equipment 0.233 0.343
implement 0.118 0.130
produce 0.205 0.297
structure 0.239 0.271
vehicle 0.246 0.314
Mean 0.192 0.270

Table 2. Zero-shot multiclass accuracy using 40 training, 10 test
classes; chance 0.1. Hand-selected attributes used in both meth-
ods.

implicit assumption that each descriptor is derived from ex-
actly one attribute. In the cases of some attributes, for ex-
ample “spots” and “fur” for the class “leopard,” it is obvious
that no image pixel or collection thereof is entirely represen-
tative of one attribute and not the other.

5.3. Attribute Discovery

We also applied our generative model to the attribute
discovery task. We focused on the animal and structure
datasets, for which our model gave good classification re-
sults. Input data was a 10% subsampling of all 50 image
classes, including class labels. No attributes were taken
as observations, and the number of inferred attributes was
limited to 40. Examination after 10,000 Gibbs sampling
iterations revealed that class attributes very quickly stabi-
lized in both cases (with no changes in class-attribute as-
sociations over the last 5,000 iterations). These inferred
attributes were used to apply DAP to the remaining 90%
of images, using the same training / test class division as
above.

Zero-shot multiclass accuracy is given in Table 3, with
the hand-selected attribute results from Table 2 provided
again for comparison. As shown, attributes inferred by
MFAM are less effective for classification than those se-
lected by hand, but substantially better than chance, show-
ing that attributes can be effectively inferred from unanno-
tated images.

Although classification using MFAM-inferred attributes
did not meet the standard set by hand selected attributes, it
is possible that they represent new information not present
in the other available attribute sets. With each attribute
represented as a binary vector over classes (an attribute is
present in a class or it is not), attribute sets can be trivially
combined without any information loss, by concatenating
attribute matrices and removing redundant columns.

Table 4 shows the result of zero-shot classification using
Direct Attribute Projection, with MFAM-inferred attributes
combined with each of the hand selected, “parts,” and “Ya-



MFAM inferred hand-selected
animal 0.292 0.321
clothing 0.243 0.235
device 0.302 0.246
equipment 0.125 0.343
implement 0.105 0.130
produce 0.065 0.297
structure 0.278 0.271
vehicle 0.106 0.314
Mean 0.1895 0.270

Table 3. Zero-shot multiclass accuracy using 40 training, 10 test
classes; chance 0.1. DAP used for classification in both cases;
MFAM-inferred attributes vs. hand-selected attributes.

hand-selected “Yahoo/Flickr” “parts”
animal 0.362 0.251 0.214
clothing 0.291 0.201 0.214
device 0.295 0.266 0.195
equipment 0.370 0.348 0.236
implement 0.115 0.113 0.115
produce 0.319 0.244 0.065
structure 0.300 0.260 0.241
vehicle 0.301 0.261 0.209
Mean 0.294 0.243 0.207

Table 4. Multiclass accuracy for Direct Attribute Projection using
different attribute sets, each combined with the attributes inferred
by MFAM. Compare against Table 1.

hoo/Flickr” attribute sets. In each case, including MFAM-
inferred attributes improved average classification accuracy
over that of the original attribute set. This demonstrates that
the attributes inferred using our method represent visual in-
formation not present in any of the available attribute sets.

Using the intuition that class attributes will be repre-
sented in examples across multiple modalities, previous at-
tribute inference methods have focused on inference from
sources such as web search results or WordNet meronyms.
While the existence of labeled class images allows object
models to be learned directly, these models can be applied
only to examples using the samerepresentation(for exam-
ple, the same visual word vocabulary). Class attribute infer-
ence allows information transfer between multiple datasets
in otherwise incompatible representations. Datasets repre-
sented by entirely nonoverlapping “vocabularies” could be
combined as input to our generative model, or attributes in-
ferred from one could be applied to others as a separate step.
As demonstrated in Table 4, attributes inferred from a visual
dataset provide information that may be difficult to acquire
in any other way.

6. Future Directions

The MFAM approach presented in this paper for zero-
shot object recognition has several advantages over previ-
ous methods including (1) it allows probabilistic attribute
assignment, (2) attribute inference for new classes is fully
integrated, and (3) it allows for the straightforward com-
bination of multimodal documents and expert knowledge
in the form of labeled examples and class-attribute associ-
ations. Possible applications of this model include its di-
rect use for object classification (including zero-shot clas-
sification, as examined here), and the inference of class at-
tributes for use in separate tasks or merely to gain insight
into the object classes themselves. Used to infer class at-
tributes for use in DAP, MFAM produces results compara-
ble to manually-defined attributes using layperson knowl-
edge, and is superior to automatic methods that rely on web
results for inference. Although DAP using hand-selected
attributes produces better classification results for the tested
datasets than either MFAM classification or DAP classi-
fication using MFAM-inferred attributes, MFAM-inferred
attributes provide new class information that can improve
classification results using any other tested attribute set.

Further tests are needed to explore other applications.
Class discovery from unlabeled image sets is possible, with
the Bayesian priors serving to limit the number of new
classes. Multimodal datasets should be developed to test at-
tribute transfer across modalities: in addition to information
transfer between text and image data, transfer between im-
ages in different representations – i.e., different using differ-
ent feature representations such as SIFT vs. SURF – should
be tested.

The nonparametric Bayesian approach could be ex-
tended to provide other benefits as well. For example, class
discovery from unlabeled image sets is possible, with the
Bayesian priors serving to limit the number of new classes.
The visual vocabulary itself can be included as a product of
the generative process by, e.g., representing visual features
as draws from a mixture model, with a number of underly-
ing mixture components determined by the data.

Finally, the work by D. Parikh and K. Grauman [17]
demonstrates the utility of examining attributes within an
example or class in relative terms, by comparison to other
examples and classes (e.g. “bluer,” “more furry”), rather
than as a simple binary value. Although in this work we
examine MFAM using binary attributes (as both input and
output), the model itself treats attributes as probabilistic
random variables. Parikh and Grauman discuss relative at-
tributes in terms of expert (or lay-person) uncertainty – peo-
ple may disagree as to whether, for example, a particular
person is smiling in a particular picture. This uncertainty
is directly represented in MFAM as posterior likelihood,
and although this work does not examine that likelihood
directly, the results presented in [17] suggest that just as



this work applied MFAM-inferred binary attributes to Di-
rect Attribute Projection, future work should apply MFAM-
inferred attribute probabilities as input to relative attribute
methods.
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