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Abstract

This work considers data memory alternatives for multiscalar processors that can support the aggressive control
and data speculative execution of loads and stores. We discussthe key issues that must be dealt with for such a data
memory design and partition the design space of alternatives on the basis of composition, i.e. whether the storage
for speculative and architectural versions is separate or aggregate, and on the basis of organization, i.e. whether
the storagefor speculative and architectural versionsisshared or private. Moreover, we attempt to addressa broad
spectrum of solutions by considering two schemesin terms of centralized and distributed designs: a known scheme,
the address resolution buffer which provides distinct speculative and architectural storage; and a novel scheme,
the time-sequence cache which mergesthe specul ative and architectural storage. e have performed a preliminary
experimental evaluation of designsfrom opposite ends of the spectrumof solutions. Our experimental evidencefrom
asimulation of a multiscalar processor with a centralized addressresol ution buffer and a distributed time-sequence
cache shows (i) that hit latency is an important performance factor (even for a latency tolerant processor like a
multiscalar processor) and (i) that distributed schemesmay trade-off hit ratefor hit latency to improve performance
over centralized schemes.

1 Introduction

A multiscalar processor extracts instruction-level paralelism (ILP) using multiple sequencers, coupled with ag-
gressive control speculation, to build avast active window of instructions. From this window, multiple processing
units are used to execute multiple instructions in a given cycle; multiple loads and stores in this window are exe-
cuted in a data speculative fashion. Supporting this mode of operation requires a data memory that can: (i) buffer
multiple speculative versions of a memory location, (ii) detect violations of true (store to load) memory data de-
pendences, (iii) convey correct data from stores to loads within the active window, and (iv) commit the results of
correct speculative execution and sguash the results of incorrect speculative execution.

In this paper, we consider data memory alternativesthat can support the aggressive execution model of a mul-
tiscalar processor. We consider both a known scheme, the address resolution buffer [3] which provides distinct
speculative and architectural storage, and a novel scheme, the time-sequence cache which merges speculative and
architectural storage. Moreover, we consider both centralized and distributed designsfor each scheme. After abrief
background on the conceptsand memory requirementsof the multiscalar paradigmin section 2, our investigation of
this subject follows. The progression isan exploration of the key issuesfor any design in section 3, aconsideration
of fundamental aspects that partition the design spacein section 4, a description of abroad spectrum of data mem-
ory alternativesin section 5, and an experimental evaluation of datamemory alternativesfrom opposite ends of this



spectrumin section 6. Thisstudy isfollowed by adiscussionin section 7 of how datamemory designssuch asthose
described here deal with preciseinterruptsin a uniprocessor system and sequential consistency in a multiprocessor
system. The paper closesin section 8 with a summary of this work.

2 Multiscalar Concepts and Memory Requirements

In the multiscalar model of execution, the control flow graph (CFG) is partitioned into regions called tasks. A mul-
tiscalar processor assigns tasks to one of a collection of processing units (PUs) for execution by passing an initial
program counter to the PU. Multiple tasks execute in parallel on the PUs, resulting in an overall execution rate of
multiple instructions per cycle. The order among tasks is maintained by treating the PUs as a circular queue with
head and tail pointers, indicating the active tasks (those in concurrent execution) from ol dest to newest respectively.
The execution of instructions in tasks may be both control and data speculative. Correct execution causes tasksto
be committed; whereas incorrect speculation causes tasks to be squashed. To maintain sequential semantics, tasks
are committed in the original program order and squashed from the task at point of incorrect speculation onwards.
More details of this entire process may be foundin [12].
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Figure 1: Memory requirements for a multiscalar processor.

To facilitate an understanding of the memory requirements of multiscalar execution, consider Figure 1. Inthe
figure, memory locations are shown along the Y-axis (memory locations A and B are singled out). Logical time,
corresponding to sequential program execution order, isalong the X-axis. Thelogical time has been divided into 4
"epochs’ corresponding to 4 sequential tasks: 0, 1, 2, and 3. In the figure, task 0, corresponding to the head task,
is non-speculative; tasks 1-3 are (control and/or data) speculative.

In multiscalar, the logically-sequential tasks 0-3 execute speculatively and in parallel. As tasks execute, they
produce and consume memory values corresponding to their logical order in the program execution. Thus, when
task 1 reads location A, it would read the latest version corresponding to that logical time, i.e, the (architectural)



version created by task 0. Likewise, when it stores into location A, it creates a new (speculative) version of A,
which is the version used by succeeding tasks. Similarly, task 1 creates a (speculative) version of location B; the
speculative version is used by task 2, which in turn produces another speculative version of location B. Continuing
further, when task 3 readslocation B, it should accessthelatest (logical and speculative) version of B —theversion
produced by task 2.

Since al but the head task are speculative, the memory system must provide sufficient storage to allow all the
speculative values of atask to be buffered (the number of such values created correspondsto the number of mem-
ory locations written by each task). In addition, the memory system needs to provide storage to support multiple
versions of a memory location.

As the speculative tasks are executing in parallel, and produce/consume memory valuesin area time that is
different from the logical time, the memory system must ensure that the dependences dictated by the logical time
are not violated. For example, if task 2 had read the value of location B before task 1 had created it, task 1 must
convey to task 2 that it has performed an incorrect data speculation, and must squash (and recover).

Next, astaskscompl ete and commit, the specul ative state that they created must be merged with the architectural
state at that point to create the architectural state for the next epoch. For example, when task 1 is committed, its
speculative state gets merged with the existing architectural state (the architectural state corresponding to the end
of task 0), creating aversion of the architectural state at a (logical) time corresponding to the completion of task 1.

3 Keylssues

From the above discussion, we can summarize that there are four key issues that need to be dealt with in the design
of the memory system of a multiscalar processor: (i) the allocation/deallocation of speculative storage, (ii) the ac-
cess of speculative and/or architectural storage, (iii) the ordering of load and store instructions to respect memory
data dependences, and (iv) the transfer of state among PUs, speculative storage, and architectural storage. With-
out loss of generality, this discussion is restricted to inter-task (in lieu of intra-task as this problemis the same as
for a superscalar processor) memory accesses and to the top level of the multiscalar data memory hierarchy, asits
proximity to the PUs make it a natural choice, and all relevant loads and stores are easily “seen” at thislevel.

