Data Clustering For Very Large
Datasets Plus Applications

Tian Zhang
Technical Report #1355

November 1997

DATA CLUSTERING FOR VERY LARGE
DATASETS PLUS APPLICATIONS

By
Tian Zhang

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCES)

at the
UNIVERSITY OF WISCONSIN - MADISON
1997

© Copyright by Tian Zhang 1997
All Rights Reserved

Abstract

Data clustering is an important way of exploring data, and has been shown to be useful
in many domains such as data classiﬁc.a.tion and image processing. Recently, there is
a growing emphasis on exploratory analysis of very large datasets to discover useful
patterns and correlations among attributes. It is called data mining, and data clustering
is regarded as a p:c:.rticular branch. However existing data clustering methods do not
adequately address the problem of processing very large datasets with limited resources
(e.g., running time and memory). As the dataset size increases, they do not scale up
well in terms of memory requirement, running time, and result quality.

In this thesis, with a new in-memory data structure called CF-tree serving as a data
distribution summarization, an efficient and scalable data clustering method is proposed,
and implemented in a system called BIRCH (Balanced Iterative Reducing and Cluster-
ing using Hierarchies). With various patterns of synthetic datasets, its performance is
studied and compared with other methods in terms of memory reqﬁirement, running
time, quality, stability and scalability. Finally, BIRCH is applied to solve two real world
- problems: (1) building an iterative and interactive pixel classification tool, and (2) gen-
erating initial codebook for image compression. Its performance on these real datasets

is also compared with other methods.

i

Acknowledgements

First of all, I would like to devote my Ph.D thesis to the two most important persons
in my life: my mother Kaiguang and my daughter Angela. In the past year, my life has
been filled with both tears and joys: first my mother left me after an arduous fight with
cancer, then my daughter arrived just like an Angel full of comforts. Seeing both of
them, one leaving and one arriving, | have understood what life is all about. I am very
grateful to my husband Jian for being with me all the time and giving me the support
I need to finish my Ph.D.

My advisor, Raghu Ramakrishnan, has been the major force for me to stay concen-
trated on my Ph.D topic. I am very fortunate to meet such an open-minded advisor: he
accepted me as his student even though he knew that I had a very different background.
He gave me the freedom to explore new topics (just as he said “do what other people
are not doing”), and at the same time, he pushed me to focus on and deepen the work.
Also from him, I gained tremendously a lot on my research, writing and presentation
skills. Besides all of these, he is like a friend with whom I can talk not only my career
objective, but also the stories of my mother and my daughter.

[am very thankfulﬂ to the fact that I have another advisor, Miron Livny. So I have
got the unusual advantage of double resources that made my Ph.D study most efficient.
Miron is always full of suggestions and comments on my work that I could never use up.
To me, his encouragement is just as earnest as his criticism is. However either way has
equally benefited my work.

I took my first database course from Jeffrey Naughton, and I would like to thank
him for leading me to this fascinating field, and for serving on my committee at the
end. Jude Shavlik has always been very encouraging and helpful to me during the whole
period of my Ph.D study in Madison. I attribute my knowledge in machine learning to
his splendid lectures, and I appreciate his help and strong support when [was on the job

market too. At one point, I have been so interested in logic programming and Kenneth

iii
Kunen has spent a lot of time showing me the interesting problems and solutions in this
area. Although my thesis is not about logic, but all those intelligent discussions are very
valuable experiences to me. I had the opportunity to work on a project with Yannis
Ioannidis in my first year in Madison and I have learned from him the way of describing
a complex problem with very simple terms. I had a very interesting discussion with
Olvi Mangasarian about optimal sequence trends. Eric Bach provided many references
in graph theory to me. John Strikwerda helped me solve problems related to the linkage
of FORTRAN and C codes.

Wei-Yin Loh of Statistics Department was on my preliminary committee and oral
defense committee. He helped me identify the relationship between my work and the
most current related statistical literatures. He has shown me the most abstract statistical
theory in such an intuitive way. John Norman of Soil Sciences Department was another
external examiner on my committee. He has continuously shown great interest and
enthusiasm in my work, and gave me detailed suggestions for improving my work and my
thesis. His student, Chris Kucharik, provided the access to their images for conducting
my experiments.

I would like to thank the other members in my advisors’ group for the pleasant
collaborations: Kent Wenger provided me the data input code and kept improving it;
Jussi Myllymaki showed me how to use DEVISE in great details; Shaun Flisakowski
explained how to overload the C4++ memory allocation part; Viresh Ratnakar provided
images and image compression algorithms for conducting my experiments, and he also
explained the meanings of various quality measurements used in image compression.
When [first joined the group, Praveen Seshadri has given me a lot of advices and help
to start the work.

It is a great pleasure being a member of the resourceful database group in the depart-
ment, and I have enjoyed the interesting communications with the other students includ-
ing Joseph Albert, Navin Kabra, Jignesh Patel, Kristin Rufte, Shivakumar Venkatara-
man, Janet Wiener, Jiebing Yu, and Yihong Zhao. I would also like to thank Lorene

Webber for helping me understand and fulfill the department and graduate school’s

v
Ph.D procedures in a timely way.
It is time to say good-bye, but I would like to say keeping in touch instead because

I know I will miss Madison and all of you for a long time.

List of Figures

1 Overviewof Thesis
2 ACF-treeExample L
3 Effect of Split, Merge and Resplit
4 Rebuilding CF-tree
5 Overview of BIRCH Clustering Algorithm
6 Flow Chart of Phase 1
7 Flow Chart of Phase 2
8 Flow Chart of Phase 3
9 Flow Chartof Phased

10 Time Scalability with respect to Increasing Number of Points per Cluster

(M) .« o

11 Quality Stability with respect to Increasing Number of Points per Cluster

(M) o e
12 Time Scalability with respect to Increasing Number of Clusters (K) . . .
13 Quality Stability with respect to Increasing Number of Clusters (K) . . .
14 Time Scalability with respect to Increasing Dimension (d)

15 Quality Stability with respect to Increasing Dimension (d)

16 Interactive and Iterative Pixel Classification Tool
17 An Example of DAG Used to Track History
18 An Exampleof MVIimage
19 1st Run: Separate Treesand Sky,
20 2nd Run: Separate Branches, Shadows and Sunlit Leaves
21 Another Example of MVIimage
22 Lena Compressed with BIRCH Codebook

24
25
26
27

28
29
30
31
32
33

34
35
36
37
38
39

40
41
42
43
44
45

46
47
48
49

Lena Compressed with CLARANS Codebook 79
Lena Compressed with LBG Codebook 79
Baboon Compressed with BIRCH Codebook 79
Baboon Compressed with CLARANS Codebook 79
Baboon Compressed with LBG Codebook 79
Dataof DS1 95
Dataof DS2 e 95
Dataof DS3 95
Intended Clusters of DS1 L 95
Intended Clustersof DS2 L 95
Intended Clustersof DS3 L. L. 95
BIRCH Clusters of DS1 o o 96
BIRCH Clusters of DS2 96
BIRCH Clustersof DS3 96
BIRCH Clustersof DS1o o ... 96
BIRCH Clusters of DS20 96
BIRCH Clustersof DS30 96
CLARANS Clusters of DS1 97
CLARANS Clusters of DS2 97
CLARANS Clustersof DS3 oL 97
CLARANS Clusters of DS1o oo oo L. 97
CLARANS Clusters of DS20 97
CLARANS Clustersof DS30 97
KMEANS Clusters of DS1 oo o oo 98
KMEANS Clusters of DS2 o o 98
KMEANS Clusters of DS3 98
KMEANS Clusters of DS1o 98

50
51

52
53
54
53
56
57

KMEANS Clustersof DS20 L. 98
KMEANS Clustersof DS30 98
BIRCH Clusters of DS4 with Outlier Options On 99
BIRCH Clusters of DS5 with Outlier Options On 99
BIRCH Clusters of DS6 with Outlier Options On 99
BIRCH Clusters of DS4 with Outlier Options Off 99
BIRCH Clusters of DS5 with Outlier Options Off 99

BIRCH Clusters of DS6 with Qutlier Options Off 99

vili

List of Tables

1 Data Generation Parameters and Their Values or Ranges Experimented . 43
2 BIRCH Parameters and Their Default Values 45
3 Datasets Used as Base Workload 46
4 BIRCH Performance on Base Workload 48
5 CLARANS Performance on Base Workload 48
6 KMEANS Performance on Base Workload 48
7 Sensitivity to Initial Threshold 57
8 Semnsitivity to Page Size o L 59
9 Effects of Outlier Options 59
10 Effects of Phase 3 Algorithms 60
11 Effects of Memory Size 61
12 Effects of Distance Metrics L. 62
13 BIRCH,CLARANS,KMEANS on Pixel Classification 73

14 BIRCH, CLARANS and LBG on Image Compression 78

-

Contents

Abstract

Acknowledgements

1 Introduction

2 Background

2.1
2.2
2.3
24

2.5

Metric Attributes e e e

Measurements for one cluster L

Measurements between two clusters,

Measurements of Clustering Quality

Weighting and Shifting oL

3 CF and CF-tree

3.1

3.0.1 Clustering Feature (CF)
3.0.2 CF Representativity,
3.0.3 CF Additivity e
CF-tree . . . o e e e e e
3.1.1 CPF-tree Definition
3.1.2 Imsertion Algorithm
3.1.3 Anomalies
3.1.4 Rebuilding Algorithm oL
3.1.5 Reducibility
3.1.6 CF-tree versus Multi~Dime'nsiona1 Histogram
3.1.7 Generalizing CF-tree

4 Data Clustering

4.1

Previous Work

................................

ix

ii

10
11
14
15
17
17
18

19

4.1.1 Probability-Based oo oo
4.1.2 Distance-Based L oo oo
4.2 Contributions and Limitationsof BIRCH
4.3 BIRCH Clustering Algorithm
4.3.1 Overview o e e e e e
4.3.2 Phasel i i i e
4.3.3 Phase2 e
434 Phased e e
4.3.5 Phased
4.3.6 Memory Management.
5 Performance of BIRCH Data Clustering
5.1 Analysis o .o e
5.2 Synthetic Dataset Generator
5.3 Parameters and Default Setting
5.4 Base Workload Performance
5.5 Other Methods on Base Workload
5.6 Scalability and Stability o o o
5.6.1 Increasing the Number of Points per Cluster (n)
5.6.2 Increasing the Number of Clusters (K)
5.6.3 Increasing the Dimension (d)
5.7 Sensitivity to Parameters oo
6 BIRCH Applications
6.1 Pixel Classification Tool
6.1.1 Motivation
6.1.2 Pixel Classification Tool
6.1.3 Example of Using the Tool
6.1.4 User Evaluation
6.1.5 BIRCH,CLARANS and KMEANS on Pixel Classification

19
21
23
24
24
29
34
36
39
40

41
41
42
44
45
48
54
54
39
56
56

6.2 Codebook Generation in Image Compression

6.2.1 Motivation o e e

Implementation Issues

7.1 Code Components
711 Utility . . . o o
7.1.2 Data Clustering
7.1.3 Density Estimation
7.1.4 Data Input and Preparation

7.2 BIRCH Execution
721 Imputof BIRCH.
722 Outputof BIRCH.

Conclusions and Future Research

8.1 Data Clustering

8.2 Density Estimation e
8.2.1 Previous Work L
8.2.2 CF-kernel Method,

Proof of CF Representativity Theorem
CF-tree Insertion Algorithm

CF-tree Rebuilding Algorithm

Base Workload

BIRCH on Base Workload

CLARANS on Base Workload

KMEANS on Base Workload

bl
75
75
75

80
80
80
80
81
81
81
82
83

84
84
85
89
88

90

92

94

95

96

97

98

xii
H Effects of Outlier Options 99

Bibliography - 100

Chapter 1

Introduction

Thi.s thesis presents system BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies), a system that provides an efficient and scalable data clustering method for
very large datasets with a limited amount of resources (e.g., running time and memory).

In this thesis, data clustering refers to the problem of dividing N data points into K
groups to minimize the intra-group difference, such as the sum of the squared distances
from the cluster centers. Usually given a very large set of multidimensional data points,
the data space is not uniformly occupied by the data points. Through data clustering,
one can identify the sparse and the crowded regions, and hence discover the overall
distribution patterns or the correlations among data attributes, which may be used to
guide the application of more rigorous analysis procedures. It is a very practical subject
and has been studied for many years. Many methods have been developed and applied to
various domains, including data classification and image compression {41, 13]. However,
it is also a very difficult subject because theoretically, it is a nonconver discrete[35]
optimization problem. Due to an abundance of local minima, there is typically no
way to find the global minimal solution without trying all possible partitions, which is
infeasible except when N and K are extremely small.

Recently, there is a growing emphasis on exploratory analysis of very large datasets
to discover useful patterns. Organizations are investing heavily on “data warehousing”
to collect data in a form suitable for extensive exploratory analysis and there has been
extensive research on exploratory data analysis or “data mining” algorithms [3, 5, 20, 48].
Data clustering is regarded as a particular branch of data mining. Here the important
issue is that for a data mining method to be successful in a database environment, it must

scale up well in terms of memory requirement, running time and quality as the dataset

2
size increases. So besides the mentioned difficulty, we have additional database-oriented
constraints: The amount of memory available is limited (typically, much smaller than
the dataset size) whereas the dataset can be any large. We want to minimize the I/0
cost involved in clustering the dataset. However, prior work in data clustering did not
adequately address the problem of processing very large datasets with a limited amount
of resources (e.g., running time and memory). So generally as the dataset size increases,
they could not scale up well in terms of memory requirements, running time, and result
quality.

We will present a data clustering system named BIRCH and demonstrate that it is
especially suitable for clustering very large datasets. First it tries to escape from local
minima by clustering on a data summarization instead of on the data itself. Second it
tries to cluster any large dataset as well as the given amount of memory allows. Third
its running time and I/O cost is linear with the the dataset size: a single scan of the
dataset yields a good clustering, and one or more additional passes can (optionally) be
used to improve the quality further.

By (1) evaluating BIRCH’s running time, memory usage, clustering quality, stability
and scalability, (2) comparing BIRCH with other existing algorithms, and (3) applying
BIRCH to real world problems, we argue that BIRCH is the best available clustering
method for handling very large datasets. BIRCH’s architecture also offers opportunities
for parallel and concurrent clustering. It is also possible to interactively and dynamically
tune the performance based on knowledge gained about the dataset over the course of
the execution.

The thesis is organized in the following way. Chapter 2 presents some background
materials needed for discussing data clustering in BIRCH. Chapter 3 introduces the clus-
tering feature (CF) concept, the CF-tree structure, as well as some related algorithms,
theorems and proofs. The differences between the CF-tree and the multi-dimensional
histogram are also discussed briefly. Chapter 4 first surveys the previous data clus-
tering work, and then discusses how it is approached in BIRCH by using the CF-tree
structure. All the details of BIRCH data clustering algorithm will be addressed in this

CF, CF-tree

v

Data Clusterlng

Applicationl Application2
(Pixel Classification) (Image Compression)

Figure 1: Overview of Thesis

chapter. Chapter 5 presents the performance evaluation of the BIRCH, CLARANS[45],
and KMEANS|[32] on synthetic datasets. Chapter 6 presents two applications of BIRCH
data clustering algorithm. They are also intended to show how BIRCH, CLARANS
and KMEANS perform on those real datasets. Chapter 7 discusses the implementation
issues in BIRCH, and it serves as a technical documentation for using BIRCH. Chapter
8 presents our conclusions and points out directions for future research. In this chapter
we will explain how BIRCH can be generalized to solve density estimation problem for
very large datasets efficiently, what additional work is needed to improve it further. Fig-

ure 1 gives an overview of the contents of the thesis: the major components and their

relationships:
1. CF and CF-tree: concepts, theorems and algorithms;
2. BIRCH data clustering algorithm based on CF-tree;

3. Applications of BIRCH data clustering algorithm.

Chapter 2

Background

2.1 Metric Attributes

The major focus of this chapter is to show all the measurements that are used in the
BIRCH clustering algorithm. Generally, there are two types of attributes involved in the
dataset: metric and nonmetric. Informally, a metric attribute is one whose values can be
represented or mapped by explicit coordinates in a Euclidean vector space; a nonmetric
attribute is one whose values can not be represented or mapped by explicit coordinates
in a Euclidean vector space. In this thesis, BIRCH considers metric attributes only, just
as KMEANS does. So each tuple of d attributes can be represented as a d-dimensional
vector. [assume that the readers are familiar with the terminology of the d-dimensional
vector space, such as vector addition, vector subtraction, and vector dot product[12].
Following are the definitions of various measurements that will be used in the descriptions

of algorithms in this thesis.

2.2 Measurements for one cluster

We begin by defining centroid, radius and diameter for one cluster. Given N d-dimensional
data points in a cluster: {X;} where i = 1,2,..., N, the centroid X0, radius R and

diameter D of the cluster are defined as:

(2.1)

|z (2.2)

-

?—lzl ﬁ:l(fﬁ - Xj)z
N(N = 1)

In the above definitions, R measures the average distance from member points of a

D= |z (2.3)

cluster to the centroid; D measures the average pairwise distance within a cluster. They

are two alternative measurements of the scatterness of the cluster around the centroid.

2.3 Measurements between two clusters

Next between two clusters, we define 5 alternative distances for measuring their closeness.
Given the centroids of two clusters: X.f)l and X-(jg, the centroid Euclidean dis-

tance D0 and centroid Manhattan distance D1 of the two clusters are defined as:

DO = [(X0, — X0,)%)2 (2.4)

d , .
D1 = | X, — X0y = 3 1%0,” - x0,") (2.5)

1=1
Given N, d-dimensional data points in a cluster: {)?1} where 1 = 1,2,..., N, and N,
data points in another cluster: {XJ} where 7 = Ny + 1, N; + 2,..., N; + Ny, the aver-
age inter-cluster distance D2, average intra-cluster distance D3 and variance

increase distance D4 of the two clusters are defined as:

N Nij+N; ¥4 v
[Zt.—l 2]:;1-}?1 X _X])Z]% (2.6)

D2 = A

TR R (Ri-X,)?
D3 = [(N1 +N2) (N1 +N2~1)

|z (2.7)

Ny+Ny
Ny +N. I=] X
D4 = [Zk_l.li— 2(X ZN1+N2
- Ny ¢ NitNz ¢
N =X Ni+N: Xt o0t
— o (X - gy N (%, e Ty (2.8)

6
The average intra-cluster distance D3 is actually the diameter D of the merged
cluster. For the sake of clarity, we treat X0, Rand D as properties of a single cluster, and

DO, D1, D2, D3 and D4 as properties between two clusters, and state them separately.

2.4 Measurements of Clustering Quality

Assﬁme N data points are clustered into K clusters. Cluster ¢, ¢ = 1,..., K, contains
N; data points, has a radius of R; and a diameter of D;. }:f;l N; = N. We define the
following 4 alternative clustering quality measurements: weighted average cluster
radius square Q1 (or R), weighted average cluster diameter square Q2 (or D),
weighted total cluster radius square ()3, and weighted total cluster diameter

square (4 as below.

