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Abstract

This paper examines the techniques wused to increase the
nunber of nodes in a graph of given degree (the number of edges
at each node) and diameter (the shortest path between the most
distant nodes). A number of new "densest" graphs (i.e., with
more nodes for a given degree and diameter) have recently been
found, using several new methods for compounding, and for heu-
ristically and algorithmically completing trees. These will be
surveyed and compared, and some general tools and principles for
graph-building will be proposed.

Index Terms: (d,k) graphs, Moore graphs, computer networks,
packing density, compounding, graphs of computers, (n,d,k)
graphs, size of graphs, network architectures.

Minimizing distances between nodes is a key problem for com-
puter network architectures, where it is important that vertices
{processor or computer nodes) are connected by paths along edges
(lines or links) that are as short as possible, so that delays
and disruptions from message-~passing are minimized. This leads
to - "denser" (n,d,k)  graphs, that is, with more nodes, n, for a

given degree, d and diameter, k.

Hoffman and Singleton [1] and their students [l14] proved
that only the (n,d,2) complete graphs, the (n,2,k) polygon
graphs, and (16¢,3,2) (the Petersen graph [2]), (5¢,7,2) and (if

it exists) (3256,57,2) meet the upper "Moore Bound" ny [3]:

nb(d,k) = (d—l)k - 2

d - 2

Elspas [4] described several construction methods that gave
a number of non-optimal but densest-so-far graphs. A number of

denser graphs were achieved by an elegant construction of Akers



[5]. Friedman [6], Korn [7], and Storwick [8] devised techniques
for connecting copies of trees (results summarized in [8]). Re~—
cently, Arden and Lee [9] achieved still better results for d=3
graphs by combining trees, and Toueg and Steiglitz [18] used a
directed-search computer program to find several additional

denser d=3 and d=4 graphs.

Compounding Techniques for Denser (n,d,k) Graphs

A new compounding operation devised by Uhr [11] makes n+l
copies of an n-node graph and connects each copy to every other
copy by adding a new link between one of the n nodes in each (see
Figure 1 for one of the (n!)rl ways this can be done):

Take any regular (n,d,k) graph, G.
Form n+l copies, Gﬂ'Gl""Gn°
For each node, Gi,j (i = copy, j = node),

i = ﬂ,l,...n"l, j = i,i+l,...n, k = i+l,i+2,...l’l, 1 = i;

link (in ascending order of i,j,k) the node Gi to Gk 1e

vJ '
The resulting Compound Graph, C, is

(nG(nG+1),dG+1,<=2kG+l).

Figure 1. An Example of The Compound (1 13,3) of (3,2,1)




First Extensions and Explorations

After hearing about this compounding technique and its

results, W. Leland reported the observation that a (nG,d k

Grkg)
"cluster" graph, G, can be compounded by any regular H(n,nG,k)
"lacer" graph, H (that is, where the lacer's degree equals the
cluster's number of nodes, joining each node to one link - «call
this "embossing"”), to give an I(nG*nH,dG+l,kG+2kH). J. Halton
[12] made the slight correction: I(nG*nH,dG+1,kG(kH+l)). Leland
[13] used (91,106,2) to compound the Petersen graph (10,3,2), giv-
ing (910,4,8) [improving on Friedman's (320,4,8)]. In general,
these graphs will not be as symmetric as those constructed using
complete graphs, and graphs of rather high degree are needed.
But this extension makes possible a larger set of improvements

over previous best graphs. And an intriguing possibility exists

- to emboss (57,8,2) into the yet-to-be-discovered (3250,57,2).

Halton [12] has observed that kG(kH+l) is actually the upper
bound - “for -this construction.  There is some (small) possibility
of reducing such a compound's diameter with judicious choices of
nodes and links to lace together. Uhr noted that the clusters
embossed into the lacer need not all be copies of the same graph;
they need only have the same degree., This opens up more possi-
bilities for reducing kI below the Halton bound, e.g., by using
several different clusters of the sort found in the Coxeter graph

[14].

Halton and Uhr have been exploring ways of using a few scat-
tered nodes of higher degree to "lace the graph tighter." This
suggests using a measure like average degree (much 1like average

distance) rather than insisting on reqular graphs. It also seems
-3



reasonable for a computer network, where, e.g., almost all nodes

have 4 links but a few "waystation" nodes might have 8.

