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Abstract

Modern software development practices leads to the production of applications
with increasingly large code footprints. This growth is driven by the emphasis on
maintaining functionality, portability, and maintainability of software. The large
code footprint begins to overwhelm primary structures such as the L1 instruction
cache (L1i), Instruction TLB (iTLB), and Branch Target Buffer (BTB) in a processor
that are crucial for ensuring an effective supply of instructions for execution. This
results in frequent movement of code cache blocks and other closely related infor-
mation, such as iTLB and BTB entries, between secondary and primary structures.
To address this challenge, this dissertation proposes a different way to proactively
move instructions and closely related information from secondary structures to
the primary structures before the processor references them. The key technique
introduced is:

Instruction Presending: This technique leverages stability in high-level control
flow and the capability to capture this information in practical hardware tables to
resolve upcoming high-level control flow. It runs ahead of the processor, resolv-
ing high-level control flow and determining cache blocks of instructions likely to
be referenced by the processor, and moving them to the L1i before the processor
references them. Furthermore, this technique is enhanced to support Presending
for an iTLB/BTB, utilizing the high-level sequencing mechanism to identify the
iTLB/BTB entries likely to be referenced by the processor and proactively move
them to the iTLB/BTB before the processor requires them.

Instruction Presending shows significant promise in accurately resolving up-
coming high-level control flow for many applications, particularly those with fre-
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quent code movement. This results in a near-perfect determination of cache blocks
of instructions and iTLB/BTB entries for these applications, leading to performance
that approaches that of a perfect L1i/iTLB/BTB in these scenarios.
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Chapter 1

Introduction

Executing a program may initially appear to be a highly sequential process: (1)
Fetch an instruction, (2) Read input data values for the instruction, (3) Store the
output of the instruction if necessary, and (4) Decide which instruction to fetch
next. However, researchers have observed that substantial amounts of Instruction-
Level Parallelism (ILP) exist within instruction streams [12, 19]. This means that
instructions later in the stream can execute in parallel with earlier instructions,
as they are part of independent computations. Modern superscalar processors
[60, 65] have successfully transitioned from a sequential model of processing in-
structions to a highly parallel model, extracting high amounts of ILP.

Extracting these higher levels of instruction-level parallelism necessitates es-
tablishing true dependencies between instructions using techniques such as reg-
ister renaming [72] and memory dependence prediction [26, 53, 54]. The last few
decades have seen several innovations aimed at facilitating increasing levels of per-
formance for these ILP machines. All these techniques rely on the creation of large
windows of instructions to enable this parallel execution. The creation of large
instruction windows is necessary to keep the backend of the machine— which ex-
tracts ILP—well-supplied with instructions. Inefficiencies in the frontend, which
is responsible for supplying these instructions, result in reduced ILP.

This process of supplying instructions to the backend involves going to memory
to fetch instructions every cycle. There is a large discrepancy between processor
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speeds and latency of accessing instructions from memory off-chip, referred to
as the memory wall [81, 82]. This pushed processor designs to build memory
hierarchies with multiple levels of caches on-chip to satisfy the bandwidth needs of
the processor and to enable faster access times, exploiting the spatial and temporal
locality present in the reference streams. This provides an illusion of a faster and
larger memory at the cost of a slower and cheaper memory. The goal is to have all
active instructions be in the L1 instruction cache (L1i) when needed, operating at
close to processor speeds and satisfying the bandwidth needs of the processor.

Virtual memory provides each process with the illusion of a large private ad-
dress space and it is a ubiquitous abstraction provided to programmers today. Vir-
tual memory using paging is common in most computer systems of today. Imple-
menting an efficient virtual memory system involves software and hardware in-
volvement. Virtual address space is divided into coarse-grained, fixed-size chunks
called pages which are mapped to physical frames. This mapping typically hap-
pens via a page table or a hierarchy of page tables, which is set up by software (or
the operating system (OS)).

Every instruction memory reference generates a virtual address and has to be
translated from a virtual to a physical address. Memory accesses to the page ta-
ble (or hierarchy) made for every reference will slow the system down due to the
memory wall. To mitigate this issue, nearly all modern computers utilize a hard-
ware cache known as the Translation Lookaside Buffer (TLB). This cache stores
recently accessed address translations, accelerating the translation process to meet
the processor’s bandwidth requirements. The TLB exploits both temporal and spa-
tial locality within the instruction memory reference stream. The goal is to have all
active translations for instructions be present in the Instruction Translation Looka-
side Buffer (iTLB) when needed. This setup enables operations at close to proces-
sor speeds, effectively meeting the processor’s bandwidth demands.

Instruction streams often experience discontinuities in the sequential flow of in-
structions due to programming constructs such as if-then-else statements, loops,
and function calls. The address to fetch instructions from, following a discontinu-
ity, is not known during instruction fetch but is determined later in the instruction
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pipeline. Processors typically have tables to record these discontinuities and logic
to appropriately redirect the flow of instructions past future instances of these dis-
continuities, ensuring a sustained flow of instructions to the backend. A common
structure within the processor employed for this purpose is the Branch Target Buffer
(BTB). The goal is to have the BTB accommodate all active discontinuities, effec-
tively meeting the demands of the processor and ensuring a continuous instruction
supply to the backend.

The advent of cloud computing and the emergence of new server applications
[6, 13, 14, 21, 38, 40, 48, 76], along with modern software practices emphasizing
functionality, modularity, and portability [79], have led to the development of pro-
grams whose active instruction working sets overwhelm reasonably sized on-chip
L1is/iTLBs/BTBs. Failing to find instructions and closely related information such
as iTLB and BTB entries to efficiently fetch instructions causes fetch stalls, resulting
in pipeline bubbles and reduced instruction supply to the backend.

This problem necessitates the ability to move instructions and other closely re-
lated information required from the memory hierarchy (or secondary structures)
to the primary structures (L1i/iTLB/BTB) before the processor references them.
This would result in an improved instruction supply to the processor backend.

The last few decades have seen significant innovation in instruction prefetching
techniques [9, 14, 29, 30, 34, 39, 41, 42, 43, 44, 45, 62, 64, 75] that seek to tackle the
problem of instruction supply for applications with a large code footprint. These
techniques primarily aim to preload the L1i with blocks of code ahead of time.
Many of these techniques are closely integrated with the instruction fetching pro-
cess. Some leverage the logic used in instruction fetching to run ahead in the in-
struction stream, allowing them to tolerate the latency involved in fetching instruc-
tions from a lower-level cache. Other techniques are triggered by specific events
within the instruction fetch process to preload blocks into the L1i.

However, these techniques are inherently tied to the limitations of instruction
fetching logic. For instance, they depend on the accuracy of branch direction pre-
dictors and the Branch Target Buffer (BTB), making them vulnerable to branch
mispredictions and BTB misses. Additionally, these methods necessitate separate
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techniques to manage other critical structures involved in instruction supply, such
as the BTB [16, 18, 17] and the instruction Translation Lookaside Buffer (iTLB).

The actual instruction fetch process must accurately get past all the control in-
structions to identify the exact sequence of instructions to execute. However, the
problem we are addressing is how to supply the L1i, iTLB, and BTB with the neces-
sary blocks of instructions, iTLB entries, and BTB entries. This process can tolerate
some imprecision, making the determination of a precise instruction stream less
critical for this particular problem.

We pose the question: Can we create a representation of the program that remains
largely stable and facilitates resolving upcoming high-level control flow while determining
the blocks, iTLB entries, and BTB entries that the processor is likely to reference? To ad-
dress this, we turn to high-level control flow, specifically control flow at the call
graph level.

We observe that control flow at the call graph level is straightforward to capture
and remains relatively stable, as has also been observed by others [9]. This stability
facilitates the simple resolution of upcoming control flow without the need to ex-
ecute the actual instructions in the program. Furthermore, it enables an operation
separate from instruction fetch, allowing it to go past multiple program control
instructions in each step.

This dissertation presents a high-level sequencing mechanism that can sequence
the program at the callgraph level with near precision in many cases, accurately
identifying where the processor is likely to be and determining the blocks of in-
structions, iTLB entries, and BTB entries needed by the processor. This unified
scheme is used to supply the L1i, iTLB, and BTB in time for processing the req-
uisite instructions. This scheme constructs a shadow program representation that
remains largely unchanged to facilitate this process and does not require any ex-
ecution resources. Furthermore, this scheme operates independently of the logic
for fetching instructions. This technique uses identifiers validated by the processor
to ensure it stays on track. The precise identification of the upcoming high-level
control flow results in significant reductions in misses for all three key microarchi-
tectural structures, often approaching the performance of a perfect L1i, iTLB, and
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BTB, especially in cases where there are frequent misses in these structures with
more conventional approaches.

1.1 Contributions
This dissertation makes the following key contributions:

High-Level Control Flow Characteristics: We present observations to show
high-level control flow at the callgraph level is relatively stable and easy to capture
in practical-sized hardware tables for these applications. This can be leveraged
to run ahead in the instruction stream, identifying the blocks of instructions the
processor is likely to need.

Instruction Presending: Building on these observations, we present a microar-
chitectural technique Instruction Presending which can determine where the pro-
cessor is likely to be at a high-level and use this information to identify and proac-
tively move blocks of instructions that the processor is likely to need, independent
of the logic used by the processor to fetch instructions.

Presending for an iTLB/BTB: We present enhancements to Instruction Pre-
sending that can be used to move instruction TLB and BTB entries from secondary
structures to primary structures (iTLB/BTB).

1.2 Dissertation Outline
This dissertation is organized as follows:

Chapter 2 provides a detailed description and analysis of the benchmarks used
in this work. Additionally, it includes a comprehensive description of the experi-
mental infrastructure employed in this study.

Chapter 3 provides a detailed description of the prior work in the area and
presents a taxonomy of schemes used to prefetch blocks of instructions, BTB en-
tries, and iTLB entries. It explores the potential for a unified scheme based on
empirical observations and explains how it differs from existing techniques that



6

address the instruction supply problem. We observe that control flow at the call
graph level is relatively stable and can be maintained in reasonably sized tables.
Furthermore, we discuss some benefits of sequencing high-level control flow. This
leads to the key technique of Instruction Presending, which we present in the next
chapter.

Chapter 4 presents a comprehensive description of the Instruction Presending
technique. We provide a description of the different structures used by the tech-
nique, describe how they are constructed and how it operates to traverse high-level
control flow, identifying and moving blocks of instructions likely to be referenced
by the processor.

Chapter 5 presents a comprehensive evaluation of the Instruction Presending
technique. Here we evaluate the efficacy of the high-level sequencing, miss re-
ductions in the L1i and the reduced time waiting for instructions with Instruction
Presending. Further, we also evaluate different parts of the design trying to help
understand where the benefits are coming from. We observe that Instruction Pre-
sending achieves a very high accuracy in sequencing control flow at the call graph
level, resulting in performance close to that of a perfect L1i in many cases.

Chapter 6 details the enhancements necessary to presend iTLB entries and pro-
vides an evaluation of these enhancements, with a focus on miss reductions in the
iTLB. Similar to the L1i, Instruction Presending results in performance close to that
of a perfect iTLB in many cases, with these enhancements.

Chapter 7 details the enhancements necessary to presend BTB entries and pro-
vides an evaluation of these enhancements, with a focus on miss reductions in the
BTBs. Similar to the L1i and the iTLB, Instruction Presending results in perfor-
mance close to that of a perfect BTB in many cases, with these enhancements.

Chapter 8 presents concluding remarks, outlines directions for future work and
present some reflections.
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Chapter 2

Benchmarks and Experimental
Infrastructure

In this chapter, we provide a detailed description of the benchmarks used in this
dissertation. Following that, we present data to show the code referencing charac-
teristics of these benchmarks, which helps motivate our study of these benchmarks
for this work. Towards the end, we also provide a description of the simulation in-
frastructure used.

2.1 Benchmark Description
For this work, we utilized 100 server benchmark traces provided by Qualcomm
Datacenter Technologies, released following the Championship Value Prediction
(CVP) [2]. These traces enable the measurement of various statistics related to dif-
ferent parts of the CPU pipeline. Additionally, they include register and memory
dependencies, allowing for the simulation of an out-of-order core and the collec-
tion of performance metrics such as instructions per cycle. Unlike traces obtained
with Pin [50], these traces encompass system activity. However, the traces are
anonymized, meaning the actual workload is unknown, and some information,
such as addressing mode and exact opcodes, has been removed. Qualcomm used
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these traces to evaluate their CPUs for servers. These benchmark traces have been
employed in multiple papers on prefetching [11, 22, 63, 64] and in the Value Pre-
diction Championship [2] due to the large number of traces and their industry
origin.

2.2 Data Presentation
For all plots presented, the x-axis represents the various benchmark programs (en-
compassing all 100 benchmarks), while the y-axis represents the metric of interest.

Next, we present some of the characteristics of these benchmarks.
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Figure 2.1: Code Pages References

2.3 Code Footprint
Figure 2.1 presents the total number of 4KB code pages touched by all benchmarks.
The code footprint ranges from 0.8MB to 6.5MB, leading to frequent misses in a
reasonably sized L1 instruction cache (L1i), instruction TLB (iTLB), and branch
target buffer (BTB), which we quantify next.
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2.3.1 L1i MPKI and Miss Rates
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Figure 2.2: L1i (32KB) MPKI Breakdown

Figure 2.2 presents the L1i Misses Per Kilo Instructions (MPKI) for a 32KB L1i
with an associativity of 8 and a cache block size of 64B. We observe frequent misses,
with L1i MPKI ranging from 3 to 81. The figure also breaks down the misses into
cold, capacity, and conflict misses for all benchmarks [33]. The contribution from
cold misses is close to 0 for all benchmarks. Conflict misses account for a large frac-
tion of misses in benchmarks with smaller L1i MPKIs. In a few cases, the conflict
misses are negative (or we have anti-conflict misses) because using a fully asso-
ciative cache results in more misses compared to the set associative cache. This is
a well-known result when there is a "looping" access pattern [33, 71]. For most
benchmarks, especially those with larger L1i MPKIs, the majority of misses are
capacity misses. Given that most benchmarks have L1i MPKIs dominated by ca-
pacity misses, we next study the L1i MPKI for larger cache size.

Figure 2.3 presents the L1i MPKI, with the y-axis on a logarithmic scale, for
32KB, 64KB, and 128KB L1i caches across all benchmarks. The associativity is 8
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in all cases, and the cache block size is 64B. Many applications also experience
frequent misses with 64KB and 128KB instruction caches, with L1i MPKI reaching
as high as 62 and 53 for these cache sizes, respectively.
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Figure 2.5: L1i (64KB) MPKI Breakdown

Figure 2.4 presents the L1i miss rates for 32KB, 64KB, and 128KB L1i caches
across all benchmarks. The associativity is 8 in all cases, and the cache block size
is 64B. The L1i miss rates range from 3.5% to 67% for a 32KB instruction cache.
Many applications also experience frequent misses with 64KB and 128KB instruc-
tion caches, with L1i miss rates reaching as high as 52.2% and 41% for the two
cache sizes, respectively.

Finally, Figures 2.5 and 2.6 present the breakdown of misses into cold, capacity,
and conflict misses for both 64KB and 128KB caches, with an associativity of 8. We
observe that many benchmarks with non-trivial L1i MPKI remain dominated by
capacity misses, even with these larger L1is. Similar to what we saw earlier, the
negative conflict misses arise when a fully associative cache results in more misses
compared to a set associative cache.
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Figure 2.6: L1i (128KB) MPKI Breakdown

All these plots indicate frequent code movement from a lower-level cache to
the L1i for benchmarks with a large code footprint.

2.3.2 iTLB MPKI (64-entry and 128-entry)

Figure 2.7 presents the instruction TLB (iTLB) MPKI for a 64-entry iTLB with an
associativity of 4 and a base page size of 4KB. We observe frequent misses, with
iTLB MPKI ranging from 0.5 to 13. The figure also breaks down the misses into
cold, capacity, and conflict misses for all benchmarks. The contribution from cold
misses is close to 0 for all benchmarks. Conflict misses account for a large fraction
of misses in a few benchmarks. In a few cases, the conflict misses are negative,
similar to what we saw for the L1i. For most benchmarks, especially those with
larger iTLB MPKIs, the majority of misses are capacity misses. Given that most
benchmarks have iTLB MPKIs dominated by capacity misses, we next study the
iTLB MPKI for a larger iTLB.

Figure 2.8 presents the iTLB misses per kilo instructions (MPKI), with the y-
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Figure 2.7: iTLB (64-entry) MPKI Breakdown
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axis on a logarithmic scale, for both a 64-entry iTLB and a 128-entry instruction TLB
across all benchmarks.Many applications also experience frequent misses even
with a 128-entry instruction TLB.
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Figure 2.9: iTLB Miss Rate

Figure 2.9 presents the iTLB miss rates for both a 64-entry iTLB and a 128-entry
iTLB across all benchmarks. Miss rates range from 0.6% to 23%, for a 64-entry iTLB.
Many applications also have high miss rates with a 128-entry instruction TLB, with
miss rates as high as 14%.

Figure 2.10 presents a breakdown of misses into cold, capacity, and conflict
with a 128-entry TLB and an associativity of 4. Many benchmarks with a non-
trivial iTLB MPKIs continue to be dominated by capacity misses.

2.3.3 BTB MPKI

Figure 2.11 presents the BTB MPKI for a 512-entry BTB with an associativity of
8. We observe frequent misses, with BTB MPKI ranging from 2 to 60. The figure
also breaks down the misses into cold, capacity, and conflict misses for all bench-
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Figure 2.10: iTLB (128-entry) MPKI Breakdown
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marks. The contribution from cold misses is close to 0 for all benchmarks. Conflict
misses account for a large fraction of misses in a few benchmarks. For some of the
benchmarks, the conflict misses are negative, similar to what we saw for the L1i
and iTLB. For most benchmarks, especially those with larger BTB MPKIs, the ma-
jority of misses are capacity misses. Given that most benchmarks have BTB MPKIs
dominated by capacity misses, we next study the BTB MPKI a for larger BTB.
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Figure 2.12: BTB MPKI

Figure 2.12 presents the branch target buffer (BTB) misses per kilo instructions
(MPKI), with the y-axis on a logarithmic scale, for a 512-entry BTB, 1K-entry BTB
and a 2K-entry BTB across all benchmarks. The associativity of the BTB in all cases
is 8. Many applications also experience frequent misses with a 1K-entry and a
2K-entry BTB.

Figure 2.13 presents the BTB miss rates for a 512-entry, 1K-entry, and a 2K-entry
BTB across all benchmarks. Miss rates range from 1% to 41%, for a 512-entry BTB.
Many applications also have high miss rates with a 1K-entry BTB and a 2K-entry
BTB, with miss rates as high as 32% and 26% respectively.
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Figure 2.14: BTB (1K-entry) MPKI Breakdown
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Figure 2.15: BTB (2K-entry) MPKI Breakdown

Finally, Figures 2.14 and 2.15 present the breakdown of misses into cold, capac-
ity, and conflict misses for both 1K-entry and 2K-entry BTB, with an associativity
of 8. We observe that many benchmarks with non-trivial BTB MPKI remain dom-
inated by capacity misses, even with these larger BTB sizes.