R, NiR?
Q1= __—__..él N (2.9)
K Ni(N; — 1)D? |
— 1=l 't 4 1
9= oK NN D) 210)
K
Qs =) _ N:R? (2.11)
=1
«
Qs = Ni(N; - 1)D? (2.12)

1=1

2.5 Weighting and Shifting

We can optionally pre-process data by weighting and/or shifting the data along different
dimensions without affecting the relative placement of data points (That is if point A
is left to point B, then after weighting and shifting, point A is still left to point B.).
For example, to normalize the data, one can shift the data by the mean value along

each dimension, and then weight the data by the inverse of the standard deviation on

7

each dimension. In general, such data pre-processing is a debatable semantic issue. On
one hand, it avoids biases caused by some dimensions. For example, the dimensions
with large spread dominate the distance calculations in the clustering process. On the
other hand, it is inappropriate if the spread is indeed due to natural differences of
clusters. Since prep-rocessing the data in such a manner is considered independent of
the clustering algorithm in this thesis, we will assume that the user who uses the data

clustering algorithm on his/her data knows how to pre-process the data.

Chapter 3

CF and CF-tree

BIRCH chooses to summarize a dataset as a set of subclusters to reduce the scale of the

problem. So the following quesfions about the summarization follow immediately:

1. How much summary information should be kept for each subcluster?
2. How is the summary information organized?

3. How efficiently is the organization maintained?

This whole chapter is devoted to address the above questions while it presents the
Clustering Feature (CF) concept, the CF-tree structure, as well as their related

algorithms and theorems. They are at the core of BIRCH’s incremental and scalable

computation.

3.0.1 Clustering Feature (CF)

A Clustering Feature (CF) is a triple summarizing the information that we maintain
about a subcluster of data points: (1) the number of data points, (2) the linear sum of

data points, and (3) the square sum of data points.

Definition 1 (CF Definition): Given N d-dimensional data points in a cluster: {)_(‘1}
where 1 = 1,2, ..., N, the Clustering Feature (CF) entry of the cluster is defined as a
triple: CF = (N, LS, SS), where N s the number of data points in the cluster, LS is
the linear sum of the N data points, i.e., ¥, X:, and SS is the square sum of the N
data points, i.e., TN Xf.

This triple not only summarizes the distribution inside the subcluster, but also can

be used to measure the closeness between two subclusters, and to measure the overall

9

clustering quality. Following is the theorem with respect to the representativity of the

CF entries.

3.0.2 CF Representativity

Theorem 2 (CF Representativity Theorem): Given the CF entries of clusters, all

the measurements defined in Chapter 2 can be computed accurately.

The proof is given in Appendix A with some mathematical transformations of the defini-
tion formulae. So one can think of a subcluster as a set of data points, but only the CF
entry is stored as the summary. This CF summary is not only efficient because it takes
much less space than all the data points in the subcluster, but also sufficient because it
is enough to support computing all the measurements that we need for making decisions
in our system accurately.

The following theorem with respect to the additivity of the CF entries further shows
that the CF entries of subclusters can be stored and computed incrementally and accu-

rately as clusters are merged, or new data points are inserted.

3.0.3 CF Additivity

Theorem 3 (CF Additivity Theorem): Assume that CF; = (Nl,Lgl,SSl), and
CF; = (N,, LEZ,SSZ) are the CF vectors of two disjoint clusters, where disjoint means
a data point can not belong to more than one cluster at the same time. Then the CF

vector of the cluster that is formed by merging the two disjoint clusters, is:
CF, + CF; = (N, + Ny, LS + L5,, 55, + §53) (3.13)

The proof consists of straightforward algebra, and hence is omitted.

3.1 CF-tree

A height-balanced tree structure is used to organize the CF entries of subclusters into

levels based on their containment relationship for efficient insertions.

10

CF1+CF2+CF3 | CF4+CF5

CF1 | CF2{CF3 |1 <1 CF4 | CF5 T

Figure 2: A CF-tree Example

3.1.1 CPF-tree Definition

A CF-tree is a height-balanced tree with two parameters: branching factor (B for
nonleaf node and L for leaf node) and threshold T'. It has two types of nodes: nonleaf
node and leaf node. A nonleaf node contains at most B entries of the form [C'F;, child;],
where 1 = 1,2, ..., B, “child;” is a pointer to its i-th child node, and C'F; is the C'F' of the
subcluster represented by its i-th child. So a nonleaf node represents a cluster made up
of all the subclusters represented by its entries. A leaf node contains at most L entries,
each is an entry of the form [CF], where ¢ = 1,2,..., L, and CFj is the CF of its :-th
subcluster. In addition, each leaf node has two pointers, “prev” and “nezt” which are
used to chain all leaf nodes together for efficient scans. So A leaf node also represents a
cluster made up of all the subclusters represented by its CF entries. But all CF entries
in a leaf node must satisfy a threshold requirement with respect to a threshold value T.
In this thesis, we have decided to define the threshold requirement as: the diameter of
each leaf CF entry has to be less than T. Whereas in general, there is no reason that
we can not define the threshold requirement in other ways to make the CF-tree more
versatile.

Figure 2 shows a sample CF-tree with height of 2, B = L = 3. The diameters of leaf
entry CF1 through CF5 must all satisfy the threshold value T'. |

With the above CF-tree definition, the tree size will be a function of the threshold

value T'. The larger T is, the smaller the tree size should be. We require a node (nonleaf

11
or leaf) to fit in a page of size P for efficient access reason. Once the dimension d of the
vector space is given, the sizes of leaf and nonleaf entries are known, then B and L are
determined by the page size P. So P can be varied for performance tuning.

Such a CF-tree will be built dynamically as new data objects (points or CF entries)
are inserted. It is used to guide a new insertion into the correct subcluster (leaf entry)
for clustering purposes just the same as a B+-tree is used to guide a new insertion into
the correct position for sorting purposes. But CF-tree is a very compact representation
of the dataset because each entry in a leaf node is not a single data point but a subcluster

(which absorbs as many data points as the threshold requirement allows)

3.1.2 Insertion Algorithm

We now present the algorithm for inserting an entry ‘Ent’ into a CF-tree. Here ‘Ent’ is
represented by its CF, and it can be either a single data point, or a subcluster of data
points depending on whether a new data point is inserted or an existing leaf entry is

re-inserted. The insertion algorithm proceeds in the steps as shown below:

1. Identifying the appropriate leaf node: Starting from the root, it recursively descends
the CF-tree by choosing the closest child node according to a chosen distance
metric: D0,D1,D2,D3 or D4 as defined in Chapter 2 and computed from CF

entries on each level of the CF-tree.

2. Modifying the leaf node: When it reaches a leaf node, it finds the closest leaf
entry, say L;, and then tests whether ; can absorb “Ent” without violating the
threshold requirement. That is, the cluster merged with “Ent” and L; must still
satisfy the threshold requirement. Note that the CF entry of the new cluster can
be computed from the CF entries for L; and “Ent”. If so, the CF entry for L; is
updated to reflect this. If not, a new entry for “Ent” is added to the leaf node. If
there is space on the leaf node for this new entry to fit in, we are done, otherwise
we must split the leaf node. Node splitting is done by choosing the farthest pair

of leaf entries as seeds, and redistributing the remaining leaf entries based on the

12

closest criteria.

3. Modifying the path from the leaf node to the root: After inserting “Ent” into a leaf
node, we must update each nonleaf entry on the path from the root leading to
the leaf node. In the absence of a split, this simply involves adding CF entries to
reflect the addition of “Ent”. A leaf node split requires us to insert a new nonleaf
entry into the parent node, to describe the newly created leaf node. If the parent
has space for this entry to fit in, then at all higher levels, we only need to update
the CF entries to reflect the addition of “Ent”. In general, however, we may have
to split the parent as well, and so on up to the root. If the root is split, the tree

height will increase by one and a new root will be created.

4. A Merging refinement when the split stops: Splits are caused by the page size,
which is independent of the clustering properties of the data. In the presence of
skewed data input order, this can affect the clustering quality, and also reduce
space utilization. A simple additional merging step often helps ameliorate these
problems: Suppose that there is a leaf node split, and the propagation of this split
stops at some nonleaf node Nj, i.e., N; can accommodate the additional entry
resulting from the split. We now scan node N; to find the closest pair of entries
but not the pair corresponding to the split, then we try to merge them and the
corresponding two child nodes. If there are more entries in the two child nodes
than one page can hold, we resplit the merging result again. During the resplitting,
in case one of the seed attracts enough merged entries to fill a page, we just put
the rest entries with the other seed. In summary, if the merged entries fit in a
single page, we free a node space for later use, create one more entry space in node
N;, thereby increasing space utilization and postponing future splits; otherwise we
improve the distribution of entries in the closest two children to reduce the effect

of data input order.

The pseudo-code of the insertion algorithm is given in Appendix B.

13

CF1CF3

- s Split
CFl CF6 CF7 CER CE4
000 0000 O

Split
m CF3 CF5 CF7 CF8 CF4 CFZ
CF1 CF3 CFS CE6__ CFICF8 CF4 CR2 (P Merge

@ o @

CF1 CF3 CF5 CF7 CF8 CF4 CF2 CF9 Resplit

@ @ 00D

Figure 3: Effect of Split, Merge and Resplit

14

Figure 3 gives some intuition of the dynamic adjusting effects of the split, merge, and
perhaps resplit mechanisms. Imagine the large ovals as leaf nodes (or nonleaf entries)
and the small ovals as leaf entries. Assume each leaf node can only hold at most four
leaf entries, and the leaf entries are created in the order as labeled: CF1 through CF9.

Following is the steps of how the leaf nodes and entries are created:
1. As data is inserted, CF1 to CF4 are created in the same leaf node.

2. With more insertion, CF5 is created which causes the single leaf node to split into

two leaf nodes.
3. With more insertion, CF6 to CF8 are created in the two leaf nodes.

4. With more insertion, CF9 is created which causes the right side leaf node to split

into two leaf nodes.
5. The closest pair but not just split pair of leaf nodes (or nonleaf entries) are merged.
6. The merging causes overflow and needs to be resplit immediately.

From the above steps, one can see that the split, merge and perhaps resplit mechanisms
work together to dynamically adjust the CF-tree to reduce its sensitivity to the data

input order.

3.1.3 Anomalies

Since each node can only hold a limited number of entries due to its size, it does not
always correspond to a natural cluster. Occasionally, two subclusters that should have
been in one cluster are split across nodes. Depending upon the order of data input
and the degree of skew, it is also possible that two subclusters that should not be in one
cluster are kept in the same node. These infrequent but undesirable anomalies caused by
node size limit (anomaly1) will be addressed with a global clustering algorithm discussed

in Section 4.3.4.

-

15

Another undesirable artifact is that if the same data point is inserted twice, but at
different times, the two copies might be entered into two distinct leaf entries. Or, in
another word, occasionally with a skewed input order, a point might enter a leaf entry
that it should not have entered (anomaly2). This problem will also be addressed with a

refining algorithm discussed in Section 4.3.5.

3.1.4 Rebuilding Algorithm

Following we discuss how to compact (or rebuild) the CF-tree by increasing the threshold
if the CF-tree size limit is exceeded as more and more data points are inserted.

Assume ¢; is a CF-tree of threshold T;. Its height is A, and its size (number of nodes)
is S;. Given T4y > T;, we want to use all the leaf entries of ¢; to rebuild a CF-tree,
tit1, of threshold T;i; such that the size of #;4, should not be larger than S;. Following
is the rebuilding algorithm as well as the consequent reducibility theorem.

Assume within each node of CF-tree t;, the entries are labeled contiguously from 0
to ny — 1, where ny is the number of entries in that node, then a path from an entry in
the root (level 1) to a leaf node (level) can be uniquely represented by (iy, i3, ..., i4-1),
where 5,7 = 1, ..., h—1is the label of the j-th level entry on that path. So naturally, path
(69,6, if2)) is before (or <) path (i, i, ...,i®)) if V) =i, . W =i®
and igl) < z'g-z)(() < j £ h=1). It is obvious that each leaf node corresponds to a path
uniquely, and we will just use path and leaf node interchangeably from now on.

The idea of the rebuilding algorithm is illustrated in Figure 4. With the natural
path order defined above, it scans and frees the old CF-tree path by path, and at
the same time, creates the new CF-tree path by path. The new CF-tree starts with
NULL, and “OldCurrentPath” starts with the leftmost path in the old CF-tree. For the

“OldCurrentPath”, the algorithm proceeds as the steps shown below:

1. Create the corresponding “NewCurrentPath” in the new CF-tree: nodes are added
to the new CF-tree exactly the same as in the old CF-tree, so that there is no

chance that the new CF-tree ever becomes larger than the old CF-tree.

-

2.

4.

16

OldCurrentPath NewClosestPath NewCurrentPath

Figure 4: Rebuilding CF-tree

Insert leaf entries in “OldCurrentPath” to the new CF-tree: with the new thresh-
old, each leaf entry in “OldCurrentPath” is tested against the new CF-tree to see
if it can either be absorbed by an existing leaf entry, or fit in as a new leaf
entry without splitting, in the “NewClosestPath” that is found top-down with
the closest criteria in the new CF-tree. If yes and “NewClosestPath” is be-
fore “NewCurrentPath”, then it is inserted to “NewClosestPath”, and the space
in “NewCurrentPath” is left available for later use; otherwise it is inserted to

“NewCurrentPath” without creating any new node.

Free space in “OldCurrentPath” and “NewCurrentPath”: Once all leaf entries in
“OldCurrentPath” are processed, the un-needed nodes along “OldCurrentPath”
can be freed. It is also likely that some nodes along “NewCurrentPath” are empty
because leaf entries that originally correspond to this path are now “pushed for-

ward”. In this case the empty nodes can be freed too.

“OldCurrentPath” is set to the next path in the old CF-tree if there still exists one,

and repeat the above steps.

From the rebuilding steps, all old leaf entries can be re-inserted, but the new CF-

tree can never become larger than the old CF-tree. Since only nodes corresponding to

-

17

“OldCurrentPath” and “NewCurrentPath” need to exist simultaneously, the maximal

extra space needed for the CIF-tree transformation is A (height of the old CF-tree) pages.

So by increasing the threshold value T', we can rebuild a smaller CF-tree with a very
limited amount of extra memory.

The pseudo-code of the rebuilding algorithm is given in Appendix C. Following is

the reducibility theorem that follows from the rebuilding algorithm immediately.

3.1.5 Reducibility

Theorem 4 Reducibility Theorem: Assume we rebuild CF-tree t;y, of threshold Tiy,
from CF-tree t; of threshold T; by the above algorithm, and let S; and S;y, be the sizes
of t; and t;y, respectively. If Tiyy = T;, then Sipy < S, and the transformation from t;

to t;11 needs at most h extra pages of memory, where h is the height of t;.

The proof follows directly from the rebuilding algorithm, and hence is omitted. With
the rebuilding algorithm as well as the relevant reducibility theorem, it is guaranteed
that once we run out of memory, by increasing the threshold, we can always compact

the CF-tree to make space for accepting more insertions of new data points.

3.1.6 CF-tree versus Multi-Dimensional Histogram

CF-tree can be thought as a dynamic way of grouping data points into buckets (leaf
entries). With the current threshold requirement, CF-tree is similar to equi-width multi-

dimensional histogram except that it has the following advantages:

1. It is organized as a balanced hierarchy, so the insertion cost is always bounded.

2. It allocates a “bucket” for a region only when there is indeed data points falling
inside that region. So the number of “buckets” grows only if the data distribution

requires.

3. It stores more information for each “bucket” (count, linear sum, and square sum)

which allows the bucket to evolve automatically in terms of location and spreading.

18

4. It grows linearly instead of exponentially with the dimension.

3.1.7 Generalizing CF-tree

The definition of CF-tree can be generalized in several directions to make it a more

informative and/or more flexible data summarization. Following are a few instances:

In the current CF definition, the square sum is a scalar value which collapses the
square sums on all dimensions. It can be generalized as a vector which maintains all

individual square sums on all dimensions to better describe the data distributions.

. The current threshold requirement is a limit set for radii or diameters of leaf

entries. It, by no means, is the only way to control the CF-tree size. Other kinds
of threshold requirements (e.g., limit set for density of leaf entries) and related

insertion and rebuilding algorithms should be studied in the future.

The current threshold requirement is global for all leaf entries. Whereas localized
threshold requirements and nested CF-tree structures should be explored in the

future.

The current CIF-tree only works for metric attributes, how to generalize it to make

it work for nonmetric attributes is also a good topic for the future.

19

Chapter 4
Data Clustering

The previous chapter illustrates that the CF-tree structure provides an in-memory sum-
marization of a large dataset. It is especially convenient for data clustering analysis. In
this chapter, we will focus on the subject of data clustering: previous work and their

problems, and how it is approached in BIRCH by using the CF-tree.

4.1 Previous Work

Data clustering has been studied in the statistics [12, 13, 41, 44|, machine learning

[9, 22, 23, 25, 40, 52}, and database [45, 16, 17] communities with different methods and

different emphases.

4.1.1 Probability-Based

Previous data clustering work in machine learning is usually referred to as unsupervised
conceptual learning [9, 22, 25, 40]. They concentrate on incremental (i.e., accept in-
stances one at a time, and do not extensively reprocess previously encountered instances
while incorporating the new one.) concept (or cluster) formation by means of top-down
“sorting” each new instance through a hierarchy whose nodes are formed gradually to
represent concepts. They are usually probability-based approaches, that is, (1) they
use probabilistic measurements (e.g., category utility as discussed in[22, 25]) for making
decisions; and (2) they represent concepts (or clusters) with probabilistic descriptions.
For example, COBWEB|22] proceeds this way: to insert a new instance into the
hierarchy, it starts from the root, then it has four choices at each level of the hierarchy

while it descends: one for recursively incorporating the instance into an existing node,

20
another for creating a new node for the instance, a third for merging two nodes to host
the instance and a final one for splitting out a node to host the instance. The choice
that results in the highest category utility score will be selected. Its explicit merging and
splitting operations are desirable means for an incremental algorithm to recover from

earlier nonrepresentative instances. However it has the following limitations.

o It is targeted for handling discrete attributes and the category utility measurement
used is very expensive to support. To compute the category utility, in each node it
stores a discrete probability distribution for each individual attribute. That means
that it has to assume the probability distributions on separate attributes are sta-
tistically independent, and it has to store a probability for every possible attribute
value. So it ignores the correlations among attributes, and makes updating and
storing the concept very expensive, especially if the attributes have a large number
of values. It works only for discrete attributes, and for a continuous attribute, one

has to divide the attribute into ranges, or “discretize” in advance.

e All instances ever encountered are retained as terminal nodes in the hierarchy. For
very large datasets, physically, storing and manipulating such a large hierarchy is
infeasible; and fundamentally it has been shown that this kind of large hierarchy
tends to “overfit” the data[25]. A related problem is that this hierarchy is not
width-balanced or height-balanced. So in case of skewed input data, this may

cause the performance to degrade dramatically.

For another example, CLASSIT[25] is very similar to COBWEB except for the fol-

lowing four major aspects:

1. It only deals with continuous (or real-valued) attributes (instead of discrete at-

tributes in COBWEB).

2. It stores a continuous normal distribution (i.e., mean and standard deviation) for
each individual attribute in a node (instead of a discrete probability distribution

in COBWEB).