3.1 Allocation/Deallocation

The allocation/deall ocation of speculative storage provides space to maintain the different versions of a memory
location. It isimportant to realize that the all ocation/deall ocation of this storage does not actually create aversion.
Instead versions are only created as aresult of the speculative execution of loads and stores on this storage. A fun-
damental choice iswhether to allocate/deallocate speculative storage all-at-once or on-demand. For an all-at-once
approach, speculative storageis allocated en masse (on task invocation). For an on-demand approach, speculative
storage must be allocated when atask performsloadsor stores. The advantageof the all-at-once approachisthat the
association between tasks and/or instructions and specul ative storage may be straightforward on commit or squash.
The primary drawback of thisapproachisthat it isnot possiblein general to know precisely how much speculative
storage is needed ahead of time. If too little is allocated, it may lead to stalls or squashes when it runs out. The
advantage of the on-demand approach is that the internal fragmentation problems of the all-at-once approach may
beeiminated. Itisstill possibleto run out of speculative storage (asin the all-at-once approach), but thisscenariois



less likely to occur due to the elimination of internal fragmentation. The primary drawback of this approach isthat
the association between atask and/or instruction and specul ative storage may be difficult to establish on commit or
sguash.

3.2 Access

There are two modes of access for the speculative storage: (i) given aparticular memory address, select loads and
stores performed on the memory addressby all activetasksor (ii) given aparticular task, select |loads and stores per-
formed by thetask. Thefirst modeof accessisinstruction oriented, triggered by the execution of loadsor stores. The
second mode of access is task oriented, triggered by the commit or squash of tasks. A significant concern is how
the method to allocate/deall ocate specul ative storage interacts with the two modes of access. For the all-at-once
approach, the physical management of speculative storage may be performed to match the logical management,
favoring one or both modes of access. In contrast, for the on-demand approach, the physical management of spec-
ulative storage likely has no correspondence with the logical management as it is done a priori, favoring neither
mode of access.

3.3 Ordering

The purpose of ordering is to disambiguate loads and stores such that their execution abides by the memory data
dependences of the program. The appearance that must be provided for loads and stores of a particular memory
address may described asfollows: (i) the value read by aload isthe value written by the logically preceding store,
and (ii) the value written by a store is the value that persists until the logically succeeding store. Conceptually, a
load checksthe specul ative storage of earlier tasksviaabackward scanin the direction of the head to ensuretheread
condition; astore checksthe specul ative storage of later tasksviaaforward scan in the direction of thetail to ensure
the write condition. As such a scan may be a serial process, its timing impact on the execution of loads and stores
isaconcern. Two orthogonal techniquesthat may be used to reduce the timing impact associated with ordering are
(i) to avoid performing the ordering on every load and store, and (ii) to speedup performing the ordering on loads
and stores for which it cannot be avoided.

3.4 Transfer

The issue of transfer involves conveying state from one place to another (physically or logically). This transfer
may occur dueto (i) the execution of loads and stores, or (ii) the commit or squash of tasks. The transfers due to
the execution of loads and stores are to ensure the production and consumption of values according to the memory
data dependences of the program. As speculative loads may depend on speculative stores, some means must be
provided to transfer data between such instructions in the active window via speculative rather than architectural
storage. The transfers due to commits ensure that architectural storage is properly updated from loads and stores
in speculative storage; whereas, the transfers due to squashes ensure that architectural storage is not improperly
updated by loads and stores in speculative storage. A task does not yield its PU on a commit or squash until the
full transfer of its speculative loads and stores. A means must be provided to perform this action in an expeditious
manner so that a new task may be invoked.



4 Axesof the Design Space

The fundamental axes that characterize the data memory design space are its composition and its organization.
Composition determines whether the storage for speculative and architectural versions are separate or aggregate.
Organization determineswhether the storage for speculative and architectural versionsis shared or private between
the various PUs.

4.1 Composition

The choice between separate and aggregate composition presents different trade-offs with respect to handling the
overhead of disambiguation. Separate composition fixesthe amount of storage of each type. Asaresult, speculative
may not displace architectural storage to adjust to the needs of execution and to avoid the exhaustion of speculative
storage which otherwise leads to stalls or squashes. Nevertheless, the storage of each type may be optimized for
its particular role when separate: different capacity, block size, associativity, tagging, etc as needed. Aggregate
composition incurs some overhead due to the tagging required to distinguish between the distinct types. Likewise,
additional overhead in the form of extra state for disambiguation burdensall storage, though it isrelevant only for
speculativeand not for architectural versions. Inaddition, for straightforward designs, separate compositionimplies
transfer of data from speculative to architectural storage on a commit and simple annulling of speculative storage
on a sguash; whereas aggregate composition implies tagging of data on commits and squashes without any data
transfer.

4.2 Organization

The choi ce between shared and private organi zation presents different trade-offsin terms of handling the bandwidth
and the latency of data memory access. Private organization naturally offershigh bandwidth and low latency dueto
its proximity and dedicated fast, wide access paths but shared organization may use the plethora of well devel oped
high bandwidth techniques like multi-porting, interleaving and multi-level designs. The private approach poses
the well-known and complex problem of how to maintain coherence, in a manner that is transparent to a running
program, among multiple copies of storage. For a small number of PUs, coherence protocols based on a snooping
bus[9] have been well studied. Much effort has been devoted to the minimization of the overhead traffic required
of such schemes asthe busis often a performance bottleneck.

5 DataMemory Alternatives

In order to addressabroad spectrum of solutionsrather than focus on anarrow band of the design space, we consider
two approaches to perform the required functionality. We consider a known scheme, the address resol ution buffer
[3], and anovel scheme, the time-sequence cache. Moreover, we consider centralized and distributed designs for

each.



5.1 Address Resolution Buffer

In terms of the axes of the design space, an address resolution buffer (ARB) provides a data memory that is com-
posed of separate speculative and architectural storage. The ARB providesonly speculative storage that is coupled
with adata cacheto provide complementary architectural storage. Theideabehind the ARB isto maintain different
versions (on aword granularity) as a compact unit such that speculative versions are readily discerned among one
another yet need not be distinguished from architectural versions; versions are allocated all-at-once primarily on
task basis and secondarily on an instruction basis.