2.4 Why study these Benchmarks?
These applications exhibit a large code footprint and experience frequent misses
in the key structures involved in the instruction fetch process, namely the iTLB,
BTB and L1i. Further, these misses persist even with relatively larger sized struc-
tures. Lastly, these applications have been used in multiple papers on instruction
prefetching [11, 22, 63, 64] to study the instruction supply problem. All these rea-
sons collectively make these applications well-suited for studying the instruction
supply problem, which is the main focus of this dissertation.
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2.5 Tabular Unified Presentation
While we presented all the data as plots to showcase trends more effectively, we
now present these metrics for all benchmarks in a table to provide the reader with
a comprehensive understanding of all benchmarks studied in this dissertation, as
shown in Table 2.1. The first three data columns quantify the L1i MPKI with a
32KB, 64KB, and 128KB L1i (all 8-way associative). The fourth and fifth data
columns quantify the iTLB MPKI with a 64-entry and a 128-entry iTLB (both 4-
way associative). The next three data columns quantify the BTB MPKI with 512,
1024, and 2048 entries (all 8-way associative).



20

MPKI
L1i iTLB BTB

App 32K 64K 128K 64 128 512 1K 2K
secret121 3.2 1.3 0.1 0.5 0.2 1.8 0.4 0.1
secret141 3.2 0.9 0.1 0.5 0.2 1.8 0.4 0.1
public9 3.2 1.7 1.3 0.6 0.3 2.1 1.5 1.1
secret100 3.2 1.0 0.2 0.5 0.2 1.8 0.4 0.1
secret103 3.3 1.1 0.1 0.5 0.2 1.9 0.4 0.1
public27 3.3 1.0 0.2 0.5 0.2 1.9 0.4 0.1
public30 3.4 1.4 0.2 0.5 0.2 2.0 0.4 0.1
public31 3.5 1.0 0.1 0.5 0.2 2.0 0.4 0.1
public29 3.6 1.3 0.2 0.5 0.2 2.0 0.4 0.1
public40 5.6 2.5 1.3 1.1 0.5 3.6 2.2 1.8
server001 9.9 4.1 2.8 2.0 0.6 4.6 2.6 1.9
secret132 10.1 4.0 3.0 2.1 0.7 4.8 2.8 2.0
secret137 10.2 4.5 3.1 2.1 0.7 4.8 2.8 2.1
public8 10.7 5.2 3.8 2.1 0.8 6.1 3.8 2.8
public57 12.8 8.2 6.7 3.7 1.8 9.6 6.9 5.7
server002 14.6 0.1 0.1 4.0 0.0 10.7 1.4 0.1
public11 16.0 13.7 11.3 2.5 1.9 11.5 9.7 7.8
public54 16.5 13.0 10.6 2.8 1.9 13.3 11.0 9.0
public1 16.8 13.9 11.6 2.6 1.8 11.7 9.7 7.8
server003 19.0 15.1 11.8 2.9 1.9 13.6 10.9 8.2
server004 20.3 16.2 13.5 3.2 2.3 14.2 11.3 9.2
public48 21.7 18.3 15.6 4.7 3.0 17.5 15.6 13.0
public49 21.8 18.4 15.7 4.7 3.0 17.5 15.6 12.9
secret128 22.4 19.1 15.7 3.5 2.6 15.4 12.8 10.3
server009 23.0 19.2 15.7 3.5 2.6 15.3 12.8 10.2
public55 23.3 18.7 15.1 4.0 2.8 18.5 15.4 12.8
public41 23.6 18.4 15.2 4.1 2.9 19.3 15.9 13.4
public51 24.0 20.0 17.7 4.2 3.1 18.8 16.6 15.1
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Table 2.1 continued from previous page
MPKI

L1i iTLB BTB
App 32K 64K 128K 64 128 512 1K 2K
server010 24.2 20.5 16.9 3.7 2.7 16.1 13.5 10.9
public68 24.3 20.3 16.3 3.6 2.6 16.4 13.6 10.4
server011 24.8 20.8 17.3 3.7 2.7 16.6 13.9 11.1
secret111 25.3 20.9 16.5 3.9 2.8 16.4 13.3 9.8
secret131 25.3 20.8 16.6 3.9 2.8 16.3 13.3 9.8
public67 25.5 20.9 16.1 3.9 2.8 17.0 13.6 9.8
public6 25.6 21.1 16.6 3.9 2.8 16.9 13.8 10.0
public7 25.6 21.5 17.5 4.0 3.0 17.5 14.6 11.2
public3 25.6 21.5 17.0 3.8 2.8 17.1 14.0 10.5
public65 25.7 21.1 16.6 3.9 2.7 17.0 13.6 9.9
public66 25.7 21.2 16.5 3.9 2.9 17.0 13.8 10.0
server012 25.8 21.5 17.8 4.0 2.9 17.2 14.3 11.4
public46 25.8 22.1 18.7 5.9 3.7 20.1 18.2 14.7
public10 25.8 21.8 18.1 3.9 2.9 17.5 14.8 11.9
public69 26.0 20.8 16.9 4.0 2.8 17.6 14.1 11.3
secret105 26.0 21.7 16.9 3.9 2.7 16.7 13.4 9.7
public4 26.0 21.6 16.8 3.9 2.7 17.0 13.7 9.9
public2 26.1 21.6 17.0 3.8 2.8 17.2 14.1 10.5
secret120 26.1 21.7 16.9 3.9 2.7 16.6 13.5 9.8
public50 26.1 21.7 19.3 4.6 3.4 20.4 18.1 16.6
public64 26.1 21.7 17.0 3.9 2.7 17.1 13.9 10.1
secret133 26.2 21.7 16.8 3.8 2.7 16.7 13.6 10.1
public62 26.2 21.6 17.1 3.8 2.8 17.2 14.1 10.6
public63 26.2 21.9 17.3 3.8 2.8 17.2 14.1 10.6
public5 26.3 21.5 16.8 3.9 2.7 17.2 13.9 10.1
public47 26.4 22.7 19.2 6.1 3.7 20.7 18.7 15.1
public0 26.6 22.4 18.7 3.9 2.9 17.8 15.1 12.1
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Table 2.1 continued from previous page
MPKI

L1i iTLB BTB
App 32K 64K 128K 64 128 512 1K 2K
public61 26.6 22.2 18.4 4.0 2.9 18.0 14.9 12.1
secret12 26.7 22.3 18.6 4.1 3.0 17.8 14.9 12.2
public60 26.8 22.8 18.9 4.0 2.9 18.0 15.2 12.3
server013 26.8 22.7 19.0 4.0 2.9 17.7 14.9 12.2
server014 28.8 0.2 0.1 6.6 0.3 14.2 1.4 0.1
server015 29.1 0.1 0.1 6.6 0.3 14.1 1.4 0.1
public53 33.2 26.7 23.5 6.1 4.2 26.4 22.0 19.7
server016 36.6 33.2 27.6 6.5 5.0 29.7 28.1 22.7
server017 43.2 16.1 4.5 7.0 2.3 24.1 4.9 0.3
server018 43.4 15.6 1.1 7.0 2.3 24.1 4.9 0.3
server019 44.4 13.5 0.8 7.1 2.3 24.4 5.0 0.3
public52 44.6 37.1 32.2 8.1 5.9 34.6 29.9 26.2
public34 45.6 11.8 1.2 7.6 2.5 26.8 5.3 0.3
server020 46.0 18.7 1.5 7.4 2.4 25.4 5.2 0.3
public39 46.9 15.2 0.6 7.6 2.5 26.7 5.3 0.3
public76 46.9 12.8 1.0 7.6 2.5 26.7 5.4 0.4
public38 47.1 14.4 0.7 7.6 2.5 26.5 5.3 0.4
secret10 47.2 12.4 0.6 7.6 2.5 26.1 5.3 0.3
public36 47.3 12.2 0.8 7.6 2.5 26.5 5.3 0.3
server021 47.3 14.5 0.7 7.6 2.5 26.0 5.2 0.3
public75 48.1 15.2 1.4 7.6 2.5 26.6 5.3 0.3
public33 48.3 13.3 1.2 7.6 2.5 26.7 5.3 0.3
public37 48.3 15.8 0.8 7.6 2.5 26.8 5.6 0.4
server022 48.4 13.6 1.3 7.6 2.5 26.2 5.3 0.3
public35 48.6 14.2 0.9 7.6 2.5 26.9 5.6 0.4
server023 48.7 44.2 36.6 8.7 6.7 39.6 37.4 30.0
server024 49.7 44.9 36.8 8.8 6.8 40.4 38.3 31.0
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Table 2.1 continued from previous page
MPKI

L1i iTLB BTB
App 32K 64K 128K 64 128 512 1K 2K
server025 51.6 47.0 39.9 9.3 7.3 41.2 39.4 32.7
server026 54.4 49.7 42.3 9.7 7.6 43.7 41.8 34.7
server027 54.6 49.7 43.1 9.8 7.7 43.7 41.7 34.6
server028 56.8 51.7 42.5 10.6 8.3 44.9 42.8 34.2
server029 57.3 52.1 44.1 10.7 8.3 45.3 43.3 34.7
server030 58.4 53.6 45.6 10.8 8.5 45.9 44.2 35.8
server031 59.4 53.9 46.5 11.0 8.6 46.7 44.6 35.7
secret113 60.0 54.6 46.6 11.0 8.6 47.3 45.1 36.2
server032 62.9 58.2 49.9 11.7 9.2 49.1 47.4 37.9
public44 63.8 56.9 50.3 12.7 9.0 50.6 47.3 37.6
server033 64.9 59.9 36.7 10.0 7.5 51.3 47.9 20.6
server034 65.1 60.5 32.2 10.0 7.5 51.4 48.2 21.1
server035 66.6 61.3 32.4 10.1 7.5 51.7 48.0 19.8
public45 68.2 60.8 52.8 13.5 9.6 54.1 50.6 39.8
server036 74.8 26.5 5.2 9.5 2.8 44.8 9.7 0.1
server037 80.0 53.6 5.8 12.5 7.0 57.5 25.7 2.6
server038 80.1 54.7 5.6 12.6 7.1 58.0 25.9 2.7
server039 80.8 50.3 12.8 10.7 5.3 59.0 24.1 1.2

Table 2.1: Cumulative Benchmark Characteristics

2.6 Simulation Infrastructure
For all simulations run to gather the results presented in this thesis, we have used
the ChampSim simulator [1, 31].

ChampSim is a trace-driven simulation infrastructure widely used for studying
similar problems, allowing easier replication of the work and facilitating compar-
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isons with other studies conducted using ChampSim. Additionally, the commer-
cial traces released by Qualcomm are ChampSim compatible, making ChampSim
an apt choice for studying these applications.

ChampSim models a decoupled in-order front end and an out-of-order back
end. It includes a detailed memory hierarchy with an L1i, L1 data cache, L2 cache,
and a last-level cache, common to many general-purpose processors. It also mod-
els a TLB hierarchy and a variable-latency page walk. Trace files contain only
virtual addresses, and ChampSim simulates arbitrary mappings from virtual to
physical pages.

ChampSim features a configuration file that allows it to model various microar-
chitectures. This configuration file specifies many aspects of the CPU, such as fetch,
decode, execution, and retire widths, as well as the latency for different compo-
nents. The configuration file also allows for specifying the memory hierarchy con-
figuration, including cache sizes, associativity, and latency.

For the microarchitectural technique presented in this thesis, modifications are
made on top of the existing decoupled in-order front end. Most changes are im-
plemented as part of a separate instruction prefetching module, with a few modi-
fications to the cache and out-of-order (OOO) core modules.

Detailed simulator configurations are presented before the evaluation of both
microarchitectural techniques.

2.7 Conclusions
This chapter presented the characteristics of the benchmarks studied in this disser-
tation. We provided data to quantify the code footprint and its impact on various
microarchitectural structures, including the L1i, iTLB, and BTB. This was followed
by a description of ChampSim, the simulation infrastructure used for all evalua-
tions in this dissertation.
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Chapter 3

Instruction Supply Problem

In this chapter, we first present a detailed treatment of handling non-sequential
control flow, which we briefly introduced in Chapter 1. This aspect is crucial to
effective instruction supply. By understanding how non-sequential control flow
is managed, we can appreciate much of the prior work that is coupled with these
components. Next, we quantify the magnitude of the large code footprint prob-
lem. Following this, we introduce a taxonomy for schemes that prefetch blocks of
instructions into the L1i and describe many of these schemes. Similarly, we present
a taxonomy of schemes to manage a BTB. We also briefly describe iTLB manage-
ment schemes. Finally, we provide an empirical potential for a unified scheme that
can supply many key structures involved in instruction supply, decoupled from the
logic for fetching instructions.

3.1 Handling Program Non-Sequential Control Flow
Common program constructs such as loops, if-then-else, and procedure calling
make control instructions inevitable in programs for controlling the flow of in-
structions. Control instructions redirect the flow of instructions during program
execution, resulting in a non-sequential flow of instructions. Five main classes of
control instructions result in non-sequential control flow, which we describe below.
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• Conditional Branches - These instructions test a condition to decide whether
the branch is fall-through or taken. It requires both the condition and the tar-
get address before the branch can take place. The taken target address is typ-
ically computed by adding an offset to the address of the branch instruction
and the fall-through address is the next sequential address in the instruction
stream.

• Unconditional Direct Jumps and Direct Calls - These instructions, as the
name suggests unconditionally jump to the target address which is computed
by adding an offset to the address of the jump or call instruction (similar to
the taken address for a conditional branch).

• Unconditional Indirect Jumps and Indirect Calls - These instructions un-
conditionally jump to a target whose address is specified by a value gener-
ated by an earlier instruction that is typically stored in a register.

• Returns - These instructions jump to the return address of its corresponding
subroutine call.

• Traps - These instructions unconditionally jump to the address of an operat-
ing system call handler. Further, these instructions require that all preceding
instructions are complete before their execution, so no instructions follow-
ing such instructions can execute speculatively. This mechanism ensures the
system call is handled correctly and the program state remains consistent.

Control instructions give rise to a Control Flow Graph (CFG)[8, 55], where
nodes represent sequential segments of the program, each constituting a basic
block with a single entry and exit point. Edges in this graph signify control flow
transfers. Program execution involves traversing this CFG, where the path taken
is determined by the outcomes of control instructions, including conditions and
targets of the control instructions.

A naive handling of control instructions indicates a problem - outcomes of con-
ditional branches and targets of control instructions are not known immediately
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after the control instruction is fetched. This causes the stalling of the processor
until the control instruction is decoded/executed which starts to affect the flow of
instructions to the backend.

Modern processors incorporate specific mechanisms to address this issue and
maintain a continuous flow of instructions to the backend. The fundamental ap-
proach involves leveraging run-time trained data structures designed to predict
program control flow transfers by traversing the program’s control flow graph.

• Direction Predictors [36, 52, 67, 70, 78, 84] - These tables utilize control flow
history to predict the outcome of conditional branches, determining the path
taken by the branch.

• Branch Target Buffers (BTB) [85] - These tables store the target addresses
of previous instances of the control instructions, encompassing both condi-
tional branches and unconditional jumps or calls. Entries in the BTB are iden-
tified by the addresses of the respective control instructions.

• Return Address Stack (RAS) [85] - This hardware stack is employed to effi-
ciently retrieve the return address of a subroutine call for return instructions.

Figure 3.1 illustrates the logic for determining the next instruction (Program
Counter or the PC) to fetch, which we explain next. When a conditional branch
instruction is fetched, the Branch Target Buffer (BTB) is accessed to retrieve the
target address, while the direction predictor is consulted to predict whether the
branch will be taken or will fall through. For an unconditional jump, the direction
predictor is not needed, and the BTB provides the target address directly upon
fetching the instruction. In the case of a return instruction, the direction predictor
is again not needed, and the Return Address Stack (RAS) is accessed to retrieve
the target address. Following a non-control instruction, the fetching of instructions
continues sequentially from the next instruction address (PC+4).

Putting it together, when a control instruction is fetched, the Branch Target
Buffer (BTB), Direction Predictor, and Return Address Stack (RAS) are accessed
using the instruction’s address (and branch history for direction predictors). The
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Figure 3.1: PC Determination Logic

target address retrieved from the BTB or RAS is then utilized to appropriately redi-
rect the instruction flow in the subsequent cycle, ensuring a continuous stream
of instructions to the backend of the machine. Achieving the correct flow of in-
structions requires high accuracy in all these components. This process constitutes
the fundamental logic underlying the determination of the next Program Counter
(PC).

3.2 Large Code Footprint Problem
The rise of cloud computing and the emergence of numerous new commercial
applications [6, 13, 14, 21, 38, 40, 48, 76] have started to overwhelm the structures
shown in Figure 3.1 (especially the BTB), as well as the L1i and the iTLB. Programs
now often have active instruction working sets that exceed the capacity of these on-
chip primary structures.
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Larger instruction working sets result in frequent movement of instructions and
related information between secondary and primary caches, leading to increased
fetch latencies when instructions or iTLB entries are not found in the L1i or iTLB.
These delays cause cycles where the processor cannot fetch instructions, resulting
in pipeline bubbles. Similarly, a larger instruction working set leads to frequent
BTB misses, creating pipeline bubbles due to the inability to fetch instructions past
discontinuities. These pipeline bubbles significantly reduce instruction through-
put and overall performance, which is particularly critical as processors fetch and
issue multiple instructions per cycle. Studies indicate that instruction delays can
contribute to 25-40% of the total execution time [32].

Next, we present some data to quantify the frequent movement for the commer-
cial applications we study in this dissertation. We first describe the magnitude of
the problem and then describe some implications.

3.2.1 Frequent Code Movement for the L1i

When an instruction fetch cannot be satisfied by the L1i, the request is handled by
a lower-level cache (L2 cache) in the memory hierarchy. The frequency of cache
misses is typically quantified using MPKI (Misses Per Kilo Instruction), which
provides insight into the extent of data movement from lower-level to higher-level
caches.

However, in the context of multi-issue processors where multiple instructions
are fetched per cycle, and considering that processor implementations may buffer
cache block contents until transitioning to fetch from another block, a more com-
prehensive metric is useful. Therefore, we introduce another metric known as
Misses Per Kilo Accesses (MPKA). MPKA measures the misses per thousand L1i
accesses and serves as a metric to understand how frequently a lower-level cache
is involved in an L1i access. This metric helps to better quantify and comprehend
the magnitude of the problem.

Figure 3.2 plots the L1i MPKI for a 32KB L1i, 6-wide fetch and 4-wide issue
(note the log scale on the y-axis) for all the benchmarks considered. MPKIs vary
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from 3.2 to 80. L1i accesses used to quantify MPKA are counted based on effective
block transitions or references to different blocks; consecutive accesses to the same
block are combined into a single access. MPKAs are almost an order of magni-
tude higher for all benchmarks, because every access to the L1i fetches multiple
instructions from a block before transitioning to fetch instructions from another
block. The average MPKA for the benchmarks considered is 190, that is almost ev-
ery 1 in 5 L1i accesses involves a lower-level cache access. For some benchmarks,
the MPKAs are more than 500 (more than 1 in every 2 L1i accesses involve a lower-
level cache). This data indicates that for the applications considered, there is a very
frequent movement of cache blocks from the lower-level cache to the upper-level
cache.

