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Abstract

The Discrete Cosine Transform (DCT) is widely used in lossy image and video compression schemes
such as JPEG and MPEG. In this paper we describe RD-OPT, an efficient algorithm for constructing
DCT quantization tables with optimal rate-distortion tradeoffs for a given image. The algorithm uses
DCT coefficient distribution statistics in a novel way and uses a dynamic programming strategy to
produce optimal quantization tables over a wide range of rates and distortions. It can be used to
compress images at any desired signal-to-noise ratio or compressed size.

1 Introduction

The Discrete Cosine Transform [ANRT74] lies at the heart of most commonly used lossy image and video
compression schemes [PM93, MP91]. The extent of compression achieved depends upon the coarseness
of quantization of the transform coefficients. The coarser the quantization, the lesser the entropy of the
quantized coefficients. But coarse quantization also leads to poor quality of the decompressed image. Thus,
the quantization table used directly determines the rate-distortion tradeoff, i.e., the compression-quality
tradeoff.

Several approaches have been tried in order to design quantization tables for particular distortion or
rate specifications. The most common of these is to use a default table and scale it up or down by a
scalar multiplier to vary quality and compression. We have shown in [RL94] that this might not give the
best tradeoff possible. Other approaches include psycho-visual model based quantization [AP92, Wat93],
rate-distortion model based quantization [Jai89], and stochastic optimization techniques [MS93].

In this paper we present RD-OPT, an efficient algorithm for optimum quantization table design that
does not rely on visual or rate-distortion models. The algorithm admits a wide range of quality measures
(including PSNR, weighted PSNR) and produces quantization tables optimizing the tradeoff between quality
and compressed size. A key feature of the algorithm is that it simultaneously optimizes quantization tables
over a wide range of rates and distortions.

2 Image compression based on the Discrete Cosine Transform

The human visual system is not very sensitive to sudden changes in intensity across an image [VB67]. Lossy
image compression techniques strive to discard that part of the image structure which is less perceptible
to the eye. The two-dimensional Discrete Cosine Transform (referred to hereafter as DCT) offers an ef-
ficient way to break up the underlying structure of an image into different spatial-frequency components.
The high-frequency components are less perceptible to the eye compared to the low-frequency components.
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Thus, the DCT orders the information-content of an image into parts with different degrees of visual im-
portance. These parts can then be selectively discarded or stored with varying degrees of accuracy, for lossy
compression of the image. The compression-ratio increases as more and more information is thrown away.
DCT-based compression techniques typically allow the user to specify a table (called the quantization table)
that stipulates the level of accuracy with which each spatial-frequency component is to be stored.

We now briefly describe the basic steps used in DCT-based image compression and decompression, and
thereby present some notation. Details on various standards can be found in the standard documents.
Details on DCT itself can be found in [RY90)].

Let I be a W x H image with pixel values in the range [0...M]. The DCT-based compression process
consists of the following steps.

1.

The image is divided into 8 x 8 blocks. To each image block f, the DCT is applied to get an 8 x 8
block f of DCT coefficients. Each coefficient represents the amount of a particular spatial-frequency
content in f. The lowest frequency coefficient (also called the DC coefficient) is f(0, 0) while the highest

frequency coefficient is f (7,7).

An 8 x 8 matrix of integers @, called the quantization table, is used to quantize the coefficients in f
to form fq. For notational convenience, we number the 64 entries in each § x § image block and each
8 x 8 block of DCT coefficients in raster-scan order, and use this ordering to refer to individual entries
in the various blocks. Thus, f(u,v) is referred to as f[8u + v]. Using this notation,

faln) = fln]/QIn], 0 <n <63
Here // represents division followed by rounding to the nearest integer®.

The block f'Q is entropy-coded, using (for example) Huffman codes to exploit similarities across blocks,
to give the compressed block E(fg) [PM93]. The sequence of these compressed blocks forms the
compressed image.

The decompression process reverses these steps as follows:

1.

Each entropy-coded block EY fq) is decoded to get the corresponding block of quantized coefficients
fa-

2. Dequantization is done to construct the block f!, as follows:

3.

f'In] = foln] - Q[n], 0 < n <63

The two-dimensional Inverse Discrete Cosine Transform (IDCT), is applied to f' to get the decom-
pressed image block f/. These decompressed blocks form the decompressed image I'.