This scheme may be organized as a centralized ARB (CARB) with shared storage for al PUs or a distributed
ARB (DARB) with private storagefor each individual PU. (We usetheterm ARB torefer in general to both designs,
and CARB or DARB to refer in particular to one design.) The ARB uses state bits to track the state of different
versions of aword (in a manner similar to hardware cache coherence for multiprocessors [5]). The CARB uses
centralized version control logic to trigger finite state machine transitions. In contrast, the DARB uses distributed
version control logic to serve the same function.

5.1.1 Structure

An ARB issimilar to anormal cache, except that alineistermed arow, asit contains storage for afixed number of
versionsfor an addressto whichit isassigned; it may be direct-mapped, set-associative, fully-associative, etc where
each set contains a number of rows. Each row of an ARB consists of an address tag, multiple data items (each a
singleword), and sets of state bits matched one per dataitem. The state bits consist of avalid bit (V) aswell asload
and store bits (L and S) used to determineif the version isvalid and if loads and/or stores have been performed on
the word (tracking clean and dirty characteristics). In addition, amirror bit (M) exists as a special state bit for the
DARB but not the CARB (and isdescribed below). Any speculativeversion that iscommitted or squashed isalways
removed immediately from the ARB. This action is arequirement for the ARB, since speculative and architectural
versions must not coexist.

Figure 2(a) shows the overall picture of the CARB, while Figure 2(b) showsarow. A crossbar connects PUs
to interleaved banks of storage. Each bank consists of an ARB coupled to a data cache which are connected to
the next level of the data memory by a pipelined bus. With a centralized storage, different versions of aword are
readily accessible. Figure 3(a) shows the overall picture of the DARB, while Figure 3(b) shows a row. Each PU
is connected to a private copy of storage that consists of an ARB coupled to a data cache. The private ARBs are
connected to oneanother by abroadcast bus. The private data cachesare connected to next level of the datamemory
by a pipelined bus. With a distributed storage, different versions of a word are not readily accessible, since each
version is private. To remedy this situation, each PU mirrors the stores of other PUs as seen on the broadcast bus.
Though arow of the DARB appears similar to arow of the CARB, it is not the same since other dataitemsin the
row are not actual versions. Instead, other dataitems are store mirrors, asindicated by amirror bit rather than valid,
load, and store bits for the data items.

5.1.2 Operation

The operation of the ARB may be defined interms of (i) events, (ii) states, and (iii) transitions betweens states due
to events. In general, the operation is concerned with what happensto versions of aword on events. In particular,
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Figure 2: Structure of the centralized address resolution buffer (CARB).

(a) @

ARB_Data . o o ARB_Data
cache cache

Broadcast Bus

T Bus

Next level of
data memory

(b)
| AddrTeg | v|L [ S| Daa M| Data]e e «|m| Data]

PU O

Figure 3: Structure of the distributed address resol ution buffer(DARB).

the operationis concerned with how aversioniseffected by eventsfrom the PU with which the versionisassociated
and by events from other PUs. A PU event isdirected at a bank of the shared storage for aCARB or at the private
storage for aDARB. In some cases, the event may act on a particular version without an effect on other versions.
However, in the caseswhere other versionsmay beinvolved, version control logic (V CL) dictatesthe proper course



of action.

Theroleof the VCL isto handlethe disambiguation of loadsand stores. In responseto an event, the state bits of
al relevant versionsare provided to the VCL whichin turn triggers state changesamong these versionsand delivers
control signals to the relevant PUs. In the CARB, the VCL exists inside the shared storage, where it manipulates
versionsin a centralized manner. In the DARB, the VCL residesinside the private storage, where it performsthe
same function in a distributed manner viathe broadcast bus. The actual details of the VCL depend on the specifics
of particular centralized or distributed designsand is not areal concern.

5.1.3 Versionsand Ordering

TheVCL isableto disambiguate aload in a straightforward manner among all versionsin the active window. The
correct version for aload can be found using the load and store bits of each version and the implicit cyclic order
imposed by the head and thetail. For the CARB, the VCL inspects versionsin abackward scan from the accessed
version to the head to find the nearest store which suppliesthe data. For the DARB, each private VCL performsthe
same process, using the mirrored stores (previoudy broadcast).

The VCL is able to disambiguate a store in a straightforward manner (as for aload) among al versionsin the
active window. A memory data dependence violation caused by later |oads that have been performed beforeanin-
tervening store can befound using theload and storebits of each version and theimplicit cyclic order imposed by the
head and thetail. For the CARB, the VVCL inspectsversionsin aforward scan from the accessed version to the tail.
Any load encountered before an intervening store identifies a version that has amemory data dependenceviolation.
For the DARB, each private VCL performsthe same process, using the mirrored stores (previously broadcast).

514 Events

A PU accessto the CARB or DARB may correspond to aload, store, commit, or squash PU event. A load or store
event correspondsto the instruction oriented mode of access described in section 3.2 and involves versionsfor all
PUs that match on the addresstag of theload or store. In contrast, acommit or squash event correspondsto the task
oriented mode of access described in section 3.2 and involves versions for a particular PU regardless of address.
In either case, an involved version existsin a shared row that is accessed by all PUsfor the CARB and in aprivate
row that is accessed by only one PU for the DARB. In addition to PU events, a PU access for the DARB unlike the
CARB, may generate a related bus event. A bus write event occurs for a store PU event and ensures that private
ARBs remain consistent with one another. A bus event caused for astore allowsit to be broadcast and mirrored in
each private ARB. A commit or squash PU event also effects other private ARBS, but this effect pertainsto amirror
of some other version rather than an actual version per se.

515 States

To keep this description of version states concise, we group all physical states (many) along with the relevant tran-
sitions into categories which represent logical states (few). Thus, the operation of the ARB is given in terms of
these logical states rather than the actual physical states — transitions are from categories of states to categories of
statesinstead of from individual statesto individual states. A version may fall in one of three categories (heretofore
referred to as states): Invalid, ActiveClean, or ActiveDirty. Below is a description which gives the meaning of the

states which a version may occupy.