21
3. As it classifies a new instance, it can halt at some higher-level node if the instance

is “similar enough” to the node. (instead of always descending to a terminal node

as in COBWEB).

4. It modifies the category utility measurement to be in integral format for continuous

attributes (instead of in sum format for discrete attributes as in COBWEB).

4.1.2 Distance-Based

Most data clustering algorithms in statistics are distance-based approaches, that is,

1. they assume that the distance measurement between any two instances (or data

points) exists, and can be used for making decisions; and
2. they represent clusters by some kind of centers.

There are two categories of distance-based clustering algorithms [35]: Partitioning Clus-
tering and Hierarchical Clustering algorithms. Partitioning Clustering (PC)[12, 35)
starts with an initial partition, then tries all possible moving or swapping of data points
from one group to another iteratively to optimize the objective measurement function.
Each cluster is represented either by the centroid of the cluster (KMEANS algorithms),
or by one object centrally located in the cluster (KMEDOIDS algorithms). It guarantees
to converge to a local minimum, but the quality of the local minimum is very sensitive
to the initial partition, and the worst case time complexity is exponential. Hierarchi-
cal Clustering (HC)[12, 44] does not try to find the “best” clusters, instead it keeps
merging (agglomerative algorithms) the closest pair or splitting (divisive algorithms)
the farthest pair of objects to form the desired number of clusters. With a reasonable
distance measurement, the best time complexity of a practical HC algorithm is O(N?).

In summary, all distance-based clustering algorithms assume that all data points are
given in advance and can be stored in memory and scanned frequently (non-incremental).
They totally or partially ignore the fact that not all data points in the dataset are equally

important with respect to the clustering purpose, and that data points which are close

22
and dense can be considered collectively instead of individually. They are global or semi-
global methods at the granularity of data points. That is, for each clustering decision,
they inspect all data points or all currently existing clusters equally no matter how close
or far away they are, and they use global measurements, which require scanning all data
points or all currently existing clusters to compute. Hence none of them has linear time
scalability with stable quality.

Data clustering has been recognized as a useful spatial data mining method recently.
[45] presents CLARANS, which is a KMEDOIDS algorithm but with randomized partial
search strategy, and proposes that CLARANS out-performs the traditional KMEDOIDS
algorithms. The clustering process in CLARANS is formalized as searching a graph in
which each node is a K-partition represented by K medoids, and two nodes are neighbors
if they only differ by one medoid. CLARANS starts with a randomly selected node. For
the current node, it checks at most the mazneighbor number of neighbors randomly, and
if a better neighbor is found, it moves to the neighbor and continues; otherwise it records
the current node as a local minimum, and restarts with a new randomly selected node
to search for another local minimum. CLARANS stops after the numlocal number of
the so-called local minima have been found , and returns the best of them. CLARANS
suffers from the same drawbacks as the KMEDOIDS method with respect to efficiency.
In addition, it may not find a real local minimum due to the random searching trimming
controlled by mazneighbor.

R-tree [27] (or later R*-tree [8]) is a popular dynamic multi-dimensional spatial index
structure that existed in database community for more than a decade. It is a height-
balanced tree with index records in its nodes containing (1) pointers to data objects
(for leaf) and pointers to child nodes (for nonleaf), and (2) MBR’s (Minimum Bounding
Rectangles) summarizing all MBR'’s (for nonleaf) or data objects (for leaf) underneath.
It is built dynamically with insertions and deletions intermixed. Based on the spatial
locality in R*-tree (a variation of R-tree), [16] and [17] propose focusing techniques to
improve CLARANS’s ability to deal with very large datasets that may reside on disks

by (1) clustering a sample of the dataset that is drawn from each R*-tree data page; and

23
(2) focusing on relevant data points for distance and quality updates. Their experiments

show that the time is improved but with a small loss of quality.

4.2 Contributions and Limitations of BIRCH

In this thesis, CF-tree, as we have discussed its details in Chapter 3, is strongly influenced
by the dynamic nature of R-tree in terms of top-down “sorting” a new insertion through
the tree, splitting an overflow node, bottom-up propagating the node splitting to balance
the tree. It is also influenced by the incremental and hierarchical themes of of COBWEB
as well as the way of using splitting and merging to alleviate the potential sensitivity to
the data input ordering.

However there are many aspects that distinguish BIRCH from others. First, all
previous work do not recognize that the problem must be viewed in terms of how to
work with a limited amount of resources (e.g., memory and running time) to do the
clustering as accurately as possible. So the most important contribution of BIRCH is
the formulation of the clustering problem in a realistic way that is appropriate for very
large datasets by making the time and memory constraints explicit.

Another contribution is that BIRCH exploits the observation that the data space is
usually not uniformly occupied, and hence not every data point is equally important for
clustering purposes. So BIRCH treats a dense region of points (or a subclusters) collec-
tively by storing a compact summarization (clustering feature as discussed in Chapter
3). This way, BIRCH reduces the problem of clustering the original data points into a
simpler and smaller one of clustering the clustered subclusters. So “clustering” here ac-
tually has two levels of meanings: first summarizing the data with subclusters obtained
from clustering, and second clustering the subclusters instead of the original data points.

The introduction of Clustering Feature (CF), CF-tree and related algorithms, theo-
rems and proofs illustrates that the summarizations (or clustering features) for subclus-
ters identified by BIRCH reflect the natural closeness of data, allow for the computation

of either distance-based measurements (as defined in Chapter 2) that are currently used

24
in BIRCH, or probability-based measurements (e.g., mean, standard deviation, and cat-
egory utility as used in CLASSIT) that we might to explore in the near future. They can
be maintained consistently and incrementally in the CF-tree structure. They contain
more details about the dataset than the MBR’s of a R-tree or R*-tree do.

Compared with the distance-based algorithms, BIRCH is incremental in the sense
that each clustering decision is made without scanning all data points or all currently ex-
isting clusters. If we omit the optional Phase 4 (Section 4.3.5), BIRCH is an incremental
method that does not require the whole dataset in advance, and only scans the dataset
once. Compared with the probability-based algorithms, BIRCH tries to make the best
use of the available resources to derive the finest possible subclusters (to ensure accu-
racy) while minimizing I/O costs (to ensure efficiency) by organizing the clustering and
reducing process as an in-memory balanced tree structure. Most importantly, BIRCH
does not have to assume that the probability distributions on individual attributes are
statistical independent.

At this stage, one major limitation of BIRCH is that it can only handle metric
attributes (pretty similar to the kind of attributes that KMEANS and CLASSIT can
handle).

4.3 BIRCH Clustering Algorithm

4.3.1 Overview

Figure 5 presents the overview of the clustering algorithm in BIRCH. In this section,
we concentrate on describing the role of each phase and the relationships between the
phases. The details of each phase will be discussed in several sub-sections.

The BIRCH clustering algorithm consists of four phases: (1) Loading, (2) Optional
Condensing, (3) Global Clustering, and (4) Optional Refining. The main task of Phase
1 is to load the clustering information into memory: That is, to scan and insert all data

points to build an initial in-memory CF-tree with a given amount of memory. With every

Data 1/ S e

[Phase1: Load into memory by building a CF tree]

Initial CF tree J/ T~

Phase 2 (optional): Condense into desirable range
by building a smaller CF tree

smaller CF tree \L A

[Phase 3: Global Clustering]

Good Clusters \l/ i

[Phase 4: (optional and off line) : Cluster Refining }

Better Clusters \l/ O

Figure 5: Overview of BIRCH Clustering Algorithm

25

26
data point checked, and crowded data points grouped as fine subclusters, and sparse data
points removed as outliers optionally, this phase tries to create an in-memory summary
of the dataset, as accurate as the memory allows. Subsequent clustering computations

of later phases will be:

1. fast because (a) no I/O operations are needed, and (b) the problem of clustering
the original data is reduced to a smaller problem of clustering the subclusters in

the leaf entries of a CF-tree;

2. still accurate because (a) a lot of outliers are eliminated, and (b) the remaining
data is reflected with the finest granularity that can be achieved given the available

amount of memory;

3. less order sensitive because the the leaf entries of the CF-tree form an input order
containing more data locality compared with the arbitrary original data input

order.

Once all the clustering information is loaded into the in-memory CF-tree, we can
use an existing global or semi-global algorithm in Phase 3 to cluster all the leaf entries
across the boundaries of different leaf nodes to overcome the undesirable anomaly due
to the artificial node size (anomalyl as discussed in Section 3.1.3), which causes the CF-
tree nodes to be unfaithful to the actual clusters in the data. We observe that existing
clustering algorithms , such as HC, KMEANS and CLARANS, working with a set of
data points can be readily adapted to work with a set of subclusters, each described by

its CF entry. Several points are worth noting for the adaptation:

1. We can use any of the algorithms available in the literature (e.g., KMEANS,
CLARANS, HC etc).

2. Whatever the algorithm, it should be modified to utilize the information in the
CF entries of the CF-tree.

27
3. This global or semi-global clustering, in conjunction with the high locality present
in the leaf entries, further decreases the sensitivity of the final clustering quality

to the data input order.

The details of how to adapt existing algorithms to work for CF entries will be discussed
in Section 4.3.4.

Phase 2 is an optional phase. With experimentation, we have observed that the
global or semi-global clustering methods that we adapt in Phase 3 have different input
size ranges within which they perform well in terms of both speed and quality. For
example, if we choose to adapt CLARANS in Phase 3, we know that CLARANS performs
pretty well for a set of less than 5000 data objects because within that range, frequent
data scanning is still acceptable and getting stuck at a very bad local minimum is very
unlikely. So potentially there is a gap between the size of Phase 1 results and the best
performance range of the Phase 3 algorithm we select. Phase 2 serves as a cushion
between Phase 1 and Phase 3 and bridges this gap: So in Phase 2 we scan the leaf
entries in the initial CF-tree to rebuild a smaller CF-tree, while removing more outliers
optionally and grouping more crowded subclusters into larger ones.

After Phase 3, we obtain a set of clusters that captures the major distribution pattern
in the data. However.minor and localized inaccuracies might exist because of (1) the
rare misplacement anomaly that is common to all incremental algorithm due to skewed
input order (anomaly2 as mentioned in Section 3.1.3), and (2) the fact that Phase 3
is applied on a summary of the data, instead of the data itself, with some level of
granularity. So Phase 4 is used to correct these minor and localized inaccuracies and
refine the clusters further. It is optional and can be run off-line because it entails the
cost of additional passes over the data. Note that up to this point, the original data has
only been scanned once, although the CF-tree and outlier information may have been

scanned multiple times.

28

i

[Start Tree1 of Initial T)
>y
[Scan data and insert to Treed]
Out of memory Finish scanning
Resuit?

’

Y
(1) Increase T.

(2) Rebuild Tree2 of new T from Treet
(write out potential outliers if disk space available)

(3) Treel <- Tree2.

otherwise Out of disk space

[Re-absorb potential outliers into Treet)

Y

[Re-absarb potential outliers into Tree1 J

¢

Figure 6: Flow Chart of Phase 1

29
4.3.2 Phase 1

Figure 6 shows the details of Phase 1. Assume that we have M bytes of memory
available for building the CF-tree, and R bytes of disk space available for processing
the outliers (R = 0 means that outlier handling option is off). Phase 1 starts with
a CF-tree of a small initial threshold value, say 0, scans the data, and inserts data
points into the CF-tree using the insertion algorithm described in Section 3.1.2. If it
runs out of memory before it finishes scanning the data, then it increases the threshold
value, rebuilds a new CF-tree of the new threshold value from the old CF-tree using
the rebuilding algorithm described in Section 3.1.4. Based on the reducibility theorem

associated with the rebuilding algorithm, we know that:
1. in general, by increasing the threshold, we can build a smaller CF-tree;

2. if a CF-tree uses up all available M bytes of memory, with a very limited number
of reserved pages, we can transform the old CF-tree into a smaller new CF-tree of

higher threshold.

During the rebuilding process, as we will discuss later, some of the old leaf entries are
not re-inserted into the new CF-tree, but written out to disk temporarily as potential
outliers. After all the old leaf entries have been re-inserted (or written out to disk), the
scanning of the data (and insertion into the new CF-tree) is resumed from the point at

which it was interrupted.

Outlier-Handling Option

Optionally, we can use the R bytes of disk space for handling outliers, which are leaf
entries of low density that are judged to be unimportant with respect to the overall
clustering pattern. (As a special case, we may have no disk pages available, i.e., R = 0.
This is handled by not considering any leaf entry to be an outlier in Phase 1.). When
we rebuild the CF-tree by re-inserting the old leaf entries, the size of the new tree is

actually reduced in two ways. First, we increase the threshold value, thereby allowing

30
each leaf entry to “absorb” more points. Second, we treat some leaf entries as potential
outliers and write them out to disk. An old leaf entry is considered to be a potential
outlier if it has “far fewer” data points than the average. The number of data points in
a leaf entry is known from the CF for this leaf entry. The average over all leaf entries
in the tree can be calculated by mainﬁaining the total number of data points and the
total number of leaf entries in the CF-tree as we insert to the CF-tree. “Far fewer”, is
of course some heuristics, for example, fewer than a quartile of the average number of
data points per leaf entry.

The potential outlier entries must be checked after all the data has been scanned to
verify that they are indeed outliers — an increase in the threshold value or a change in
the distribution due to the new data read after a potential outlier is written to disk could
well mean that the potential outlier entry no longer qualifies as an outlier. Ideally, we
would like to process all outliers in one pass after scanning all the input data. However,
it is possible that we run out of disk space for potential outliers while re-building CF-tree
t; from ¢, and there is still some data to be scanned. In this case, we free disk space by
scanning the potential outlier entries on disk and re-absorbing them into the CF-tree.
This way, the potential outliers written out before the current rebuilding pass might
well be absorbed into the current CF-tree, because the threshold value has increased
and/or new data has come in. This lazy, periodical attempt to free disk space by re-
absorbing potential outliers absorbs all entries that can be absorbed into the current
CF-tree without causing the CF-tree to grow in size. So at the end of Phase 1, if a
potential outlier is not absorbed, it is very likely a real outlier. We can define heuristic
outlier re-absorbing condition dynamically in terms of changes of T and changes of the
amount of data scanned to avoid frequent re-absorbs of them:.

Note that the entire cycle — insufficient memory triggering a rebuilding of the CF-
tree, insufficient disk space triggering a re-absorbing of outliers, etc. — could be repeated
several times before the dataset is fully scanned. This effort must be considered in

addition to the cost of scanning the data in order to assess the cost of Phase 1 accurately.

31
Threshold Heuristics

A careful reader must notice that a good choice of the threshold value can greatly reduce
the number of rebuilds. First for the initial threshold value Ty, since it is increased
dynamically, we can adjust for its being too low. But if the initial Tj is too high, we will
obtain a less detailed CF-tree than is feasible with the available memory. So Ty should
be set conservatively. BIRCH sets it to 0, the default value; but a knowledgeable user
could change this.

Then suppose that T; turns out to be too small, and we subsequently run out of
memory after V; data points have been scanned, and C; leaf entries have been formed
(each satisfying the threshold requirement with respect to T;). Based on the portion of
the data that we have scanned and the CF-tree that we have built up so far, we need
to estimate the next threshold value T;;;. Currently, we have used the following two
heuristic approaches:

Heuristics based on Regression

1. We try to choose T;;; so that N;yy = min (2N;, N). That is, if the number of
points N in the dataset is greater than 2/V;, we choose Ty, so that we can absorb
only N; additional data points before we run out of space again. In general, the
number of points in the dataset may not be known (N = oo in the equation).
Even if it is, we choose to estimate tree size in proportion to the data we have seen
thus far. For a large dataset, this may cause additional re-builds, but successive

estimates can be made with increasing knowledge of the dataset.

2. Intuitively, we want to increase threshold based on some measure of volume, since
each leaf entry can be thought of as occupying a volume in the multidimensional

space, and the threshold is a limit on the diameter of this volume.

There are two distinct notions of volume that we use in estimating the threshold.
The first is average volume, which is defined as V, = r? where r is the average
radius of the root cluster in the CF-tree, and d is the dimensionality of the space.

Intuitively, this is a measure of the space occupied by the portion of the data seen

32
thus far (the “footprint” of seen data). A second notion of volume packed volume,
which is defined as V, = C; * T:%, where C; is the number of leaf entries and T;¢
is the maximal volume of a leaf entry. Intuitively, this is a measure of the actual
volume occupied by the leaf clusters. Since C; is essentially the same whenever
we run out of memory (since we work with a fixed amount of memory), we can

approximate V, by T;%.

We make the assumption that r grows with the number of data points N;. By
maintaining a record of r and the number of points /V;, we can estimate r;y; using
least squares linear regression. We define the ezpansion factor f = Maz(1.0, mEL),
and use it as a heuristic measure of how the data footprint is growing. The use
of Maz is motivated by our observation that for most large datasets, the observed
footprint becomes a constant quite quickly (unless the input order is skewed).
Similarly, by making the assumption that V, grows linearly with N;, we estimate

T;+1 using least squares linear regression.

3. We traverse a path from the root to a leaf in the CFtree, always going to the child
with the most points in a “greedy” attempt to find the most crowded leaf node.
We calculate the distance (D) between the closest two leaf entries on this leaf
node. If we want to build a more condensed tree, it is reasonable to expect that

we should at least increase the threshold value to D,.;n, so that these two entries

can be merged.

4. We multiplied the T}, value obtained through linear regression with the expansion
factor f, and adjusted it using D, as follows: Tipy = Maz(Dpin, f * Tiyr). To
ensure that the threshold value grows monotonically, in the very unlikely case
that T;4, obtained thus is less than T; then we choose T;y) = T; * (i]‘v%)ifi (This
is equivalent to assuming that all data points are uniformly distributed in a d-
dimensional sphere, and is really just a crude approximation; however, it is rarely

called for.)

Heuristic based on Memory Utilization

33
The above heuristic approach tries to predict the correct threshold value for ac-
commodating future unknown incoming data based on linear regressions of historical
samples. The correctness of the estimated threshold value, and hence the memory uti-
lization as well as the final clustering quality will heavily depend on both the data
distribution pattern and the data input pattern. Whereas in reality, without any prior
knowledge of the data, (1) neither the distribution pattern nor the input pattern is
known, and (2) the input pattern is extremely hard to formalize even if it is known. So
the linear regression approach may produce inaccurate estimation: too small threshold
causes too many rebuilds, whereas too large threshold causes bad clustering quality. We
are therefore investigating other heuristics than the linear regression prediction.
Another heuristic approach under investigation is based on the memory utilization.
In this approach, instead of trying to predict for the future incoming data, we concentrate
on the present CF-tree, which is a summary of the data seen thus far, to try to keep
memory utilization above a constant level. The problem to solve is thus formalized as:
if the current CF-tree occupies all the memory, then how to increase the threshold so
that the new CF-tree, which is rebuilt from the current CF-tree, occupies approximately

half of the memory. This way,

e the other half of memory will be left for accommodating the future incoming data,
and no matter how the future incoming data is distributed or is input, the memory

utilization is always maintained approximately above 50%; and

e only the data distribution information of the seen data, which is stored in the

current CF-tree, is relevant and needed in the threshold estimation.