The compression and decompression processes can be summarized as:

DCT ; uantization ;  Entropy-codin 2
g ROF p o Quentiption g, Bntopypoding g
)

IDCT ; Dequantization ; Decodin .
A e fa " B(fo)

The lossiness of the compression is essentially because of the quantization step ( f - fq), as in general,

F'[n] = folnl - QIn] = (//QIn)) - Qlnl # fn].

|2 +0.5] ifa>0
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This causes differences in pixel values between the original image block f and its approximation, the decom-
pressed image block f/. We refer to the mean-squared-error between f and f’ as distortion in f caused by

@) and denote it by d(f, Q).
63
a5,Q) = g > Tl - 1)’
n=0

The distortion D(I, Q) between an image I and its approximation I’ due to quantization by Q is similarly
defined as the mean-squared-error between corresponding pixel values. Clearly, D(I, Q) is the mean value
of all d(f, Q) over all constituent blocks f in I. The distortion D(/, Q) is used to judge the “quality” of I’,
in quality measures such as Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR):

2

PSNR = 10 loglo ‘D'(—A[l—j,

S
SNR = 10 lOglO m
Here S is the mean-squared pixel value over /. Higher distortion implies poorer quality and vice versa.
Clearly, as entries in ) are made higher, D(I, Q) tends to increase.
We can also define the distortion between the DCT coefficient-block f and its approximation f' resulting

from quantization by @, as
63

aF,Q) = 55 Y (Flnl - P,

Our approach to designing rate-distortion-optimal quantization tables exploits the following nice property

of the DCT: X
d(f,Q) = d(f, Q)

That is, the mean squared error in pixel-domain is the same as the mean squared error in DCT-domain.
This can be seen as follows:

poT(f) = f
IDCT(f') = [
= DCT(f) = f
= DCT(f-f) = f-F, using linearity of DCT
= Y8 (fln]-f'In)° = 223:0 (f[n] - f"[n])z, since DCT preserves L? norms
= ad(f,Q) = d(f,Q).

This implies that D(/, Q) can be split as a sum into distortions in various DCT coefficients. Let D, ([, ) be
defined as

Da(l,q) = 6%Mean{( il = )Y,

Where f'[n] = (f[n]//q) - ¢, and the mean is taken over all the blocks in the image. Then

63
D(1,Q) =Y Da(I,Q[n)).

Since we are mainly concerened with the effects of different quantization tables on a given image, we
denote the distortion D(I,Q) simply as D(Q). Similarly, we denote the distortion D,(I,q) in the nth
coefficient by D, (g). Then,

63
D(Q) =) Da(QIn)). (1)

This decomposition of D(Q) into contributions from individual coefficients is important as it simplifies the
task of minimizing D(Q) to that of minimizing a sum, each of whose components depends on just one entry
in Q. We now show how the rate (or compressed size) resulting from @ can also be split similarly into a
sum. These two properties of the DCT allow the problem of optimizing the rate-distortion tradeoff to be
solved using a dynamic programming approach for minimizing two sums.



2.1 Bit-rates for DCT-based compression

The degree of compression achieved is usually expressed in terms of the rate of the compressed image, which
is the number of bits used per pixel:

size of compressed image in bits

te = - . - .
rate number of pixels in the image

Low rates are achieved when the quantized blocks fQ have similar entries (low entropy). The most common
case is that of a coefficient being quantized to zero. The more zeros there are in fQ, the fewer bits it would
take to store it. Thus, increasing the entries in @ tends to decrease the rate. We denote the rate resulting
with the use of a particular quantization table @ as R(Q).

DCT has the nice property of being very close to the Karhunen-Loeve-Hotelling tranform, a transform
that produces uncorrelated coefficients [ANR74]. The lack of correlation between coefficients allows the rate
to be decomposed as a sum of contributions from individual coefficients. It has been shown in [RFVK94]
that the coefficient-wise average of entropies of the quantized DCT coefficients is a very good estimate of
the rate resulting from two-pass Huffman coding of runlengths. This allows us to approximate R(Q) as a
sum of rates of individual coefficients. Let R,(g) be defined as

Rals) = g;Bntropy{(flnl/9)},

Where the entropy is measured over all the blocks in the image?. Then

63
R(Q) = Y Ra(Q[n)). (2)
n=0

Thus, R(Q) can also be decomposed into a sum of contributions from individual coefficients, just like D(Q).