AnlInvalid versionisonefor which the tags, state, and dataof theword hasno context. A versioninthisstatein
not considered a part of the speculative storage, asit isnot involved in the operation of the ARB until it is accessed
(and made valid). An ActiveClean version is one for which atask in the active window has performed only loads
(unmodified version). An ActiveDirty versionisonefor which atask in the active window has performed storesand
possibly loads (modified version). Moreover, aversionin either of these statesis considered part of the speculative
storage, asit isinvolved in the operation for disambiguation amongst other versions.

Commit/-
Squash/-

. Store/BusWrite
Active Clean

(@ VersionTag=PU

BusWrite/Invalidate BusWrite/Invaidate

Active Clean Active Dirty

(b) Version Tag<>PU

/

Commit/-

Store/BusWrite Squash/-

Active Dirty

Figure 4: State transitionsfor ARB.

5.1.6 Transtions

The transitions between version states are caused by the events and by the directives of the VCL as depicted in
Figure 4 (self transitions are not shown for conciseness).

Consider the top of the state transition diagram in Figure 4(a). The arcs between states are given in the form
of [PU event]/[bus event] (where a — means no corresponding event). The transitionsin this half of the diagram
indicate the effects on aversion for accesses performed by its PU. A load or store by a PU alwaystransitsaversion
to ActiveClean or ActiveDirty indicating it is contained in the active window of execution. Likewise, acommit or
sguash by aPU only effectsaversion in ActiveClean or ActiveDirty. A version always goesto Invalid on commit
or squash. In addition, a commit of an ActiveDirty version requires a writeback from speculative to architectural



storage.

Consider the bottom of the state transition diagram in Figure 4(b). The arcsbetween statesare givenintheform
of [busevent]/[VCL response] (where a— means no corresponding event). The arcs between states are given in the
form of bus/VCL event (where a— means no corresponding event).

Thetransitionsin this half of the diagram indicate the effects on a version for accesses performed by other PUs
(abusevent for the DARB which sees only its private version but not for CARB which seesall shared versions). A
broadcast store performed by some other PU, leavesaversioninitsexisting state, unlessthe VCL detectsamemory
data dependence violation and delivers an invalidate signal, in which case aversion aways transitsto Invalid.

5.1.7 Replacement and Writeback

A load or store cause amissif no valid corresponding version exists. Inthe CARB, aload or store missis handled
individually by a shared ARB bank. In the DARB, aload missis handled individually by a private ARB, but a
store miss must be handled collectively by each private ARB in unison (regardless of which PU missed). The data
to be supplied for amiss comesfrom the data cache which complementsthe ARB. Therow entersthe ARB with the
accessed version in ActiveClean or ActiveDirty, as the case may be. While handling the miss is straightforward,
selecting arow to replace and the possible writeback may be involved.

The best option for arow to replaceisonein which all versionsare Invalid. If arow hasall Invalid versions, it
can bereplaced with nowriteback. Theonly other optionisto replacearow in which someversionsare ActiveClean
or ActiveDirty, but this action can only be performed under restricted conditions. When the PU that caused the
miss is not the head, it may be stalled until arow with al Invalid versions becomes available or until it becomes
the head (whichever occursfirst). When the PU that caused the missis the head, it may writeback versionsin the
row associated with it or it may squash other PUsto invalidate other versionsin the row. (This approach guarantees
forward progress, since a PU may always replace rows as the head; and as the head, a PU at some point yieldsto
the next PU to be the head.)

5.2 Time-Sequence Cache

In terms of the axes of the design space, a time-sequence cache (TSC) provides a data memory that is composed
of aggregate speculative and architectural storage. The TSC does not need complementary storage like an ARB
sinceit providesboth types. The ideabehind the TSC isto maintain different versions (on a cache line granul arity)
such that both specul ative and architectural versions coexist but can be readily distinguished; versionsare alocated
on-demand as per the execution of aload or store in the active window.

If the TSC only contained speculativeversions, then it would be the sasme asthe ARB. However, both committed
and squashed versions are allowed to remain in the TSC to avoid the potential overhead of removing them asin the
ARB. Asaresult, amix of both speculative and architectural versions may be present. In particular, there may be
many “architectural” versions (each of which correspondsto the true architectural state at different pointsin time)
in contrast to anormal cache (which has only one version of architectural state). Among these versions only one
actually correspondsto the most recent version of the true architectural state at any given point in time. Therefore,
it is necessary to distinguish this version from the others.

The TSC uses state hits to track the state of different versions of aline (in amanner similar to hardware cache
coherencefor multiprocessors). Thisschememay beorganized asacentralized TSC (CT SC) with shared storagefor
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al PUsor adistributed TSC (DTSC) with private storage for each individual PU. (We usetheterm TSC to refer in
general to both designs, and CTSC or DTSC torefer in particular to onedesign.) The CTSC uses centralized version
control logic to trigger finite state machine transitions. In contrast, the DTSC uses snooping version control logic
(like snooping bus-based protocols found in ubiquitous SMPs) to serve the same function.
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Figure 5: Structure of the centralized time-sequence cache (CTSC).
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5.2.1 Structure

A TSCismuch likeanormal cache, but with an extended tag space to maintain different versions of an address; it
may be direct-mapped, set-associative, fully-associative, etc where each set contains a number of lines. Each line
of aTSC consists of an addresstag, possibly a PU tag, asingle dataitem (usually multiple words), and asingle set
of state bits matched to the dataitem. The state bits consist of avalid bit (V) aswell asload and store bits (L and
S) used to determineif thelineisvalid and if loads and/or stores have been performed on the line (tracking clean
and dirty characteristics) asin the ARB. In addition, a commit bit (C) and a squash bit (Q) distinguish committed
and sguashed versions, while a token bit (T) identifies the most recent version in existence among all versions.

Figure5(a) showstheoverall pictureof the CTSC, while Figure5(b) showsaline. Thelinesof the CTSC contain
an explicit PU tag to distinguish different versionsin shared storage. A crossbar connects PUs to interleaved banks
of storage. Each bank consists of a TSC connected to the next level of the data memory by a pipelined bus. With
a centralized storage, different versions of aline are readily accessible. Figure 6(a) shows the overall picture of
the DTSC, while Figure 6(b) shows aline. The lines of the DTSC are private to a PU and hence have an implicit
PU tag. Each PU is connected to a private copy of storage that consists of a TSC. The private TSCs are connected
to one another and to the next level of the data memory by a pipelined snooping bus. With a distributed storage,
different versions of aline are not readily accessible, since each versionis private.