Uhr and Halton have observed that the compounding technique
can be generalized to use any lacer graph to compound any collec-
tion of (identical or different) clusters (that can vary in n, d
and/or k). A cluster must now be assigned to several nodes in
the lacing graph, and there must be additional 1links between
those nodes to accommodate the links between the several parts of
the cluster. In the general case each cluster can be laced using
an arbitrary sub-graph of the lacer, and it therefore may become
more likely, especially as n grows larger than D, that reductions

in the diameter of the compound can be achieved.

Denser Graphs From de Bruijn Networks (Shift Registers)

Imase and Itoh [15] have developed an entirely different
type of procedure that gives increasingly better graphs beyond
6,000 to 20,000 nodes (although rather poor graphs up to that
point): Label n nodes #,1,2,..,n-1; 1link all n, to nj that
satisfy the equation: j=i*d+a (mod n) a=@g,1,..d-1. This ap-
parently independent rediscovery of de Bruijn networks [16]

(shift registers) applies them to the problem of density, and

proves these graphs to have [d/2]k nodes.

These graphs, although relatively dense, can certainly be
improved, since this method produces 2 loops and many short cy-
cles (although if only minor improvements could be made it might
be that only average distance, and not diameter, could be re-
duced). De Bruijn networks are intriguingly similar to the

"perfect-shuffle" [17] and similar interconnection networks;



these similarities should be investigated. Goodman and Sequin
[18] have compared their "hypertrees" (trees augmented with
perfect-shuffle~like regularizing 1links that attempt to draw
most-distant nodes <closer) with de Bruijn networks with respect
to average distance (but not diameter), and hypertrees may be 10%

or so denser.

De Bruijn networks can be viewed as first constructing a
(directed) tree, and then continuing to add links until a regular
graph of degree 1 greater than the original tree's degree is com-
pleted. This, plus the fact that compounding also raises degree,
suggests that adding links to increase degree may be a promising
way to draw a graph closer together. (Most researchers have
tended to start with a tree and then work only with different in-
terconnections among its buds.) It also seems likely that an al-
gorithm that continues to link pairs of nodes, but chooses each
pair Dbecause it is "now-farthest-apart" would improve upon these
results (as Goodman and Sequin do). Alternately, such an algo-

rithm might be applied only to the buds.

Heuristic Searches to Augment Trees for Denser Graphs

Toueg and Steiglitz [10] used directed search computer pro-
grams to 1look for denser graphs. They looked only for graphs
with 50 or fewer nodes, and remarked that 150 would be the limit
for reasonable amounts of computing time. But Leland [13] has
succeeded in developing and refining a set of heuristics for a
directed search program that augments a tree, essentially by
linking together its most distant nodes, achieving a number of

new best graphs (with respect to density, although it is likely
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that they are less symmetric, and have fewer desirable charac-
teristics, than graphs achieved by compounding good clusters), up

through 525 nodes.

Such heuristic search techniques might also prove useful for
finding good combinations of clusters, lacers, and waystations,
and for searching with a whole set of properly weighted criteria,

and not diameter alone.

Additional Graph Compounding Operations

Leland has made several important additional discoveries
[13]. First, he noticed that although Elspas originally suggest-
ed taking the Cartesian product of two graphs, Storwick's table
does not include several "best entries" that are simply Cartesian
products. (The Cartesian product of two graphs, G and H with G

and H vertices, gives nG*nH nodes, degree dG+dH, diameter kG+kH.)

Next, Leland augmented the Cartesian product of two graphs
of the same degree, by splitting each node in the product graph
in two and connecting them (doubling n, reducing degree to d+1,
and 1increasing diameter to kG+kH+2), and thus achieved a number
of new best graphs. [Linking ng copies of H to ny copies of G,
forming a complete bipartite graph into which the G and H copies

have been embossed, gives this same construction.]