Figure 3.3 considers the L1i MPKA for these benchmarks for a 32KB and a
128KB L1i. We observe that even with a 64KB L1i and a 128KB L1i, for many of
the benchmarks considered, the larger MPKA persists, continuing to frequently
involve a lower-level cache.

0 20 40 60 80
Server Benchmarks

101

102

103

104

BT
B 

M
PK

I/M
PK

A

MPKA
MPKI

Figure 3.4: BTB MPKI/MPKA
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3.2.2 Frequent Misses for the L1 BTB

Figure 3.4 examines BTB misses for a 512-entry BTB (note the log scale on the y-
axis), which is a reasonably sized L1 BTB. We observe that a 512-entry BTB experi-
ences frequent misses for many of the applications considered, with the BTB MPKI
ranging from 1 to 59. Similar to the L1i analysis, we also quantify the frequency of
BTB misses as a fraction of BTB accesses using the MPKA metric. BTB MPKA is as
high as 300-400 for some of the benchmarks considered, indicating that as high as
1 in 2-3 BTB accesses results in a miss.

Figure 3.5 considers the BTB MPKA for these benchmarks for a 512-entry, 1K-
entry and a 2K-entry BTB. We observe that even with bigger BTBs, for many of the
benchmarks considered, the larger MPKA persists, continuing to frequently result
in fetch stalls.
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3.2.3 Frequent PTE Movement for the iTLB

A reasonably sized iTLB often fails to accommodate the active page table entries
(PTEs) required by applications with larger code footprints, as we shall demon-
strate. The canonical metric used to quantify the magnitude of iTLB misses is
Misses Per Kilo Instructions (MPKI). We introduce an additional metric, Misses
Per Page Transition (MPKP), which measures the misses occurring per kilo page
transitions. A page transition counts the number of times the processor switches
from processing instructions from one page to another. This metric is analogous
to MPKA for blocks and helps account for processor implementations that buffer
the contents of an instruction TLB entry until the processor transitions to fetching
instructions from a different page.

We investigate the movement of instruction TLB entries from a lower-level TLB
to a higher-level TLB (iTLB). This analysis is conducted for a 64-entry iTLB with
a base page size of 4KB, as illustrated in Figure 3.6 (note the log scale on the y-
axis). The iTLB MPKIs range from 0.5 to 13. Although the MPKIs are smaller
compared to those of an L1i due to the larger granularity of operation, they remain
substantial for a TLB. The MPKP is relatively high for many benchmarks, exceeding
100 (indicating that over 1 in 10 accesses involve the lower-level TLB) for these
benchmarks, nearly an order of magnitude higher than the MPKIs. The large code
footprint leads to frequent misses and the movement of instruction TLB entries.

Figure 3.7 examines the MPKP for both a 64-entry and a 128-entry iTLB. We
observe that numerous applications continue to exhibit a high MPKP even with a
128-entry TLB size.

3.2.4 Impact of Large Code Footprint

All of this data collectively suggest that many of these applications frequently miss
in the primary structures and involve a secondary structure during instruction
fetch, even with relatively larger-sized primary structures.

A very large Branch Target Buffer (BTB) combined with an effective and large
branch direction predictor significantly enhances the precise traversal of an appli-
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cation’s control flow graph, thereby establishing an accurate instruction reference
stream. Similarly, a large instruction cache or iTLB ensures the timely delivery of
necessary instructions to the backend of the processor. However, the use of very
large primary structures is generally impractical due to design complexity, energy
consumption, and clock-cycle constraints.

This issue requires mechanisms to ensure that instructions and the associated
information needed for processing are accessed from the memory hierarchy or
secondary structures and moved to the primary structures before the processor
requires them. The objective is to eliminate pipeline stalls caused by misses in
primary structures. Key advancements in this domain can be broadly classified
into three categories:

• Instruction Prefetching (code blocks) schemes, which involve techniques
to preload blocks of instructions in the L1i based on predicted future accesses
to minimize fetch latency and reduce associated bubbles in the pipeline. We
discuss many such techniques in detail in Section 3.3.

• BTB Management Techniques which involve managing BTBs to ensure that
they have the information necessary to correctly fetch instructions without
stalling frequently. We discuss many such techniques in Section 3.4.

• Instruction Translation Lookaside Buffer (iTLB) Management Schemes,
which encompass techniques for preloading address translations into the
iTLB. These techniques aim to reduce instruction fetch translation latencies
and reduce associated pipeline bubbles. A comprehensive analysis of these
methodologies is provided in Section 3.5.

We describe each of these in detail next.

3.3 Instruction Prefetching of Code Blocks
Ensuring that blocks of instructions are loaded in the L1i in a timely manner is
crucial for effective instruction fetching and minimizing pipeline bubbles. All in-
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struction prefetchers aim to cover as many misses as possible, maximizing the miss
coverage. In this process, they often trade off between two key metrics: block sup-
ply accuracy and timeliness, which we define next.

3.3.1 Key terms

• Block supply accuracy refers to the percentage of instruction code blocks
supplied to the L1i that are referenced by the processor before the block is
evicted from the cache.

• Timeliness refers to the scheme’s capability to fully tolerate the latency as-
sociated with fetching instructions from a lower-level cache, minimizing the
time spent waiting for an instruction.

3.3.2 Software Techniques

There have been various software prefetching techniques that typically involve
profiling and instrumentation of programs. We briefly describe some of these
techniques below, though we primarily focus on a detailed discussion of hardware-
based (microarchitectural) solutions in this dissertation.

The use of helper threads, as seen in works like [77, 87], attempts to create
compressed representations of a program and use idle cores or contexts to execute
these representations. This method accelerates the main thread by precomputing
branch outcomes and prefetching missing data blocks. The use of helper threads
has also been explored for prefetching code blocks [4]. Such techniques require
execution resources, such as extra hardware contexts, to execute these threads.

Other techniques [14, 37, 41, 49, 51, 83] involve the compiler to insert instruc-
tion prefetch instructions, which requires the compiler to have profile informa-
tion. Additionally, these methods require ISA changes to include special instruc-
tion prefetch instructions. The execution of these inserted instructions takes up
additional fetch and dispatch slots.
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3.3.3 HW Prefetch Taxonomy Overview
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Figure 3.8: HW Prefetch Taxonomy

We first introduce a taxonomy, borrowed and expanded from [29, 64], to clas-
sify instruction prefetchers based on their operation, as shown in Figure 3.8.

The first group attempts to explicitly traverse the program’s control flow graph
to prefetch blocks along the predicted path. Some schemes in this group aim to
accurately predict the outcome of every control instruction to determine the up-
coming control flow. The key example is Fetch Directed Instruction Prefetching
[62]. Other schemes in this group attempt to uncover upcoming control flow at a
higher level, such as Callgraph Prefetching [9].

The second group attempts to capture correlations between microarchitec-
tural events and cache misses and use these learned correlations to prefetch blocks
that are likely to miss. A key parameter associated with such schemes is the looka-
head parameter, which we describe in greater detail in Section 3.3.5. Some exam-
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ples in this group include Return Directed Instruction Prefetching (RDIP) [43] and
Entangling Prefetching [63].

We next describe each of these groups in greater detail.

3.3.4 Group 1

Fetch Directed Instruction Prefetching (FDIP)

First, we describe schemes that rely on accurately determining the outcome of ev-
ery control instruction in the program, the main example being Fetch Directed In-
struction Prefetching (FDIP) [35, 62] and its predecessors [24]. These prefetchers
utilize the program counter (PC) determination logic, using the branch direction
prediction, Branch Target Buffer (BTB), and Return Address Stack (RAS), to es-
tablish a precise instruction reference stream. This stream guides the fetching of
required instruction blocks from memory. FDIP decouples these two components
via a Fetch Target Queue (FTQ), allowing the PC determination logic (next instruc-
tion) to run ahead, thereby tolerating the latency of fetching instruction blocks
from a lower-level cache. This approach typically requires large BTBs and accurate
branch predictors to establish an effective instruction reference stream for effective
prefetching.

Redirects refer to events where the instruction fetching logic (PC determina-
tion logic) goes down an incorrect path due to branch direction misprediction,
BTB miss, or a RAS mispredict. More generally, for a scheme sequencing program
control flow, a redirect occurs when the scheme incorrectly sequences the program
control flow, resulting in the re-steering of the sequencing process along the cor-
rect path. In the case of FDIP, redirects lead to flushing the FTQ and restarting
the PC determination logic from the target of the mispredicted or missed control
instruction.

Sequencing Accuracy - For a scheme traversing program control flow, sequenc-
ing accuracy is the ability to sequence the program control flow without being
redirected. The lower the number of redirects, the higher the sequencing accu-
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racy. High sequencing accuracy implies that the scheme can stay on track most of
the time.

Block Supply Accuracy for FDIP is closely tied to its sequencing accuracy,
which has significantly improved through the adoption of designs featuring large
BTBs and highly accurate branch direction predictors. These advancements col-
lectively enable the precise discovery of instruction streams and high block supply
accuracy, as demonstrated in recent studies [35].

Timeliness for FDIP is tied to its ability to maintain sufficient decoupling from
the instruction fetching process, allowing it to tolerate the latency of fetching in-
struction blocks from a lower-level cache. Redirects cause FDIP to slow down be-
cause they result in flushing the FTQ and restarting the PC determination logic
from the target of the mispredicted or missed control instruction. In the absence
of redirects, FDIP with sufficient decoupling can stay sufficiently ahead and ensure
a more timely delivery of instructions.

Callgraph Prefetching (CGP)

F0(){
…..
F1();
….
…
F3();
….
F5()
….
return
}

F3(){
…..
…..
F4();
….
return;
}

F1(){
…..
…..
F2();
….
return;
}

F2(){
…..
…..
return;
}

F4(){
…..
…..
return;
}

F5(){
…..
…..
return;
}

Figure 3.9: Program for Callgraph Construction

Next, we describe a scheme that traverses high-level control flow in a limited
manner. Callgraph Prefetching (CGP) [9] is a technique that seeks to traverse pro-
gram control flow at the call graph level. The key insight behind this proposal is
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Figure 3.10: Call Graph History Table

that most functions have relatively stable call sequences. For example, if function
A calls functions B and C, this sequence of function calls is likely to remain stable
across multiple invocations of function A. CGP exploits this insight by capturing
these call sequences for the different functions in the program and using this pro-
gram representation.

Consider the example shown in Figure 3.9, where we have six functions: F0
through F5. Function F0 calls F1, F2, and F3. Function F1 calls F2. Function F3
calls F4. Functions F2, F4, and F5 do not make any function calls. During the
program’s execution, the processor learns the Call Graph History Table (CGHT)
as illustrated in Figure 3.10.

Figure 3.10 shows the learned callsequences for the different functions. The
call sequence for function F0 includes the addresses of functions F1, F3, and F5.
The call sequence for function F1 contains only the address of function F2. The
call sequence for function F3 includes the address of function F4. Functions F2, F4,
and F5 do not have entries as they do not make any function calls.

When the processor starts fetching instructions for a function, the idea is to
use the learned call sequence to prefetch code blocks for the next function to be
processed. For functions that call multiple other functions (such as F0 in Figure
3.10), CGP uses the processor’s Return Address Stack (RAS) to maintain state,
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ensuring it knows which function to prefetch when the processor returns to the
calling function.

Block Supply Accuracy for CGP is closely tied to the accuracy in correctly pre-
dicting the next function. It slightly underperforms compared to a scheme like
FDIP because it traverses high-level control flow without accurately predicting the
outcome of every control instruction, resulting in the movement of extra blocks.
CGP prefetches only a fixed number of contiguous blocks following the function
to prefetch, in order to limit the excess supply of blocks.

Timeliness of CGP is superior to FDIP because it can bypass multiple control
instructions when sequencing high-level control flow. However, CGP’s timeliness
is constrained by its ability to prefetch only parts of the next function to be called
and its tight coupling to the structures used for fetching instructions, particularly
the Return Address Stack (RAS). Although this aspect has potential for enhance-
ment, it is not explored by the authors in this work.

Both FDIP and CGP are tied to the logic involved in fetching instructions. We
next describe this coupling in more detail.

Coupling to Instruction Fetch Logic

Redirects within the instruction fetching logic are crucial to FDIP’s performance.
Although CGP creates a program representation independent of the logic used
for fetching instructions, its operation is closely tied to this logic. Consequently,
frequent redirects within the instruction fetching logic hinder the performance of
both FDIP and CGP.

Sources of redirects within instruction fetching logic include:

• Branch direction mispredicts

• BTB misses

• RAS mispredicts

The magnitude of RAS mispredicts is much smaller, so we focus on the first two
sources. We use the metric Redirects Per Kilo Instructions (Redirects per KI) to quan-
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Figure 3.11: Redirects from Branch Direction Prediction

tify the frequency of redirects. Figure 3.11 quantifies the Redirects per KI due to
branch direction mispredicts alone, using a well-performing direction predictor.
Direction predictors predict the path taken by a conditional branch, and a mispre-
diction occurs when the prediction does not match the actual outcome, which is
known after the branch has executed. The redirects are mostly in the lower single
digits, and for some benchmarks, slightly over ten. Figure 3.12 quantifies the total
Redirects per KI for different BTB sizes. We observe that Redirects per KI with a
512-entry BTB are over 20 for many benchmarks. Increasing the BTB size to 2K en-
tries significantly reduces the redirects for some benchmarks, and increasing the
size to 8K entries reduces them further, bringing the redirects down by an order of
magnitude, close to the level of an infinite BTB in most cases. The redirects with
an infinite BTB are the same as what we observed in Figure 3.11, primarily result-
ing from direction mispredicts. This suggests that completely relying on the next
PC determination logic to uncover upcoming control flow is likely to require large
BTBs (or separate BTB management) to cope with the growing application code
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Figure 3.12: Redirects (Varying BTB Size)

footprint.
It is therefore not surprising that modern implementations have moved to us-

ing significantly larger BTBs. The Zen5 microarchitecture [3], for example, has a
large 16K-entry BTB. Realizing such large BTBs is challenging, as processors rely
on making one or more branch predictions every cycle to facilitate the creation of
large instruction windows. Processor designers typically address this challenge
by pipelining the BTB.

Many implementations also employ a smaller BTB (which is accessed in one
cycle) corrected by a larger BTB that takes multiple cycles to access (2-3 cycles)
[5, 66]. Both these BTBs are accessed in parallel. Having a large BTB that is ac-
cessed every cycle (or every other cycle) is likely to result in increased energy con-
sumption, in addition to the design complexity it brings. One example of such a
design is the Samsung M3 [66], which employs a 128-entry micro BTB corrected by
a 4K-entry primary BTB. It also uses a 16K-entry secondary BTB. Another example
is the Arm Neoverse N2 [60], which employs a 64-entry nano BTB corrected by an
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8K-entry primary BTB.
An infinite BTB, a perfect direction predictor, and infinite bandwidth PC de-

termination logic would enable FDIP, with adequate decoupling, to ensure timely
delivery of blocks to the L1i and instructions to the backend of the machine. How-
ever, real implementations are more constrained, and these constraints result in
increased redirects within the processor frontend. This limits FDIP’s ability to
advance further in the instruction stream, thereby limiting the timely delivery of
blocks to the L1i. The requirement to accurately go past every control instruction
in the program is challenging in the presence of direction mispredicts and BTB
misses.

CGP captures a high-level program representation, eliminating the need to ac-
curately determine the outcome of every control instruction in the program. How-
ever, the operational design of CGP limits its effectiveness by tying it to the lim-
itations of the instruction fetching logic. Fundamentally, CGP’s operation does
not need to be tied to the logic used for fetching instructions. It could use a sep-
arate return address stack to traverse the call graph, remaining decoupled from
the instruction fetching logic. Additionally, CGP could be enhanced to supply dis-
contiguous blocks within functions, thereby improving the supply of blocks to the
processor.

3.3.5 Group 2

Next, we describe the second group of prefetchers that seek to capture correlations
between microarchitectural events and cache misses and use this information to
facilitate prefetches. The learned correlations are used to trigger the prefetching
of blocks.

Block Supply Accuracy is the metric that these schemes often compromise
compared to Group 1 prefetchers. These prefetchers try to more aggressively get
ahead in the instruction stream using correlations and eagerly move cache blocks
to maintain timeliness.

Timeliness is the key metric optimized by these schemes to outperform Group
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1 prefetchers. The motivation is to go past multiple control instructions in one step
and get ahead in the instruction stream using established correlations with earlier
microarchitectural events.

Lookahead refers to the distance a scheme keeps ahead of the processor. This
distance can be measured in various units, such as cache blocks, basic blocks, or
other parameters specific to the scheme. It is a key metric for these prefetchers,
comparable to sequencing accuracy in Group 1 prefetchers, as the schemes in this
group strive to maintain higher timeliness

For example, a scheme might use basic blocks as triggers to initiate the prefetch-
ing of blocks. If it links basic blocks to cache blocks accessed five dynamic basic
blocks later, then the scheme effectively maintains a lookahead of five basic blocks.
Prominent examples include [4, 10, 30, 34, 43, 59, 64, 69, 74, 75, 86], which use dif-
ferent events to capture correlations. Most schemes in this group employ a fixed
(rigid) lookahead, which we describe first. However, the state-of-the-art scheme
in this group [64] employs a more fluid lookahead to ensure even more timely
prefetching of blocks, which we describe later. This is not to say that other schemes
cannot have a fluid lookahead; rather, it was a key contribution of [64].

Rigid Lookahead Schemes

One-block lookahead [69] starts to prefetch block B+1 when block B experiences a
miss, with the miss to block B being the event triggering the prefetch of block B+1.
Selective Next-4 line prefetching [10] continues to be triggered by cache misses and
selectively prefetches blocks B+1, B+2, B+3, and B+4 when block B experiences a
cache miss.

Branch History Guided Prefetching (BHGP) [75] is a scheme where the key idea
is to establish a correlation between the missed basic block and the execution of
an earlier conditional branch, keeping a static number of branches ahead. Es-
tablishing such correlations also allows the scheme to go past multiple branches
to prefetch. When executing a branch, the table is looked up to trigger a timely
prefetch of cache blocks corresponding to the appropriate basic block.
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Temporal Instruction Fetch Streaming (TIFS) [29] is another proposal to prefetch
temporally correlated instruction miss streams from a lower-level cache. Most
misses are part of recurring streams. The key idea is to record and replay repeat-
ing streams of misses. TIFS records such streams and uses access to a block in the
stream to trigger a prefetch of the subsequent block, maintaining a fixed number
of misses ahead in the stream. Any deviation results in prefetching from a new
stream. TIFS establishes correlations among missing blocks and uses these corre-
lations to drive the prefetching of blocks.

Proactive Instruction Fetch (PIF) [30] is an extension of TIFS designed to reduce
the storage requirements of TIFS by using bit vectors to encode blocks in a re-
gion. Additionally, PIF employs temporal compaction to avoid storing the same
addresses repeatedly in the presence of constructs such as loops. PIF records the
committed instruction sequence and can tolerate disruptions from wrong-path ex-
ecution.