5.2.2 Operation

The operation of the TSC may be defined in terms of (i) events, (ii) states, and (iii) transitions betweens states due
to events. In general, the operation is concerned with what happensto versionsof aline on events. In particular, the
operation is concerned with how a version is affected by events from the PU with which the version is associated
and by events from other PUs. A PU event isdirected at a bank of the shared storage for a CTSC or at the private
storage for aDTSC. In some cases, the event may act on a particular version without an effect on other versions.
However, in the caseswhere other versionsmay beinvolved, version control logic (V CL) dictatesthe proper course
of action.

Theroleof the VCL isto handlethe disambiguation of loadsand stores. In responseto an event, the state bits of
al relevant versionsare provided to the VCL whichin turn triggers state changesamong these versionsand delivers
control signals to the relevant PUs. In the CTSC, the VCL exists inside the shared storage, where it manipulates
versionsin a centralized manner. Inthe DTSC, the VCL resides on the pipelined snooping bus, whereit performs
the same function. The actual details of the VCL depend on the specifics of particular centralized or distributed
designsand is not areal concern.

5.2.3 Versionsand Ordering

TheVCL isableto disambiguateaload in astraightforward manner among all versionsin the active window. How-
ever, thisapproachis not sufficient to support disambiguationin the presence of squashed and/or committed versions
(no longer associated with the active window) that may exist in aTSC. The problem is that the order between ver-
sionsislost without the relationship of the head and tail that existed when the versionswere active. The solution to
thisproblem isto impose an invariant on the coexistence of versionswhich permits disambiguationto be performed
only on active versionsasin the ARB. Theinvariant isthat each time anew versionis created (first load or storeto
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the address for atask in the active window), only versions for other active tasks may coexist.

This condition implies that the creation of a new version causes any committed or squashed versionsto be re-
moved from the TSC. Moreover, it requires (i) that all committed and squashed versions be identified, (ii) that all
sguashed versions be removed from the TSC, and (iii) that all committed versions be removed from the TSC with
awriteback as well for most recent committed version. The state bits of the TSC line provide the support for this
solution. The commit bit and the squash hit identify the committed and squashed versions. Thetoken bit identifies
the most recent version (only one version can have this bit set). Note, a speculative version with the token holds
thetoken if it is squashed until a subsequent creation of anew version recoversthe token; at which time, the token
istransferred to the most recent existing version.

The VCL is able to disambiguate a store in a straightforward manner (as for aload) since al relevant versions
arein the active window of execution dueto theinvariant. A memory data dependenceviolation for later |oads that
have been performed before an intervening store can be found using the load and store bits for each versionin a
manner similar to the ARB. For the CTSC, the VCL inspects versionsin what amountsto aforward scan from the
accessed version to the tail. For the DTSC, the VCL performsthe same process, using the pipelined snooping bus
to see the other versions.

524 Events

A PU accessto the CTSC or DTSC may correspond to aload, store, commit, or squash PU event. A load or store
event correspondsto the instruction oriented mode of access described in section 3.2 and involves versionsfor all
PUs that match on the addresstag of theload or store. In contrast, acommit or squash event correspondsto the task
oriented mode of access described in section 3.2 and involves versions for a particular PU regardless of address.
In either case, an involved version exists in shared row that is accessed by all PUs for the CTSC and in a private
row that is accessed by only one PU for the DTSC. In addition to PU events, a PU access for the DTSC unlike the
CTSC, may generate arelated bus event, either abusread, abuswrite, or abuswriteback. A busread event occurs
for aload or store PU event that causesa TSC miss. A buswrite event occurs for a store PU event that may cause
versions to become inconsistent. A bus writeback event occurs if a dirty versions must be written back from the
TSC.

525 States

As before, we group all physical states (many) along with the relevant transitions into categories which represent
logical states (few). Thus, the operation of the TSC is given in terms of these logical states rather than the actual
physical states—transitions are from categories of states to categories of statesinstead of from individual statesto
individual states, just asfor the ARB. A version may fall in one of five categories (heretofore referred to as states):
Invalid, ActiveClean, ActiveDirty, PassiveClean, or PassiveDirty. Below is adescription which gives the meaning
of the states which a version may occupy.

An Invaid versionisonefor which the tags, state, and data of the line has no context. A versioninthisstateis
not considered a part of the speculative or architectural storage, asit isnot involved in the operation of the TSC until
itisaccessed (and madevalid). An ActiveClean version isonefor which atask in the active window has performed
only loads (unmodified version). AnActiveDirty versionisonefor which atask in the active window hasperformed
stores and possibly loads (modified version). Moreover, aversion in either of these states is considered part of the
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speculative storage, asit isinvolved in the operation for disambiguation amongst other versions. It isimportant to
realize that these states of the TSC are precisely the same as those of the ARB.

Nevertheless, the TSC introduces additional states in order to maintain coexistent speculative and architectural
versions. A PassiveClean versionisonefor which atask previously in the active window had performed only loads
(unmoadified version); thisline is a clean copy of aline that was either committed or squashed, corresponding to a
delayed commit or delayed squash of the version. A PassiveDirty version is one for which a task previously in
the active window performed stores and possibly loads (modified version); thisline is a dirty copy of aline that
correspondsto a delayed commit or delayed squash asin PassiveClean, but unlike in PassiveClean, that may need
to be written back to the next level of the datamemory. A versionin either of these statesis considered part of the
architectural storage.

Commit[No Token]/-
Squash/-

Commit[No Token]/-

Load/BusRead Squash[No Token]/-

Commit[ Token]/-

Store/BusWrite

Commit[ Token]/-
Squash[ Token]/-

Store/BusWrite

Store/BusWrite

Store/BusWrite Load/BusRead

Passive Dirty

(& VersonTag=PU

BusWrite/Invalidate

Active Clean

BusWrite/Invalidate BusWrite/Invalidate

BusWrite/Invalidate

Active Dirty

BusRead,BuswB/NoFlush

Figure 7: Statetransitionsfor TSC.