To accomplish the above goals, when the current CF-tree uses up all the memory, we
increase the threshold value to be the average of the distances between all the “nearest
pairs” of leaf entries. So in average, approximately two leaf entries will be merged
into one. Then in order to calculate the distance of each “nearest pair” of leaf entries
efficiently, we search only within the same leaf node locally, instead of searching all the

leaf entries globally because with the CF-tree insertion algorithm, it is very likely that

34
the nearest neighbor of a leaf entry is in the same leaf node as that leaf entry is. This
approach usually does not over-estimate the threshold value, and is hence more stable.

However more sophisticated solutions of the threshold estimation problem are needed in

the future.

Split-Delaying Option

Besides the outlier-handling option, BIRCH provides another split-delaying option to
make the CF-tree concentrate on the dense regions and the threshold not grow too high.
We observe that when we run out of main memory, it may well be the case that several
additional data points can be absorbed in or fitted in the current CF-tree, without
changing the threshold. However, some of the data points that we read may require
us to split a leaf node in the CF-tree, since they can neither be absorbed by nor fit in
any existing leaf node with the current threshold value. A simple idea is to write such
data points to disk (in a manner similar to how potential outliers are written), and to
proceed reading the dataset until we run out of disk space available for holding this kind
of data points as well. At this point, we must change the threshold value and rebuild the
CF-tree, again reading and absorbing the delayed data points that we wrote out to disk
earlier (just like outliers are handled). The advantage of this approach is that in general,
many more data points are absorbed by or fit in the CF-tree before we have to increase
the threshold and rebuild the CF-tree. With luck, we may not have to rebuild at all!
Even otherwise, we will have seen much more of the data before we have to rebuild, and
this is often worth the added cost of writing out some data points (those that cannot be

absorbed by or fit in) and reading them back again.

4.3.3 Phase2

Figure 7 shows the details of Phase 2. Just as Phase 1 scans all data points and builds
a CF-tree in memory, Phase 2 scans all leaf entries from Phase 1 and builds a smaller

CF-tree whose total number of leaf entries is under the desired range. There are several

35

(1) Estimate the target T.
(2) Start CF tree tl of the target T.

Continue scan leaf entries of CF tree from Phase 1:
If it is an outlier, then remove it; otherwise insert to tl.

Out of range Finish scanning leaf entries

< Resulz_>

(1) Re-Estimate the target T.
(2) Rebuild CF tree t2 of new T from CF tree tl.
3) t1 <- t2.

Figure 7: Flow Chart of Phase 2

36

unique aspects worth mentioning:

e Although in the Phase 2 flow chart, it shows the possibility of the new CF-tree
in Phase 2 may run out of the desired range before all the leaf entries in the old
CF-tree from Phase 1 are scanned. In that case, it has to re-estimate the target
threshold and rebuild the new CF-tree just as Phase 1 did. However in reality,
with all data seen and summarized in the CF-tree as well as the heuristics we
have discussed, the target threshold is usually estimated very accurately. So the

re-estimation and rebuilding part is seldom called for.

o Note that this additional phase further eliminates outliers — some entries that
were originally entered into a leaf node may now be detected to be outliers for sure

because we have seen the whole dataset.

e This phase also yields a CF-tree that is even less sensitive to the original data
input order than that of Phase 1, since the leaf entries inserted are ordered by

Phase 1 with very good clustering locality.

4.3.4 Phase 3

The major task of Phase 3 is to adapt the existing global or semi-global clustering
methods for clustering subclusters, or CF entries instead of individual data points. With

the CF entries, there are several ways to do the adaptation:

1. naively, by calculating the centroid as the representative of a CF entry, we can
treat each CF entry as a single point and use an existing algorithm without further

modification;

2. to be a little more sophisticated, we can treat a CF entry of n data points as its
centroid repeating n times and modify an existing algorithm slightly to take the

counting information into account;

37

¢

Pick any CF entry i[1].

=

Determine the chain and the mutual
nearest pair of CF entries:
i[2]=Nearest-Neighbor(i[1]),

i[3]=Nearest-Neighbor(i[2]), if i[k-2] exists, i[1]<-i[k-2;

i[k]=Nearest-Neighbor(i[k-11), therwise pick arbitrary i[1].
i[k-1]=Nearest-Neighbor(i[k]). ;

L))

y

[Merge the mutual nearest pair:]

i[k-1] and i[k] to form a new CF entry

More than 1 CF entry exists?

No (form a complete binary hierarchy)

Split from the hierarchy:
(1) a given number of clusters; or
(2) clusters of a given height on the hierarchy; or
(3) clusters satisfying a given threshold.

Y

Figure 8: Flow Chart of Phase 3

38
3. to be general and accurate, we can apply an existing algorithm directly to the CF
entries because the information in the CF entries is usually sufficient for calculating

most distance and quality metrics without making any approximate assumptions.
We have adapted four algorithms for this phase:

e HCI: This is a O(m®) (where m is the number of CF entries) agglomerative HC
algorithm [12] that supports all of our distance definitions: D0, D1, D2, D3 and
D4 (as defined in Chapter 2) accurately, and allows the user to find the clusters by
specifying the number of clusters, K, or the cluster diameter (or radius) threshold

T'; or the height of clusters on the formed hierarchy.

e HC?2: This is an improved O(m?) agglomerative HC algorithm [44]. It is similar
to HC1 except that it has a better complexity of O(m?), and only supports our
distance definition D2 and D4 accurately.

e CLARANSI: The original CLARANS [45] is applied to the centroids of the sub-
clusters obtained from the previous phase directly. The user has to specify the

number of clusters K because CLARANS requires to know K in advance.

e CLARANS2: CLARANS is modified so that it can be applied to the CF entries
instead of just their centroids. That is, the distance (D0, D1, D2, D3 or D4) and

quality (Q1, Q2, Q3 or Q4) metrics are used in the clustering process.

Figure 8 shows the flow chart of the HC2. It consists of 2 phases: merging to form
a hierarchy and splitting from the hierarchy. First it starts from an arbitrary CF entry,
determines the chain of the nearest neighbor until it reaches the mutual nearest pair of
CF entries. Then it merges the mutual nearest pair of CF entries into a new CF entry,
and repeats either from the tail of the chain, or from a new arbitrary CF entry if the tail
is empty. All the merging steps are maintained as a binary hierarchy. This merging phase
will stop when there is only one CF entry left, which is the root of the binary hierarchy.

Second it splits from the binary hierarchy (1) a given number of clusters; or (2) clusters

39

.

Calculate the centroids of the K clusters as seeds.

|

Scan data, and put each data point into the cluster
corresponding to its nearest seed.

¢

No Reach the specified number of refinement passes Yes
or the specified accuracy?

Figure 9: Flow Chart of Phase 4

of a given height on the hierarchy; or (2) clusters satisfying a given radius/diameter

threshold value.

4.3.5 Phase 4

Figure 9 shows the refining algorithm of Phase 4. It uses the centroids of the clusters
produced by Phase 3 as seeds, and redistributes the data points to its closest seed to
obtain a set of new clusters. Not only does this allow points belonging to a cluster to
migrate accordingly, but also it ensures that all copies of a given data point will go to
the same cluster. Phase 4 can be extended with additional passes if desired by the user,

and it has been proved to converge to a minimum [24]. As optional bonuses, during this

pass,

e each data point can be labeled with the cluster that it belongs to, if we wish to

identify the data points in each cluster;

40

e the original dataset can be filtered into subsets according to the obtained clusters;

e Phase 4 also provides us with the option of discarding outliers. That is, a point
which is too far from its closest seed can be treated as an outlier and not included
in the result. “Too far” again is heuristics, such as farther than twice of the cluster

radius.

4.3.6 Memory Management

We have observed the following facts: The amount of memory needed for BIRCH to
find a good clustering from a given dataset is determined not by the dataset size, but by
the data distribution. On the other hand, the amount of memory available to BIRCH is
determined in the computing system. So it is very likely that the memory needed and
the memory available do not match.

If the memory available is less than the memory needed, then BIRCH can trade
running time for memory. Specifically, in Phases 1 through 3, it tries to use all the
available memory to generate the subclusters that is as fine as the memory allows, but
in Phase 4, by refining the clustering a few more passes, it can compensate for the
inaccuracies caused by the coarseness due to insufficient memory in Phases 1.

If the memory available is more than the memory needed, then BIRCH can cluster
the given dataset on multiple combinations of attributes concurrently while sharing the
same scan of the dataset. So the total available memory will be divided and allocated
to the clustering process of each combination of attributes accordingly. This gives the
user the chance of exploring the same dataset from multiple perspectives concurrently

if the resources allow.

41

Chapter 5

Performance of BIRCH Data
Clustering

In this chapter, we first analyze the CPU and I/O costs of BIRCH, then we present
the experimental performance evaluation of BIRCH (KMEANS, and CLARANS) on

synthetic datasets for testing its feasibility.

5.1 Analysis

First we analyze the cpu cost of Phase 1. Given the memory is M bytes and each page
is P bytes, the maximal size of the tree is 2. To insert a point, we need to follow a path
from root to leaf, touching about 1 + logB nodes. At each node we must examine B
entries, looking for the “closest” one; the cost per entry is proportional to the dimension
d. So the cost for inserting all data points is O(d * N * B(1 + logg ¥)). In case we
must rebuild the tree, let C' x d be the CF entry size where C is a constant mapping the
dimension into the CF entry size. There are at most E‘M;E leaf entries to re-insert, so the
cost of re-inserting leaf entries is O(d * % * B(1 +logg)). The number of times we
have to re-build the tree depends upon our threshold heuristics. Currently, it is about
log, 7\,[\—[0—, where the value 2 arises from the fact that either we never estimate further than
twice of the current size in the regression approach, or we always bring the tree size
down to about half size in the memory utilization approach, and Ny is the number of
data points loaded into memory with threshold T;. So the total cpu cost of Phase 1 is
O(d*N*B(1+logg %’)—i—logz Ni*d*—éME*B(l+logB —AI-;I—)) Since B equals _C—P—d, the total cpu
cost of Phase 1 can be rewritten as O(N* & (1+log P M)+log,]{]V e g(l+log)

-~

42
The analysis of Phase 2 cpu cost is similar, and hence omitted.

As for I/0, we scan the data once in Phase 1 and not at all in Phase 2. With the
outlier-handling and split-delaying options on, there is some cost associated with writing
out outlier entries to disk and reading them back during a rebuilt. Considering that the
amount of disk available for outlier-handling and split-delaying is not too much, and that
there are about log, 1va; rebuilds, the I/O cost of Phase 1 is not significantly different
from the cost of reading in just the original dataset.

There is no I/O in Phase 3. Since the input to Phase 3 is bounded, the cpu cost
of Phase 3 is therefore bounded by a constant that depends upon the maximum input
size range and the global algorithm chosen for this phase. Based on the above analysis
— which is actually rather pessimistic for B, number of leaf entries, and the tree size
in the light of our experimental results — the cost of Phases 1, 2 and 3 should scale up
linearly with N.

Phase 4 scans the dataset again and puts each data point into the proper cluster;
the time taken is proportional to N * K. However using the newest “nearest neighbor”
techniques, it is improved [31] to be almost linear with N. The idea is that for each of
the N data point, instead of looking all K cluster centers to find the nearest one, 1t only
looks those cluster centers that are around the data point. This improvement performs
very well and brings the time complexity O(N x K') down to be almost linear with respect

to N. But, the linear slope is sensitive to the distribution patterns of datasets as well

as the the number of clusters K.

5.2 Synthetic Dataset Generator

To study the sensitivity of BIRCH to the characteristics of a wide range of input datasets,
we have used a collection of synthetic datasets generated by a generator that we have
developed. The data generation is controlled by a set of parameters that are summarized

in Table 1.

43

Table 1: Data Generation Parameters and Their Values or Ranges Experimented

Parameter Values or Ranges
Dimension d 2..50

Pattern grid, sine, random
Number of clusters K | 4 .. 256

n; (Lower n) 0 .. 2500

ny (Higher n) 50 .. 2500

r (Lower r) 0.. V50

r, (Higher r) V2 .. /50

Distance multiplier k, | 4 (grid only)
Number of cycles n. | 4 (sine only)

Noise rate r, (%) 0. 10

Input order o randomized, ordered

Each dataset consists of K clusters of d-dimensional data points. A cluster is char-
acterized by the number of data points in it (n), its radius(r), and its center(c). n is in
the range of [n,n4], and r is in the range of [r;,rs]. Note that when n; = nj, the number
of points is fixed, and when r; = r) the radius is fixed. Once placed, the clusters cover
a range of values in each dimension. We refer to these ranges as the “overview” of the
dataset.

The location of the center of each cluster is determined by the pattern parameter.
Three patterns — grid, sine, and random — are currently supported by the genera-
tor. When the grid pattern is used, the cluster centers are placed on a 2-dimensional
VK x VK grid. The distance between the centers of neighboring clusters on the same
row/column is controlled by kg, and is set to kgif-’j;,—rﬁl. This leads to an overview of
[O,\/—A?kg 5‘—%511] on both dimensions of the grid. The sine pattern places the cluster cen-
ters on a 2-dimensional curve of sine function. The K clusters are divided into n. groups,
each of which is placed on a different cycle of the sine function. The z location of the
center of cluster 7 is 27i whereas the y location is ;{-‘: * sine(?wi/(%)). The overview
of a sine dataset is therefore [0,27 A’} and [—%,—{-—fz‘i] on the z and y directions of the

sine curve respectively. The random pattern places the cluster centers randomly. The

overview of the dataset is [0,K] on both dimensions since the the x and y locations of

44
the centers are both randomly distributed within the range [0,K].

Once the characteristics of each cluster are determined, the data points for the cluster
are generated according to a d-dimensional independent normal distribution whose mean
is the center ¢, and whose variance in each dimension is %. Note that due to the
properties of the normal distribution, the maximum distance between a point in the
cluster and the center is unbounded. In other words, a point may be arbitrarily far from
its belonging cluster. So a data point that belongs to cluster A may be closer to the
center of cluster B than to the center of A, and we refer to such points as “outsiders”.

In addition to the clustered data points, noise in the form of data points uniformly
distributed throughout the overview of the dataset can be added to the dataset. The
parameter T, controls the percentage of data points in the dataset that are considered
noise.

The placement of the data points in the dataset is controlled by the order parameter
0. When the randomized option is used, the data points of all clusters and the noise are
randomized throughout the entire dataset. Whereas when the ordered option is selected,

the data points of a cluster are placed together, the clusters are placed'in the order they

are generated, and the noise is placed at the end.

5.3 Parameters and Default Setting

BIRCH is capable of working under various parameter settings. Table 2 lists the parame-
ters of BIRCH, their effecting scopes and their default values. Unless specified explicitly
otherwise, an experiments is conducted under this default setting.

M was selected to be about 5% of the dataset size in the base workload used in
our experiments. Since disk space (R) is just used for outliers, we assume that B < M
and set R = 20% of M. The experiments on the effects of the 5 distance metrics in
the first 3 phases (see Section 5.7) indicate that (1) using D3 in Phases 1 and 2 results
in a much higher ending threshold, and hence produces clusters of poorer quality; (2)

however, there is no distinctive performance difference among the others. So we decided

45

Table 2: BIRCH Parameters and Their Default Values

Scope Parameter Default Value
Global Memory (M) 5% of dataset size
Disk (R) 20% of M
Distance def. D2
Quality def. D
Threshold def. threshold for D
Phasel,2 | Initial threshold 0.0
Threshold Heuristics | memory utilization
Split-delaying on
Page size (P) 1024 bytes
Outlier-handling off
Phase3 | Input range 1000
Algorithm Adapted HC2
Phase4 | Refinement pass 1
Discard-outlier off

to choose D2 as default. Following the statistics tradition, we choose “weighted average
diameter” Q2 (denoted as D) as quality measurement. The smaller D is, the better the
quality is. The threshold is defined as the threshold for cluster diameters as default.
In Phase 1, the initial threshold is default to 0. Based on a study of how page size
affects performance (see Section 5.7), we selected P = 1024. The split-delaying option
is on for building more compact CF-trees. The outlier-handling option is off just for
simplicity. We use the memory utilization based heuristics to increase the threshold. In
Phase 3, most global algorithms can handle a few thousand objects well. So we set the
default input range as 1000. We have chosen the adapted HC2 algorithm to use here.
We decided to let Phase 4 refine the clusters only once with its discard-outlier option off,

so that all data points will be counted in the quality measurement for fair comparisons

with other algorithms such as KMEANS and CLARANS.

5.4 Base Workload Performance

The first set of experiments was to evaluate the ability of BIRCH to cluster large datasets

of various patterns and with different input orders. All the times are presented in seconds

46

Table 3: Datasets Used as Base Workload

DS | Generator Setting D
T | d=2,grid, K = 100, n =y, = 1000,
=T = V2, ky = 4,7, = 0%, 0 = randomized | 2.00
2 d = 2,sine, K = 100,n; = n, = 1000,
r=ry=v2,n.=4,r, =0%,0 = randomized | 2.00
3 d = 2,random, K = 100,n; = 0, ny = 2000,
r=0,r, =41, =7, = 0%, 0 = randomized | 4.18

in this paper. Three 2-dimensional synthetic datasets, one for each pattern, were used.
The 2-dimensional datasets were chosen as the base workload because they were easy
to visualize. But there is no obstacles for BIRCH to work on high dimensions (We will
process higher (2 to 50) dimensional data in the scalability section and 16-dimensional
vectors in the image compression application).

Table 3 presents the data generator settings for the base workload. The weighted
average diameters of the intended clusters ! Dy are also included in the table as a rough
measurement of the quality of the original intended clusters. Figure 28 through 30 visu-
alize the three base workload datasets by scatter plots. Figure 31 through 33 visualize
the intended clusters of the three base workload datasets by plotting an intended cluster
as a circle whose center is the intended centroid, radius is the intended cluster radius,
and label is the intended number of points in the cluster. Three additional datasets
- DSlo, DS20 and DS30 - which correspond to DS1, DS2 and DS3, respectively ex-
cept that the parameter o of the generator is set to ordered are used to test the order
sensitivity of BIRCH.

The BIRCH clusters of DS1 and DSlo are presented in the same way in Figure 34
and 37. We observe that for both input orders, the BIRCH clusters are very similar
to the intended clusters in terms of location, number of points, and radii. For DSI,
the maximal and average distance between the centroids of an intended cluster and its

corresponding BIRCH cluster are 0.19 and 0.08 respectively. The number of points in

lFrom now on, we refer to the clusters generated by the data generator as the “intended clusters”
whereas the clusters identified by BIRCH as “BIRCH clusters”, identified by CLARANS as “CLARANS
clusters” and identified by KMEANS as “KMEANS clusters”.

-~

47
a BIRCH cluster is no more than 5% different from the corresponding intended cluster.
The radii of the BIRCH clusters (ranging from 1.26 to 1.39 with an average of 1.32) are
close to, or even better than due to the correction of “outsiders”, those of the intended
clusters (1.41). For DSlo, the maximal and average distance between the centroids of
an intended cluster and its corresponding BIRCH cluster are 0.15 and 0.06 respectively.
The number of points in a BIRCH cluster is no more than 5% different from that of the
corresponding intended cluster. The radii of the BIRCH clusters (ranging from 1.25 to
1.41 with an average of 1.32) are close to, and even better than due to the correction of
“outsiders”, those of the intended clusters (1.41). Similar conclusions can be reached by
analyzing the visual presentations of BIRCH clusters on DS2, DS20, as shown in Figure
35 and 38.