Leland further "regularizes" the Cartesian product of two
graphs of different degree, dG <= dH’ by making m copies of G,
interconnecting them using (dH—dG)+m copies of H (this replaces
each (2,1,1) 1line-graph linking each split pair of nodes). The
resulting graph has (2m+s)*nG*n

H nodes, d = mtdy g <= 2+kg 4k
H

-6~



Yet another useful compounding operation has been discovered
by Li Qiao [19]: Emboss G copies of a graph G into each node of
a graph H, connecting those in adjacent nodes of H to form a com-
plete bipartite graph. This gives nG*nG*nH nodes, degree dG+dH,
diameter <= ZkG + max (2, kH). [Li also independently discovered

the Leland splitting of the Cartesian product.]

Toward a Set of Tools for Building Improved Graph Structures

In addition to many new denser graphs, produced by several
new compounding, construction and heuristic search techniques, a
variety of successful tools to build, stretch, pare, 1lace and
shape graphs appear to be emerging. Compounds can be drawn to-

gether, split apart, and connected back upon themselves.

The standard way (among many) of drawing the Petersen Graph
(16,3,2) is as a 5-node star, each node linked to the nearby node
of a circumscribing pentagon. The links between star and penta-
gon are suggestive of the 1links bridging between clusters in
(n(n+l) ,d+1,<=2k+1) graphs, and in Leland's split Cartesian pro-
duct Graphs. Such a link stretches the graph's diameter slight-
ly, but almost halves degree, and doubles the number of nodes.
The Singleton graph (50,7,2) links each of 5 pentagons to each of
5 stars, suggestive of the linking of each copy of a graph to

every other copy to form a compound.



Table 1. Some of the High-Density (n,d,k) Graphs
d\k 2 3 4 5 o 7 8 9 10
3 (Best) ~10*%*P  20*E 34h T6As 78h 122h 176h 311h 25h
&Best: 30TS 72As 1208As 164As
Storwk: 10%*p 20*E 28E 36E 688 668 90@F 1388 2168
MBound: 18 22 46 94 190 382 766 1534 3070
4 (Best) 15*E 35a 67h 134h 261h 425h 910%er 1360s1 2312s2
&Best: 45a 110ecl 20@s3 420ec?2 1200s4 2240rsl
Storwk: 15*E 35a 40E 628 1148 1888 328F 5668 9965
MBound: 17 53 161 485 1457 4373 13121 39365 118897
5(Best) 24*E 48h 126A 262h 5@5h 1260ec3 2450s5 4690s6 9380s7
&Best: 240ecd4d 450s8
Storwk: 24E 36E 126A 120E 2328 4428 850F 1778S 35128
MBound: 26 106 426 1706 6826 27306 109226 436906 17eb6
6 (Best) 31E 65h 164h 600ec5 1152s9 2520rs2 656lsr 19683sr 590949sr
&Best: 165Cpl 1728s10 6048sll 16002ec6 31752s12
Storwk: 31E 55E 185a 462A 4478 8675 1872F 4317s 946585
MBound: 37 187 937 4687 23437 117187 585937 2929687 14648437
7 (Best) b58*HS 88h 252h 992ec7 2880ebl 4680rs3 12250eb2 43200rsd4 86400rsb
&Best: 15gCp2 378A 2304rs6 341@s13 12096rs7 71424514
Storwk: 50*HS 80E 150E 378A 1716A 15748 3626F 94228 228368
MBound: 58 382 1814 12886 65318 391919 3351462 l41le5 846e5
8 (Best) S57E 105E 384eb3 2550ec8 5760ebd 16384sr 65536sr 262e3sr l@dedsr
Storwk: 57E 1G5E 175E 504E 1716A 1574s 3626F 94228 228368
MBound: 65 457 32011 22409 156865 1898057 7686401 538e5 377e6
9 (Best) 74E 150Cp3. . 600eb5 3306ec9 12500eb6 20160eb7 76580rs8 38e4rs9 10e5db
Storwk: 74E 158Cp 2409Cp 666E 19048 5148A 243108A 3270658 944168
Mbound: 82 658 5266 42130 3378642 2696338 216e5 173e7 138e7
l19Best: 918 200Cp4d 864eb8 5550ecld 25000eb9 78125sr 39e3sr 19edsr 98eSsr
Storwk: 918 200Cp 320E 910E 27808 6864A 19385 92378A 1786858
MBound: 181 911 8201 73811 664301 5978711 538e5 484e6 436e7
Best densest graph to date. &Best: additional dense graphs.
Storwk: Storwick table [8]. Mbound: Moore bound [1,13] *: Maximal
Cp: Cartesian product [4] 1:(4,3)x(2,1) 2:(4,2)x(3,2) 3:(7,2)x(2,1) 4:(7,2)x(2,1)