3 The RD-OPT algorithm

In this section, we present the RD-OPT algorithm for constructing quantization tables with optimal rate-
distortion tradeoffs for a given image. It is desirable to have low rate (high compression) and low distortion
(high quality). However, varying Q has opposite effects on D(Q) and R(Q). The distortion D(Q) tends to
increase and the rate R(Q) tends to decrease as the entries in () are made larger. The tradeoff between
D(Q) and R(Q) is different for different images.

The problem of choosing @ to optimize the rate-distortion tradeoff for a given image I can be stated in
two ways:

1. Given a target distortion A, find @ such that D(Q) < A and the rate R(Q) is minimized.

2. Given a target rate B bits per pixel (bpp), find @ such that R(Q) < B and the distortion D(Q) is
minimized.

We call the quantization tables () that satisfy these conditions (for some A or B) RD-optimal.

RD-OPT takes an image I as input and produces RD-optimal quantization tables for a wide range of rates
and distortions. The contributions to rate and distortion of individual coeflicients (R, (Q[r]) and D, (Q[n]),
respectively) just depend on the entry Q[n] of Q. RD-OPT first calculates R,(Q[n]) and Dn(Q[n]) for
each possible value of Q[n], and then uses a dynamic programming approach to minimize sums of R, (Q[n])
against sums of Dy, (Q[n]). To calculate R, (g) and D, (q) for each possible ¢, a preliminary pass through the
image is run to gather DCT statistics which are used in a novel way. RD-OPT can be described at a high
level as:

21f (f[n]//g) takes the value v in a fraction py > 0 of all blocks f, then this entropy is — ZU pylogapy.



Algorithm RD-OPT
Input: An image I of width W and height H, with pixel values in the range [0... M].

Output: RD-optimal DCT quantization tables Q.
Step 1. Gather DCT statistics for the image (Procedure GatherStats).
Step 2. Use the statistics to calculate R,(q) and Dy (g) for each possible ¢ (Procedures FillR and FillD).

Step 3. Use dynamic programming to optimize R(Q) against D(Q) (Procedure FillLeastD).

We now present each of the three steps in RD-OPT in detail. Pseudo-code for all the procedures described
in this section can be found in Appendix A.

3.1 Step 1: Gathering DCT statistics

The task for this step is to gather DCT statistics for the image, which can be used to efficiently answer the
questions:

th

1. How many times does the n* coefficient get quantized to value v when Q[n] = ¢7

2. What is the mean-squared error for the nth coefficient when Q] =q7?

For any real number ¢, let
Bucket(c)

I

{ [2¢] ife>0
—|=2¢|] ife<O.

It can be shown that for any integer ¢ > 1,

c/q = Bucket(c)/(2g).

Hence, it suffices to gather statistics by counting the number of times each DCT coefficient takes a value in
a particular bucket, as this count can then be used to calculate the number of times a particular quantized
coefficient takes a particular value. The unquantized coefficient value itself can be approximated to within3
+0.25.

Let OccursCount|0 . ..63][—2VMAX. .. 2vMAX] be an array with the value OccursCount{n][v] being the num-
ber of blocks where the ntll DCT coefficient c, is such that Bucket(c,) = v. The constant VMAX is the
maximum absolute value any DCT coefficient can take (for 1-byte samples, M = 255 and VMAX = 2048). The
array OccursCount is filled by the procedure GatherStats.

GatherStats works by going through each 8 x 8 block f in I and calculating its Discrete Cosine Transform
g. For each coefficient g[n], the count OccursCount[n][Bucket(g[n])] is incremented by one.

3.2 Step 2: Calculating R,(¢) and D,(q).

Let the possible range of values of any quantization table entry ¢ be 1 < ¢ < MAXQ. Let R[0...63][1...MAXQ]
and D[0...63][1...MAXg] be two-dimensional arrays. The task of this step is to fill these arrays using the
array OccursCount such that,

R[n][q] n(q)

R
D[n][q] Dn(q)

This is accomplished by procedures FillR and FillD.

FillR fills the array R by calculating the entropy of the n*? coefficient when quantized by ¢, for all
n and ¢. For each possible quantized value (QuantizedVal), the variable Count is used to compute the

i

th

number of times the nth coefficient gets quantized (by ¢) to QuantizedVal. Count is simply the sum of all

37To make sure this is the case, bucket 0 which corresponds to values in the interval (—0.5,0.5) must be split into two buckets,
but this detail is ignored here for clarity.