So the quality of BIRCH clusters is close to, and even better than the Dine of the
intended clusters. This is because BIRCH assigns the “outsiders” of an intended cluster
to a proper BIRCH cluster. As mentioned earlier, Dipe is only a rough measurement of
the quality of the intended clusters. To figure the actual quality (D) of the intended
clusters, one can start with the intended centers as seeds, scan the data and refine the
clusters until an optimal partition is reached. The result is that for DS1, its Do is 1.87;
and for DS2, its Dy is 1.99. Comparing them with the quality of BIRCH clusters, one
can notice that the clusters identified by BIRCH are almost the optimal clusters one can
find assuming the cluster centers are known.

As summarized in Table 4 for all three base workload datasets and two different

input orders,

e it took BIRCH less than 15 seconds (on a DEC pentium-pro workstation running
Solaris) to cluster 100,000 2-dimensional data points of each dataset, which in-
cludes 2 scans of the dataset (about 1.16 seconds for each scan of the ASCII file
from disk);

e the quality of BIRCH clusters was very close to the Dge: of the dataset;

e the different patterns of datasets had almost no impact on the clustering time;

48

Table 4: BIRCH Performance on Base Workload
TDS Time D #Scan | DS Time D #Scan

1 1.5 1.87 2 lo 136 187 2
2 10.7 199 2 20 121 199 2
3 114 395 2 Jo 122 399 2

Table 5: CLARANS Performance on Base Workload

DS Time D #Scan || DS Time D #Scan
1 932 2.10 3307 lo 794 2.11 2854
2 758 2.63 2661 20 816 2.31 2933
3 835 3.39 2959 3o 934 3.28 3369

Table 6: KMEANS Performance on Base Workload

DS Time D #Scan || DS Time D #Scan
1 43.9 2.09 289 lo 33.8 197 197

2 13.2 443 51 20 12.7 4.20 29

3 32.9 3.66 187 Jo 36.0 4.35 241

e the different order of the data points had almost no impact on the performance

(time and quality) of BIRCH.

5.5 Other Methods on Base Workload

In this experiment we try to compare the performance of BIRCH, CLARANS, KMEANS
and HC on the base workload. However since HC needs O(N?/2) memory (about 40
gigabytes for a base workload dataset) for storing the distance matrix, it hangs forever
in our system (with 64 megabytes of memory) with the frequent memory swapping.

Following we concentrate on comparisons with CLARANS and KMEANS.

e First, for CLARANS and KMEANS we assume that the memory is enough for
holding the whole dataset as well as some other O(N) size assisting data structures.
So they need much more memory than BIRCH does. (Clearly, this assumption

greatly favors these two algorithms in terms of running time comparison!)

49

e Second, the CLARANS implementation is provided by Ng. In order for CLARANS

to stop after an acceptable running time, we set its mazneighbor value to be the

larger of 50 (instead of 250) and 1.25% of K(N-K), but no more than 100 (newly

enforced upper limit recommended by Ng). Its numlocal value is still 2. We have

implemented the KMEANS algorithm provided in [32] in C and the initial seeds
for KMEANS are selected randomly.

e Third, we have observed that the performances of CLARANS and KMEANS are
extremely sensitive to the random number generator used. A bad random number
generator, such as the UNIX “rand()” used in the original code of CLARANS,
can generate random numbers that are were not really random but relevant to the
data order, and hence make CLARANS and KMEANS’s performances extremely
unstable with the different input orders[57]. So to avoid this problem, we have

replaced “rand()” with a more elaborate random number generator.

Figure 40 and 46 visualize the CLARANS and KMEANS clusters for DS1. Compar-

ing them with the intended clusters for DS1 we can observe that:

e The pattern of the locations of the cluster centers is distorted.

e The number of data points in a CLARANS or KMEANS cluster can be as many

as 40% different from that in the corresponding intended cluster.

e The radii of CLARANS clusters varies largely from 1.15 to 1.94 with an average
of 1.44 (larger than those of the intended clusters, 1.41). The radii of KMEANS
clusters varies largely from 0.99 to 2.02 with an average of 1.38 (larger than those

of BIRCH clusters, 1.32).

’ Figure 43 and 49 visualize the CLARANS and KMEANS clusters for DSlo. Com-
paring them with the CLARANS and KMEANS clusters for DS1 we can observe that
changing the input order causes CLARANS and KMEANS’s results to change:

e The pattern of the cluster center locations found for DSlo is still distorted, but is

quite different from that found for DS1.

50
e The numbers of data points in clusters found for DSlo are spatially distributed

very differently from those found for DS1.

e The cluster radii found for DSlo are spatially distributed very differently from
those found for DS1.

Similar behavior can be observed in the visualization of CLARANS KMEANS clusters
for DS2 and DS2o, as shown in Figure 41, 44, 47 and 50.
Tables 5 and 6 summarize the performances of CLARANS and KMEANS. For all

three base workload datasets and two different input orders,

1. They scan the dataset frequently. In spite of the favorable condition that all data
are loaded into memory, only the first scan is from ASCII file on disk, and the
remaining scans are in memory, CLARANS and KMEANS were still slower than

BIRCH and their running times were sensitive to the patterns of the datasets.

2. Even though they frequently scan the data to refine the clustering to reach an
optimal solution, the D values for the CLARANS and KMEANS clusters were
usually larger than those for the BIRCH clusters. That implies that the qualities
of CLARANS and KMEANS clusters are worse than those of BIRCH clusters

because they can get stuck at a local optimal partition.

3. The results for DSlo, DS20, and DS3o illustrate that when the data points were
input in different orders, the running time and clustering quality of CLARANS
and KMEANS will change whereas BIRCH is very stable.

In conclusion, for the base workload, BIRCH uses much less memory, but runs much
faster and generate more accurate, pattern-insensitive, and order-insensitive results com-

pared with CLARANS and KMEANS.

30

DS1: Phase1-3 —+~——

Running Time (seconds)

6] 50000 100000 N 150000 200000 250000

Figure 10: Time Scalability with respect to Increasing Number of Points
per Cluster (n)

Figure 11: Quality Stability with respect to Increasing Number of
Points per Cluster (n)

DS |n€n.ny | N D/ Diny

1 [50..50 5000 | 1.87/1.09
100..100 10000 | 1.89/2.01
250..250 25000 | 1.92/1.99
500..500 50000 | 1.87/1.98
750..750 75000 | 1.86/2.00
1000..1000 | 100000 | 1.88/2.00
2500..2500 | 250000 | 1.87/2.00
2 50,50 5000 1.98/1.98
100..100 10000 | 2.00/2.00
250..250 25000 | 2.00/2.00
500..500 50000 | 2.00/2.00
750..750 75000 1.99/1.99
1000..1000 | 100000 | 1.99/2.00
2500..2500 | 250000 | 1.99/1.99

3 |0..100 5000 | 4.08/4.42
0..200 10000 | 4.30/4.78
0..500 25000 | 4.21/4.65
0..1000 50000 | 4.00/4.27
0..1500 75000 | 3.74/4.22
0..2000 100000 | 3.95/4.18
0..5000 250000 | 4.23/4.52

52

35 ;

DS1: Phase1-3 —— |
30 DS2: Phase1-3 -+
DS3: Phase1-3 ¢+
o5 DS1: Phase1-4-% -
I DS2: Phasel<4 -s4- |
DS3: Phase1-4;"-*--
R

Running Time (seconds)

0 50000 100000 150000 200000 250000
N

Figure 12: Time Scalability with respect to Increasing Number of Clus-
ters (K)

Figure 13: Quality Stability with respect to Increasing Number of Clus-
ters (K)

DS|K | N D/Dimt
T |16 | 16000 | 2.32/2.00
36 | 36000 | 1.98/2.00
64 | 64000 |1.93/1.99
100 | 100000 | 1.87/2.00
144 | 144000 | 1.87/1.99
196 | 196000 | 1.87/2.00
256 | 256000 | 1.87/2.00
2 |4 | 4000 |1.98/1.99
40 | 40000 | 1.99/1.99
100 | 100000 | 1.99/2.00
120 | 120000 | 2.00/2.00
160 | 160000 | 2.00/2.00
200 | 200000 | 1.99/1.99
240 | 240000 | 1.99/1.99
3 |5 |5000 |5.57/6.43
50 | 50000 | 4.10/4.52
75 | 75000 | 4.04/4.76
100 | 100000 | 3.95/4.18
150 | 150000 | 4.21/4.26
200 | 200000 | 5.22/4.49
250 | 250000 | 5.52/4.48

70 ‘ ' . '
DS1:Phase1-3 —— .}
60 DS1:Phase1-4 - .1
DS2:Phase1-3- g

-5’3’ DS2:Phaset-4.- " x--
8 o DS3:Phaset3 -=--]
g DS3:Phasel-4" -»-- |
= P A : T
E ,
L 30 r |
o
£
€ 20 |
=3
o L27El
10 |
0

0 5 10 15 20 25 30 35 40 45 50
Dimension

Figure 14: Time Scalability with respect to Increasing Dimension (d)

Figure 15: Quality Stability with respect to Increasing Dimension (d)

DS [d | D/Dine

1 |2 |1.87/1.99
10 | 4.68/4.46
20 | 6.52/6.31
30 | 7.87/7.74
40 | 8.97/8.93
50 | 10.08/9.99
2 |2 |1.99/1.99
10 | 4.46/4.46
20 | 6.31/6.31
30 | 7.74/7.74
40 | 8.93/8.93
50 | 10.02/9.99
3 |2 |3.95/4.28
10 | 11.96/9.62
20 | 17.11/13.62
30 | 20.76/16.70
40 | 25.34/19.28
50 | 26.64/21.56

54
5.6 Scalability and Stability

Three distinct ways of increasing the dataset size are experimented in order to test the

time scalability and quality stabiiity of BIRCH.

5.6.1 Increasing the Number of Points per Cluster (n)

For each of DS1, DS2 and DS3, we create a range of datasets by keeping the generator
settings the same except for changing n; and n, (lower and higher bounds for n) to
increase the n, and hence increase the total number of data points, N. Since N does not
grow too far from that of the base workload (within the same magnitude), we decided to
use the same amount of memory for this scaling experiment as we have used for the base
workload. This can help us understand that for each pattern, given a fixed amount of
memory, if increasing n, how large dataset BIRCH can cluster while maintaining stable
qualities. Based on the performance analysis 5.1, in this case, with M, P, d, K fixed,
and only N growing, the running time should scale up linearly with N. Following are the
experiment results.

With all three patterns of datasets, their running time for the first 3 phases, as well
as for all 4 phases are plotted against the dataset size N in Figure 10. One can observe

that for all three patterns of data:

1. The running times of the first 3 phases grows linearly with respect to N similarly

for all three patterns.

2. The running times of all 4 phases grows linearly with respect to N similarly for all

three patterns.

While the running times are shown to be linearly scalable and insensitive to the
dataset patterns, Table 11 provides the corresponding quality values of the intended
clusters (Dint) and of BIRCH clusters (D) as n, and NN increase for all three patterns of
datasets. It is shown from the table that: With the same amount of memory, for a wide

range of n, and N, the quality of BIRCH clusters (indicated by D) are consistently close

35

to (or better than due to the correction of “outsiders”) that of the intended clusters

(indicated by Din).

5.6.2 Increasing the Number of Clusters (K)

For each of DS1, DS2 and DS3, we create a range of datasets by keeping the generator
settings the same except for increasing the number of clusters, &', to increase the total
number of data points, N. Again, since K does not grow too far from that of the base
workload (within the same magnitude), we decided to use the same amount of memory
for this scaling experiment as we have used for the base workload. This can help us
understand that for each pattern, given a fixed amount of memory, if increasing K, how
large dataset BIRCH can cluster while maintaining stable qualities.

With all three patterns of datasets, their running time for the first 3 phases, as well
as for all 4 phases are plotted against the dataset size N in Figure 12. The running times
for the first 3 phases are again confirmed to grow linearly with respect to NV similarly for
all three patterns. The running times for all 4 phases are almost linear with N, but have
slightly different slopes for the three different patterns of datasets. More specifically,
for the grid pattern the slope is the largest, and for the sine pattern, the slope is the
smallest. This is due to the fact that A and N are growing at the same time, and the
complexity of Phase 4 is O(K * N) (not strictly linear with V) in the worst case. We
have tried to improve Phase 4 refining algorithm to be almost linear with N using the
“nearest neighbor” techniques proposed in [31] to. However, the linear slope is sensitive
to the distribution patterns of datasets as well as A as we have mentioned earlier. In
our case, for the grid pattern, since there are usually more cluster centers around a
given data point, it will check more centers around the data point to find the nearest
one; whereas for the sine pattern, since there are usually less cluster centers around a
given data point, it will check less centers to find the nearest one; random pattern is
hence in the middle.

As for the quality stability, we can reach the similar conclusion from Table 13. That

is: With the same amount of memory, for a wide range of K, and N, the quality of

56
BIRCH clusters (indicated by D) are consistently close to (or better than due to the

correction of “outsiders”) that of the intended clusters (indicated by D;y).

5.6.3 Increasing the Dimension (d)

For each of DS1, DS2 and DS3, we create a range of datasets by keeping the generator
settings the same except for changing the dimension (d) from 2 to 50 to change the
dataset size. In this experiment, the amount of memory qsed for each dataset is scaled
up based on the dataset size (5% of the dataset). With all three patterns of datasets,
their running times for the first 3 phases, as well as for all 4 phases are plotted against
the dimension in Figure 14. We observe that the time deviates slightly from linear as
the dimension as well as the corresponding memory increase. This is caused by the
following fact: with My (a base amount of memory, and the memory corresponding to a
given d-dimensional dataset is scaled up as Mg *d), N and P constant, as the dimension
increases, the time complexity will scale up with 1+log £ —Mf-}é according to the analysis
study in Section 5.1. That is, as the dimension increases, first the amount of memory
increases, and causes the CF-tree size to increase; second the branching factor decreases,
and causes the CF-tree height to increase. So for a larger d, incorporating a new data
point goes through more levels on a larger CF-tree, and hence needs more time. The
interesting thing is that by tuning P, one can make the curves sublinear or superlinear,
and in this case, with P=1024 bytes, the curves are slightly superlinear.

As for the quality stability, we can reach the similar conclusion from Table 15. That
is: With the same amount of memory, for a wide range of d, the quality of BIRCH
clusters (indicated by D) are consistently close to (or even better than sometimes due

to the correction of “outsiders”) that of the intended clusters (indicated by D).

5.7 Sensitivity to Parameters

I have decided to include some earlier experiments that address the sensitivity of the

performance of BIRCH to the value of some of its parameters in this section. In the

37

Table 7: Sensitivity to Initial Threshold

T DS1 DS DS3
Time | D Time | D Time | D
0.0 47.14 | 1.87 || 47.5 | 1.99 || 49.52 | 3.39
0.001 || 46.39 | 1.87 || 47.75 | 1.99 || 49.83 | 3.38
0.01 46.75 | 1.87 || 45.77 | 1.99 || 49.75 | 3.69
0.1 47.34 | 1.87 || 46.14 | 1.99 || 48.47 | 3.59
1.0 44.75 | 1.87 || 43.98 | 1.99 || 45.77 | 3.53

experiment results we will use the notation of a superscript in a pair of parentheses
to indicate the phase(s) for which a measured quantity is associated. For example,
Time(1=3) stands for the time spent in Phase 1 through Phase 3 and D® is the quality

at the end of Phase 3. Again all times presented are in seconds.

Threshold

Table 7 shows how the performance of the performance of BIRCH is affected by the

value of the initial threshold, Ty. From the results presented in the table we conclude

that:

1. BIRCH’s performance(time and quality) is stable as long as the initial threshold

is not excessively high.
2. The conservative default To = 0.0 works well with a little extra running time.

3. If a user does have a good T, to provide, then she/he can be rewarded by saving

up to 10% of the processing time.

Based on this experiment, we have chosen to set Ty = 0 as default in BIRCH.

Branching Factor and Page Size

B is an important parameter affecting the performance of Phase 1. If we only look the
analysis of the time complexity in Phase 1, assuming d, N, No M and C are all given,

from the formula O(d * N x B(1 + logg %) + log, 7{-}’-5 +d* 2L« B(1+logg 4)), the best

58
value for B is e = 2.718 (i.e., 2 or 3). However, the analysis of time complexity did
not take into account a very important phenomenon we have observed: with the same
threshold value, the same amount of data and the same data input order, the smaller
value of B we choose, the larger CF-tree we will get. This happens because a smaller B
value means we have less information at each level to guide where a newly inserted point
belongs in the CF-tree. So a data point that could have been absorbed by an existing
leaf entry, if directed to the appropriate leaf, could well go to the wrong leaf node and
cause a new leaf entry to be generated. So a smaller B value tends to cause more re-
builds, eventually requires a higher threshold value and generates less entries at the end
of Phase 1, hence affects the clustering efficiency and quality. Since B is determined by
P, Table 8 shows how P affects Phase 1 as well as the final clustering quality for the
base workload. It suggests that in Phase 1, smaller (larger) P tend to decrease (increase)
running time (as shown by Time(")), require higher (lower) ending threshold (as shown
by TM), produce less (more) but “coarser (finer)” leaf entries (as shown by Entry()),
and hence degrade (improve) the clustering quality (as shown by D). However with
the refinement in Phase 4, the experiments suggest that from P = 256 to P = 4096 ,
although the D®)’s are different, the final qualities after the refinement are almost the
same (as shown by D). Based on this experiment, we have chosen to set P = 1024 as

default in BIRCH.

Outlier Options

In Phase 1, a leaf entry is considered to be an outlier if it contains “too few” data points
(Here we choose less than 25% of the average data points per leaf entry). In Phase 4,
we provide the option to discard outliers as noise. We observed that for many common
distributions (e.g., uniform, normal) more than 90% of the points of a cluster fall within
the range of twice radius. Therefore we consider a point as noise if it falls outside that

range.

2Some D()s are smaller than the corresponding D because there are some points taken as outliers
and not counted in the quality at the end of Phase 3.

Table 8: Sensitivity to Page Size

| Dataset || P TimeWV | Entry®™ | T T D) | D
DS1 64 19.86 445 2.17 | 2.30 | 1.87
256 17.32 1171 1.36 | 2.03 | 1.87
1024 || 27.24 2065 0.90 | 1.97 | 1.87
4096 || 53.43 1980 0.77 1 1.96 | 1.87
DS2 64 19.55 436 2.16 | 2.05 | 1.99
256 17.81 681 1.55 | 2.00 | 1.99
1024 || 28.05 1400 1.26 { 1.96 | 1.99
4096 || 59.35 1568 1.23 1 1.96 | 1.99
DS3 64 22.36 665 4.29 |1 4.81 | 3.96
256 17.97 1483 2.64 | 3.65 | 3.36
1024 || 29.45 1966 1.78 | 3.74 | 3.39
4096 || 59.66 1612 1.72 | 3.50 | 3.35

In this section, we use three additional datasets DS4, DS5 and DS6 which are the

Table 9: Effects of Outlier Options

Dataset || Outlier Handling Options
On Off
Time | D Time | D
DS4 48.02 | 1.92 || 48.63 | 1.94
DS5 47.14 | 2.05 || 51.51 | 8.44
DS6 47.41 | 4.41 || 49.68 | 5.06

59

same as DS1, DS2 and DS3 respectively, except that each of them contains 10% noise.