A: Akers [6]

E:

Elspas [4] F:

Friedman

[5]

HS: Hoffman-Singleton [1]

P: Petersen [3] 8: Storwick [8] AL: Arden-Lee [9] TS: Toueg-Steiglitz [18]
sr: shift register (de Bruijn network) [15]
h: heuristic search (Leland)
eb: embossed bipartite compound (Li) 1:(5,2)x(2,2) 2:(4,3)x(3,2)
3:(3,1)x(5,2) 4:(5,2)x(3,2) 5:(4,1)x(5,2) 6:(7,2)x(2,2)
T:(5,2)x(4,3) 8:(5,1)x(5,2) 9:(7,2)x(3,2)
ec: embossed complete (Uhr) 1:(3,2) 2:(3,3) 3:(4,3) 4:(4,2)
5:(5,2) 6:(5,4) 7:(6,2) 8:(7,2) 9:(8,2) 106:(9,2)
er: embossed regular compound (Leland-Uhr) (3,2)x(18,2)

s: split (Leland) 1:(3,3)x(3,4) 2:(3x4) 3:(3,2) 4:(3,3)x(3,4)
5:(4,3) 6:(4,3)x(4,4) 7:(4,3)x(4,5) 8:(4,2) 9:(5,2)
10:(5,2)x(5,3) 11:(5,2)x(5,4) 12:(5x4) 13:(6,2)x(6,3) 14:(6,2)x(6,6)

rs: regularized split (Leland) 1:(3,3)x(3,5) 2:(4,3)x(5,2) 3:(5,2)x(6,3)
4:(5,2)x(6,5) 5:(5,3)x(6,5) 6:(5,2) 7:(5,2)%(5,4) 8:(4,1)x(8,5) 9:(7,2)x(8,5)



Table 1. Some of the High-Density (n,d,k) Graphs

d\k 2 3 4 5 6 7 8 9 19
3 (Best) 10*P  20*E 34h S6As 78h 122h 176h 311lh 525h
&Best: 30TS 72As 120As 164As
Storwk: 1@%*p 20%E 28E 36E 608 6685 99F 138s 2168
MBound: 10 22 46 94 190 382 766 1534 3070
4 (Best) 15*E 35A 67h 134h 261h 425h 91@er 1360s1 2312s2
&Best: 45A l1l1%ecl 200s3 420ec2 1200s4 2240Prsl
Storwk: 15%*E 35A 408 625 114s 1888 320F 56685 99685
MBound: 17 53 161 485 1457 4373 13121 39365 118097
5(Best) 24*E 48h 126A 262h 585h 1260ec3 2450s5 4690s6 9380s7
&Best: 240ecd 450s8
Storwk: 24E 36E 126A 1208E 2328 4428 850F 1774ds 35128
MBound: 26 106 426 1706 6826 27306 109226 436906 17eb6
6 (Best) 31E 65h 164h 600ech 115289 2520rs2 656l1lsr 19683sr 59049sr
&Best: 105Cpl 1728s10 6048sll 16802ec6 31752sl12
Storwk: 31E 55E 185A 462A 4478 8678 1872F 43178 946585
MBound: 37 187 937 4687 23437 117187 585937 2929687 14648437
7 (Best) 50*HS 88h 252h 992ec7 2880ebl 4680rs3 12250eb2 43200rsd4d 86400rs5
&Best: 15¢Cp2 378A 2304rs6 3410s13 12096rs7 71424s14
Storwk: 5@*HS 80E 150E 378A 1716A 1574s 3626F 94228 228368
MBound: 50 302 1814 104886 65318 391919 3351462 141e5 846ebh
8 (Best) b57E 105E 384eb3 2550ec8 5760ebd 16384sr 65536sr 262e3sr 1l04dedsr
Storwk: 57E 105E 175E 504E 1716A 15748 3626F 94228 2283685
MBound: 65 457 32011 22409 156865 10980357 7686401 538e5 377e6
9 (Best) 74E 150Cp3 600eb5 3306ec?9 12500eb6 20160eb7 76500rs8 38e4d4rs9 1de5db
Storwk: 74E 156Cp 240Cp 666E 1994s 5148A 24310A 327065 94416S
Mbound: 82 658 5266 42130 337042 2696338 216e5 173e7 138e7
1dBest: 918 20@Cp4 864eb8 5550eclP 25080eb9 78125sr 39e3sr 19edsr 98eb5sr
Storwk: 918 200Cp 320E 910E 27808 6864A 193¢95A 92378A 1786858
MBound: 101 911 8291 73811 664301 5978711 538e5 484e6 436e7
Best: densest graph to date, &Best: additional dense graphs.
Storwk: Storwick table [8]. Mbound: Moore bound [1,13] *: Maximal