OccursCount[n][v] such that v//(2q) is equal to QuantizedVal. If F is the total number of blocks in /, then,
the entropy is calculated as:

Count Count
Entropy = — Z

529
QuantizedVal F F
Fi11D fills the array D by calculating the error in quantizing the nth coefficient by ¢, for each n and ¢q. For
each integer v in the range —2VMAX...2VMAX, the nth coefficient gets quantized to the value QuantizedvVal
(= v//(2¢)) in OccursCount[n][v] blocks. The actual (unquantized) value of the coefficient in each of these
blocks is estimated by the variable OriginalVal, to within £0.25. For each v, the error is incremented by
OccursCount[n][v] - (OriginalVal — ¢ - Quant izedVal)®.

3.3 Step 3: Finding RD-optimal @

The arrays R and D are used in this step to find rate-distortion-optimal quantization tables, using a dynamic
programming (DP) approach. For this, one of R(Q) and D(Q) needs to be discretized to integral values,
to be used as an index in the DP table. This introduces some error in the quantity discretized, which is
analyzed in the next section.

Let BPPSCALE be a large integer constant. We discretize R(Q) to integral values by multiplying each
R[n][q] with BPPSCALE and rounding off. This is done in Procedure Fil1R itself. For the rest of this section,
we will be referring to the discretized values, when we refer to rate, and to R(Q) and R, (q)(= R[n][q]).

Let MAXRATE be the discretized value of the highest rate for which we are interested in finding an RD-
optimal quantization table. Let LeastD[0...63][0.. MAXRATE] be an array whose entries have the following
definition: LeastD[n][s] is the least total distortion for coefficients numbered 0 through n such that the total
(discretized) rate (for these coefficients) is exactly s. That is, LeastD[n][s] is the least value (over all Q) of
> r—o D[K][Q[]] subject to the constraint

Y RIKQK] = s.
k=0

Theorem 1 states the property of LeastD that allows it to be computed using a dynamic programming
approach.

Theorem 1 For each n, 1 < n < 63, and each s, 0 < s < MAXRATE, let D(n, s) be the set

1 < ¢ < Maxg,
D(n,s) = { Dln][g] + Leaston — 1][s'] Sj i (s) — R[n][q],

Then,

minD{n,s) if D(n,s) is non-empt
LeastDn]s) = { o0 () otheg“wz's?f. e

Proof: (See Appendix B).

The array LeastD is filled by procedure Filll.eastD using Theorem 1. FillLeastD starts with each entry
in LeastD set to oo and then fills the rows one by one. Row number n is filled using row number n—1, D[n][. . ],
and R[n][.. ]. For each ¢ (0 < ¢ < MAXQ) and each s’ (0 < 5’ < MAXRATE), D[n][q]+LeastD[n~ 1][s'] is compared
with LeastD[n][s], where s = s’ + R[n][q]. If the former is lesser, then it replaces the latter. To keep track of
the choices made at any point, FillLeastD maintains another data structure, QChoice[0...63][0 .. .MAXRATE].
QChoice[n][s] is set to the value g that gives the entry in LeastD[n][s]. That is, QChoice[n][s] is set to ¢
whenever D[n][g] + LeastD[n — 1][s'] is entered in LeastD[n][s].

Now, if a total distortion requirement A is to be met, it’s straightforward to find the least s such that
LeastD[63][s] < A. Similarly, if a rate requirement B is to be met, it’s easy to find s such that s < B and
LeastD[63][s] is the minimum over all such s. Thus, in both cases one can find a starting point s in the



634 row. To recover the desired quantization table @) from that point, procedure RecoverQ is used. This
procedure recovers the quantization table @ for target rate s by setting Q[63] to QChoice[63][s] and then
working its way up the rows as follows. For going from row number n to row number n — 1, s is decremented
by R[n][Q[n]] and then Q[n — 1] is set to QChoice[n — 1][s].

4 Analysis of RD-OPT

In this section we discuss the running time of RD-OPT and the errors resulting from discretization.

4.1 Complexity

GatherStats runs in time about that required to apply the DCT once to each block in the image. FillD
and FillR each run in time less than a constant times 64 x MAXQ x VMAX. FillLeastD runs in time less than a
constant times 64 x MAXQX MAXRATE. In any practical implementation, these times can be substantially reduced.
For example, if a particular coefficient has a maximum value c over the image, then the corresponding
quantization table entry need not be more than 2¢ + 1 which quantizes that coefficient to zero everywhere.
Several similar optimizations are possible. These are straightforward and are omitted here for simplicity.