We run BIRCH on the three "noisy” datasets with the outlier options all on or all off.

Table 9 presents the timing results and Figures 52 through 57 visualize the corresponding

BIRCH clusters. With outlier options all on, BIRCH is not slower but faster and at the
same time D is smaller. Whether the smaller D is due to better clustering or less data
points is unclear from the table. However, the clustering results visualized in the figures

are a clear display that with the outlier options all on, BIRCH is more noise-robust and

obtains clusters of better quality.

60

Table 10: Effects of Phase 3 Algorithms

Global DS1 DS2 DS3
Algorithm Time® | D Time® | D Time®) | D
HC1 55.29 1.87 || 39.79 1.99 || 47.21 3.39
HC2 2.27 1.87 || 1.84 1.99 |} 1.98 3.39
CLARANSI || 59.15 1.99 || 69.35 2.15 || 52.79 3.73
CLARANS2 || 27.43 2.04 || 22.22 2.48 || 47.34 3.14

Phase 3 Algorithms

Table 10 shows the time spent in Phase 3 and the final quality with the four different

global algorithms. It shows:

e HC1 and HC2 result in exactly the same quality when distance metrics D2 and

D4 are used, but the latter runs much faster.
e CLARANSI is slower than CLARANS?2 , and its quality is not necessarily better.

e HC1 and HC2 have stabler quality than CLARANST and CLARANS?2. The reason
is that in our case where objects fed to Phase 3 for global clusterir;g are subclusters
(represented as CF entries), and when they are further grouped to form clusters,
they are hardly centrally located in the clusters. So the idea of looking for medoid

objects (or centrally located subclusters) will tend to distort the clustering.

Based on this experiment, we have chosen HC2 as default in BIRCH Phase 3.

Memory Size

In Table 11, BIRCH is applied to the base workload with memory size varying from 20
kbytes to 80 kbytes. It suggests that in Phase 1, as memory size (or the maximal tree

size) increases,

1. Time!) increases because the time spent in transforming an old CF-tree into a
new CF-tree increases, but only slightly because this transformation is done in

memory,

61

Table 11: Effects of Memory Size

| Dataset | Memory(kbytes) || TimeD) | Entry®™ [TW [DO T D |
DS1 20 21.91 334 1.89 | 2.23 | 1.87
40 24.39 1029 1.29 | 2.04 | 1.87
60 26.22 1535 1.02 | 1.98 | 1.87
80 27.24 2065 0.90 | 1.97 | 1.87
DS2 20 20.16 114 2.59 1 2.26 | 1.99
40 24.34 963 1.84 | 2.01 | 1.99
60 27.13 1338 1.52 1 1.98 | 1.99
80 28.05 1400 11.26 | 1.96 | 1.99
DS3 20 21.3 369 4.63 | 5.15 | 3.83
40 25.4 588 3.06 | 4.56 | 3.93
60 26.31 1245 2.30 | 3.81 | 3.58
80 29.45 1966 1.78 | 3.74 | 3.39

2. more (as Entry(!) shows), but finer (as T(*) shows) subclusters are generated for

I

the next phase, and hence results in better quality (as D) shows);

3. however, by comparing D® and D, one can see that the inaccuracy caused by
insufficient memory can be compensated to some extent with Phase 4 refinements,
or in another word, to achieve the same quality, BIRCH provides the tradeoff

between time and memory.

Distance Metrics

Suppose that in Phase 1 and Phase 2 we use Di (i=0,1,2,3,4), and in Phase 3 we use D]
(j=2,4 only due to the fact HC2 only supports D2 and D4). Table 12 summarizes the
performances for the 10 different distance combinations on the base workload datasets.
It is shown from the experiments that D3 is a bad choice for Phase 1 and Phase 2. By
tracing the BIRCH execution, we observed that using D3 in Phase 1 and 2 tended to
need more re-builds and results in higher threshold value to finish, which then degraded

the efficiency and the quality. Other than that, there is no distinctive performance

62

difference among the other distance combinations. 3

Table 12: Effects of Distance Metrics
DiDj || DS1 DS2 DS3
Time | Quality || Time | Quality || Time | Quality
DO D2 || 13.27 | 1.91 10.95 | 1.99 12.68 | 4.00
D0 D4 | 13.72 | 1.87 11.34 | 1.99 12.91 | 3.35
D1 D2 || 17.64 | 1.91 14.77 | 1.99 22.31 | 3.92
D1 D4 || 18.67 | 1.87 15.37 | 1.99 23.16 | 3.24
D2 D2 || 12.94 | 1.94 10.14 | 1.99 12.15 | 4.09
D2 D4 || 13.73 | 1.87 10.32] 1.99 12.71 | 3.31
D3 D2 || 18.36 | 2.35 10.55 | 4.26 15.86 | 3.89
D3 D4 || 18.96 | 2.28 10.62 | 4.41 16.25 | 3.82
D4 D2 || 14.56 | 1.87 13.24 | 1.99 16.95 | 3.95
D4 D4 || 14.64 | 1.87 13.54 | 1.99 17.63 | 3.27

™ 3This table of data is generated with the newest version of birch whose data reading module has

been greatly improved recently by Mr. Kent Wenger. In this version, reading an ASCII file of 100000
2-dimensional tuples needs only 2.02 seconds

63

Chapter 6

BIRCH Applications

In this chapter, we intend to show (1) how a clustering system like BIRCH can be used
to help solving real world problems; and (2) how BIRCH, CLARANS and KMEANS

perform on the real datasets.

6.1 Pixel Classification Tool

6.1.1 Motivation

The first application is motivated by the MVI (Multiband Vegetation Imager) technique
developed in [36, 37]. The MVI is the combination of a charge-coupled device (CCD)
camera, a filter exchange mechanism, and laptop computer used to capture rapid, suc-
cessive images of plant canopies in two wavelength bands. The purpose of using two
wavelength bands is to allow for identification of different canopy components such as
sunlit and shaded leaf area, sunlit and shaded branch area, clouds, and blue sky based
upon the camera’s resolution and the varying spectral properties that canopy compo-
nents have in the two different wavelength bands being used.

If the pixels in these images taken by the MVI can be classified into the above cate-
gories, then the MVI can be used as a technique to help quantify the canopy structure.
Canopy structure influences many biophysical processes in forests, and virtually all mod-
els that attempt to quantify plant-environment interactions, such as effects of climate
change on boreal-forest carbon budgets, require the kind of information that is provided
by the MVI. So classifying pixels in the MVI image will be important to many fields of

research including ecology, forestry, meteorology, and other agricultural sciences.

64

Data
Subset of Data
DataP = Fach Pixel:
ata Preparation: (XY.VISN
[Feature Selection and Weighting Y (.X VISR

y

Clustering with BIRCH

y

Visualizing with DEVISE

/

Data Filtering

[

\

Figure 16: Interactive and Iterative Pixel Classification Tool

6.1.2 Pixel Classification Tool

The main use of BIRCH is to help classify pixels in these images, such as separate foliage
in a MVI image from sky and clouds in the background which aids in the analysis of
the forest canopy. Motivated by the MVI images, but not just restricted to them, a
general interactive and iterative pixel classification tool for multi-band images is designed
with BIRCH and DEVISE (A Data Exploration via VISualization Environment) [10]

integrated in the way as shown in Figure 16. It includes four major steps:

1. Image pixels are read and prepared for clustering, that is, interesting features are
selected, and then weighted and/or shifted in order to use BIRCH to classify them

based on clustering.

2. BIRCH is applied for clustering the pixels in the space of the selected, and then
weighted and/or shifted features.

3. The relevant results such as the obtained clusters as well as their corresponding
pixels in the original images are visualized with matching colors in two linked

windows by DEVISE for the user to (1) look for “patterns”, or (2) evaluate the

65

“qualities” of the classification visually.

4. Then with the visual feedback, the user may decide to (1) explore other feature
selection and/or weighting strategies for better classification results; or (2) filter
out a subset of the pixels which corresponds to some clusters for further clustering

and visualizing.

It has a “exploring” flavor because the above four major steps are iterated, and during
each iteration, the user can adjust the parameters of each step interactively instead of
just using the default settings to explore the data for hidden clusters from different
aspects.

The history of exploration should be maintained automatically for the user to access
conveniently. That is, the user should be able to specify things such as what part of
the exploration are (not) worth to keep, and where to proceed or backtrack during
the exploration. A directed acyclic graph (DAG) is proposed for tracking this kind
of information. This DAG has two types of nodes: D-node and S-node. A D-node
corresponds to a specific dataset and a S-node corresponds to clustering with a specific
parameter setting. Interleavingly, only a D-node or several D-nodes can point to S-nodes,
and only a S-node can point to a D-node or several D-nodes. A D-node pointing to A
S-node corresponds to clustering a specific dataset with a specific parameter setting,
whereas several D-nodes pointing to a S-node corresponds to merging those datasets
first, and then clustering with a specific parameter setting. A S-node branching to point
to several D-nodes corresponds to the generated subsets of data based on clustering
under that parameter setting. All S-nodes are labeled based on the order that they
are created or explored. Figure 17 shows an example of the DAG. The root node is
a D-node and it corresponds to the original dataset Dataset0. It branches to point to
three S-nodes which corresponds to clustering DatasetO with three different parameter
settings in the order as labeled by 1,2,3. For the first parameter setting S1, the clustering
generates three clusters, and hence three corresponding subsets of data. The first and

third subsets are merged and clustered again with a new parameter setting as labeled

66

Dataset0

| Subsett | (Subset? | Subset | [Subset]

4

Setting S4

Figure 17: An Example of DAG Used to Track History

by 4.

6.1.3 Example of Using the Tool

Following is an example of using this tool to help separate pixels in a MVI image. Figure
18 is a MVI image which contains two similar images of the trees with the sky as the
background, taken in two different bands. The top one is taken in the near-infrared band
(NIR image), and the bottom one is taken in the visible wavelength band (VIS image).
Each image contains 512x1024 (i.e., 524288) pixels, and each pixel can be represented a
tuple with schema (z,y, nir, vis), where z and y are the coordinates of the pixel, and nir
and vis are the corresponding brightness values in the NIR image and the VIS image
respectively. The edges of each image are “cut” (i.e., ignoring a few rows near the top
and the bottom edges and a few columns near the left and the right edges) to avoid
the influence of noises along edges. So the actual images used for clustering contains
490x990 (i.e., 485100) pixels.

We start the first iteration with the number of clusters being 2 in the hope of finding

the two clusters corresponding to the trees and the sky background. It is easy to notice

67

image

An Example of MVT i

Figure 18

Figure 19: 1st Run: Separate Trees

and Sky

68

Visualization by QE!;EE ! ! !E
‘ 3 Clusters j.n 2nd Runy:

Figure 20:

""J..mllzu'*!. i 02

2nd Run: Separate Branches, Shadows and Sunlit Leaves

69

70
that the trees and the sky are better differentiated in the VIS image than in the NIR
image. So the weight assigned to vis is 10 times more than the weight assigned to nir.
Then BIRCH is invoked under the default settings to do the clustering which takes a
total of 50 seconds (including two scans of the VIS and NIR values form ASCII file on
disk in Phase 1 and Phase 4 and each scan takes about 4.5 seconds). Figure 19 is the
DEVISE visualization of the clusters (top: where x-axis is for weighted vis value, y-axis
is for weighted nir value, each cluster is plotted as a circle with the centroid as the
center and the standard deviation as the radius) as well as their corresponding parts of
image (bottom: where x-axis is for the x coordinates of pixels and y-axis is for the yv
coordinates of pixels) obtained after the 1st iteration.

Visually, by comparing with the original images, one can see that the two clusters
form a satisfactory classification of the trees and the sky. Whereas in reality, in general,
it may takes a few more iterations for the user to identify a good set of weights. However
the important thing is that once a set of good weights are identified from one MVIimage,
they can be used for classifying a lot of other MVIimages taken under the same condition
(e.g., the same kind of tree, the same weather condition, the same time in a day), and
the pixel classification task becomes automatic massive processing without much human
interference.

In the second iteration, the part of the data that corresponds to the trees is filtered
out for further clustering. The number of cluster is set as 3 in the hope of finding three
clusters which correspond to branches, shadows and sunlit leaves. One can observe
from the original images that the branches, shadows and sunlit leaves are easier to tell
apart from the NIR image than from the VIS image. So we weight nir 10 times heavier
than vis this time. This time, with the same amount of memory, but a smaller set of
data (263401 tuples versus 485100 tuples), the clustering can be done in a much finer
granularity which results in better quality. It takes BIRCH a total of 29.08 seconds
(including two scans of the subset of VIS and NIR values from ASCII file on disk).
Figure 20 shows the clusters as well as their corresponding parts of image resulted from

the second iteration.

71

Again visually, one can see that the three clusters are a satisfactory classification of
the branches, shadows and sunlit leaves. However, in general, it may takes the usr a
few more iterations to decide on the weights. Once the weights are decided, they can be
used for classifying tree pixels into branches, shadows and sunlit leaves for other MVI

images taken under the same condition.

6.1.4 User Evaluation

Following are the feedback we obtained from the soil scientists in the department of soil
science at University of Wisconsin-Madison , who have used our tool in their canopy
structure research[36, 37].

Before our tool, they use the 2-dimensional histogram to split the pixels into two
classes: sky and foliage. It simply plots VIS pixel values along the Y-axis, and NIR pixel
values along the X axis. It shows clusters of pixels according to their relative intensities
in the image. The problem with this approach is that there are many transition (mixed)
pixels from the sky to the foliage in each image. Thus, it is not always easy to decide
where the division of the sky and foliage class should be drawn on the histogram. BIRCH
allows for a less subjective method to split these classes because clustering is searching
for an optimized partition.

Besides, our tool has the ability to weight each band’s contribution in the canopy,
and then the combination of BIRCH and DEVISE allows for visualing the effects of
weights in the pixel classification. This is very important because in some images one
has to weight the VIS dimension more than the NIR dimension since leaf pixels can
become confused with sky pixels under partly-cloudy sky conditions in the near infrared
wavelength band; or to weight the NIR dimension more than the VIS dimension in other
situations. So the user can explore the correct weight setting through the visualization
of the clustering results in our tool.

Following are the quotes of some of their comments.

“BIRCH was also able to find very small gaps in the canopy which might otherwise
be lost in the use of the 2-D histogram approach.”

72

“Another plus in using BIRCH is that if the right number of clusters are solved for,
we are also able to pull out the branch structure in the forest canopy, which is almost
impossible to do with the 2-D histogram. Given this additional information, there is no
doubt that BIRCH is a truly valuable tool in our scheme for image processing.”

“The time involved using BIRCH is also a bonus. Using 2-D histograms requires
many processing steps (algorithms) which involve numerous iterations to judge the clas-
sification that is made, and whether it is a reasonable solution for a particular image. It
may take 1 hour of processing per image pair using the 2-D histogram approach. Given
that we analyze 100’s of images, the processing time is incredible. BIRCH is able to take
the raw data in an MVI image pair, and solve for 3-4 clusters in less than 5 minutes on
a HP-9000 series (735) workstation.”

“What is also unique to BIRCH is that its treatment of image data is such that we are
able to write other algorithms that easily read the data that is processed after clustering,
which is needed in most cases to get as much information as possible from the image.
Clustering of the images is just the FIRST STEP!!! There is much more data processing
that is needed once the clustering takes place, but having an algorithm such as BIRCH
which performs the clustering in minimal time is a very important time-saving, reliable
process.”

“We use BIRCH as a beginning step to our image processing. We do much more
with the images after they are clustered. Our processing doesn’t end with BIRCH. The
science in each image comes out as we move past the clustering. However, without the
initial clustering using BIRCH, we would be unable to do ANYTHING to process the

1

images as they are. Thus BIRCH is an important first step for us

6.1.5 BIRCH,CLARANS and KMEANS on Pixel Classifica-
tion

These MVI image pairs are real datasets that we can use to compare BIRCH, CLARANS
and KMEANS. In Table 13, two different MVI image pairs are used. Imagel (see Figure

73
Table 13: BIRCH,CLARANS,KMEANS on Pixel Classification

Method Imagel: N=485100,K=2 || Image2: N=485100,K=5
Time | D #Scan Time | D #Scan
BIRCH 50 0.5085 | 2 53 0.6269 | 2
CLARANS || 368 | 0.5061 | 330 642 | 0.6292 | 523
KMEANS || 8.3 0.5015 | 5 30 0.6090 | 48

18) is the pair that we have used in the previous example, where we try to separate
485100 pixels into 2 categories: (1) tree and (2) background. Image?2 (see Figure 21) is
another image pair, where the background is partly cloudy sky, and we try to separate
485100 pixels into 5 categories: (1) very bright part of sky, (2) ordinary part of sky, (3)
clouds, (4) sunlit leaves (5) tree branches and shadows on the trees. For CLARANS and
KMEANS, again, the running time is measured with all pixels are read into memory and
then scanned inside memory. Whereas for BIRCH, the memory used is only 5% percent
of the dataset size, and the dataset is scanned from disk (Each scan of the dataset from

disk took about 4.5 seconds). From the table one can see that:

1. For both MVI image pairs, BIRCH, CLARANS and KMEANS have almost the
same quality. The qualities of CLARANS and KMEANS are slightly better than
that of BIRCH. To explain this, one should know that (1) CLARANS and KMEANS
are “hill-climbing” methods and they stop after they reach some local optimal clus-
tering; (2) in this application, N is not too big, K and d are very small, and the
pixel distribution in terms of VIS and NIR values is very simple in modality, so
the “hill” that they climb tends to be very simple without many bad local opti-
mal solutions prevailing, and CLARANS and KMEANS can usually reach a pretty
good clustering in the “hill”. BIRCH stops after scanning the data only twice, but
it reaches a clustering almost as good as those optimal ones found by CLARANS

and KMEANS.

2. For CLARANS and KMEANS, their running times and their numbers of scans on

the dataset are very sensitive to the two different MVI image pairs used. Whereas

Figure 21: Another Example of MVI image

74

75
the running times and the numbers of scans on the dataset of BIRCH are stable

for the two different MVI image pairs.

3. It would be hard for CLARANS and KMEANS to scale up for larger and obscurer
images because when N and K becomes larger, (1) the “hill” they climb tends
to be more complex with plentiful local optimal solutions, which in turn makes
CLARANS and KMEANS easier to get stuck in a bad local optimal clustering;
and (2) it is impossible to store all pixels in memory, and considering the time for

each scan, CLARANS and KMEANS can be slow.

6.2 Codebook Generation in Image Compression

6.2.1 Motivation

The second application is motivated by digital image compression technology. Digital
image compression [38] is the technology of reducing image data to save storage space
and transmission bandwidth. Vector quantization [24] is a widely used image compres-
sion/decompression technique which operates on blocks of pixels instead of pixels for
better efficiency.