BusRead,BusWB/Flush

(b) VersionTag <> PU
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5.2.6 Transtions

The transitions between version states are caused by the events and by the directives of the VCL as depicted in
Figure 7 (self transitions are not shown for conciseness). It isworth pointing out that the states and transitions of
the ARB as depicted in Figure 4 are a subset of those of the TSC.

Consider the top state transition diagram of Figure 7(a). The arcs between states are given in the form of [PU
event]/[busevent] (wherea—meansno corresponding event). Thetransitionsinthishalf of the diagramindicatethe
effects on aversion for accesses performed by its PU. A load or store by a PU alwaystransits aversion to Active-
Clean or ActiveDirty indicating it is contained in the active window of execution. Likewise, acommit or squash by
aPU only effectsaversion in ActiveClean or ActiveDirty. An ActiveClean version goes to the PassiveClean with
the token and to Invalid without the token on commit. An ActiveClean version always goesto Invalid on squash.
AnActiveDirty version goesto the PassiveDirty state with thetoken (to hold thetoken for recovery) or tothelnvalid
state on a squash or commit.

Consider the bottom state transition diagram of Figure 7(b). The arcs between states are given in the form of
[bus event]/[VCL response] (where a— means no corresponding event). Thetransitionsin this half of the diagram
indicate the effects on aversion for accesses performed by other PUs. In contrast to the ARB, the VCL of the TSC
playsapivotal rolein directing state transitions for other PU eventsin the CTSC or rather bus eventsin the DTSC.
In addition to the invalidate directive in the ARB, the VCL may providethe flush, acquire, and supply directivesin
the TSC. The invalidate command invalidate a version in the TSC. The flush command indicates that a particular
committed version must be written back to the next level of the datamemory. The acquire command reconcilesthe
token for the most recent version. The supply command indicatesthe data of aversion must provided to some other
PU (and/or private TSC).

Regardless of the version state and event, an invalidate directive causes aversion to go to Invalid. A load per-
formed by some other PU causes a PassiveDirty version to go to PassiveClean with aflush or to Invalid without a
flush. A store performed by some other PU causes a PassiveDirty version to go to Invalid (as already said) with a
flush for a version with the token and with a flush for other versions. On writeback, a PassiveDirty version goesto
PassiveClean with aflush or to Invalid without aflush. Note that the other VCL directives, acquire and supply, are
not shown in the diagram since no state transition occursin connection with them. Nevertheless, on each other PU
event, the token must be reconciled and the data must be supplied as directed by the VCL.

5.2.7 Replacement and Writeback

A load or store cause amissif no valid corresponding version exists. Inthe CTSC, aload or store missis handled
by a shared TSC bank. Inthe DTSC, aload or store missis handled by a private TSC. The datato be supplied for
amiss comes from some other version or from the next level of the data memory. The line entersthe TSC in the
ActiveClean state. While handling the missis straightforward, selecting aline to replace and the possible writeback
may beinvolved.

The options to choose a version to replace (in order of preference among possible versions) are Invalid, Pas-
siveClean, PassiveDirty, and ActiveClean or ActiveDirty versions. If alineis Invalid, it can be replaced with no
writeback. If alineisPassiveClean, it can be replaced with nowriteback. If alineisPassiveDirty, it can bereplaced,
but if it hasthe token, there must be awriteback beforeit can bereplaced. If alineisActive, it can bereplaced, but
under restricted conditions.
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When the PU that caused the missis not the head, it may be stalled until version that is neither ActiveClean nor
ActiveDirty becomes available or until it becomesthe head (whichever occursfirst). When the PU that caused the
missisthe head, it may writeback versions of lines associated with it or it may sguash other PUsto invalidate other
versions of lines. (This approach guarantees forward progress, since a PU may always replace lines as the head;
and as the head, a PU at some point yieldsto the next PU to be the head.)

6 Experimental Evaluation

We have performed an experimental evaluation of opposite ends of the spectrum of data memory alternatives we
have considered in the previous section —the CARB and the DTSC. Our objectivein this evaluation is to show the
effects of hit latency on overall performance and to compare equivalent (in terms of overall storage) designs of the
CARB and DTSC.

6.1 Methodology

All of the results in this paper have been collected on a simulator that faithfully models a multiscalar processor.
The simulator accepts annotated big endian MIPS instruction set binaries produced by the multiscalar compiler, a
modified version of gcc. In order to provide results which reflect reality with as much accuracy as possible, the
simulator performs all of the operations of a multiscalar processor and executes all of the program code, except
system calls, on a cycle-by-cycle basis. (The system calls are handled by trapping to the operating system of the
simulation host.)

6.2 Configurations

The multiscalar processor used in the experimentsis a4 PU configuration in which each PU is based on the RUU
[11] and has been configured with 2-way out-of-order issue characteristics. A PU executesinstructions on its own
collection of pipelined functional units (2 smpleinteger FU, 1 complex integer FU, 1 floating point FU, 1 branch
FU, and 1 memory FU) accordingtoitsclass. Theunidirectional point-to-point ring connecting the register files[2]
of the PUsimposes a 1 cycle communication latency between units and matches the ring width to the issue width
of the PU. Each PU hasits own instruction cache with 32k of 2-way set-associative storage in 44 byte blocks. An
access hit returns4 wordsin a hit time of 1 cycle with an addition penalty of 10+3 cycles, plus any bus contention,
onamiss.

The global sequencer maintains a 1024 entry 2-way set associative cache of task descriptors. The control flow
predictor of the global sequencer uses a dynamic path based scheme which selects from up to 4 task targets per
prediction and keeps 7 path histories XOR-folded into a 15-bit path register [6]. The predictor storage consists of
both a task target table and a task address table, each with 32k entries indexed by the path register. Each target
table entry isa2-bit counter and a 2-bit target. Each addresstable entry is a 2-bit counter and a 32-bit address. The
control flow predictor includes a 64 entry return address stack.