Return Address Stack Directed Instruction Prefetching (RDIP) [43] is a more recent
prefetching technique that associates prefetch operations with signatures derived
from the contents of a Return Address Stack (RAS). We describe this technique in
detail next.

RAS
Top of
Stack HASH 

CURRENT
SIGNATURE

PREV 
SIGNATURE
(SIG1)

SIGNATURE MISSES

SIG1

Block Misses: B1,B2

B1,B2

MISS TABLE

Figure 3.13: RDIP Datastructures

As shown in Figure 3.13, RDIP generates a hash of the first n (typically 2-4) en-
tries of the return address stack (RAS), referred to as a signature. It establishes a
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Figure 3.14: RDIP Prefetching

correlation between the preceding signature and any cache blocks that miss in the
L1i. For example in Figure 3.13, it establishes a link between Sig1 and the missing
cache block addresses B1 and B2. The correlation is made with the preceding sig-
nature, which serves as the prefetch trigger. RDIP uses these established correla-
tions to prefetch instruction cache blocks, indexing the table using the RAS-based
signature to trigger prefetches, as shown in Figure 3.14. In this example, Sig3 is
used as an index in the table to prefetch blocks B10 and B11 into the L1i.

RDIP always maintains a lookahead of one signature, which can tolerate the
miss latency when very few instructions are executed as part of a signature. Ad-
ditionally, using multiple entries to produce a hash increases the number of signa-
tures when functions have multiple callers, often duplicating the same miss infor-
mation in multiple entries.



48

access a(1)
access b(3)

access c(5)

access d(7)

access e(9)

access l (12)
Miss

latency(7)

BB1

BB2

7 cycles 

Source Destination

BB1 BB2

…. ….

EP Table

Figure 3.15: EP Datastructures

Fluid Lookahead Schemes

The highest performing prefetcher in this category is the Entangling Prefetcher (EP)
[63, 64], which was proposed recently. It correlates cache misses to prior cache
access events. Unlike other schemes described earlier, EP establishes correlations
in a timeliness-aware fashion, rather than employing a fixed or a static lookahead.

EP establishes correlations between basic blocks (BB), specifically between a
basic block that experiences a miss in the instruction cache and a basic block that
initiated an instruction cache access earlier. As shown in Figure 3.15, EP establishes
a correlation between a prior cache access made to basic block 1 (BB1) and the
cache misses occurring in basic block 2 (BB2). This approach is designed to tolerate
the latency of accessing BB2 from a lower-level cache, and it stores this timeliness-
aware correlation in an EP table. EP subsequently uses this learned information
from the EP table, as shown in Figure 3.16, to initiate a timely prefetch when cache
blocks that are part of BB1 are accessed.
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Figure 3.16: EP Prefetching

Coupling to Instruction Fetch Logic

BHGP [75] explicitly relies on the branch predictor (part of the PC determination
logic) to establish correlations. RDIP [43] relies on the RAS (part of the PC deter-
mination logic) to establish correlations. Other schemes rely on L1i accesses or L1i
misses to establish correlations [29, 30, 64]. While these schemes are not explicitly
tied to parts of the PC determination logic, they are implicitly tied to it because
the PC determination logic creates the instruction reference stream, resulting in
L1i accesses and misses. As a result, most schemes in this group remain closely
coupled with the instruction fetch process.
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3.4 Instruction BTB Management
Having the requisite information within primary branch prediction structures to
correctly fetch instructions is essential for maintaining an effective supply of in-
structions to the backend of the processor. Large code footprint applications, char-
acterized by frequent code movement between secondary and primary caches,
present a challenge, as retaining all necessary information becomes difficult with
reasonably sized primary structures. We present a taxonomy of BTB management
schemes designed to address this issue.

HW BTB Management

BTB 
Reorganization

 

Shotgun [45],
Confluence [39] 

Correlation-Based
Triggers: uArch events

Phantom-BTB 
[17],BulkPreload[16]

Small 
+Large

BTB

IBM z15 [5],
Arm N2 [60],
Samsung M3 [66]

Group 1 Group 2 Group 3

Figure 3.17: HW BTB Management Schemes

3.4.1 HW BTB Management Taxonomy Overview

Figure 3.17 illustrates a taxonomy of schemes designed to manage a Branch Target
Buffer (BTB). The first group consists of designs that employ both a small and a
large BTB, where the smaller BTB is corrected by a larger BTB. Examples of this in-
clude commercial processor designs such as the IBM z15, ARM N2, and Samsung
M3 [5, 60, 66]. The second group consists of correlation-based BTB prefetching
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schemes that correlate microarchitectural events with BTB misses and use those
events to trigger the prefetch of BTB entries into an L1 BTB. Examples include
[16, 17, 18]. The third group consists of schemes that attempt to reorganize BTBs
to reduce BTB misses, with examples such as Shotgun and Confluence [39, 45].

We next describe each of these groups in greater detail.

3.4.2 Group 1

The first group, commonly employed in modern processors, involves the use of a
small BTB corrected by a larger BTB [5, 60, 66], with both being accessed in paral-
lel. The smaller BTB is typically accessed within a single cycle, whereas the larger
BTB usually requires 2-3 cycles. Accessing a larger BTB entails increased design
complexity, necessitating the pipelining of the large BTB and resulting in higher
energy consumption. However, this approach offers the advantage of retaining
target addresses for a large number of branches, thereby reducing fetch redirects.
This technique has gained popularity among processor implementations due to its
effectiveness.

3.4.3 Group 2

The second group of schemes correlate BTB misses with other microarchitectural
events and uses those events to trigger the prefetching of BTB entries into the BTB.
For example, predictor virtualization [16, 17, 18] aims to provide the appearance of
large-sized processor front-end structures while operating with small-sized phys-
ical structures. Specifically, BTB virtualization correlates a group of BTB misses
with a prefetch trigger (such as a BTB access) and moves this group to the small-
sized primary structure (L1 BTB) when triggered by a BTB access.

3.4.4 Group 3

The third group of schemes attempts to reorganize the BTB and prefill it in a just-in-
time manner. The main examples in this group are Shotgun [45] and Confluence
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Figure 3.18: Shotgun Datastructures

[39]. Shotgun modifies FDIP by reorganizing the existing BTB into multiple com-
ponents, making it more effective than a standard BTB of the same size, as shown
in Figure 3.18.

An Unconditional BTB (UBTB), based on high-level control flow, is designed
to retain all target addresses for the active unconditional control instructions (calls
and jumps) in the program. As shown in Figure 3.18, a UBTB entry stores a tag to
identify the branch, a size field that records the size of the basic block containing
the branch, and a type field that specifies the branch type. For calls and uncon-
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Figure 3.19: Shotgun Prefetching

ditional jumps, the UBTB maintains a spatial footprint of blocks, encoded as the
first block address and a bit vector indicating the cache blocks accessed following
the instruction until the next call, unconditional jump, or a return. For call instruc-
tions, it also maintains a return block footprint associated with the return to the
instruction following the call site.

A Return Instruction Buffer (RIB) is used to identify return instructions, with
the target address obtained from the return address stack. The block footprint in
the UBTB is used to prefetch into the L1i and fill a primary conditional BTB (CBTB)
just-in-time, as depicted in Figure 3.19. Shotgun does not rely on the CBTB to
generate the instruction reference stream for prefetching; instead, it uses the block
footprint for this purpose, reserving CBTB entries solely for correctly resteering
the flow of instructions after the relevant control instructions have been fetched
into the L1i. An entry in the CBTB simply stores the identity of the conditional



54

branch and the associated target and last predicted direction.
The idea is to downsize the CBTB because it is filled in a just-in-time manner, al-

lowing Shotgun to operate effectively with relatively smaller-sized BTBs. However,
Shotgun still requires a large UBTB to retain the target addresses of all uncondi-
tional branches and continues to depend on the PC determination logic to go past
every control instruction in the program.
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Figure 3.20: Confluence Operation

Confluence [39] reorganizes the BTB and leverages temporal cache block miss
streams, similar to TIFS [29], as explained earlier and shown in Figure 3.20. The
key idea behind TIFS is to record and replay repeating streams of cache block
misses. In the Figure 3.20, we see that the recorded miss stream containing miss
addresses P, Q, and R is used for prefetching. Confluence extends this to pre-fill
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a reorganized BTB (AirBTB) in addition to the L1i. It employs predecode logic
to generate BTB entries as code cache blocks are moved to the L1i, installing the
entries in the Air-BTB.

3.5 Instruction TLB Management Schemes
The small size of L1 TLBs (iTLBs), typically 32 or 64 entries, makes prefetching
into these structures less common due to the risk of polluting these structures.
Recent research, such as [80], focuses on prefetching instruction TLB entries into
the L2 TLB for applications that frequently encounter instruction TLB misses in the
secondary TLB, which are primarily caused by interference with data translations.

However, as high-performance CPU designs have transitioned towards larger
L2 TLB backing stores that are separated for instructions and as noted in [28], the
interference with data TLB entries in the L2 TLB is significantly reduced. For most
applications, a reasonably sized split L2 TLB for instructions can accommodate the
majority of active instruction translations, rendering the prefetching of instruction
TLB entries into the L2 TLB less critical. Despite this, there remains a crucial need
to efficiently move translations into the iTLB to facilitate effective instruction fetch-
ing.

3.6 Potential for a Unified Scheme
The need for requisite information in various primary structures for effective in-
struction supply has led to different techniques that manage primary structures
such as iTLBs, BTBs, and L1is, often separately. This results in designs that are an
agglomeration of various techniques.

Fundamentally, for a scheme that does not rely upon or is not coupled to the PC
determination logic to prefetch, both a BTB entry and an iTLB entry are relevant
for correctly fetching instructions present in the L1i.

The problem we aim to solve is keeping the L1i supplied with the blocks the
processor is likely to need, while also ensuring other primary structures (BTB and
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iTLB) are filled with the requisite information necessary to process instructions in
these blocks. We are not focused on the precise instruction stream (next PCs) but
rather a near precise block reference stream. BTB and iTLB entries are related to
the static instructions in the block, so knowledge of a block reference stream can be
used to fill reasonably sized BTBs and iTLBs just in time for processing instructions
in the blocks.

One wonders if it is possible to develop a highly decoupled scheme—decou-
pled from the PC determination logic or the logic for fetching instructions—that
can simultaneously keep the L1i supplied with the necessary blocks of instructions
and ensure primary structures such as the BTB and iTLB are filled with the req-
uisite information needed to process the instructions in these blocks that the pro-
cessor is likely to reference. Can we leverage high-level control flow information
to facilitate this movement, given that high-level control flow is likely unchanging
and easier to capture and work with for this purpose? This approach could poten-
tially help break the dependence on the logic for fetching instructions to uncover
the blocks likely to be referenced by the processor. Furthermore, it could aid in
filling reasonably sized primary structures, such as the BTB and iTLB, with the
requisite information needed to generate the precise instruction stream in a just-
in-time manner. We present an empirical rationale next to show why this might be
possible and worth considering.

3.7 High-level Sequencing Potential (Fitting a
Scheme in Group 1- Explicit CFG Traversal)

Fragment or a static fragment refers to a part of the program that starts at the
target of a call and ends at another call or a return, representing a portion of the
dynamic instruction stream delineated by calls and returns. A program can be
partitioned into static fragments. A static fragment contains multiple branches
and control instructions. It constitutes the blocks of instructions that are executed
for all possible branch outcomes within the static fragment during the program’s
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F2()
 {
  ……
  if (cond2){
       ……
  }
  else{
     ……
  }
  ……
  return
} 

F3()
 {
   ……
  if (cond3){
      ……
   }
   else{
       ……
  }
   ……
  return
 } 

F1()
 {

   ……
   ……
  if (cond1){
   ……
   B:F2()
   ……
  }
   ……
   C:F3()
    ……
  if (cond4){
    ……
  }
  else{
    ……
   }
    ……
   return
 } 

{
   .....
   …..
   ……         
   A:F1()
   ……
  if (cond5){
     ……
  }
  else{
     ……
  }
  ……
  return
 } 

frag4

frag5

frag3

frag1

frag6

frag2

B14

B15

B16

B35

B36

B1

B2

B3

B4

B40

B41

B42

B37

B38

B5

Figure 3.21: Example Program Snippet

execution.
The execution of a program results in multiple dynamic instances of these static

fragments, referred to as dynamic fragments. These dynamic fragments may ac-
cess some or all of the instruction blocks that are a part of the static fragment,
depending on the outcomes of the branches within the fragment. Notably, differ-
ent dynamic instances of the same static fragment can access different blocks of
the static fragment.
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More importantly, control flow at the fragment level is agnostic to the pre-
cise outcomes of the branches and other control instructions within the fragment.
While determining the exact outcome of every control instruction is crucial for
identifying the precise instruction stream to execute, it is less critical for determin-
ing which blocks the processor is likely to reference. Control flow at the fragment
level is primarily concerned with determining the next fragment the processor is
likely to execute.

Fragments starting at the target of a call are referred to as call fragments and
fragments starting at the target of a return are referred to as return fragments.
Figure 3.21 provides an example to illustrate the concepts introduced above using
a program snippet. The program snippet also highlights the code cache blocks to
which the lines of the static program belong.

In this example, Function F1 is called from call site A to execute fragment frag1,
composed of code cache blocks B1, B2, and B3. Function F2 is called at site B, de-
pending on the evaluation of the if-condition, to execute fragment frag4, composed
of code cache blocks B14, B15, and B16. Function F3 is called at site C to execute
frag5, composed of code cache blocks B35, B36, B37, and B38. If the first fragment
is frag1, the next fragment processed is either frag4 or frag5. Following the return
from Function F2, the next fragment processed is the return fragment of call site B,
which is frag2, composed of code cache blocks B2 and B3. Note that B2 and B3 are
part of both frag1 and frag2. Following the return from Function F3, the next frag-
ment processed is the return fragment of call site C, which is frag3, composed of
code cache blocks B4 and B5. Following the return from Function F1, the next frag-
ment processed is the return fragment of call site A, which is frag6, composed of
code cache blocks B40, B41, and B42. Furthermore, we see that multiple fragments
enclose if-then-else constructs. Frag1 through frag6 represent the static fragments
for this program.

One dynamic instance of frag5 contains the blocks of instructions referenced
when condition cond2 evaluates to true (B35, B36, and B38), while another dy-
namic instance of frag4 might contain the blocks of instructions referenced when
cond2 evaluates to false (B35, B37, and B38). Regardless of the condition’s out-
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come, we observe that the successor fragment for different dynamic instances of
frag5 is always frag3.

However, in the case of frag1, one dynamic instance might result in cond1 eval-
uating to true, leading to the execution of blocks of instructions B1 and B2 and re-
sulting in the successor fragment frag4. Another dynamic instance could involve
cond1 evaluating to false, causing frag1 to access blocks along the not-taken path
(B1 and B3) and resulting in a different successor fragment, namely frag5. This
illustrates an example of how local control flow can result in different blocks of
instructions being referenced and different fragment-level control flow.

3.7.1 Static Fragments
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Figure 3.22: Static Fragments

Figure 3.22 illustrates the number of static fragments that account for 90% and
95% of program execution. Nearly all benchmarks have fewer than 2,000 fragments
that account for 90% of program execution, with only a few exceeding this thresh-
old. The number of fragments accounting for 95% of execution follows a similar
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trend, with the count being slightly higher than that for 90%. In Table 3.1, we
present the fragments that account for 95% of program execution for each bench-
mark.
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Figure 3.23: Static Fragments and Code Pages

Figure 3.23 presents the number of static fragments that account for 90% of
program execution, as well as the number of static 4KB code pages touched by all
benchmarks. We observe that in many cases, when the number of static fragments
is higher, the number of 4KB pages touched is also relatively higher. Conversely,
we also observe that for some benchmarks, although the number of fragments ac-
counting for execution is small, the number of 4KB pages touched is quite high.
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Figure 3.24: Control Instructions in Fragment

3.7.2 Control Instructions Enclosed in a Fragment

Figure 3.24 displays the average number of control instructions contained within a
fragment for each benchmark studied. The results indicate that, on average, many
benchmarks have between four and six control instructions within a fragment. In
Table 3.1, we present the average number of control instructions within a fragment
for every benchmark.

3.7.3 Fragment Level Control Flow

Lastly, we present observations regarding the successor fragments for the dynamic
fragments illustrated in Figure 3.25. We categorize fragments into those with one
successor fragment and those with two successor fragments.

When the successor fragment starts at the target of a return, we do not differ-
entiate between successor fragments based on the return target. Such a fragment
will have multiple successor fragments only if it also has another successor frag-
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Figure 3.25: Fragment Level Control Flow Characteristics

ment starting at the target of a call instruction. Referring back to Figure 3.25, sup-
pose function F1 is called from another call site besides call site A. In this scenario,
the successor fragment for frag3 would be a different return fragment, not frag6.
However, we still consider it to be a single successor fragment, because the exact
identifier of the return fragment can be obtained using a return address stack.