In vector quantization[24], the original image is first decomposed into small rectangle
blocks, and each block is represented as a vector. Then each vector is encoded with the
codebook, i.e., finding its nearest codeword from the codebook, and later is decoded with
the same codebook, i.e., using its nearest codeword in the codebook as its value. So given
the training vectors (derived from the training image) and the desired codebook size

(i.e., number of codewords), the main problem of vector quantization is how to generate

the codebook.

6.2.2 BIRCH,CLARANS and LBG on Image Compression

A commonly used codebook generating algorithm is the LBG algorithm [39]. LBG is
a KMEANS algorithm but with two specific modifications that must be made to be

76
suitable for image compression. One is to try to avoid getting stuck at a bad local
optimum by starting with an initial codebook of size 1 (instead of the desired size),
and proceeding by refining and splitting the codebook iteratively. Another is that if
empty cells in the codebook are found during the refinement, it fills the empty cells via

codebook splitting. Following is a brief description of the LBG algorithm.

1. It uses the GLA algorithm [24] (KMEANS with empty cell filling strategy) to find

the “optimal” codebook of current size.

9. If it reaches the desired codebook size, then stop; otherwise it doubles the current

codebook size, perturbs and splits the current “optimal” codebook and goes to

Step 1.

The above LBG algorithm invokes many extra scans of the training vectors during
the codebook optimizations at all the codebook size levels before reaching the desired
codebook size level, and yet it still can not completely escape locally optimal solutions.

With BIRCH clustering the training vectors (usually of high dimensions, such as
16), we know that from the first 3 phases, with a single scan of the training vectors,
the clusters obtained generally capture the major vector distribution patterns and only
have minor inaccuracies. So in Phase 3, if we set the number of clusters directly as the
desired codebook size, and use the centroids of the obtained clusters as the codebook,
then in Phase 4, we can use GLA to further optimize the codebook and save a lot of

scans of the training vectors. So in contrast with LBG,

e the initial codebook from the first 3 phases of BIRCH is not likely to lead to a bad

locally optimal codebook;

e Using BIRCH to generate the codebook will involve much less scans of the training

vectors.

Also we intend to show how BIRCH, CLARANS and LBG perform on high dimen-

sional (d=16) real datasets in this application.

7

We use two very different images: Lena and Baboon (each with 512x512 pixels)
as examples to compare BIRCH, CLARANS and LBG’s performances in terms of the
number of the running time, scans on the dataset, distortion and entropy [38, 49]. First
the training vectors are derived by blocking each image into 4x4 blocks (d=16), and
the desired codebook size is set to 256. Distortion is defined as the sum of squares of
Euclidean distances from all training vectors to their nearest codewords. It is a widely
use;i quality measurement, and smaller distortion values imply better qualities. Entropy
is the average number of bits needed for encoding a training vector, so lower entropy
also means better compression.

Table 14 summarizes the performance results. The Time is the total time of generat-
ing the initial codebook of the desired size (256) and then using GLA algorithm to refine
the codebook. The #Scans means the total scans of the dataset in order to reach the
final codebook. Distortion and Entropy are obtained by compressing the image using

the final codebook. One can see that for both images,

1. using BIRCH to generate the initial codebook is consistently better than using

using LBG in terms of the running time, scans of data, distortion and entropy;

2. the final codebook obtained through CLARANS is slightly better than that ob-
tained through BIRCH in terms of distortion only, whereas is significantly worse

in terms of the other three aspects.

Readers can perceive the compressed images in Figure 22 through 27 for easy visual

quality comparisons.

Table 14: BIRCH, CLARANS and LBG on Image Compression

Method Lena

Time | #Scans | Distortion | Entropy
BIRCH 15 9 712 6.70
CLARANS || 2222 | 8146 693 7.43
LBG 19 46 719 7.38
Method Baboon

Time | #Scan | Distortion | Entropy
BIRCH 17 8 5097 7.15
CLARANS || 2111 | 7651 5070 7.70
LBG 31 42 5155 7.73

78

Figure 22: Lena Compressed with
BIRCH Codebook

Figure 23: Lena Compressed with
CLARANS Codebook

Figure 24: Lena Compressed with
LBG Codebook

Figure 25: Baboon Compressed
with BIRCH Codebook

Figure 26: Baboon Compressed
with CLARANS Codebook

Figure 27: Baboon Compressed
with LBG Codebook
. 5 S

79

80

Chapter 7

Implementation Issues

7.1 Code Components

BIRCH is implemented in C++. There are four code components in BIRCH: (1) utility,
(2) data clustering, (3) density estimation, and (4) data input and preparation.

7.1.1 Utility

This component contains all the utility code needed in BIRCH, but not just restricted
to the use in BIRCH. It is further decomposed into the following modules:

e vector module: provides d-dimensional vector and vector operations such as addi-

tion, subtraction, dot product, distances, input and output.

e rectangle (or MBR[27]) module: provides d-dimensional rectangle and rectangle

operations such as addition, intersection, overlap, containment, input and output.
e timing module: provides convenient timing facilities for performance evaluations.
e random number module: generates random numbers based on a given distribution.

e sample and regression module: takes samples and performs regressions on the

samples.

7.1.2 Data Clustering

+~ This component is the core of BIRCH. It contains the following modules:

81
e CF entry module: provides d-dimensional CF entry and operations such as addi-

tion, distances, radius/diameter, etc.

e CF-tree module: provides node (leaf or nonleaf) interface and relevant insertion,

splitting and rebuilding algorithms.
e Status module: manages status information and heuristics for a CF-tree.

e Phase 1 and 2 module: manages split buffering, outlier queuing and CF-tree build-

ing.

e Phase 3: adapts existing global or semi-global clustering algorithms such as HC

and CLARANS.

e Phase 4: provides clustering refinement algorithm and different output options.

7.1.3 Density Estimation

This component is the preliminary work for using BIRCH for density estimation. More

experiments are needed to compare its performance with other related methods.

7.1.4 Data Input and Preparation

This component is able to read data from different media and/or with different formats.
Then for each tuple it reads, it extracts the specified attribute projections for data
clustering and density estimation. This part of code was provided by Mr. R. Kent

Wenger.

7.2 BIRCH Execution

BIRCH is executed by entering the following command: birch para scheme proj data
where birch is the executable and parae, scheme and proj are the input files explained as

below.

82
7.2.1 Input of BIRCH

BIRCH takes three files as its input, they are:

~

1. para: parameter file that contains the parameter setting for running BIRCH. An-
other file para.config contains a detailed explanation of how to set the parameter
file. In the parameter file, the user can specify, for example, the following infor-

madtion:

(a) Do data clustering or density estimation?

(b) Amount of memory for building CF-tree, amount of memory for buffering

splits, amount of disk space for queuing outliers.
(c) Then for each projection of attributes:
e Whether and how to weight and/or shift the attribute values?
e Page size?
e Which distance measurement is to be used?

Which threshold definition is to be used?

Which quality measurement is to be used?

e Whether the outlier options are to be used?

e Whether the buffering option is to be used?
2. data: data file that contains the data.

3. schema: scheme file that describes the scheme of the data including data format
(binary or ascii), comment signs and separators used in the data file, names and

types of attributes.

4. proj: projection file that specifies the desired attribute projections for doing data

clustering or density estimation concurrently.

83

7.2.2 Output of BIRCH

1.

para+scheme+proj+data-log: log file that logs execution information such as run-

ning time and quality of each phase.

para+scheme+proj+data-i-cluster: cluster file for attribute projection i that con-
tains clusters resulted from Phase 3 for attribute projection i. Each cluster in the

file is represented as the form of CF entry in terms of that attribute projection.

para+scheme+proj+data-i-refcluster: refined cluster file for attribute projection i
that contains clusters resulted from Phase 4. Each cluster in the file is represented

as the form of CF entry.

para+scheme+proj+data-i-label: label file for attribute projection i that is gener-
ated optionally only when -DLABEL compilation option is used. In this file, each
record_id is matched with its belonging cluster.id according to the clustering based

on attribute projection i.

para+scheme+proj+data-i-dat-j: filtered data file for cluster j under attribute pro-
jection 1 that is generated optionally only when -DFILTER compilation option
is used. In this file, the data corresponding to the cluster j of clustering under

attribute projection i is stored.

para+scheme+proj+data-i-summary: summary file for attribute projection i that
is generated only when -DSUMMARY compilation option is used. In this file,

each cluster has a summary in the form of CF entry in terms of all the numeric

attributes.

84

Chapter 8

Conclusions and Future Research

8.1 Data Clustering

BIRCH provides an efficient data clustering algorithm for very large datasets. It makes
a large data clustering problem tractable by concentrating on a compact in-memory
summary of the dataset. This way the I/O cost is minimized and the problem is reduced
to the range where most existing algorithms can be adapted to perform well. It utilizes
measurements that capture the natural closeness of data and at the same time can be
stored and updated accurately and incrementally in a height-balanced hierarchy. BIRCH
works with datasets of any size and memory of any size, and it tries to scan the data
only once.

Experimentally, BIRCH is shown to perform consistently well on different patterns
of datasets with different input orders. It is significantly superior to CLARANS and
KMEANS in terms of supeed, quality, stability and scalability on both synthetic and real
datasets.

Proper parameter setting and further generalization are two important topics to

explore in the future. We will look into:

1. more sophisticated heuristic method for increasing the threshold dynamically,
2. other threshold requirements and related insertion, rebuilding algorithms,

3. confidence measurements.
We will also study how to make use of the clustering information obtained from BIRCH
to help solve existing problems such as storage optimization, data partition and index

construction.

85
8.2 Density Estimation

One continuing work in BIRCH is multi-dimensional density estimation. For simplic-
ity, we will use 1-dimensional data and equations for illustration of density estimation,
however it can be generalized to any dimensions in BIRCH easily.

Density estimation, as discussed here, is the construction of an estimate of the den-
sity function from observed data. Informally, a density function f(z) gives a natural
description of the distribution of a random variable z, and allows the associated proba-
bility function P(z) to be computed using the integral [f(t)dt. It is a natural way
to explore and present data. It can give valuable insight into such features as skew and
multimodality in the data, and thus provoke further analysis by other means. Data clus-
tering and density estimation are two related but slightly different topics. On one hand,
compared with data clustering, density estimation is a more general way of exploring
and presenting the data because the modes (or “bumps”) in the density estimate actually
correspond to the clusters in the data. On the other hand, data clustering searches for
an optimized partition of the dataset whereas density estimation does not address the

optimal partition issue.

8.2.1 Previous Work

Prior work in density estimation[55, 15, 56], has been in statistics. There are mainly
two categories of approaches to density estimation: parametric and nonparametric. The
parametric approach assumes that the underlying density function f(z) belongs to some
parametric family of distributions, such as the normal or gamma families. Then sam-
ples are used to determine the parameters of the assumed function forms. The main
drawback of the parametric approach is that its estimation accuracy depends heavily
on this assumption, which might not be true in reality sometimes. On the contrast,
the nonparametric approach does not assume any pre-specified functional forms for the
underlying density function f(z), and it is sometimes referred to as “let the data speak

for themselves”. So it is generally a more useful preliminary data analysis method in

86
reality.

Histogram

The oldest and most well-known nonparametric method for density estimation is the
histogram method [55, 15, 56]. It assumes that the data range is known, then it cuts
the range into disjoint and contiguous intervals, or bins, of equal or different widths,
then within each bin, uniformity is assumed. So given N data points, the histogram

estimation of f(z) is defined as:

R 1 number of X; in the same bin as z

He) = 5 % : : — (8.14)

width of the bin containing

The main drawbacks of the histogram method are:

e Curse of dimensionality: the number of bins will grow exponentially as the dimen-

sion increases.

e Some prior knowledge of the data range must be known in advance in order to

allocate the bins effectively, so it can not be an incremental method.

e The discontinuity of f (z) makes the derivatives or other smoothing metrics un-

available, and hence inconvenient for further more advanced analysis.

e It is difficult to allocate bins, and the estimation accuracy depends not only on

the bin widths but also on the bin locations.

Kernel Method

Apart from the histogram method, the kernel method [55, 15, 56] is the most mathematically-
studied and commonly-used nonparametric density and probability estimation method.
Given N data points, the kernel estimation of f(z) is defined as:

N1
5;'5

l X ;

(8.15)

87
where the kernel function K(z) is generally a symmetric, bounded density function,
for instance, the standard normal density function, and the A is called smoothing
parameter. Imagine it intuitively, a “bump” is placed on each data point, and the sum
of all “bumps” reflects the overall distribution of all data points. The kernel function
K(z) determines the shape of each bump while the smoothing parameter 4 determines
the width, or affecting scope, of each bump.

Then some preferable properties will follow immediately from the above kernel esti-

mation definition:

e No prior knowledge about the data is needed and the estimation is totally data-

driven.

e The kernel estimation f (z) itself is a density function which inherits all the con-
tinuity, differentiability and integrability properties of the selected kernel function

K (z), and this allows for further more advanced data analysis.

e K(z) and h are the two factors affecting the accuracy. However it has been
shown[56] that the choice of the kernel function K(z) is not very crucial, and

the estimation accuracy is primarily affected by the smoothing parameter A.

However if the kernel method is applied to very large datasets, it has its own prob-

lems:

e It is very time/space expensive because for each data point, it keeps a “bump”,
and there will be N distinct terms, or “bumps” in the representation of f(r) So
first, it needs O(IV) space to store f(z), and then for calculating f(z) and/or P(z)

at a specific value x, it needs to scan all N terms.

e Another problem is the difficulty and complexity of finding the proper A, so that

A

given N data points, f(z) can reflect f(z) very well.

88
8.2.2 CF-kernel Method

With CF-tree, a new CF-kernel method [59] is proposed that integrates the advantages
of the CF-tree[57, 58] and the kernel method[55, 15, 56}, and at the same time overcomes
the efficiency difficulty met by the kernel method. The idea is that first we summarize
the dataset into an in-memory CF-tree [57, 58], second instead of placing a kernel
funetion on each single data point, we place a CF-kernel function on each subcluster
(or leaf entry of the CF-tree). This way the efficiency is definitely improved.

So CF-tree is used as a dynamic and incremental way to bin data. However, it differs

from the existing binned kernel methods [56] in that:

e it does not require the data range in advance for allocating bins, instead, it allocate
“bins” dynamically and incrementally according to the data distribution and the
available memory, the number of bins does not grow with dimension but with data

expansion;

e more information is stored for each bin (CF, which allows to construct an density

function to approximate the data distribution inside a bin);
The following questions remain about the CF-kernel function:

1. How to define the CF-kernel function so that the kernel estimation and the

CF-kernel estimation will be as close as the available memory allows?
2. How easy is it to compute the CF-kernel function?

Following is our preliminary results about the CF-kernel method with respect to the
above two questions. First, theoretically, assume that the /V; data points in subcluster ¢
are drawn independently from an empirically-known distribution whose density function
is gi(z) (gi(z) can be approximated by using the information stored in the CF entry), if
we define the CF-kernel function placed on subcluster 7 as [K, (z —t)g:i(t)dt, then we can
prove that at any x, the expected value of the difference between the kernel estimation

and the CF-kernel estimation is 0; and the variance of the difference between the kernel

89
estimation and the CF-kernel estimation will converge to 0 as the memory increases.
Experimentally, we show that the variance converges to 0 almost as fast as exponential.
Second, if gi(z) is chosen to be normal or uniform distribution, then the CF-kernel
function can be symbolically derived to avoid computing the integral numerically. So
the CF-kernel function can be computed efficiently as long as the programming language
supports ezp(z) (exponential function) and er f(z) (error function) in their math library.

However, this work is very preliminary. Further experiments or even modifications are
needed to (1) compare it with methods other than the kernel method such as sampling;

and (2) apply it to real applications such as query optimization.

90

Appendix A

Proof of CF Representativity

Theorem

First, XO, R, D, D0, D1, D2, D3 and D4 can be calculated from the CF vectors of the

corresponding clusters as shown by their definitions and the following formulae.

o N .
centroid X0 = ZLTVL&

radius R = (ZJEL——;—)%
%

-

N N X.'-X' 2
diameter D = (Zml%fz:vljn i))

—ox[5?\ L
(s

centroid Euclidean distance DO = ((X0, — XOz)Q)%

centroid Manhattan distance D1 = |X0, — thl

PO ZN1+N2 i-X;)%
average intercluster distance D2 = (== w1

A)2
= (MaxSS, +Np*SS) —2xL3 L,)%
NiN2

ZN1+N2 ZN1+N2 (X X)
. . —_— f==] J kS
average iniracluster distance D3 = (NN TN =))z

_ (AN NSS+552)-2(L31+183)")1
(N14N2)(N1+Na—-1)
- Ni+Np ¢
variance increase distance D4 =[S (X, — ZN1+N2 L T T

Nl X
— (X, - Zugi iy

NitNp ¢
Ny +N 2= tigql
Z]_l.l‘i}l-f-l(N A)]2
— [5514—552 . (L51+L52)
Ni+Ny Ni+N,
Ss. LS \2
+a— (F)
SS. 3 1
+52 — (52)7)2

Since the R and D of each cluster can be calculated from the CF vectors, and ()1
Q2, @3 and Q4 are defined in terms of R’s and D’s of clusters, they can be calculated

from the CF vectors too, which is straightforward from their definitions

92

Appendix B

CF-tree Insertion Algorithm

OO0 3 Oy Ut A W N e

B ket ek e ped 2 et e feed e
S w0~ Y Ut ke W — O

21
22

Node* Insert_Into_CF-tree (Node **Root,Node *CurNode,Entry Ent,Float T) {
Node *NewNode; Entry NewEnt; |
if (CurNode is Nonleaf Node) {
Ci = Closest_Child(CurNode,Ent);
NewNode=Insert_Into_CF-tree(Root,Ci,Ent,T);
if (NewNode==NULL) {
Update_CF(CurNode,Ci,Ent);
return NULL;
}
else {
Update_CF(CurNode,Ci,Ent);
NewEnt=Make_Entry From_Node(NewNode);
NewNode=Insert_To_Nonleaf_Node Might_Split(CurNode,NewEnt);
if (NewNode==NULL) {
Merge_Closest_But_Not_Split_Pair_Might_Resplit(CurNode);
return NULL;
}

else {
if (CurNode==*Root) {
*Root=Create_New_Root(CurNode,NewNode);
return NULL;
}

else return NewNode;

24
25
26

28

29

30
31
32
33
34
35
36
37
38
39

}

}
else { /* CurNode is Leaf Node */

Li = Closest_Entry(CurNode,Ent);
If (Absorb(Li,Ent) Satisfies T) {
Absorb(Li,Ent);
return NULL;
}

else {
NewNode = Insert_To_Leaf Node_Might_Split(CurNode,Ent);

if (NewNode==NULL) return NULL;

else return NewNode;

}

93

94

Appendix C

CF-tree Rebuilding Algorithm

1 void Re-build_CF _Tree(t;,ti+1,75,Ti+1) {

2 ti+1=NULL;

3 CurrentPath=Path_Of_Tree(t;,(0,...,0));

4 while (CurrentPath exists) {

5 Attach_Nodes_To_NewTree By _CurrentPath(t;;;,CurrentPath);
6 foreach leaf entry on CurrentPath of OldTree, say CurrentEntry, do {
7 Status=Can_Fit_In_ClosestPath(¢;4;,T;+1,ClosestPath,CurrentEntry);
8 if (Status==YES && ClosestPath<CurrentPath)

9 Fit_In_Path(¢;1;,7;+1,ClosestPath,CurrentEntry);

10 else Fit_In_Path(¢;41,7i41,CurrentPath,CurrentEntry);

11 }

12 Free_CurrentPath(¢;,CurrentPath);

13 CurrentPath=NextPath_Of_Tree(t;,CurrentPath);

14 }

15 ti.1=Free_Empty _Nodes(ti41);

16 }

Appendix D

Base Workload

@ D D @ D @ @@
D @ D D @D D @ D D @
1l o & @ D @ D @ @D @
Jo0D (Goos @@@@w(@
T DD DD D D D @
@D @ @ D @D @ D D
& @ D D @D D D @
IO @@ @ @
D D D @ @D D @D D D D
o] DD D DD E D D D
o w e 0 a©

Figure 28: Data of DS1 Figure 31: Intended Clusters of DS1

R ®
1 - '
. HmomoB oW,
P] '#e ' ho o pa 1 wba
o ipo o who o o bo wtho
190 4m o 190
a o o o o L) 1o
o o dpo rdpo
o Pe e g0
e = 4 (2 1L o
o sbo e 1ho o g 1o
8 " ' E2 ' ' 30 s
: wOw W W
8 » -
° 00 m 300 400 %0 200 o 200 o o

Figure 30: Data of DS3

8. 767
AN > Y ,% =
L B g @ ap (o @ (Tam =»
— GE)
ol 4 1053)
3 - Con
e ‘n‘
- \ 1083 q- “{ 418) &>
2
NG
2 = (2 : “a % (QD“:‘)
roe (>
¢ a:" uu (£
v
o] @ m ..
o 20 PA w0 © 00

Figure 33: Intended Clusters of DS3

96

Appendix E

BIRCH on Base Workload

90060000000
8000000680

6000000000

90060000000

0060000000!