4.2 Error analysis

In calculating the distortion in Fi11D, the value OriginalVal (see line 6 of the pseudo-code in Appendix A)
is an estimate of the actual DCT coefficient, accurate to within £0.25. Let I, be the image for which the DCT
coefficients are the same as those obtained as OriginalVal in FillD. Thus, if a particular DCT coefficient
for I has the value ¢, the corresponding coefficient for I, would have the value Bucket(c)/2 4+ 0.25 if ¢ > 0
and Bucket(c)/2 — 0.25 if ¢ < 0. The absolute difference between this value and c is at most 0.25. The
distortion obtained by RD-OPT for any quantization table Q is D(I¢, Q) rather than D(I, Q). The triangle
inequality can be used to show that

VD, Q) -02 < /DI,Q) < /DU, Q) +0.25.

In the most common case, RD-OPT will be asked to optimize PSNR. For M = 255, the reported PSNR, P,

will be: o552
=101
0 o110 7T AT D( )

Hence, the actual PSNR, P, is bounded as follows:

where a(P;) = —%};-%—/02—3 If lower errors are desired, OccursCount must be stored with finer accuracy. If the
error in estimating any coefficient value is at most «, then the error bounds on P, can be obtained using 3

with a(P) = £ 102?5 . Figure 1 shows the error bound versus P, for various values of «. For z = 0.25, the
error is at most 0.9 dB at P, = 40 dB, and at most (.3 dB at P, = 30dB. In practice, the error is never
more than 0.02 dB.

The total error in R(Q) is at most

64 x 0.5/BPPSCALE

plus the error in estimating rate as the coefficient-wise sum of entropies. The latter component 1s usually
around 0.01-0.05 bits per pixel [RFVK94].
5 Performance results

We have implemented RD-OPT in C on various platforms. Figure 2 shows the performance of RD-OPT
running on an IBM POWERstation 370. The test image used was the well-known 512 x 512 grayscale image
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Figure 1: Accuracy of reported PSNR

BPPSCALE | Running time | Predicted Rate | Actual Rate | Predicted PSNR | Actual PSNR
(secs.) (bits per pixel) | (bits per pixel) (dB) (dB)
1000 14.5 0.800 0.822 35.809 35.798
2500 19.8 0.800 0.801 35.726 35.714
5000 28.8 0.800 0.798 35.708 35.695
7500 37.6 0.800 0.796 35.705 35.694
10000 46.7 0.800 0.795 35.701 35.690
12500 56.0 0.800 0.794 35.700 35.687
15000 64.6 0.800 0.794 35.699 35.688
20000 82.2 0.800 0.795 35.699 35.687
50000 189.8 0.800 0.794 35.697 35.686

Figure 2: Running time and accuracy for different values of BPPSCALE

of Lena. The figure tabulates running times and accuracy of results for various values of BPPSCALE. In each
case, RD-OPT was asked to compute optimal tables over the range 0.0 to 1.0 bits per pixel. These tables
were used to compress the image using the Independent JPEG Group’s JPEG compression software. The
table shows the actual rate and actual PSNR when Lena was compressed using the quantization table picked
by RD-OPT with a target rate of 0.8 bits per pixel. The scaled default JPEG table gave a PSNR of 34.90
dB at 0.796 bits per pixel.

The running time in each case includes the time spent in GatherStats, FillD, and FillR, which 1s
independent of BPPSCALE, and is about 10.91 seconds. Qut of 10.91 seconds, about 2.5 seconds are spent
in GatherStats, and the rest in Fi11D and FillR. These procedures haven’t been optimized in the current
implementation, and we expect to bring the running time down even more, in the near future.

We have used RD-OPT on a wide variety of images, with similar results.

6 Modifications

It is straightforward to use weighted mean squared error instead of mean squared error, by assigning different
weights to errors in different frequencies in Fi11D. This might be used to give distortion in lower frequencies
more lmportance.

For better visual quality, it is sometimes useful to to do adaptive quantization which gives more bits for
encoding regions in the image that are perceptually more significant. This is done in MPEG by scaling the
quantization table up or down on a per-macroblock basis [MP91]. Thus, for any block f, the quantization



table used is ()-gscale;, where Q is a nominal quantization table and gscale; is a factor that depends upon the
macroblock containing f. The value of gscale; is typically chosen based upon characteristics such as texture,
total energy, presence of edges, etc. However, gscale; does not depend upon (). Hence, while gathering
statistics (procedure GatherStats) gscale; can be determined for each block. The entry OccursCount[n][v]

can be filled by setting v to be the actual value of the nth coefficient divided by gscale; for the block under
consideration. Then, FillLeastD will optimize @ to give the best rate-distortion tradeoff for the adaptive
quantization scheme.
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A RD-OPT Procedures