Cp: Cartesian product [4] 1:(4,3)x(2,1) 2:(4,2)x(3,2) 3:(7,2)x(2,1) 4:(7,2)x(2,1)
A: Akers [6] E: Elspas [4] F: Friedman [5] HS: Hoffman-Singleton [1]
P: Petersen [3] S: Storwick [8] AL: Arden-Lee [9] TS: Toueg-Steiglitz [10]
sr: shift register (de Bruijn network) [15]
h: heuristic search (Leland)
eb: embossed bipartite compound (Li) 1:(5,2)x(2,2) 2:(4,3)x(3,2)
3:(3,1)x(5,2) 4:(5,2)x(3,2) 5:(4,1)x(5,2) 6:(7,2)x(2,2)
7:(5,2)x(4,3) 8:(5,1)x(5,2) 9:(7,2)x(3,2)
ec: embossed complete (Uhr) 1:(3,2) 2:(3,3) 3:(4,3) 4:(4,2)
5:(5,2) 6:(5,4) 7:(6,2) 8:(7,2) 9:(8,2) 10:(9,2)
er: embossed reqgular compound (Leland-Uhr) (3,2)x(10,2)
s: split (Leland) 1:(3,3)x(3,4) 2:(3x4) 3:(3,2) 4:(3,3)x(3,4)
5:(4,3) 6:(4,3)x(4,4) 7:(4,3)x(4,5) 8:(4,2) 9:(5,2)
10:(5,2)x(5,3) 11:(5,2)x(5,4) 12:(5x4) 13:(6,2)x(6,3) 14:(6,2)x(6,6)
rs: regularized split (Leland) 1:(3,3)x(3,5) 2:(4,3)x(5,2) 3:(5,2)x(6,3)
4:(5,2)x(6,5) 5:(5,3)x(6,5) 6:(5,2) 7:(5,2)x(5,4) 8:(4,1)x(8,5) 9:(7,2)x(8,5)
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The (2,2k+1l) polygons can be used to build (n,d,k) graphs
[e.g., the (10,3,2) Petersen graph can be constructed from one
(2,5) by taking each adjacent pair of nodes as the start of
another (2,5)]. In general, this gives graphs with high girth,
which often appears to be associated with low diameter (e.g., the

Moore graphs have maximal girth and minimal diameter).

Trees can be laced internally-at—-great-distances, and at
their buds. Heuristically completed trees, de Bruijn shift re-
gisters and hypertrees are successful examples of such an ap-

proach.

It seems possible that a systematic technique for completing
a tree, by lacing its buds together, might reduce diameter suffi-
ciently close to (k/2)+1 to improve upon the de Bruijn networks.
In small graphs most (over 90%) of the nodes can be pulled within
(k/2)+1 without much trouble, by linking "most distant" nodes, or
linking according to a pattern like i-i((d/2)+1). Possibly more
important, this suggests that diameter is too coarse a measure,
one that greatly overemphasises boundary conditions, in contrast
to weighted average distance, which gives a far more sensitive
measure, and one that would provide more feedback in lacing

graphs tighter.