For the CARB, we have used 8 banks of interleaved (on the data cache line address) shared storage connected
to the PUs by acrossbar. Each bank is composed of afully-associative ARB with 32 rows and of adata cache with
4k or 8k of directed-mapped storage in 16-byte lines (32k or 64k total). Both loads and stores are non-blocking
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CARB DTSC
Benchmark || 32KB | 64KB || 4x8KB | 4x16KB

compress 0.114 | 0.096 0.148 0.134
espresso 0.026 | 0.011 0.026 0.012
gcc 0.025 | 0.016 0.059 0.047
sc 0.039 | 0.036 0.058 0.046
xlisp 0.028 | 0.025 0.024 0.015

Table 1: Miss Ratios for CARB and DTSC.

| Benchmark || 4x8KB | 4x16KB |

compress 0.315 0.310
espresso 0.183 0.170

gcc 0.238 0.229
sc 0.191 0.177
xlisp 0.303 0.295

Table 2: Snooping Bus Utilization for DTSC

with 4 MSHRs [ 7] per bank. Disambiguation is performed at the byte-level. An accesshasahittimeof 1, 2, 3, or
4 cycles, with an additional penalty of 10 cyclesfor amiss supplied by the next level of the data memory (plus any
bus contention). All accessto the next level of the data memory are handled by a 4-word pipelined bus.

For the DT SC, we have used private storage at each PU, connected to one another and the next level of the data
memory by a 4-word pipelined snooping bus where a bus transaction requires 3 or 4 PU cycles. Each PU hasits
own private TSC with 8k or 16k of 2-way set-associative storage in 16 byte lines (32k or 64k total). Both loadsand
stores are non-blocking with 8 MSHRs per TSC. Disambiguation is performed at the byte-level. An access has a
hit time of 1 cycle, with an additional penalty of 10 cyclesfor amiss supplied by the next level of the data memory
(plus any bus contention).

6.3 Benchmarks

We used the following programs as benchmarks from the SPECint92 suite with inputs given in parentheses. com-
press (in), espresso (ti.in), gcc (integrate.i), sc (loadal), and xlisp (7 queens).

6.4 Experiments

InFigures8, 9, 10, 11, and 12 we present the instructions per cycle (IPC) for amultiscalar processor configured
with a CARB and a DTSC. (The configurations keep total TSC storage and total ARB/data cache storage roughly
equivalent, since the amount of ARB storage is rather modest compared to its data cache.) For the CARB, we fix
the total ARB size at 256 rows (from all banks) and vary the total data cache size between 32k and 64k of storage
(from all banks) with hit latencies ranging from 1 through 4 cycles. For the DTSC, we vary the total TSC size
between 32k and 64k and fix the hit latency at 1 cycle. In Table 1 we present the miss rates for the CARB and
the DTSC configurations. (For the DTSC, an accessis only counted if it is supplied data by the next level of the
data memory; TSC-to-TSC transfers are not counted as misses.) In Table 2 we present the bus utilization of the
DTSC configurations. From these preliminary experiments, we make three observations: (i) the hit latency of data
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Figure 9: IPCsfor Espresso.
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Figure 10: IPCsfor Gcc.

memory significantly impacts performance, (ii) the CARB and the DTSC trade-off hit latency for hit rate and vice-
versato achieve performance, and (iii) for the sametotal TSC and data cache storage (not counting the ARB storage
which is transient), the DTSC performs better than the CARB with a hit latency of 3 or more cycles. The IPC
numbers of the CARB with hit latency of 1 cycle, as showninthe Figures 8, 9, 10, 11, and 12, give abound on the
performance achieved by multiscalar configurations designed to improve hit latency. The graphs in these figures
show that even for a64k CARB performanceimprovesin the range of 21% to 40% when decreasing the hit latency

18



3.0,

[J Hitlatency 1 cycle [ Hit latency 3 cycles
Hit latency 2 cycles I Hit latency 4 cycles
2.5
O
a 2.0
1.5
1.0
CARB 32k 64k DTSC 4x8k 4x16k
size
Figure 11: IPCsfor Sc.
2.5,
[0 Hitlatency 1 cycle [ Hit latency 3 cycles

Hit latency 2 cycles Il Hit latency 4 cycles

IPC

Figure 12: IPCsfor Xlisp.

from 4 cyclesto 1 cycle. Thisimprovement indicates that techniques (like the DARB and the DTSC) to improve
hit latency are an important factor in increasing overall performance (even for alatency tolerant processor like a
multiscalar processor).

Comparing the same total amounts of storage, the distribution of storage for the DTSC produces higher miss
ratesthan for the CARB (xlisp isan exception). In spite of thishandicap, the IPC achieved by the DTSC for xlispis
better than that achieved by the CARB with hit latency of 3 or more cycles. Inthe case of gcc, compress, and sc, the
IPCs indicate that the DTSC outperformsthe CARB with hit latency of 2 or more cycles. Though, for xlisp, both
schemes perform nearly aswell, thetrend isreversed for espresso. Theincrease in the miss rates may be attributed
to two factors. First, the distribution of storage in the DTSC causes reference spreading [8] across multiple TSCs
leading to an increase in misses. Though multiple accesses in close proximity go to only one ARB and/or data
cacheinthe CARB, these accesses may be spread across different TSCs of the DTSC destroying the locality of the
accesses. Moreover, dueto temporal locality, the same datamay bereplicated in each TSC of the DTSC, essentially
reducing its size. Second, the fine-grain sharing of data between multiscalar tasks causes cache lines to move from
one TSC to another. Such fine-grain communication may increases the number of missesaswell. The evidencefor
such communication is the fairly high bus utilizations of the DTSC ranging from 17% to 31%.
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7 Discussion

We discuss aspects related to precise interruptsin a uniprocessor system and sequential consistency in a multipro-
cessor system for a data memory design in general and briefly describe how these aspects can be provided for the
memory designs we have considered, the ARB and the TSC.