Many benchmarks exhibit approximately 94% or higher of fragments with a
unique successor fragment. About 4-5% of the fragments have two successor frag-
ments, while some benchmarks show a higher percentage, ranging from 7-11%.
The percentage of fragments with more than two successor fragments is close to
zero for some benchmarks, while slightly higher for others, generally under 3%
for most benchmarks. An additional observation regarding successor fragments is
presented in Table 3.1.
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App
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secret121 3.2 94.9 (45.9,48.9) 5.0 (1.8,3.2) 0.1 4.8 98 38
secret141 3.2 94.9 (46.0,49.0) 5.0 (1.8,3.2) 0.1 4.8 99 38
public9 3.2 84.2 (37.7,46.4) 11.0 (4.0,7.0) 4.9 8.4 1048 237

secret100 3.2 94.8 (45.9,48.9) 5.0 (1.8,3.2) 0.1 4.8 106 39
secret103 3.3 94.8 (45.9,48.9) 5.1 (1.8,3.3) 0.1 4.8 120 42
public27 3.3 94.9 (46.0,49.0) 4.9 (1.8,3.1) 0.2 4.7 105 39
public30 3.4 94.7 (45.9,48.8) 5.1 (1.8,3.3) 0.2 4.7 125 43
public31 3.5 94.8 (45.9,48.9) 5.0 (1.8,3.2) 0.2 4.7 117 42
public29 3.6 94.6 (45.8,48.8) 5.2 (1.8,3.3) 0.2 4.7 136 46
public40 5.6 92.6 (43.9,48.6) 5.3 (3.7,1.6) 2.2 6.4 2641 493
server001 9.9 92.1 (44.1,48.0) 6.3 (3.3,3.0) 1.6 6.9 944 238
secret132 10.1 92.0 (45.2,46.8) 6.3 (3.2,3.1) 1.7 6.9 1016 252
secret137 10.2 92.1 (44.7,47.4) 6.3 (3.2,3.1) 1.6 6.9 984 246
public8 10.7 91.3 (43.9,47.4) 6.5 (3.4,3.1) 2.2 6.6 1248 305

public57 12.8 90.1 (40.5,49.6) 9.0 (5.5,3.4) 1.0 5.0 1832 375
server002 14.6 95.7 (47.5,48.3) 4.1 (0.2,3.8) 0.2 3.3 251 91
public11 16.0 86.3 (41.5,44.8) 10.7 (4.8,6.0) 3.0 5.7 2111 418
public54 16.5 89.9 (42.8,47.2) 8.1 (4.1,4.0) 2.0 5.5 2948 618
public1 16.8 86.7 (42.0,44.8) 10.5 (4.7,5.8) 2.8 5.6 2405 453

server003 19.0 78.8 (33.4,45.4) 9.0 (4.7,4.3) 12.2 4.8 8818 1231
server004 20.3 84.7 (40.8,43.9) 9.7 (4.8,4.9) 5.6 5.4 4714 888
public48 21.7 91.7 (43.2,48.5) 6.2 (4.1,2.1) 2.1 4.5 3488 755
public49 21.8 91.4 (43.0,48.4) 6.4 (4.2,2.2) 2.2 4.6 3342 736
secret128 22.4 88.3 (42.5,45.8) 9.1 (5.1,4.0) 2.6 5.5 2700 562
server009 23.0 86.0 (42.9,43.1) 9.0 (5.0,4.0) 5.0 5.5 2821 578
public55 23.3 90.6 (42.9,47.8) 7.0 (3.8,3.2) 2.4 5.7 3348 731
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public41 23.6 90.1 (42.4,47.7) 7.6 (4.2,3.4) 2.3 5.6 3347 739
public51 24.0 93.5 (44.8,48.7) 5.4 (3.1,2.2) 1.2 5.3 3173 770
server010 24.2 88.6 (42.7,46.0) 8.9 (5.2,3.6) 2.5 5.5 2637 564
public68 24.3 88.8 (43.1,45.8) 8.3 (5.3,3.0) 2.9 5.6 2238 519
server011 24.8 86.7 (41.1,45.6) 8.5 (5.4,3.1) 4.8 5.4 4847 956
secret111 25.3 89.6 (43.6,46.0) 8.0 (5.5,2.5) 2.4 5.6 2006 495
secret131 25.3 89.7 (43.6,46.0) 7.9 (5.4,2.5) 2.4 5.6 2022 498
public67 25.5 89.5 (43.4,46.1) 7.7 (5.2,2.5) 2.8 5.4 1962 491
public6 25.6 89.4 (43.3,46.1) 7.8 (5.3,2.5) 2.8 5.5 1829 453
public7 25.6 89.5 (43.3,46.2) 7.8 (5.2,2.6) 2.7 5.3 2311 553
public3 25.6 89.0 (43.0,46.0) 8.0 (5.5,2.5) 2.9 5.5 1811 442

public65 25.7 89.4 (43.2,46.2) 7.8 (5.3,2.5) 2.9 5.4 1975 509
public66 25.7 89.4 (43.5,46.0) 7.9 (5.4,2.5) 2.7 5.5 1890 470
server012 25.8 89.0 (42.8,46.2) 8.4 (5.3,3.1) 2.6 5.3 2815 607
public46 25.8 92.5 (43.6,48.9) 6.3 (4.3,2.0) 1.1 3.9 2593 660
public10 25.8 88.6 (42.4,46.1) 8.5 (5.3,3.2) 3.0 5.3 2562 563
public69 26.0 86.8 (42.8,44.0) 8.1 (4.8,3.3) 5.1 5.2 3037 650
secret105 26.0 89.6 (43.3,46.3) 7.7 (5.4,2.4) 2.7 5.6 1991 512
public4 26.0 89.0 (43.1,45.9) 8.0 (5.4,2.5) 3.0 5.5 1839 471
public2 26.1 88.9 (42.9,46.0) 8.1 (5.5,2.6) 3.0 5.5 1897 475

secret120 26.1 89.7 (43.5,46.3) 7.7 (5.4,2.3) 2.6 5.6 1962 504
public50 26.1 93.0 (44.5,48.5) 5.8 (3.2,2.6) 1.2 5.5 3087 784
public64 26.1 89.5 (43.2,46.2) 7.6 (5.2,2.4) 2.9 5.5 1890 489
secret133 26.2 89.3 (43.3,46.0) 8.0 (5.6,2.4) 2.7 5.6 1910 472
public62 26.2 88.8 (42.9,45.9) 8.2 (5.7,2.5) 3.0 5.5 1876 463
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public63 26.2 88.8 (42.9,45.9) 8.2 (5.6,2.6) 3.0 5.4 1999 493
public5 26.3 89.3 (43.1,46.2) 7.8 (5.3,2.5) 2.9 5.5 1961 507

public47 26.4 92.5 (43.6,48.8) 6.4 (4.3,2.1) 1.1 3.9 2568 658
public0 26.6 88.7 (42.7,45.9) 8.3 (5.4,2.9) 3.1 5.3 2817 589

public61 26.6 88.7 (42.7,46.0) 8.3 (5.2,3.1) 3.0 5.3 3063 636
secret12 26.7 88.6 (42.7,45.8) 8.1 (5.3,2.9) 3.3 5.3 3904 799
public60 26.8 88.5 (42.9,45.6) 8.3 (5.4,2.9) 3.3 5.4 2763 585
server013 26.8 89.1 (43.1,46.1) 8.2 (5.4,2.8) 2.6 5.4 3118 634
server014 28.8 95.5 (46.7,48.8) 4.2 (1.4,2.7) 0.3 3.2 315 114
server015 29.1 95.7 (46.9,48.8) 4.0 (1.4,2.7) 0.3 3.2 312 113
public53 33.2 89.5 (42.6,46.9) 7.4 (3.4,4.0) 3.1 4.6 3106 765
server016 36.6 93.4 (45.0,48.4) 5.4 (1.9,3.5) 1.1 5.5 3132 831
server017 43.2 94.1 (44.1,50.0) 5.1 (1.8,3.3) 0.9 4.6 605 239
server018 43.4 94.1 (44.0,50.1) 5.0 (1.8,3.2) 0.9 4.6 605 239
server019 44.4 94.0 (44.1,50.0) 5.1 (1.8,3.2) 0.9 4.6 606 240
public52 44.6 91.3 (44.0,47.4) 6.5 (2.9,3.6) 2.2 3.8 3186 807
public34 45.6 93.8 (45.5,48.3) 5.2 (1.9,3.3) 1.0 4.3 600 239
server020 46.0 93.9 (45.3,48.6) 5.2 (1.9,3.3) 0.9 4.5 606 240
public39 46.9 93.8 (45.5,48.3) 5.2 (1.9,3.3) 1.0 4.3 600 239
public76 46.9 93.8 (45.6,48.3) 5.2 (1.9,3.3) 1.0 4.3 600 239
public38 47.1 93.7 (45.5,48.3) 5.3 (1.9,3.4) 1.0 4.4 600 239
secret10 47.2 93.9 (45.6,48.3) 5.2 (1.9,3.3) 0.9 4.4 601 239
public36 47.3 93.9 (45.6,48.3) 5.2 (1.9,3.3) 1.0 4.3 600 239
server021 47.3 93.9 (45.5,48.3) 5.3 (1.9,3.3) 0.9 4.4 601 239
public75 48.1 93.8 (45.5,48.3) 5.3 (1.9,3.3) 1.0 4.3 600 239
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public33 48.3 93.9 (45.6,48.3) 5.2 (1.9,3.3) 1.0 4.3 600 239
public37 48.3 93.7 (45.5,48.3) 5.2 (1.9,3.3) 1.1 4.3 602 240
server022 48.4 93.9 (45.6,48.3) 5.1 (1.9,3.3) 0.9 4.4 600 240
public35 48.6 93.8 (45.5,48.3) 5.2 (1.8,3.3) 1.0 4.3 601 240
server023 48.7 92.9 (44.8,48.1) 6.3 (2.2,4.0) 0.8 4.4 3151 834
server024 49.7 93.6 (45.3,48.3) 5.8 (2.0,3.8) 0.6 4.3 3125 833
server025 51.6 93.4 (45.4,47.9) 6.0 (1.9,4.1) 0.6 4.0 3041 767
server026 54.4 94.0 (45.7,48.4) 5.3 (1.7,3.6) 0.7 4.1 3096 794
server027 54.6 93.9 (45.6,48.4) 5.4 (1.8,3.6) 0.6 4.1 3102 795
server028 56.8 95.1 (46.3,48.7) 4.5 (1.5,3.0) 0.4 3.9 2176 684
server029 57.3 95.4 (46.6,48.8) 4.2 (1.3,2.8) 0.4 4.0 2175 685
server030 58.4 95.0 (46.4,48.7) 4.4 (1.4,3.0) 0.6 3.9 2212 692
server031 59.4 95.4 (46.6,48.8) 4.2 (1.3,2.9) 0.4 3.8 2176 686
secret113 60.0 95.3 (46.5,48.8) 4.2 (1.4,2.8) 0.4 3.8 2185 688
server032 62.9 96.5 (47.5,49.0) 3.4 (0.9,2.6) 0.1 3.5 2129 674
public44 63.8 95.1 (46.4,48.7) 4.3 (2.1,2.2) 0.6 3.2 2165 640
server033 64.9 94.1 (45.0,49.1) 5.1 (2.1,3.0) 0.8 3.8 1182 442
server034 65.1 94.3 (45.1,49.1) 4.9 (2.0,2.9) 0.8 3.8 1187 444
server035 66.6 94.5 (45.5,49.1) 4.8 (1.7,3.0) 0.7 3.8 1188 445
public45 68.2 95.2 (46.5,48.7) 4.2 (2.0,2.2) 0.6 3.2 2153 635
server036 74.8 96.9 (48.1,48.8) 2.9 (0.5,2.4) 0.2 3.8 428 176
server037 80.0 96.7 (47.7,48.9) 3.3 (0.9,2.3) 0.1 3.6 634 250
server038 80.1 96.7 (47.8,48.9) 3.2 (0.9,2.3) 0.1 3.6 631 249
server039 80.8 96.9 (48.1,48.7) 3.1 (0.4,2.6) 0.0 3.5 603 233
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Table 3.1: Fragment Level Control Flow and L1i MPKI

Table 3.1 presents detailed benchmark data, including the L1i Misses Per Kilo
Instructions (MPKI) for a 32KB, 8-way associative cache in data column 1 (L1i
MPKI). Data column 2 (% frag with 1 next frag) shows the percentage of dynamic
fragments with one successor fragment. Further it presents a two tuple of the num-
ber of fragments whose unique successor fragment is a call fragment and the num-
ber of fragments whose unique successor fragment is a return. When the successor
fragment is a return, the successor fragment could be multiple return fragments,
but we treat all of these fragments as one. Data column 3 (% frag with 2 next frags)
shows the percentage with two successor fragments. Further it presents a two tu-
ple of the number of fragments whose successor fragments are two call fragments
or whose successor fragments are a call fragment and a return. Data column 4 (%
frag with >2 next frags) shows the percentage with more than two successor frag-
ments. Data column 5 (Avg CInstr per Frag) shows the average number of control
instructions per fragment. Data column 6 (95% frags) shows the number of frag-
ments that account for 95% of the program execution. Data column 7 (95% funcs)
shows the number of functions that account for 95% of the program execution. The
benchmarks exhibit L1i MPKI values ranging from 3.2 to 80.

We categorize the benchmarks into five bins based on their L1i MPKI values:
0-15, 15-30, 30-45, 45-60, and greater than 60. The first 16 benchmarks in Table
3.1 are part of bin 1, the next 45 benchmarks are part of bin 2, the following 6
benchmarks are part of bin 3, the subsequent 23 benchmarks are part of bin 4,
and the final 10 benchmarks are part of bin 5. We observe that the percentage
of dynamic fragments with more than two successor fragments is relatively high
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in the second bin (15-30 MPKI), with percentages as high as 12.2% for server003
and 5.1% for public69. These percentages are significantly lower (close to zero)
for benchmarks in the higher MPKI bins, where code cache blocks are frequently
moved between the lower-level and higher-level caches. Consequently, fragment-
level control flow is easier to capture for applications with high MPKI, where there
is more frequent between the cache levels.

From data column 7, we observe that the number of functions accounting for
95% is mostly under 1000 for most benchmarks.

We make three key observations regarding fragments and fragment-level con-
trol flow:

• A few thousand static fragments account for the majority of program execu-
tion, suggesting the feasibility of maintaining fragment-level information in
reasonably sized tables.

• Dynamic fragments typically enclose an average of 4-6 control instructions,
indicating that sequencing the program at the fragment level will likely go
past those many control instructions at each step.

• Most dynamic fragments have a unique successor fragment, with a few hav-
ing two successor fragments. Applications with higher L1i MPKI exhibit a
higher percentage of fragments with a unique successor fragment.

A scheme that sequences high-level program control flow at the fragment level
can potentially resolve upcoming high-level control flow with high accuracy by
predominantly following a single path, as many fragments have a unique succes-
sor fragment. In cases where fragments have multiple successor fragments, the
scheme can selectively follow a second path. Furthermore, the structures respon-
sible for fragment-level tracking can be decoupled from the logic involved in fetch-
ing instructions, allowing the scheme to go past multiple control instructions in a
single step. This suggests that a high-level control flow sequencing scheme could
effectively determine the blocks of instructions and other closely related informa-
tion necessary for processing of the instructions in the blocks.



69

3.7.4 Summarizing Potential for a Scheme

To summarize, for the commercial applications studied, we observe a very frequent
movement of blocks of instructions between the lower-level cache and the higher-
level cache. Additionally, for these applications, the data suggests that fragment-
level information is straightforward to capture and that sequencing the program
at the fragment level is likely to accurately resolve upcoming high-level control
flow, going past multiple control instructions in each step. This process aids in
determining the blocks of instructions likely to be referenced by the processor.

Building on these observations, this thesis presents InstructionPresending [56],
a scheme that sequences fragment-level control flow independently of the logic for
fetching instructions, thereby operating independently of BTBs, branch predictors,
and the return address stack required to accurately determine the next program
counter (PC). This scheme identifies the blocks of instructions, instruction TLB en-
tries, and BTB entries likely to be needed by the processor and sends these blocks
to the L1i, instruction TLB entries to the iTLB, and BTB entries to the L1 BTB in
a just-in-time manner. Since this scheme operates independently of fetch logic, it
uses identifiers and markers that are periodically validated to ensure alignment
with the actual instructions fetched and executed by the processor. In the event of
a divergence, the scheme restarts the process.

3.8 Summary
In this chapter, we studied the Instruction Supply problem and the associated
challenges in an era where application code footprints overwhelm the size of pri-
mary structures, resulting in frequent code movement between cache levels. We
reviewed the existing body of work aimed at tackling this challenge, focusing pri-
marily on Instruction Prefetching schemes and providing a taxonomy for these
schemes. Additionally, we discussed BTB and iTLB management schemes. Sub-
sequently, we discussed an empirical potential for a scheme, Instruction Presend-
ing, discussing its place within this taxonomy and highlighting how it differs from
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other approaches. In the subsequent chapters, we will describe this scheme in
detail, explaining how it facilitates the movement of code cache blocks and other
related information, such as BTB and iTLB entries.
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Chapter 4

Instruction Presending

Instruction Presending creates a shadow program representation, independent of
data structures used for fetching instructions such as BTBs and branch predic-
tors. This representation encodes information about fragments and the control
flow across fragments. Once created, it is used to traverse the control flow at the
fragment level, determining the cache blocks of instructions that the processor is
likely to need and moving them to the L1i in a just-in-time manner.

In this chapter, we first provide a detailed description of the composition of the
shadow program representation and the necessary hardware data structures used
to capture this representation, along with associated issues and their handling. We
then explain how these data structures are constructed. Next, we describe the us-
age of this representation (or the operation of the instruction presending scheme),
along with associated issues and their handling. Finally, we discuss implementa-
tion aspects and alternatives, and make concluding remarks.

4.1 Program Representation
We begin by outlining the objectives of the program representation, followed by an
in-depth examination of the various components of the program representation.

The key unit of program representation is the fragment, as described in the
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F2()
 {
  ……
  if (cond2){
       ……
  }
  else{
     ……
  }
  ……
  return
} 

F3()
 {
   ……
  if (cond3){
      ……
   }
   else{
       ……
  }
   ……
  return
 } 

F1()
 {

   ……
   ……
  if (cond1){
   ……
   B:F2()
   ……
  }
   ……
   C:F3()
    ……
  if (cond4){
    ……
  }
  else{
    ……
   }
    ……
   return
 } 

{
   .....
   …..
   ……         
   A:F1()
   ……
  if (cond5){
     ……
  }
  else{
     ……
  }
  ……
  return
 } 

frag4

frag5

frag3

frag1

frag6

frag2

B14

B15

B16

B35

B36

B1

B2

B3

B4

B40

B41

B42

B37

B38

B5

Figure 4.1: Fragments Example

previous chapter. To recap, fragment or a static fragment refers to a part of the
program that starts at the target of a call and ends at another call or a return, rep-
resenting a portion of the dynamic instruction stream delineated by calls and re-
turns. A program can be partitioned into static fragments (similar to multiblocks
[61]). Dynamic fragments are dynamic instances of these static fragments.

Here, we recap the example shown in the previous chapter: Figure 4.1 shows
a function F1 which calls functions F2 and F3. The function F1 is called from call
site A. The function F1 is delineated into three fragments:
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• Fragment 1 starts at the beginning of the function and continues until the call
to F2, composed of code cache blocks B1, B2 and B3 (B3 is accessed when
cond1 evaluates to false).

• Fragment 2 starts at the return from F2 and continues until the call to f3,
composed of code cache blocks B2 and B3.

• Fragment 3 starts at the return from f3 and continues until the return from F1,
composed of code cache blocks B4 and B5. Furthermore, Fragment 3 contains
local control flow, specifically an if-then-else construct.

Function F2 makes no additional function calls and thus constitutes a single
fragment, Fragment 4, encompassing the entire function from start to return, com-
posed of code cache blocks B14, B15, and B16. Similarly, function f3 makes no
additional function calls and constitutes a single fragment, Fragment 5, composed
of code cache blocks B35, B36, B37, and B38.

Following the return from F1, we have one fragment, Fragment 6, composed of
code cache blocks B40, B41, and B42.

The control flow between these fragments is as follows:

• From Fragment 1 to Fragment 4 (could go from Fragment 1 to Fragment 5 if
cond1 evaluates to false).

• From Fragment 4 to Fragment 2

• From Fragment 2 to Fragment 5

• From Fragment 5 to Fragment 3

• From Fragment 3 to Fragment 6

A program representation required to move blocks of instructions for this pro-
gram snippet must include information about the blocks accessed by each of these
fragments (Fragment 1 to Fragment 6) and the control flow from one fragment to
the next. While these pieces of information are sufficient to determine the blocks of
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instructions the processor is likely to reference, they lack any notion of time. This
is important to ensure that blocks are supplied in a timely manner to ensure the
processor is not stalled waiting for blocks of instructions. The program represen-
tation can be augmented with additional information per fragment to aid in this
process. We will describe this in more detail in Section 4.1.4.

More specifically, a program representation capable of traversing fragment-
level control flow and correctly moving blocks of instructions for a program needs
to:

• Correctly identify the fragments.

• Store information about the blocks accessed by different fragments.

• Maintain information about the successor fragments for each of these frag-
ments.