A general technique appears to be emerging as underlieing
the good compounding operations - replacing each node in complete
graphs, and in complete bipartite graphs, with a carefully chosen
cluster containing as many nodes as the degree of the graph re-
placing each node (called "embossing"). The original construc-
tion embosses into a complete graph; Leland's split embosses into

a complete bipartite graph; and Li's construction embosses com-
..._9.._



plete Dbipartite graphs into other graphs. It appears that other
combinations of this sort may give additional good graphs, and,
possibly, some still denser ones. For example, complete bipar-
tite graphs can be embossed into adjacent nodes of the Cartesian

product (extending Li's construction).

Since compounding depends upon good clusters, as better
clusters are found there should be more winning compounds.
Several promising variants on compounding have not yet been in-
vestigated at all: e.g., the compounding of distant clusters in
a larger graph, the embossing of n node graphs into n copies of
another graph, the -embossing of bipartite and n-partite graphs
into another graph, and the lacing of distant clusters together -

as trees are laced together by linking distant nodes.

Local Structural Properties of Networks and Algorithms

There is reason to think the compounds have especially good
local properties. Graphs that complete trees achieve high densi-
ties by having most pairs of nodes diameter distance apart (just
as most nodes in a tree are maximally distant from the root). 1In
contrast, compounds tend to distribute nodes evenly throughout

the graph.

Since compounding can be effected over any type of cluster,
the clusters can be chosen for whatever set of properties is
deemed most desirable, and not merely good diameter. The Moore
graphs, including (d,1l) and (2,k), are especially strong candi-
dates - not only because of their optimal densities but also be-
cause they are highly symmetric, and have maximal girth and con-

nhectivity.
...l ﬂ..



When the structure of algorithms to be executed on the net-
work is known, and programs are mapped onto local regions of the
network so that they can be executed as efficiently as possible,
the program's structure can best be handled by using clusters
with that same structure. For example, arrays often have the
best structure for pattern recognition programs, and lattices for
programs that model sections of the physical world. Now the di-
ameter of the sub-graph actually used by an individual program
becomes much more relevant than the diameter of the whole graph.
So we should probably prefer graphs with good local, rather than

global, density.

This suggests the need for a good measure of the local pro-
perties of sub-graph clusters of a larger graph, and a better
grasp on the whole set of properties with which to evaluate
graphs to be wused for 1large computer networks. But from the
point of view of local density and symmetry, and other local pro-
perties, the compounded graphs appear much better than the glo-
bally denser de Bruijn networks and heuristically augmented

trees,

-11-



Summary Discussion

All of these newly found graphs are substantially denser
than those that have been implemented, or proposed, for computer
networks (e.g., rings, n-cubes, stars, arrays, trees), with the
exception of hypertrees [18]. E.g., an 8-cube is (256,8,8),
whereas compounding gives (246,5,5) and (12258,7,8) [Li]l, and the

de Bruijn network gives (65536,8,8).

It seems likely that additional tools, better combinations
and greater skill in using them will come with more experience.
This should lead to substantial additional improvements in global

density.

It seems especially important to develop a good set of glo-
bal and local criteria relevant to the formal and structural as-
pects of good structures, and then use these to find and evaluate
still other networks. The networks that have already been found
should then be re-evaluated, since those that are "best" with
respect to global density may not be best with respect to a more

appropriate, or a more complete, set of criteria.

At the present time, up to roughly 500 nodes the densest
graphs are those found by Leland's heuristic search program
(which completes a tree). 1Imase and Itoh prove that de Bruijn
networks are asymptotically best found so far, and they start be-
ing densest around 20,000 nodes. (But de Bruijn networks can be
improved wupon, at least slightly. And Goodman and Sequin's com-
parisons with hypertrees, using average distance, suggest that
hypertrees may be better still.) In the middle ground, between
500 and 20,000 nodes, the compounding methods appear best.

-12-



With three quite different types of approaches yielding new
results and denser graphs, good reason to believe these methods
can be further strengthened, and real possibilities of applying
judicious combinations of these methods where eaéh is appropri-
ate, it now appears that computer architects will be able to con-
sider a far wider choice of substantially denser graphs for actu-

al implementations of networks.

It should also be possible to develop systematic techniques
for evaluating architectures on a wider range of criteria, in-
cluding those that focus on local, and on structural properties.
This should lead to the discovery of many appropriate new candi-

dates for computer network architectures.

-13-
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