Procedure GatherStats

Input: Image 1
Output: Array OccursCount[0..63][-2VMAX..2VMAX]

Initialize OccursCount to O everywhere
. For each 8x8 block f in I
g = DCT(f)
For n := 0 to 63
v := Bucket(glnl)
OccursCount [n] [v]++

o Ui W N

Procedure FillR

Input: Array OccursCount[0..63][-2VMAX..2VMAX]
Output: Array R[0..63][1..MAXQ]

1. F := Number of 8x8 blocks in the image

2. For n := 0 to 63

3. For q := 1 to MAXQ

4. Entropy = 0

5. For QuantizedVal := (-VMAX) // g to VMAX // q

/# QuantizedVal is the quantized value */

6. Count := 0 /* Count is the # of times the value QuantizedVal occurs #*/
7. For each v such that v // (2q) == QuantizedVal
8. Count := Count + OccursCount[n][v]

9. Probab := Count/F
10. If (Probab > 0) then
11. Entropy := Entropy - (Probab # Log2(Probab))
12. R[nJ[gl := ({Entropy / 64.0) * BPPSCALE) // 1

Procedure FillD

Input: Array OccursCount[0..63] [-2VMAX. .2VMAX]
Output: Array D[0..63]1[1..MAXQ]

. N := Number of pixels in the image
For n := 0 to 63
For q := 1 to MAXQ
DInllql := 0
For v := -2VMAX to 2VMAX
/* OriginalVal is the original coefficient value, within 0.25 */
OriginalVal = v/2.0 + ((v < 0) 7 -0.25 : 0.25)
/% QuantizedVal is the quantized value */
QuantizedVal = v // (2q)
Error := OccursCount[n][v] * Square(OriginalVal - g*QuantizedVal)
D[nl[ql := DInl[ql] + Error
10. DInllql := DnI[ql/N

O W N e

s3]
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Procedure FillLeastD

Input: Arrays D[0..63]1[1..MAXQ], R[0..63][1..MAXQ]
Output: Arrays LeastD[0..63]1[0..MAXSIZE], QChoice[0..63][0..MAXSIZE]

/* Initializations */

i. For n := 0 to 63

2. For s := 0 to MAXRATE

3. LeastD[n][s] := INFINITY

*

Fill row number zero */
For q := 1 to MAXQ
1f (D[0][q] < LeastD[0]J[R[01[ql]) then
LeastD[0][R[0][q]] := D[0][q]
QChoice[0][R[01[q]] := q

/

~N O ;P

/% Main loop */
8. For n := 1 to 63
9. For q := 1 to MAXQ

10. For s’ := 0 to MAXRATE

11. If (D[nl[q]l + LeastD[n-1][s’] < LeastD[nl[s’ + R[n] [9]1]1) Then
12. s := s’ + RIn][q]

13. LeastD[n][s] := D[nllq] + LeastD[n-1][s’]

14. QChoicelnl[s] := q

Procedure Recover(]

Input: Arrays QChoicel[0..63]1[0..MAXSIZE], R[0..63][1..MAXQ); Target rate s
Output: Quantization table Q[0..63]

. For n := 63 downto O
Q[n] := QChoiceln](s]
s := s - R[nJ[QIn1]

W N o

B Proof of Theorem 1

Suppose D(n, s) is empty or minD(n,s) is co. Then, for every ¢ (1 < ¢ < MAXQ), either R[n][g] > s, or
LeastD[n — 1][s — R[n][¢]] = co. In either case, the rate s cannot be achieved from coefficients 0 through =,
implying LeastD[n][s] = oco.

Now assume D(n, s) is non-empty and that d is the minimum value in D(n, s), achieved by setting Q[n]
to ¢. Assume LeastD[n][s] = &’ < d. Then the distortion d’ must be achieved with some value, say ¢' for
Q[n]. Let d” = d' —D[n][¢']. Then the distortion d” must be achievable from coefficients 0 through n — 1,
with their rate being exactly equal to s — R[n][¢']. But then, d” = LeastD[n — 1][s — R[n][¢']], as otherwise d’
can be improved, contradicting d’ = LeastD[n][s]. Hence d' = D[n][¢] + LeastD[n — 1][s — R[n][¢'] implying
d' € D(n,s). Thus, d < d’, which contradicts d’ < d. |
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