• Maintain information about the amount of time it would take to execute the
fragment.

This information collectively facilitates fragment-level sequencing coupled with
the movement of code cache blocks.

Next, we provide a more detailed description of such a program representation.
First, we describe the method for identifying fragments, followed by a description
of the different components of the program representation.

4.1.1 Identifying Fragments

Fragments start at the target of a call or a return instructions. To recap, we refer
to the fragment at the target of a call instruction as a call fragment. (Note that
the fragment starts at the target of the call instruction, not at the call instruction
itself). We refer to the fragment at the target of a return instruction as a return
fragment (Note that the fragment starts at the target of the return instruction, not
at the return instruction itself). For example, Fragment 4 in Figure 4.1 is a call
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X: Call f2
X+4: ….
……
…….
Y: Call f3

f2(){
….
….
….
return
}

Fr1
Fr2

Figure 4.2: Identifying Program Fragments

fragment at the target of a call instruction to F2(). Fragment 2 in Figure 4.1 is a
return fragment at the target of a return instruction from F2().

Key issues are to identify call fragments following a direct call and an indirect
call and identification of a return fragment.

Direct Calls

A natural identifier for a call fragment following a direct call is the call instruc-
tion address (callPC), as it uniquely identifies the part of the program executing
immediately after the call instruction. In the example shown in Figure 4.2, Fr1 is
the fragment that executes following the call to function F2 by the instruction at
address X. Therefore, X serves as the identifier for Fr1.

Returns

A return fragment executed following a return instruction can be identified by the
target of the return instruction which is the continuation of a callPC, rather than by
the return instruction itself, since a return can have multiple targets as a function
can be called from multiple call sites. In the example shown in Figure 4.2, Fr2 is
the fragment that executes following the return to address X+4. Therefore, X+4
serves as the identifier for Fr2.
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mov r1, r4
….
….
….
X:call [r1]

f1(){
…
…
}

f2(){
…
…
}

Figure 4.3: Indirect Calls Example

Indirect Calls

Indirect calls are instructions where the target instruction is not hardcoded in the
instruction, but is determined at run time. They are a fundamental concept which
allow programming languages to implement callbacks, polymorphism and dy-
namic function invocation [20], enabling more flexible software design. Typically,
the callee function is determined by a value generated by an earlier instruction
stored in a register. So the call instruction address (callPC) alone may not uniquely
identify the call fragment, as it could refer to different fragments depending on the
computed value. In such cases, a combination of the callPC and the target address
of the call can be used collectively to identify the fragment.

For example, in Figure 4.3, based on the value of r1 computed earlier, the callee
function could either be f1 or f2. The callPC X, in this context, would need to be
associated with either f1 or f2 based on the target address (e.g., X+f1 or X+f2)
to accurately identify the fragment following the call. This approach ensures that
each fragment is uniquely identified even in scenarios involving indirect calls.
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Frag ID B,3

Blocks

Figure 4.4: Code Region

4.1.2 Representing Code Cache Blocks in a Fragment

Unlike PC determination logic which requires knowing the next instruction to
fetch, we are interested in the code cache blocks referenced by a fragment. This
involves representing the code cache blocks accessed by every fragment in the ta-
ble. In many cases, there is likely to be spatial locality in the blocks accessed by a
fragment, resulting in accesses to contiguous blocks of code or code regions.

For instance, if a fragment accesses code cache blocks B, B+1, and B+2 sequen-
tially, this sequence forms a code region of size 3 cache blocks starting at block
B. This spatial locality allows us to compactly encode a code region accessed by a
fragment, denoted as B,3 in Figure 4.4. This encoding indicates that the fragment
accesses a code region starting at block B and spanning 3 consecutive cache blocks.
We refer to the code region starting at the target of a call or a return as an adjoint
region. An adjoint region can contain branch instructions within the same cache
block that starts the fragment or in another block within the contiguous region,
such as a loop branch where the loop spans multiple blocks.

Direct or indirect jumps can result in the access of discontiguous code regions.
We refer to code regions discontiguous from the adjoint region as separate regions.
One example that could result in separate regions is code packing optimization
[27], which pack "hot code" together. Executing a "cold path" can lead to accessing
discontiguous code cache blocks, resulting in the creation of separate regions.

In Figure 4.5, we observe a fragment starting at the beginning of function func,
accessing code cache blocks B, B+1, and then making a direct jump to access block
B+10. Although block B+10 is physically discontiguous from blocks B and B+1,
it logically belongs to the same fragment, resulting in a separate region for the
fragment.
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foo(){
….
….

Jmp X
….
…

……

….
X: ..
…..
…..

Call F2

Frag 1: 
Blocks B, 
B+1

Frag 1: 
Blocks 
B+10

Figure 4.5: Discontiguous Region Example

Frag ID

OF Bit

1

Figure 4.6: Setting OF Bit

To encode separate regions, a solution involves using an overflow bit (OF bit)
to mark fragments that contain physically discontiguous blocks accessed. Figure
4.6 illustrates a fragment with its OF bit set to indicate that it accesses separate
regions. This approach allows for the special handling of fragments that access
separate regions while ensuring space efficiency in managing the common case
of accesses to only adjoint regions for fragments. This is achieved by storing the
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separate regions only for fragments with their OF bit set in a separate structure.
This separate structure can then be accessed only for fragments with the OF bit set,
avoiding the need to maintain space for separate regions for all fragments.

Frag ID

Next Frag
Next Frag ID

Figure 4.7: Successor Fragment After a Call

4.1.3 Representing Fragment Level Control Flow

Representing fragment-level control information is essential for managing high-
level control flow sequencing in program execution. Control flow transfers be-
tween fragments primarily occur through call instructions (both direct and indi-
rect) and return instructions.

• Call Instructions - When control flows from one fragment to another via a
call instruction, the successor fragment identifier can be explicitly encoded.
For example, in Figure 4.7, the fragment explicitly encodes the identifier of
the successor fragment (Next Frag ID).

Frag ID

Next Frag
return

Figure 4.8: Successor Fragment After a Return

• Return Instructions - When control flows from one fragment to another via a
a return instruction, successor fragment identifier may not uniquely identify
the successor fragment because a fragment may have multiple call sites. In-
stead of explicitly encoding a unique successor fragment, the representation
indicates that the control transfer occurs via a return.
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Figure 4.8 illustrates this, where a fragment returns to its caller(s) without
specifying a unique successor fragment identifier. The operation of the scheme
can use a stack to obtain the exact fragment identifier of the successor frag-
ment in this case, as we shall see in Section 4.5.

….
….
If (cond){
….
call f1();
}
….
call f2();

Figure 4.9: Multiple Successor Fragments Example

Frag ID

MT Bit
1

Figure 4.10: Setting MT Bit Example

Multiple successor fragments

In program execution, some fragments may have more than one possible suc-
cessor fragment depending on run time conditions or indirect calls. For ex-
ample, after evaluating a condition in fragment F1 (as shown in Figure 4.9),
the successor fragment could either be the one corresponding to function call
f1 or function call f2. Similarly, as shown in Figure 4.1, following frag1, the
successor fragment could be either frag4 or frag5, depending on the evalua-
tion of cond1.
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To accommodate such scenarios, a fragment can be marked with an MT (Mul-
tiple Target) bit, as illustrated in Figure 4.10 where a fragment has its MT bit
set. This bit indicates that the fragment has multiple potential successor frag-
ments based on runtime conditions.
This approach allows for the special handling of fragments that have mul-
tiple successor fragments, while ensuring space efficiency in managing the
common case of fragments with a single successor fragment (as shown ear-
lier in Table 3.1, where a large percentage of fragments have a unique succes-
sor fragment). This is achieved by storing the alternate successor fragment
only for fragments with their MT bit set in a separate structure. This separate
structure can then be accessed only for fragments with the MT bit set, avoid-
ing the need to maintain space for an alternate fragment for all fragments.

…
…
for (i = 1:n){
…
C1: f2()

…
}
….
}

f2(){
…
…
return
}

Figure 4.11: Looping Fragments

Loops and Recursion

Loops and recursion are an example program constructs wherein a set of
fragments is executed repeatedly. For instance, in Figure 4.11, function f2
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is invoked from call site C1 within a for-loop scenario. This setup leads to
the repetitive execution of both the call fragment f2 and the return fragment
of C1 until the loop terminates after n iterations. To optimize efficiency, the
scheme’s operation must ensure that such fragments are not redundantly se-
quenced, especially considering that these blocks are likely already present
in the L1i.

Frag ID
Icount

12

Figure 4.12: Fragment Instruction Counts

4.1.4 Representing Time to Execute a Fragment

All the components of the program representation described above collec-
tively help determine the blocks the processor is likely to reference. However,
this information alone is insufficient. Determining which blocks to supply
is crucial, but a delayed supply can result in the processor waiting for an
instruction for multiple cycles, leading to fetch stalls and pipeline bubbles.
Conversely, supplying blocks too early can result in their premature eviction
before they are referenced. Therefore, it is essential to have information that
ensures the timely delivery of instruction blocks to the L1i.
Timely delivery of instructions involves tolerating the latency of fetching in-
structions from a lower-level cache. While the representation identifies the
fragments the processor is likely to fetch, additional information about the
size of each fragment can facilitate a more timely supply of blocks to the L1i.
Measuring the size of a fragment in dynamic instructions provides an esti-
mate of the time the processor is likely to spend fetching instructions from
a fragment before moving to another fragment. For this work, we use in-
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struction counts to get an idea of time to execute a fragment. For example, in
Figure 4.12, a fragment has its dynamic instruction count set to 12.
Alternatively, cycle counts can also be used for this purpose.
To mitigate variations in instruction counts across different executions of the
fragment, the representation can track the minimum observed instruction
count. This approach can sometimes result in staying slightly further ahead
in the instruction stream, effectively tolerating the latency of fetching instruc-
tions from a lower-level cache.

4.2 Hardware Data Structures
This section integrates all components of the program representation and
describes the hardware data structures utilized to store this representation.

RetCallRetCallRetCallRetCall
1/01/01/01/0ValueValuecallPC

/ret
callPC
/ret 

Addr,
size

Addr,
size

FragID

Blocks Next Frag Icount OF MTFrag 
Index Call Ret

Figure 4.13: Entry of a Fragment Table

4.2.1 Fragment Table

The primary data structure for storing information about fragments is the
Fragment Table (FT). The program counter (PC) of a call instruction natu-
rally identifies a fragment that begins at the target of the call, which is the
entry point of a function, as we discussed in Section 4.1.1. When the called
function returns, the target of the return instruction becomes the continua-
tion code starting at the next PC (PC+4), which identifies the return frag-
ment, as we discussed in Section 4.1.1. These two related fragments are com-
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bined into a single entry to maintain a compact representation. The two frag-
ments are: (i) the Call Fragment (Call), and (ii) the Return Fragment (Ret)
associated with the call PC.
As illustrated in Figure 4.13, an entry in the Fragment Table contains the fol-
lowing components: (i) adjoint region for both the Call and Ret fragments,
(ii) a count of dynamic instructions executed by the Call and Ret fragments,
and (iii) the identifier of the fragment to be processed next for both the Call
and Ret fragments.
The code region is stored as the first address of the block in the region and its
size (in cache blocks). Two additional bits, the Multi Target (MT) bit and
the Overflow Regions (OF) bit, for both the Call and Ret fragments, help ac-
commodate fragments with multiple successor fragments and discontiguous
fragments, as we had shown in Figures 4.10 and 4.6.
There are several alternatives for storing the address of the first block in the
region:

– Virtual Address: Given that most lower-level caches are physical (where
blocks would be moved from), using virtual addresses would necessi-
tate a virtual to physical translation before blocks can be accessed and
moved. Following the virtual to physical translation, the addresses of
the remaining blocks in a code region, besides the first block, can be
easily obtained by simple addition of offsets to the first block address.

– Physical Address: Using physical addresses to encode blocks accessed
is the most natural choice since the lower-level caches are physical, and
blocks would be moved from there. Moreover, all remaining block ad-
dresses in the code region, besides the first block, can be easily obtained
by simple addition of offsets to the first block address. The usage of
physical addresses could result in a separate region when the region
(adjoint or separate) crosses a page boundary.
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– Cache Block Pointers: Given our intention to use the program repre-
sentation to move blocks from a lower-level cache to the L1i, a physical
address can be replaced with a cache block pointer to the block in the
lower-level cache as a space or storage optimization. The tradeoff here
is that computing the addresses of the other blocks in the region besides
the first block would require a tag lookup to obtain the complete block
address of the first block. Using the block address obtained from the
tag lookup for the first block, the addresses of the other blocks can be
computed, similar to the usage of physical addresses.

4.2.2 Handling Indirect Calls/Returns - Modified Tagging

For direct calls, the callPC serves as a unique identifier for a fragment. How-
ever, for an indirect call, there could be multiple targets for the same callPC.
Similarly, for a return, there could be multiple targets because a function
could have multiple call sites.
To differentiate fragments corresponding to different call targets following
an indirect call, we use a simple hash (sum or XOR) of the callPC and the
target, as described in Section 4.1.1. The program representation remains
agnostic to whether the call was direct or indirect, operating with fragment
identifiers.
Return fragments are identified by the target of the return, which is callPC+4.
When the successor fragment for a given fragment is a return, the next frag-
ment identifier is simply encoded as a constant. During the operation of the
scheme, a stack is consulted to obtain the exact fragment identifier in the case
of a return fragment.
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Blocks
Frag-ID

Blocks
B1,3 B2,3

Figure 4.14: ORT Entry

4.2.3 Handling Discontiguous Fragments - Overflow
Regions Table (ORT)

Many fragments have only an adjoint region that can be stored in the main
Fragment Table (FT). However, several fragments access non-contiguous blocks,
leading to access of separate regions. To accommodate these separate re-
gions, we use an Overflow Regions Table (ORT). The ORT, similar to the
FT, stores a code region as a block address and a size (number of contiguous
blocks following the block address).
To handle a skewed distribution in the number of separate regions for a frag-
ment, we have ORTs of different sizes, accommodating fragments with vary-
ing numbers of separate regions. For instance, an ORT-2 table entry can store
two separate regions. Figure 4.14 illustrates an example ORT-2 entry storing
two separate regions for a fragment. Similarly, an ORT-16 table entry can
store up to sixteen separate regions for a fragment.

Accessing the ORT

The ORT is tagged separately and accessed if the Overflow (OF) bit is set in
the Fragment Table (FT). Alternatively, the FT could store a pointer to the
ORT entry for such fragments. However, this approach may lead to clutter
in the FT, as each entry would require storage for a pointer, even when it is
not necessary.
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Next Frag
Frag-ID

Aging Bits Aging Bits 
F3 2 2

Figure 4.15: DTT Entry

….
….
If (cond-highly biased not taken){
….
call f1();
}
….
call f2();

Figure 4.16: Multiple Successor Fragments With Biased Branch

4.2.4 Handling Multiple successor fragments - DTT/MTT

Some fragments have more than one possible successor fragment, as de-
scribed in Section 4.1.3. To avoid clutter in the main Fragment Table (FT),
which holds only a single target per fragment (since most fragments have a
unique successor), we store additional targets in a separate table. The Dual
Target Table (DTT) stores the identity of an alternate fragment target. Al-
ternatively, a Multi-Target Table (MTT) can store the identity of multiple
fragment targets.
In the example shown in Figure 4.16, after evaluating a condition, the suc-
cessor fragment could be either the call fragment following the function call
to f1 or the call fragment following the function call to f2. If the branch eval-
uates to true a few times and then subsequently evaluates to false (due to
being highly biased towards not being taken), the successor fragment would
eventually only be the fragment corresponding to the function call to f2. Cap-
turing this information would require some bits for both paths, to indicate
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which of the successor fragments are active. For this reason, we have found
it useful to maintain additional bits, called aging bits.
Figure 4.15 shows an example of a DTT entry storing an alternate fragment
target for a fragment as F3, with the age of both successor fragments (frag-
ment targets) set to 2. The aging bits for both paths are maintained in the
DTT.
While we could store more than two targets in a Multi-Target Table, for most
benchmarks considered in this work, two targets have been sufficient.

Accessing the DTT

The DTT is tagged separately and accessed if the MT bit is set in the Fragment
Table. Alternatively, the Fragment Table could store a pointer to the DTT
entry for such fragments, though this approach would lead to clutter in the
Fragment Table, as each entry would require storage for a pointer, even when
it is not necessary.

4.3 Constructing Tables
We describe the construction and population of the various data structures
(FT/ORT/DTT) using Figure 4.18, in relation to the execution of the program
snippet shown in Figure 4.17 that also highlights the code cache blocks to
which the lines of the static program belong.
When the processor executes a call at Program Counter (PC) A, it marks the
start of a new fragment A. As the processor accesses blocks B1, B2, and B10,
which are part of this fragment, the block addresses are stored in a buffer.
Although B10 is not shown as part of the fragment in Figure 4.17, it results
from a jump within block B2 that transfers control to block B10 (not shown
in the figure). Block B10 has a jump that transfers control back to block B2
(not shown in the figure). This could be due to code layout optimizations
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F2()
 {
  ……
  if (cond2){
       ……
  }
  else{
     ……
  }
  ……
  return
} 

F3()
 {
   ……
  if (cond3){
      ……
   }
   else{
       ……
  }
   ……
  return
 } 

F1()
 {

   ……
   ……
  if (cond1){
   ……
   B:F2()
   ……
  }
   ……
   C:F3()
    ……
  if (cond4){
    ……
  }
  else{
    ……
   }
    ……
   return
 } 

{
   .....
   …..
   ……         
   A:F1()
   ……
  if (cond5){
     ……
  }
  else{
     ……
  }
  ……
  return
 } 

frag4

frag5

frag3

frag1

frag6

frag2

B14

B15

B16

B35

B36

B1

B2

B3

B4

B40

B41

B42

B37

B38

B5

Figure 4.17: Example Program Snippet

that aim to pack hot code together and separate cold code, for example. As-
suming the condition evaluates to true initially and the processor executes a
call at PC B, this begins a new fragment B. The next fragment for fragment A
is now fragment B, which is buffered by the processor. Additionally, the pro-
cessor buffers the dynamic count of instructions executed as part of fragment
A. When the call at PC A retires, a new entry for fragment A is created in the
Fragment Table (FT). When the call at PC B retires, the fields for fragment
A, including the dynamic count of instructions executed (12), the blocks ac-
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Instruction

A: call <F1>

I1 
……..

I12

B: call <F2>

I13
…….

return (to B+4)

I24
…..