7.1 Preciselnterrupts

We classify interrupts into two classes. program interrupts (i.e., traps or exceptions) and external interrupts [10].
In a multiscalar processor, an exception may be received by speculative as well as non-speculative tasks. An ex-
ception received by the non-speculativetask at the head can be made precise by dealing with it in the same fashion
as a superscalar processor. However, a commit must be simulated to flush the architectural state buffered in data
memory beforethe exception is serviced. If a speculative task receives an exception, we may stall the execution of
thetask at the faulting instruction until either the task becomesthe head task or is squashed. This approach ensures
that datamemory is not corrupted with datafrom instructionsbeyond the faulting instruction in the task. If the task
is squashed, the exception is spurious and need not be handled. If the task becomes non-speculative, the excep-
tion can be handled as aready described. To handle external interrupts, all the speculative tasks may be squashed
and the head task stopped in a precise manner at the instruction that is associated with the external interrupt. The
program can be restarted at the excepting instruction since data memory holds the architectural state at the faulting
instruction.

7.2 Sequential Consistency

The most common memory model (often implicitly) assumed by designers of parallel programsis sequentia con-
sistency. We describe aworking solution to provide sequential consistency for amultiprocessor composed of mul-
tiscalar nodes. Other more aggressive solutions are possible, but we do not address them here. The data memory
aternatives described in this paper merge stores from a PU to the same memory location and do no track the order
in which stores to different locations have been performed. Thisloss of order could lead to violations of sequen-
tial consistency. To avoid such violations, each load or store must be globally committed [1] in program order to
provide atotal order for memory accesses made by a parallel program. This conditionimpliesthat no load or store
can be retired from the reorder buffer of a PU until the associated task becomes a non-speculative task at the head
and until all previousinstructionshave globally committed. Moreover, a store cannot be performed to datamemory
until it is ready to be globally committed. We employ the strategy used in the R10000 [13, 4] to alow the spec-
ulative execution of loads and detect a violation of sequential consistency, in which case all instructions from the
offending load instruction must be squashed L. In addition, a storeis allowed to proceed to the ARB/TSC onceit is
ready to be retired from the PU reorder buffer even though the task might be speculative. Once the task becomes
non-speculative, werevisit loads and storesin program order and commit storesto the architectural state, bypassing
the ARB/TSC. Note that the speculatively executed |oads and stores may overlap their communication overheads
with the execution of other instructions.

10n an invalidation received by aload instruction in the non-speculative task, a squash signal must be sent to the ARB/TSC to squash all
relevant instructions, including those of the head PU.
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8 Summary

We addressed the problem of performing ambiguous|oads and storesin a vast active window of instructions built
using using multiple program counters. In the context of a datamemory alternativesfor multiscalar processors, we
explored the key issues of allocation/deallocation, access, ordering, and transfer with regard to speculative and ar-
chitectural storage. We partitioned the design space on the basis of composition, whether the storagefor speculative
and architectural versionsare separate or aggregate, and on the basis of organi zation, whether the storagefor specu-
lative and architectural versionsis shared or private between the various PUs. We presented two approachesto per-
form disambiguation of |oads and stores, the address resolution buffer (ARB) and the time-sequence cache (TSC),
both of which reduce the extent to which elements are searched in this process. We explored a broad spectrum of
solutionsin the form of centralized and distributed schemesfor the ARB and the TSC. Moreover, we showed exper-
imental evidencefrom asimulation of amultiscalar processor with a centralized address resolution buffer (CARB)
and a distributed time-sequence cache (DTSC) that hit latency is an important factor (even for a latency tolerant
processor like a multiscalar processor) in determining performance and that distributed schemes trade-off hit rate
for hit latency to achieve performance. In our investigation, we have attempted to unify the four quadrants of the
design space into a common framework by pointing out that designs differ only in details such as the number of
states and the version control logic.

Acknowledgements

Thiswork was supportedin part by NSF Grants CCR-9303030 and M1P-9505853, by U.S. Army I ntelligence Center
and Fort Huachuca under Contract DABT63-95-C-0127 and ARPA order no. D346, by aresearch grant from Intel
Corp., and by an equipment donation from Sun Microsystems. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the U.S. Army Intelligence Center and Fort Huachuca, or the U.S. Government.

References

[1] SaritaV.AdveandMark D. Hill. Implementing sequential consistency in cache-based systems. |n Proceedings
of the 1990 International Conference on Parallel Processing, pages 47-50, 1990.

[2] Scott E. Breach, T. N. Vijaykumar, and Gurindar S. Sohi. The anatomy of the register file in a multiscalar
processor. In Proceedingsof the 27th Annual | nter national Symposiumon Microarchitecture, pages 181-190,
1994.

[3] Manoj Franklin and Gurindar S. Sohi. ARB: A hardware mechanism for dynamic reordering of memory ref-
erences. |EEE Transactions on Computers, 45(5):552-571, May 1996.

[4] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two techniques to enhance the performance of
memory consistency models. In Proceedings of the 1991 International Conference on Parallel Processing,
pages 255-364, 1991.

[5] James R. Goodman. Using cache memory to reduce processor-memory traffic. In Proceedings of the 10th
Annual International Symposiumon Computer Architecture, pages 124131, 1983.

21



(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Quinn Jacobson, Steve Bennett, Nikhil Sharma, and James E. Smith. Control flow speculation in multiscalar
processors. In To Appear in Proceedings of the Third International Symposium on High-Performance Com-
puter Architecture, 1997.

D. Kroft. Lockup-freeinstruction fetch/prefetch cache organization. 1n Proceedings of the 8th Annual Inter-
national Symposium on Computer Architecture, pages 81-87, 1981.

D. Lilja, D. Marcovitz, and P-C. Yew. Memory referencebehavior and cache performancein ashared memory
multiprocessor. Technical Report 836, CSRD, University of Illinois, Urbana-Champaign, December 1988.

David A. Patterson and John L. Hennessy. Computer Architecture A Quantitative Approach, chapter 8, pages
635-755. Morgan Kaufmann Publishers, 1996.

James E. Smith and Andrew R. Pleszkun. Implementation of precise interruptsin pipelined processors. In
Proceedings of the 12th Annual International Symposium on Computer Architecture, pages 36-44, June 17—
19, 1985.

Gurindar S. Sohi. Instruction issue logic for high performance, interruptable, multiple functional unit,
pipelined computers. |EEE Transactions on Computers, 39(3):349-359, March 1990.

Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings of the 22nd
Annual International Symposiumon Computer Architecture, pages 414-425, June 22—24, 1995.

K.C. Yeager. MIPS R10000 superscalar microprocessor. Micro, April 1996.

22