00060006000
9000000000

00000000060

9000000000

0066060600

o a4

0000000060
9000000000

0060000000

9606000000

00060600060|

0000000000
000000000

00006000000

0008000060

ooqo@@mOmm,

[a

T
a0

n

4

Figure 37: BIRCH Clusters of DSlo

Figure 34: BIRCH Clusters of DS1

400

400

Figure 38: BIRCH Clusters of DS20

Figure 35: BIRCH Clusters of DS2

27

.,U

a1
(nm

@

8

®
®

o b
iy, by
@ ® -

6% 0 @
D% ()
%60

3 m.
?wo:g.

@ @WC

3

9

o O

3

T8 1§
B 8 m\ - 8 @6 Y
2, o e

ey
PN
G @
@
@5@ €
DN
Cw @@

i3

@ gt
® 0@@ 8,0
® Ya (s B¢
Sl 0
0, [0 &
3 1o 1

80

L o
£

T
20 10

w06

“©

"

Figure 39: BIRCH Clusters of DS30

100

s

Figure 36: BIRCH Clusters of DS3

97

Appendix F

CLARANS on Base Workload

e g -
@ D FE@E @@ D @ D D D@D D@D D@ ® @D
@ @@ @ @ Gaw)) & D @ @D @ G @ @D GO G

@ D@ @ DD S e @ @ @ @ & @
®® @ ® @ @ T G @ D @ @ ® @ @ @

B @ e @ ® @ @ | PP @@m@E @
T PDE @@ ® @D ® @O @ @ G D @@
@@@@m.@ D@ @D D @ T e @D W

T ® @ @@ ®® @ @ @ D @ @ ® ® @

G D @ \\.n&@\‘\“j(‘\)@ @@@@@<@)

Figure 40: CLARANS Clusters of DS1 Figure 43: CLARANS Clusters of DS1o
a 8
M om o g o ok om m
e ' o 1ha an o' ™ ste he
o e ™ e o o] o o F o o
" so o "w o L o ofy 2 ot e o o “dpo o o
o e o ®o 1o By 1o e 1o a e £ b 1wpa g scho o o
o ' e ha ™ ha sdpa o
o 1o 1o n ‘o o o
o o e e 1o - o e g0 g
1po e o 1¥o o bo k] e oht I 07 P2 [s P2 e
a uh'r'” nbz"b‘ (e e \ ;t' 8 4 e » vie o s ‘Oﬂ‘m
¥ W : WO W W
" »
o 200 P w0 o 200 o ws

Figure 41: CLARANS Clusters of DS2

- T B -3 i ¢ o

®@d - @ R (@q% - @ .,2; D {’)&)

‘ X D o o

L ® 2R s & il P @B S @ oo

@ @ @ - @D,x T 51D qafED m@zg,.;)

@ LD e ok D Gyt

a - 5 D) 1l e BT Dy B owe WD
& & & @ & 5
94 g 4 " e o)
@ © [@ @ &

® o B o0 £59

®1 B G RED " g L 2L ~ @
- "R @ D
] @ @, A @ @D D,
«© 1we a an - 80 0 196

Figure 42: CLARANS Clusters of DS3

Figure 45: CLARANS Clusters of DS30

Appendix G

KMEANS on Base Workload

R 2
D@ @ DEDD @ G () @@ ® DED@®
@S O @O DEE® @ P ® ®EE® @
@@ e e R E® % @ G @ @ @ @ @ @ @
PO E@®®®@E D@ D@ ®E DD
P eemeee® ®® ® e Yoo ® e @
B @D DD @ @D @ DePee@®®D@®B
B @D® @@ @ P EEEDEDD DD @®
e @ @ @@ o @ MO ® @@ ®D®®
® @@ o @ e@Poe @ DB DD D@D D@
LD @ E D G G G D@ @@ ®
[© b n 49 -] 10 20 = AQ
Figure 46: KMEANS Clusters of DS1 Figure 49: KMEANS Clusters of DSlo
2 a
N . T ! S om A& &
& P "= we ks ,ea - 0“ ”’ o | o
ER o i o tho . 24, 1o o b bo o of
o o |{}u ha z{}o 10 o 2& o] z{}g o m <t oo o
‘o a2 e vf}‘ o ropa rdpa
= e s ‘8‘ o 190 - & ‘{}n e 3 o s z{)u #
g * ¢po :&ou&v B po W
o 'en 100 . . um‘ o PO w{}a o
W OW W W RO W %
LI , ; L]

Figure 47: KMEANS Clusters of DS2 Figure 50: KMEANS Clusters of D520

T - o S = | B - oo e

i BB = o @ s-,..@@m@@c%

02 et

| e TP @ P wm Sy G

‘ ® B Trp . D @

m~ D4 ®na = %‘0’@

| @ e ogs

_CDC3<§§%§@§
Q

w
L
w0

L

1

T
20 © 83 © 100

Figure 48: KMEANS Clusters of DS3 Figure 51: KMEANS Clusters of D530

Appendix H

Effects of Outlier Options

D ® D @ &
D @D @D ® @@ @ @
oo e E@® ®®

D@ @ ® D @

@D D @D @ @D D @ @ D @D
e @ @ @ @ @D @ @

W @ D ® @ ® @ @
e e @@ ®

Figure 52: BIRCH Clusters of DS4 with
Outlier Options On

R A
AW, . <y,
M ;o om W
ots ofs 4 P
o o o0
2 [1id 3 e 1 T3
e [1T) s sl
$o ol o}
- s o ofy of
s afe s B
" w w P w W o
ot o ofs
. N I
ofo o
o W i 7
8 :
L 200 o "0

Figure 53: BIRCH Clusters of DS5 with
Outlier Options On

LR > @ P %d@@ o
o
N SR 1o @ G & o
R @& @5 & G5
T« %J R c; @
" P o L8 (——D =
DINC P S Y
("‘:. -3
i1 @ G Mi o ERGE ‘@
el R, (BT @ E %@)
> W @ o o
- a» » T T @ T G

Figure 54: BIRCH Clusters of DS6 with
Outlier Options On

D@D DD @D @D @
e ®®®®® @ @
e ®® ® @ ® @
e e e ®® ®
D@ ®® D ®
e @ ® e ® e @ @ @
o @ ® o D @ ® @D ®
| P @@ ® @ @ @

Figure 55: BIRCH Clusters of DS4 with
Outlier Options Off

8
§
8

Figure 56: BIRCH Clusters of DS5 with
Outlier Options Off

BV@(‘E 710 u ”a)@) P lzTE

% a‘mm. (ﬁ(f" @

l.:ﬁy/j‘:g%)“"“ (;;@6'\':':

T aur Y& ’ﬁg ({ k/ m Q%,
= e d:.) — By Gah ‘m

=l A % =

a 2 o w0 0o

Figure 57: BIRCH Clusters of DS6 with
Outlier Options Off

100

Bibliography

(1]

2]

3]

[5]

[6]

8]

Arie Segev, and Abhirup Chatterjee, Supporting Statistics In Extensible Databases:
A Case Study, Scientific and Statistical Database Management, 1994.

Rakesh Agrawal, Christos Faloutsos, and Arun Swami, Efficient Similarity Search
in Sequence Databases, Proc.of the Fourth International Conf. on Foundations of

Data Organization and Algorithms, Chicago, U.S.A., Oct. 1993.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami, Database Mining: A Perfor-
mance Perspective, IEEE Transactions on Knowledge and Data Engineering, 5(6),

1993, Special Issue on Learning and Discovery in Knowledge-Based Databases.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami, Mining Association Rules
between Sets of Items in Large Databases, Proc. of the ACM SIGMOD Conf. on
Management of Data, Washington, D.C., May 1993.

Rakesh Agrawal, and Ramakrishnan Srikant, Mining Sequential Patterns, Proc. of
the 11th IEEE Int’l Conf. on Data Engr., Taipei, Taiwan, Mar. 1995.

R.A.Becker, J.M.Chambers and A. R. Wilks, The New S Language: A Programming
Environment for Data Analysis and Graphics, Wadsworth & Brooks/Cole Advanced
Books and Software, 1988.

J. Buhmann, and T.Hofmann, A Mazimum Entropy Approach to Pairwise Data
Clustering, Proc. of Int’l Conf. on Pattern Recognition, Hebrew Jerusalem, IEEE

Computer Society Press, 1994.

Norbert. Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger, The
R*-tree: An Efficient and Robust Access Method for Points and Rectangles, Proc.
of ACM SIGMOD Int. Conf. on Management of Data, 322-331,1990.

[9]

[10]

[11]

[12]

[17]

101
Peter Cheeseman, James Kelly, Matthew Self, et al., AutoClass : A Bayesian Classi-
fication System, Proc. of the 5th Int’l Conf. on Machine Learning, Morgan Kaufman,

Jun. 1988.

Michael Cheng, Miron Livny, and Raghu Ramakrishnan, Visual Analysis of Stream
Data, Proc. of IS&T/SPIE Conf. on Visual Data Exploration and Analysis, San
Jose, CA, Feb. 1995.

T. Dean, J. Allen, and Y.Aloimonos, Artificial Intelligence: Theory and Practice,
Benjamin/Cummings Pub. 1995.

Richard Duda, and Peter E. Hart, Pattern Classification and Scene Analysis, Wiley,
1973.

R. Dubes, and A.K. Jain, Clustering Methodologies in Ezploratory Data Analysis
Advances in Computers, Edited by M.C. Yovits, Vol. 19, Academic Press, New
York, 1980.

Narsingh Deo, Graph Theory with Applications to Engineering and Computer Sci-
ence, Prentice Hall, Englewood Cliffs, N.J., 1974.

Luc Devroye, A Course in Density Estimation, Birkhauser Boston, 1987.

Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu, A Database Interface for Clus-

tering in Large Spatial Databases, Proc. of 1st Int’l Conf. on Knowledge Discovery
and Data Mining, 1995.

Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu, Knowledge Discovery in Large
Spatial Databases: Focusing Techniques for Efficient Class Identification, Proc. of
4th Int’l Symposium on Large Spatial Databases, Portland, Maine, U.S5.A., 1995.

Christos Faloutsos, and Ibrahim Kamel, Beyond Uniformity and Independence:
Analysis of R=trees Using the Concept of Fractal Dimension PODS of 1994.

-

102
[19] M.C. Ferris, and O.L. Mangasarian, Linear Programming with MATLAB, prelimi-

nary version of textbook.

[20] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos, Fast Subsequence
Matching in Time-Series Databases, Proc. of ACM SIGMOD Conf., 1994.

[21] E. A. Feigenbaum, and H. Simon, EPAM-like models of recognition and learning,
Cognitive Science, vol. 8, 1984, 305-336.

[22] Douglas H. Fisher, Knowledge Acquisition via Incremental Conceptual Clustering,
Machine Learning, 2(2), 1987

[23] Douglas H. Fisher, Iterative Optimization and Simplification of Hierarchical Cluster-
ings, Technical Report CS-95-01, Dept. of Computer Science, Vanderbilt University,
Nashville, TN 37235.

[24] A. Gersho and R. Gray, Vector quantization and signal compression, Boston, Ma.:

Kluwer Academic Publishers, 1992.

[25] John H. Gennari, Pat Langley, and Douglas Fisher, Models of Incremental Concept
Formation, Artificial Intelligence, vol. 40, 1989, 11-61.

[26] A.D.Gordon, Classification Chapman and Hall, 1981.

[27] A. Guttman, R-trees: a dynamic index structure for spatial searching, Proc. ACM
SIGMOD Int. Conf. on Management of Data, 47-57, 1984.

[28] Jiawei Han, Yandong Cai, and Nick Cercone, Knowledge Discovery in Databases
: An Attribute Oriented Approach, Proc. of the VLDB Conf., Vancouver, Canada,
1992.

[29] Maurice Houtsma and Arun Swami, Set-oriented Mining of Association Rules, Re-

search Report RJ 9567, IBM Almaden Research Center, San Jose, 1993.

[30] Harold M. Hastings, and George Sugihara, Fractals: A User’s Guide for the Natural

Sciences, Oxford Science Publications, 1993.

[31]

[32]

33]

[34]

[35]

[36]

[37]

103
C. Huang, Q. Bi, G. Stiles, R. Harris, Fast Full Search Equivalent Encoding Algo-
rithms for Image Compression Using Vector Quantization, IEEE Trans. on Image

Processing, vol. 1, no. 3, July, 1992.

J. A. Hartigan, and M. A. Wong, A K-Means Clustering Algorithm, Appl. Statist.,
vol. 28, no. 1, 1979.

D.J.Hand, Discrimination and Classification, John Wiley & Sons, 1981.

D.J.Hand, Kernel Discriminant Analysis, Research Studies Press, A Division of

John Wiley & Sons Ltd., 1982.

Leonard Kaufman, and Peter J. Rousseeuw, Finding Groups in Data - An Introduc-

tion to Cluster Analysis, Wiley Series in Probability and Mathematical Statistics,
1990.

C.J. Kucharik, and J.M. Norman, Measuring Canopy Architecture with a Multi-
band Vegetation Imager (MVI) Proc. of the 22nd conf. on Agricultural and Forest
Meteorology, Ame rican Meteorological Society annual meeting, Atlanta, GA, Jan

28-Feb 2, 1996.

C.J. Kucharik, J.M. Norman, L.M. Murdock, and S.T. Gower, Characterizing
Canopy non-randomness with a Multiband Vegetation Imager (MVI), Submitted to
Journal of Geophysical Research, to appear in the Boreal Ecosystem-Atmosphere

Study (BOREAS) special issue.

Weidong Kou, Digital Image Compression Algorithms and Standards, Kluwer Aca-
demic Publishers, 1995.

Yoseph Linde, Andre’s Buzo, and Robert M. Gray, An Algorithm for Vector Quan-
tizer Design, IEEE trans. comm., Vol. COM-28, No.1, Jan. 1980.

Michael Lebowitz, Ezperiments with Incremental Concept Formation : UNIMEM,
Machine Learning, 1987.

104

[41] R.C.T.Lee, Clustering analysis and its applications, Advances in Information Sys-

tems Science, Edited by J.T.Toum, Vol. 8, pp. 169-292, Plenum Press, New York,
1981.

[42] Stuart P. Lloyd, Least Squares Quantization in PCM, IEEE trans. information
theory, Vol. IT-28, No.2, Mar. 1982.

[43] Kathleen McKusick and Kevin Thompson, COBWEB/3 : A Portable Implemen-
tation, NASA Ames Research Center, Artificial Intelligence Research Branch, TR
FIA-90-6-18-2, June, 1990.

[44] F. Murtagh, A Survey of Recent Advances in Hierarchical Clustering Algorithms,
The Computer Journal 1983.

[45] Raymond T. Ng and Jiawei Han, Efficient and Effective Clustering Methods for
Spatial Data Mining, Proc. of VLDB 1994.

[46] Clark F. Olson, Parallel Algorithms for Hierarchical Clustering, Technical Report,

Computer Science Division, Univ. of California at Berkeley, Dec.,1993.

[47] Franco P. Preparata, and Michael Ian Shamos, Computational Geometry: An In-
troduction, Springer-Verlag, 1990.

[48] Gregory Piatetsky-Shapiro, and William J. Frawley, editors, Knowledge Discovery
in Databases, AAAI/MIT Press, 1991.

[49] Majid Rabbani, and Paul W. Jones, Digital Image Compression Techniques, SPIE
Optical Engineering Press, 1991.

[50] Rawlings, John O., Applied regression analysis : a research tool, Wadsworth &
Brooks/Cole Advanced Books & Software, 1988.

[61] Arie Segev, and Abhirup Chatterjee, Supporting Statistics In Extensible Databases:
A Case Study, Scientific and Statistical Database Management, 1994.

105
[52] Jude W. Shavlik, and Thomas G. Dietterich, editors, Readings in Machine Learning,
Morgan Kaufmann, 1990.

[53] Praveen Seshadri, Miron Livny and Raghu Ramakrishnan, SEQ: A Model for Se-
quence Database, Preprint, 1994.

[54] David W. Scott, and George R. Terrell, Biased and Unbiased Cross-Validation in
Density Estimation, Journal of the American Statistical Association, Vol. 82, No.

400, p1131-1146, Dec., 1987.

[55] B. W. Silverman, Density Estimation for Statistics and Data Analysis, London ;
New York : Chapman and Hall, 1986.

[56] M.P. Wand, and M.C. Jones, Kernel Smoothing, Chapman and Hall, 1995.

[57] Tian Zhang, Raghu Ramakrishnan, and Miron Livny, BIRCH: An Efficient Data
Clustering Method for Very Large Databases, Proc. of ACM SIGMOD Int’l Conf.
on Management of Data, p103-114, June 1996, Montreal, Canada.

[58] Tian Zhang, Raghu Ramakrishnan, and Miron Livny, Interactive Classification of
Very Large Datasets with BIRCH, Proc. of Worksﬁop on Research Issues on Data
Mining and Knowledge Discovery (in cooperation with ACM-SIGMOD’96), June
196, Montreal, Canada.

[59] Miron Livny, Raghu Ramakrishnan, and Tian Zhang, Fast Density and Probability
Estimations Using CF-Kernel Method for Very Large Databases, Technical Report,
July, 1996.