I30

C: call <F3>

Cache Blocks 
accessed by 
fragment 1 
<B1, B2, 
B10>

Cache Blocks 
accessed by 
fragment 4 
<B14,B15,
B16>

Cache Blocks 
accessed by 
fragment 2 
<B2,B3>

A <B1,2> 12 B 1 0 0 0

A <B1,2> 12 B 1 0 0 0

B <B14,3> 11 ret

A <B1,2> 12 B 1 0 0 0

B <B14,3> <B2,2> 11 7 ret C 0 0 0 0

A <B1,3> 12 B 1 0 1 0

B <B14,3> <B2,2> 11 7 ret C 0 0 0 0

C

(B10 overflows) 

A <B10,1>

ORT

A C 2 2

DTT

Ti
m

e

Figure 4.18: Fragment Table Construction Example

cessed (B1, B2, and B10), and the successor fragment (B), are stored in the
FT. Additionally, a new entry for fragment B is created.
One important detail to note is that B1 and B2 are contiguous in the memory
address space, while B10 is not; thus, fragment A is composed of one adjoint
region and a separate region. In the main FT, the code region <B1,2> is stored
for B1 and B2, and an ORT bit is set, indicating that the fragment has separate
regions. The second region for fragment A <B10,1> is stored in the ORT.
As part of fragment B, the processor accesses blocks B14, B15, and B16 before
executing a return. When the return following the call at PC B retires, the
FT entry for fragment B is populated with the region of memory accessed
<B14,3>, the dynamic instruction count (11), and the next fragment set as
return. Following the return, the processor continues accessing instructions
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starting at B+4 and onward, which constitutes the return fragment (Ret) of
B. Blocks accessed as part of the Ret fragment of B includes B2 and B3. Upon
the retirement of the call at PC C, the contents of the Ret fragment of B are
stored, with the code region set as <B2,2>, the count of retired instructions
set to 7, and the next fragment set to C.
At a later point in the program’s execution, if the condition following the call
at PC A evaluates to false, then the next fragment for call fragment A would
be C, not B (as previously stored). This would result in an IPU redirect and
an update to the table. The FT entry for A would now have the DTT bit
set, indicating multiple successor fragments. An entry for A would also be
created in the Dual Target Table (DTT) with the alternate fragment target and
the aging bits set to the maximum value for both possible fragment targets.
Further block B3 would also be accessed as part of frag1 and would miss.
This would update the adjoint region for the FT entry at A from <B1,2> to
<B1,3>.
If an entry for a fragment already exists in the FT, the processor has no way of
knowing to further update the FT entry. However, if the processor encoun-
ters a new cache miss for a fragment with an existing entry, this can trigger
an update to the FT (or ORT/DTT) entry already present. In the absence
of misses or redirects, the assumption is that the FT/ORT/DTT contains all
necessary information to send the required blocks of a fragment to the L1i.
Alternatively, these tables could also be populated by software. This aspect
is not explored in this dissertation.

4.4 Design Overview
The Instruction Presending Unit (IPU), illustrated in Figure 4.19, utilizes this
learned program representation to send blocks of code within each fragment
to the L1i as needed, proceeding to the subsequent fragment accordingly.
The processor sends fragment identifiers to the IPU to indicate which frag-
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2
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UFQ
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UBAQ
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Blocks 
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L1i

Figure 4.19: Overview of the Instruction Presending Unit (IPU)

ment is currently being processed. This communication enables the IPU to
stay sufficiently ahead of the processor and to take corrective action if nec-
essary, such as in cases of divergence. The operation of the IPU is detailed
further in the following section.
Before describing the operation of the IPU, we briefly describe some other
data structures that facilitate its operation:

– Upcoming Fragments Queue (UFQ) - This queue contains the frag-
ment identifiers for the fragments that have been sequenced by the IPU.
They are used to synchronize with the processor and keep sufficiently
ahead.

– Processor Fetch Fragments Queue (PFFQ) - This queue contains the
fragment identifiers for the fragments that have been fetched by the pro-
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cessor. They are used to aid the IPU in staying sychronized with the
processor.

– Upcoming Block Addresses Queue (UBAQ) - This queue contains the
set of block addresses identified the IPU that are likely to be referenced
by the processor. These addresses are used to move the corresponding
cache blocks to the L1i based on the conditions described in Sections
4.5.2 and 4.5.3.

– IPU Stack (IPUS) - A stack used to traverse fragment-level control across
returns, ensuring the correct sequencing of fragments following return
instructions.

4.5 Using Program Representation – IPU
Operation

Algorithm 1: Operation of the IPU
1 Next_Frag = Starting Fragment from Processor
2 while not sufficiently ahead (Step 1c) do
3 if Next_Frag = Call then
4 Access FT (Step 1a)
5 Push Return Fragment in IPUS
6 FragInfo = FragInfo from FT (Step 1d)
7 Update Next_Frag from FragInfo (Step 1d)
8 else
9 FragInfo = Pop from IPUS

10 Update Next_Frag from FragInfo (Step 1d)
11 Use FragInfo to update UFQ (Step 1b)
12 Add Blocks from FT to UBAQ (Step 2)
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4.5.1 Fragment-Level Sequencing Coupled with
Determination of Blocks

First, we describe the component of the scheme that employs high-level (frag-
ment) sequencing to move code blocks from a lower-level cache to the L1i,
ensuring that the cache is supplied with blocks the CPU is likely to reference
soon. Additionally, we address issues related to the efficient movement of
code blocks, focusing on transferring only active code blocks while avoiding
the movement of blocks already present in the L1i.

Single Next Fragment

We describe the operation of the IPU, as depicted in Algorithm 1, for sce-
narios where fragments have a single successor fragment. This algorithm
also references steps from Figure 1. The IPU functions to keep sufficiently
ahead of the processor throughout program execution, operating with frag-
ment identifiers.
When the Fragment ID corresponds to a call (step 1a), the IPU consults a
table to retrieve information about the fragment, such as the blocks accessed
by the fragment, the count of instructions within the fragment, and the next
fragment ID. Additionally, it pushes information about the return fragment
into the IPU stack (IPUS). If the next fragment ID is a return, an entry is
popped from the IPUS to obtain information about the next fragment target.
The fragment ID is stored in an Upcoming Fragments Queue (UFQ) (step
1b), and the blocks accessed by the fragment, obtained from the Fragment
Table (FT) and occasionally from the ORT, are pushed into an Upcoming
Block Addresses Queue (UBAQ) (step 2). This process is repeated for the
next Fragment ID (step 1d) until the IPU is sufficiently ahead of the processor
(step 1c).
After adding blocks to the UBAQ, a decision must be made regarding whether
a block needs to be sent to the L1i, which is detailed in Section 4.5.2 and Sec-
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tion 4.5.3. Based on this decision, the actual blocks of instructions are placed
in a Presend Block Queue (PBQ) (step 3), from where they proceed either to
the L1i or directly to the processor (step 4).

Multiple Next Fragments

In cases where a fragment can have multiple successor fragments (indicated
by the MT bit being set in the FT entry), the IPU has several options. The
IPU could either stop, go down one of the two paths, or go down both paths.
If the IPU is to explore multiple paths, it requires separate tracks (and thus
separate stacks) to follow these different paths. Upon encountering such a
fragment, the IPU stack (IPUS) is duplicated, and both paths are explored
with their respective IPUS. The fragment ID for the alternate path is obtained
from the Dual Target Table (DTT), which is used to pursue the second path.
While there may be two paths, the IPU may choose to explore only one if the
other path is inactive (indicated by its aging bits being set to 0).
Depending on the path taken by the processor (known via processor updates
made to the PFFQ), the IPU can subsequently go down only one of the two
forked paths. Additionally, aging bits for the path are also updated (the next
fragment processor went down has its aging bits updated positively, while
the other path is updated negatively, to ensure the IPU does not explore in-
active or less frequent paths). For most benchmarks studied here, we see
that exploring two paths suffices, for a few benchmarks exploring additional
paths provides benefit.

4.5.2 Handling Cold Code Blocks

The IPU places block addresses in the Upcoming Block Addresses Queue
(UBAQ). However, not all blocks are likely to result in a useful supply of
instruction blocks to the L1i. Given that the IPU operates in a remote and
decoupled manner, it needs to discern whether a block belongs to an inactive
code region and is therefore unlikely to be referenced by the processor.
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Studies have shown that server applications often contain parts of the pro-
gram that are never referenced (cold code) [14]. Cold code is never loaded
into the L2/LLC cache, so it is never added by the IPU to the UBAQ. However,
there are program sections (blocks of instructions) that are likely referenced
only once and then rarely, due to highly biased conditional branches, for ex-
ample. While a region may be active, some blocks within it may become cold
while others remain hot. Sending both types of blocks to the L1i can result
in a wasteful supply of instruction blocks. To mitigate this, we can associate
temperature bits (chosen to be 3 bits in this case) with each block. A low
value indicates the block is cold, while a high value indicates it is hot.
The temperature of a block can be learned dynamically. Initially, all blocks
can be set to a mid-temperature value (4, using 3 bits). When blocks are
sent to the L1i, their temperature bits are incremented (up to a maximum
value of 7) if accessed before eviction or decremented (down to a minimum
value of 0) if not accessed. A block with a minimum temperature value is
considered cold, and the decision to send blocks can be based on whether a
block is non-cold.
This scheme requires maintaining temperature bits per block within the L2/LLC
cache. Accessing these temperature bits would involve accessing the L2/LLC
cache tags.

Block Address

7 7 7 7 4 0 2 4

Index using lower n-bits
Block 
Temperature 
Table (BTT)

Figure 4.20: Block Temperature Table

To avoid this, we maintain a separate table called the Block Temperature
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Table (BTT), accessed using the lower n-bits of the block number, as shown
in Figure 4.20. The BTT is a linear array of counts indicating the temperature,
with values ranging from 0 (cold) to 7 (hot). The BTT is consulted for block
addresses in the UBAQ and only blocks with an adequate temperature are
sent to the L1i.

4.5.3 Handling Blocks Already Present in the L1i

Another crucial aspect of the efficient operation of the IPU is determining
whether a block is already present in the L1i.
To address this, prefetchers typically probe the L1i tags to verify the pres-
ence of a block. The IPU could employ a similar approach. However, this
significantly increases the number of L1i tag probes and may present imple-
mentation challenges, as it would require additional read ports in the cache.
Alternatively, the IPU (or a prefetcher) could maintain a pseudo-inclusion
bit in the L2/LLC for each block to track its presence in the L1i. The pseudo-
inclusion bit would be updated as blocks are inserted or evicted from the
L1i. These bits could be maintained alongside the L2/LLC tags. However,
this approach also comes with the challenge of having to probe the L2/LLC
tags to check for the presence of blocks in the L1i.

Block Address

1 1 0 0 1 0 1 1

Index using lower n-bits
Pseudo 
Inclusion Bit 
Table (PIT)

Figure 4.21: Pseudo Inclusion Bit Table

Maintaining these bits in a separate table, the Pseudo Inclusion Bit Table
(PIT), prevents unnecessary accesses to the L2/LLC tags. The PIT is a lin-
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ear array of bits accessed using the lower n-bits of the block number, similar
to the BTT, as illustrated in Figure 4.21. Our simulation results indicate that
using a PIT instead of probing the L1i tags yields nearly identical results.
Employing a good hashing scheme is likely to result in similar performance
to maintaining a per-block inclusion bit in a lower-level cache. The only in-
stances when a pseudo-inclusion bit leads to an incorrect block-sending deci-
sion are when the block is present in the cache at the time of decision-making
but is evicted before being referenced, which occurs very infrequently.
We have examined both alternatives in the following chapter and present
results using a PIT maintained separately from the L2/LLC tags.
Another alternative, which we have not studied in this thesis, is to maintain
shadow L1i tags (SL1) along with replacement/reference bits. These can
be updated using the block reference stream generated by the IPU and fed
to the UBAQ. This approach allows the system to operate independently of
L1i accesses. Any incoherence between the L1 tags and the SL1 tags can be
corrected during block replacements from the L1i and on misses in the L1i,
without impacting correctness.

4.5.4 Synchronizing High-Level Sequencing with the
processor

Given that the key component for effectively supplying instruction blocks is
the high-level sequencing facilitated by the learned program representation,
the IPU must ensure that it stays synchronized with the processor. We de-
scribe this aspect of the scheme next.
The IPU tries to remain on the correct execution path. To ensure it is on track,
as the processor fetches new fragments, the Fragment IDs are added to a Pro-
cessor Fetch Fragment Queue (PFFQ). These Fragment IDs could be added
during commit, and we describe the implications in Section 4.5.8. This allows
the IPU to monitor the processor’s current position in the program execution.
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As new fragments are added by the IPU to the PFFQ, the processor compares
the contents of the PFFQ with the Upcoming Fragments Queue (UFQ). This
comparison allows the processor to verify whether the IPU is on track and to
detect any divergence from the expected execution path. We next illustrate
this with an example.

Fr1 Fr2 PFFQ

Fr1 Fr2 Fr3 Fr4 Fr5

Proc Ptr Proc Ptr IPU Ptr IPU Ptr

UFQ

Figure 4.22: Synchronizing with the Processor

Fr10 Fr11 Fr12

Fr13

Fr10 Fr11 Fr14

IPU Ptr1

IPU Ptr2

UFQ

PFFQ

Proc Ptr

Figure 4.23: IPU Divergence from the Processor

Figure 4.22 illustrates how the IPU stays synchronized with the processor.



100

The IPU maintains a pointer to the fragment last added to the PFFQ (Proc
Ptr) and a pointer to the last fragment sequenced (IPU Ptr) in the UFQ. Ini-
tially, the processor inserts Fr1 into the PFFQ. In the UFQ, the IPU’s Proc Ptr
points to Fr1, which was sequenced in the past, and the current IPU Ptr is
at Fr4, the last fragment sequenced by the IPU. When the processor inserts
Fr2 into the PFFQ, the Proc Ptr for the processor fragments is moved by one
position in the UFQ. There is a match, indicating that Fr2 was sequenced cor-
rectly by the IPU. The IPU then continues to sequence additional fragments,
moving the IPU Ptr to Fr5 in the UFQ.
There are instances where the processor may diverge from the fragments
sequenced by the IPU. This occurs when the fragment obtained from the
PFFQ does not match the fragment obtained from the UFQ. In such cases,
the IPU experiences a redirect and begins sequencing from the fragment ob-
tained from the PFFQ that was not present in the UFQ.
We illustrate the occurrence of divergence with an example, as shown in Fig-
ure 4.23. Following Fr11, let us assume there are three possible successor
fragments: Fr12, Fr13, and Fr14. We store up to two successor fragments for
a given fragment, so in this example, let us assume the successor fragments
stored are Fr12 and Fr13. Following Fr11, the IPU sequences Fr12 and Fr13,
resulting in two IPU pointers pointing to Fr12 and Fr13. However, when the
processor inserts Fr14 into the PFFQ, this results in a divergence or mismatch
when the Proc Ptr is moved in the UFQ, as Fr14 was not sequenced by the
IPU and would not be present in the UFQ. This triggers a redirect within the
IPU starting from fragment Fr14.

4.5.5 Keeping Sufficiently Ahead

In addition to supplying a set of code cache blocks that are likely to be ref-
erenced by the CPU, timeliness in the delivery of these blocks is crucial to
avoid stalls while fetching instructions from the L1i. We next describe how
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the IPU maintains a sufficient lookahead to keep the processor supplied with
blocks of instructions in a timely manner.

Fr2
<I2>

Fr1
<I1>

Fr3
<I3>

Fr4
<I4>

Fr5
<I5>

Proc Ptr IPU Ptr
I2+I3+I4+I5>=threshold

UFQ

Figure 4.24: IPU Lookahead

Knowing the processor’s current fragment allows the IPU to stay sufficiently
ahead. This is achieved because the IPU has access to the instruction count
information for the additional fragments present in the Upcoming Fragments
Queue (UFQ), as the Fragment Table (FT) stores dynamic instruction counts
for all fragments. This information enables the IPU to determine how far
ahead it is from the processor’s execution path. We describe this with an
example.
Figure 4.24 shows the fragments sequenced by the IPU in the UFQ. The IPU
has sequenced fragments Fr1 through Fr5 with instruction counts of I1 through
I5. The processor pointer (Proc Ptr) in the UFQ is currently at Fr1. Let us as-
sume there is a lookahead threshold that the IPU seeks to maintain. The IPU
sequences fragments to ensure that the cumulative instruction count of frag-
ments following Fr1 exceeds this threshold. In this case, sequencing up to
fragment Fr5 ensures this criterion is met.
Next we describe how this lookahead threshold can be chosen. IPU seeks to
keep sufficiently ahead to tolerate the latency of fetching instructions from
the lower-level cache. In this regard, suppose the latency of fetching instruc-
tions from a lower-level cache is 20 cycles, and the fetch width of the machine
is 8 instructions, IPU would seek to keep 20x8=160 instructions ahead to tol-
erate this latency. In program phases where the processor fetches fewer than
8 instructions, IPU is likely to keep slightly ahead.
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Alternatively, one could use cycle counts in place of instruction counts. In
this case, tolerating a fetch latency of 20 cycles would involve setting a looka-
head threshold of 20 cycles.

4.5.6 Handling Loops and Recursion

Loops and recursion are program constructs where the same set of fragments
are executed repeatedly until control flows to the continuation of the loop or
the recursive call. However, the IPU does not need to repetitively send the
same code to the L1i, as it is likely already present in the L1i. The IPU only
needs to send blocks along the continuation path (alternate path) to stay
sufficiently ahead and wait for the processor to reach the continuation of the
loop or the recursive call.
This is monitored via the Processor Fetch Fragment Queue (PFFQ), which
filters the insertion of the same fragment identifiers occurring within a short
window (2-4 fragments) in the queue. This filtering mechanism allows the
IPU to keep sufficiently ahead along the continuation path and continue se-
quencing more fragments along the continuation path only when the pro-
cessor exits loop or recursion and inserts new fragment identifiers into the
PFFQ. Such an operation allows the IPU to function effectively, remaining
agnostic to loops and recursion within the program.

4.5.7 Processor Wrong-Path Execution

If the processor inserts fragment IDs into the PFFQ at fetch, there is a possibil-
ity of incorrect fragment IDs being inserted when the processor is fetching on
an incorrect branch path, leading to unnecessary redirects of the IPU. How-
ever, this is a very infrequent occurrence due to the high-level sequencing
employed.
First, for many fragments, there is a single successor fragment, and regardless
of the branch outcomes within the fragment, the next fragment inserted into
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the PFFQ remains the same. Similar observations have been made by other
studies exploiting control independence [7, 25, 61, 73].
Second, for fragments with multiple successors, we record two successors
in the FT/DTT, and the IPU proceeds down both paths. Consequently, the
IPU will only be incorrectly redirected if the processor’s execution on an in-
correct branch path leads to a successor fragment that is not one of the two
fragments recorded in the FT/DTT that the IPU is pursuing. This occurs very
infrequently, as is quantified in the next chapter in Section 5.10.
Therefore, the IPU can continue to operate using processor fetch fragment
IDs with minimal redirects, even in the presence of wrong-path execution.
It is important to note that wrong-path execution does not affect the training
of the FT/DTT, as they are created using the retired instruction stream.

4.5.8 Using Processor Commit Fragment Identifiers

While we have described using fetch fragment identifiers to synchronize the
processor with the IPU, using commit fragment identifiers for this purpose
is also an option. This approach has the advantage of not being affected by
wrong-path execution, as discussed in Section 5.10, unlike fetch fragment
identifiers. However, commit fragment identifiers are known much later in
the instruction pipeline compared to fetch fragment identifiers.
When fragment-level sequencing experiences frequent redirects, using fetch
fragment identifiers helps correctly redirect the IPU early, bringing it back
on the correct path. In contrast, delay in correcting the IPU using commit
fragment identifiers can be very long resulting in the IPU staying on the in-
correct path longer, leading to decreased performance. When redirects are
infrequent, the impact of using commit fragment identifiers is minimal, as
the IPU remains on track most of the time.
We evaluate the usage of commit fragment identifiers in the next chapter in
Section 5.11.
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4.6 Implementation Aspects

4.6.1 Location/Placement of the IPU

The IPU can be positioned at various points within the processing pipeline.
Once the FT has been populated, the IPU is only loosely coupled to the pro-
cessor, requiring fragment IDs. This communication becomes less frequent,
as quantified in the next chapter. Given its relatively decoupled operation,
the IPU can be placed either alongside the processor/L1i or near where all
active code resides, such as the Last Level Cache (LLC).
Positioning the IPU alongside the processor/L1i would allow it to reuse the
paths used for installing missing blocks in the L1i, similar to a typical prefetcher,
thereby pulling blocks of code into the L1i. Operating alongside the LLC, on
the other hand, would involve accessing blocks of code from the LLC and
pushing them to the L1i. Presending is most effective when block movement
is frequent between the LLC and L1i. Given that the LLC is already heav-
ily involved in the movement of instruction blocks for these applications, it
might be beneficial to consider placing the IPU close to the LLC.

4.6.2 Fragment Table Set Associativity

The Fragment Table (FT) is a set-associative table. When a new fragment is
installed in the FT, the table is accessed set-associatively to find an appropri-
ate entry for the newly created fragment. This associativity helps minimize
conflicts among the various fragments present in the table.
The IPU frequently accesses the FT to obtain information about a fragment,
such as the blocks it accesses and the identifier of the successor fragment. A
reasonably sized FT can capture the information for most active fragments
in the program, meaning the placement of a fragment within the FT is un-
likely to change during the operation of the IPU. The IPU has the option of
accessing the successor fragment set-associatively on all accesses. However,
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these set-associative accesses are likely to consume more energy and increase
access time.
Alternatively, given that the placement of FT entries is unlikely to change af-
ter their creation, the successor fragment identifier could encode where to ob-
tain the next fragment information from, including way information.Encoding
the fragment identifier as a pointer to another entry in the FT helps improve
access time and reduces the energy consumption of most FT accesses. Set-
associative accesses can be made during the creation of FT entries. They can
also be made during IPU redirects, where the IPU must restart sequencing
from the fragment identifier obtained from the PFFQ rather than from the
FT.

4.7 Summary
This chapter provided a comprehensive description of the Instruction Pre-
sending scheme. We began by detailing the various components of the pro-
gram representation utilized by the scheme. Next, we discussed the hard-
ware data structures required to capture this representation. We then ex-
plained how this representation is used to proactively move blocks of code
from a lower-level cache to the L1i. Finally, we described the construction of
these tables and concluded with specific implementation aspects.



106

Chapter 5

Presending Evaluation

In this chapter, we present an evaluation of the Instruction Presending (ab-
breviated Send) scheme. We begin by describing the simulation setup in Sec-
tion 5.1. Next, we quantify the storage required to maintain the shadow pro-
gram representation used by the Send scheme in Section 5.2. Following this,
we provide an outline of our evaluation approach. Finally, we present a de-
tailed evaluation of the Send scheme.

5.1 Simulation Setup
Below, we describe the simulator and benchmarks used, the baseline microar-
chitecture simulated, and the configurations of two prefetching schemes against
which we compare our approach.
To evaluate the Presending technique, we use the ChampSim simulator and
all 100 server benchmark traces (as mentioned in Chapter 2). We further
group the benchmarks into five categories based on their L1i MPKIs (Misses
Per Kilo Instructions) with a baseline instruction cache size of 32KB. Bins I,
II, III, IV, and V correspond to L1i MPKIs of 0-15, 15-30, 30-45, 45-60, and
>60, containing 16, 45, 6, 23, and 10 benchmarks, respectively.
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Processor Decoupled Front-end
Width 6 instructions
Fetch queue 192 instructions
Decode queue 60 entry
Dispatch queue 60 entry
Branch target buffer (BTB) 8K entries
Target cache 4K entries
Return Address stack 64 entries
Branch penalty 2 cycles (decode stage)

Branch Predictor
Hashed Perceptron
16 Tables, Each Table Size - 4KB
Maximum History Length - 232
Minimum History Length - 3

Processor Back-end
Execute width 4 instructions
Retire width 5 instructions
Re-order buffer 352 entries
Load, store queue 128, 72 entries

Memory hierarchy
L1i 32KB, 8-way, 4-hit cycles, 16 MSHR
iTLB 64-entry, 4-way, 1 hit cycle
L1-D cache 48KB, 12-way, 5 hit cycles, next-line;
L2 cache 512 KB, 8-way, 10 hit cycles, spp-dev
L2 BTB 16K-entry, 8-way, 8 hit cycle
L2 TLB 2K-entry, 8-way, 8-hit cycle
L3 cache 2MB, 16-way, 20 hit cycles, no pref
DRAM 4 GB, one 8B channel, 1600 MT/s

Table 5.1: Baseline Microarchitecture Parameters
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The simulated configuration, shown in Table 5.1, implements a decoupled
front-end, modeling FDIP, with a BTB (Branch Target Buffer) and a Target
Cache used to predict the targets of indirect branches [23], and a RAS (Re-
turn Address Stack). The simulated configuration employs a single-level, 1-
cycle BTB, which is more aggressive than designs that use a small L1 BTB cor-
rected by a larger BTB with higher access latency. Cache blocks are sent from
L3 to L1i (we describe a rationale for the same in Section 5.5). All schemes
are implemented on top of FDIP.
We compare our scheme against two highly effective prefetchers, namely
Shotgun (SG) and the Entangling Prefetcher (EP) [45, 64]. For Shotgun, we
use a configuration with a 4K U-BTB and a 1K-entry C-BTB, amounting to a
total storage of approximately 64KB. We evaluated smaller configurations of
SG but found them to be less effective. Additionally, we simulate a slightly
more aggressive version of SG compared to what was described in [45]. For
Send, when we have discontiguous regions for a fragment that would reside
in the ORT (Overflow Regions Table), these discontiguous regions continue
to be accessed in a single step (as part of the fragment). In the implemen-
tation for SG, they would reside in multiple U-BTB entries and be accessed
with multiple accesses to the U-BTB. In our implementation, we process mul-
tiple entries of the U-BTB in a single step, similar to Send. For the second
prefetching scheme (EP), we use the configuration with a storage overhead
of 77.44KB [64].

5.2 IPU Structures and Operation
We describe the sizes of the various entries in different structures used by the
IPU (FT, DTT, and ORT), as shown in Table 5.2. The data entry within the
FT comprises 2B for the block address (L3 block frame), 0.5B for the block
count (up to 16 contiguous blocks in the memory address space), 1B for the
instruction count, and 1.5B for the next fragment (a total of 4.5B per frag-
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Structure Entries Entry Size Storage
FT 4096 12.375B 50688B

DTT 256 3.375B 864B
ORT-2 1024 6.375B 6528B
ORT-4 256 11.375B 2912B

ORT-16 128 41.375B 5296B
Table 5.2: Table Storage Requirements

ment), for both the call and return fragments. The tag entry consists of 1.75B
for the tag and a valid bit.
The data entry in the DTT consists of 1.5B for the next fragment and 2 aging
bits for both paths. The tag entry in the DTT comprises 1.375B for the tag
and a valid bit, resulting in a storage requirement of approximately 3.375B
per DTT entry.
We use three ORT tables: ORT-2, ORT-4, and ORT-16, which can hold up to
2, 4, and 16 code regions, respectively. Each code region comprises 2B for the
block address (L3 block frame) and 0.5B for the block count, similar to the
code region within the FT. ORT-2 consists of two code regions, which take
up 5B, and a tag and valid bit that take up 1.375B, bringing the total size of
the entry to 6.375B. ORT-4 consists of four code regions, which take up 10B,
and a tag and valid bit that take up 1.375B, bringing the total size of the entry
to 11.375B. ORT-16 consists of sixteen code regions, which take up 40B, and
a tag and valid bit that take up 1.375B, bringing the total size of the entry to
41.375B.
All tables (FT, ORT, and DTT) are 8-way set associative. While associativ-
ity helps minimize conflicts during the placement of fragments, accesses are
predominantly direct (given that redirects are infrequent, as quantified in
Section 5.4). Including the storage for IPUS and the queues used, the total
storage amounts to approximately 68KB with 4K FT entries.
Table 5.3 shows the total storage with different FT entries. With 3K FT entries,
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Entries Storage
2048 43.2KB
3072 55.6KB
4096 68KB

Table 5.3: Table Storage Requirements Varying FT size

the total storage amounts to approximately 55.6KB, and with 2K FT entries,
the total storage amounts to approximately 43.2KB. Clearly, FT size is key to
bringing down storage, if important, so we evaluate the impact of FT size on
the frequency of redirects, a key metric for Presending in Section 5.4.
When an FT entry has a fragment with a separate region, the OF bit is set.
Additionally, the block address is replaced with a pointer to the ORT entry
to facilitate direct access to the ORT. It is important to note that only a single
ORT entry is used per FT entry. This means that for fragments accessing
separate regions in addition to the adjoint region and having their Overflow
(OF) bit set, only a single ORT table (either ORT-2, ORT-4, or ORT-16) is used
to encode all the separate regions accessed. The ORT tables are not cascaded
to simplify access, allowing for direct lookup to the ORT entry (instead of
a set associative lookup) from the respective ORT using the pointer in the
FT entry, accessing all code regions from a single entry. While this approach
simplifies ORT access, it could be expanded to allow cascading; however, this
dissertation does not explore this alternative.
To tolerate an L1i miss latency of 20 cycles (which corresponds to the L3
access latency) with a 6-wide fetch, Send keeps 20×6=120 instructions ahead.
This is the default configuration that we evaluate. We do study the variation
of this parameter in Section 5.6.2.
The default configuration for Send explores a second path when it encounters
a fragment with multiple successor fragments during high-level sequencing,
limiting the total number of active tracks to two at any given time. We explore
alternatives and their implications in Sections 5.4.1 and 5.5.1.
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5.3 Results Outline
Key components of the evaluation include:

– High-Level Sequencing Accuracy: Since a fundamental aspect of the
design is high-level sequencing, we begin by providing a detailed study
of high-level sequencing accuracy, quantified by the frequency of redi-
rects.

– Block Movement and Overheads: High-level sequencing is primarily
used to move blocks of instructions to the L1i. Therefore, we next eval-
uate block movement and the associated overheads in detail, as well as
the impact of different parts of the design on block movement. Further-
more, we evaluate two key components of Send: the Block Temperature
Table (BTT), which is used to control the movement of blocks from the
secondary cache to the L1i, and the Pseudo Inclusion Bit Table (PIT),
which is consulted to check for the presence of a code block in the L1i.

– Timeliness of Instruction Delivery/Cycles Waiting for an Instruction:
Timely delivery of instruction blocks is crucial. Thus, we evaluate the
timeliness of the scheme, quantified as cycles that the processor is wait-
ing for an instruction. We also evaluate the ability to stay ahead when
the latency of L3 cache is increased. We also evaluate this with an ag-
gressive backend.

– IPC Performance Benefits: We assess the IPC (Instructions Per Cycle)
performance benefits of the scheme. We also assess the IPC benefits
with an aggressive backend.

– Creation and Updates of FTs: We study the percentage of dynamic frag-
ments processed that create or update the FT to give an idea how much
communication with the processor is needed to create and maintain an
FT.

– Small Cache Sizes: We study the miss reductions for Send with smaller
cache sizes. We also study the cycles the processor is waiting for an
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instruction for Send with smaller cache sizes.
– Fetch Fragment IDs and Wrong-Path Execution:

We study some properties of dynamic fragment-level control flow to un-
derstand how redirects are likely to be affected in the presence of wrong-
path execution.

– Usage of Retired Fragment IDs: We study the effect of using retired
(commit) fragment IDs to stay sychronized with the processor in place
of Fetch Fragment IDs.

5.4 Frequency of Redirects
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Figure 5.1: RPKI FDIP and Send

Fundamental to the performance of the Send scheme is its ability to run
ahead in the instruction stream accurately at a high level (fragment level),
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ensuring the timely delivery of cache blocks containing the needed instruc-
tions. For this purpose, our focus is on determining the blocks of instructions
the processor is likely to reference, rather than the precise instruction stream.
Redirects refer to inaccuracies in sequencing. For Send, this happens when
the processor fetches a fragment which was not sequenced by Send. More
specifically, when the fragment inserted by the processor in the PFFQ was
not found in the UFQ. A high accuracy in sequencing high-level control flow
results in very few redirects.
Figure 5.1 quantifies the Redirects Per Kilo Instructions (RPKI) for six schemes.
The Y-axis represents the RPKI (in log scale), and the X-axis represents the
100 benchmarks studied. It quantifies the RPKI for FDIP with BTB sizes of
512 entries, 2K entries, 8K entries, and an infinite-sized BTB (FDIP-512, FDIP-
2K, FDIP-8K, and FDIP-Inf). It also quantifies the RPKI for Shotgun (SG) and
Send. FDIP relies on using a large BTB and an accurate direction predictor to
reduce the number of redirects in the front end, enabling the correct resolu-
tion of upcoming control flow. Increasing the BTB size significantly reduces
the RPKI for many of the benchmarks, especially when increasing from 512
to 8K (a result observed previously) entries. However, even with an infinite
BTB, the RPKI remains in the single digits due to redirects resulting from
branch direction mispredicts.
SG reorganizes the BTB to reduce BTB misses, but it still relies on the PC de-
termination logic to correctly go past all control instructions (using a branch
predictor and the BTB). The RPKI for SG is similar to that of FDIP-8K.
Send achieves an RPKI that is an order of magnitude lower than even FDIP
with an infinite BTB. For example, for server039, the RPKI is 61 for FDIP-512.
It falls to 5.22 for FDIP-2K, 4.1 for FDIP-8K and FDIP-Inf, and is 4.3 for SG.
With Send, it is 0.02. Similarly, for server023, the RPKI is 44 for FDIP-512,
35.05 for FDIP-2K, 6.5 for FDIP-8K, 6.05 for FDIP-Inf, and is 6.93 for SG. With
Send, it is 0.24.
Send maintains very low redirects in many cases because it does not need
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Metric (I) (II) (III) (IV) (V)
FDIP-Inf 5.50 6.25 5.23 4.29 5.12

SG 5.63 7.69 5.81 4.56 5.40
Send 0.15 1.08 0.19 0.15 0.09

Table 5.4: Redirects Per KI

Metric (I) (II) (III) (IV) (V)
Control Instructions/fragment 5.4 5.2 4.6 4.2 3.6

Control Instructions in Adjoint Region/fragment 3.8 4.0 3.8 3.5 3.1
Table 5.5: Control Instructions in a Fragment

to precisely determine the outcome of every control instruction, unlike the
other schemes, as it sequences fragment-level control flow. Most fragments
have a unique successor fragment, and only a few fragments have more than
one successor, in which case Send follows a second path. Redirects occur only
when Send is unable to record a successor for fragments with more than two
successors, or because it limits the paths explored to two. We also present
the Redirects for Send to highlight another key result.
Table 5.4 presents the average RPKI for the five different MPKI bins, for FDIP-
Inf, SG, and Send. We observe that RPKI are in the single digits for both
FDIP-Inf and SG. SG is able to bring the RPKI close to FDIP-Inf on all bins.
Send is able to bring down the RPKI further by an order of magnitude on
bins I, III, IV, and V, but exhibits a relatively higher RPKI for bin II. From
the table, it is evident that Send is particularly effective at maintaining a low
RPKI for applications with a very high L1i MPKI or frequent movement of
code between a lower-level cache and the L1i, notably bin IV and V.
Next, we present a characteristic of dynamically executed fragments in Table
5.5, summarized as averages for the five different MPKI bins. Row 1 shows
that there are, on average, 4-6 control instructions enclosed within a fragment
for the different benchmark bins, as noted in Chapter 3. Row 2 shows that,
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Metric (I) (II) (III) (IV) (V)
DTT 6.11 9.49 6.69 5.69 4.06

Table 5.6: DTT Accesses

on average, there are 3-4 control instructions enclosed in the adjoint region
of a fragment. This indicates that Send, which processes a fragment in each
step, goes past this many control instructions in every step, many of which
are contained in the adjoint region of the fragment. In contrast, FDIP must
accurately go past each control instruction (involving accurate direction pre-
dictions and BTB accesses) that Send processes in a single step.
We next conduct further studies to understand redirects for Send specifically.

5.4.1 Effect of Exploring Second Path

Table 5.6 shows the percentage of FT accesses that access the DTT across dif-
ferent MPKI bins. This percentage is relatively small for all bins (4-6.5%) but
slightly higher for bin II (9.5%). The remaining dynamic fragments in all
bins have a unique successor fragment. For instance, if the percentage is 5%,
this means that 95% of FT accesses involve a fragment with a unique succes-
sor fragment. When a fragment has a second successor fragment, Send can
either proceed down a second path, stop, or continue along one path.
We study the effect on redirects of sequencing high-level control flow differ-
ently, as shown in Figure 5.2.

– Frag-TwoPath: This configuration allows Send to pursue up to two tracks
(paths) at any point of time. This is the default configuration used in all
Send simulations. When a fragment has a second successor fragment,
Send pursues a second track, as described in Section 4.5.1. The number
of outstanding forks is limited to one at any given time.
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Figure 5.2: RPKI Second Path

– Frag-StopOnFork: In this configuration, Send stalls after encountering
fragments with more than one successor fragment, until it knows which
path the processor goes down.

– Frag-OnePath: Here, Send follows one path, which is the previous suc-
cessor fragment for a fragment with multiple successor fragments.

Clearly, Frag-TwoPath significantly outperforms Frag-StopOnFork by one or
two orders of magnitude. This is because Frag-StopOnFork waits for the pro-
cessor to fetch the successor fragment following the sequencing of a fragment
with multiple successor fragments, leading to increased redirects. In this sce-
nario, the fragment fetched by the processor along either path would count as
a redirect, as it would not be present in the UFQ. Frag-OnePath narrows this
performance gap in some benchmarks by pursuing a single path, thereby re-
ducing the number of redirects experienced after a fragment with multiple
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successor fragments. This suggests that in an implementation where Send
follows only one path, continuing along that path without stopping at forks
and using the previous successor fragment to traverse fragment-level con-
trol flow is likely to provide substantial benefits in many cases. Nonetheless,
pursuing a second path offers a significant reduction in redirects, even com-
pared to Frag-OnePath, in many scenarios. We also quantify the impact on
block movement in Section 5.5.1 to demonstrate that Send following a sin-
gle path provides much of the benefit of following a second path for many
benchmarks.

5.4.2 Components of Redirects
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Figure 5.3: RPKI Components

Redirects occur for two reasons:
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– We limit the number of successor fragments stored in the table to two,
distributed across the FT and DTT.

– We limit the number of paths pursued to two. When there are consec-
utive fragments with two successor fragments, the scheme goes down
the second path and stalls upon encountering the second fragment with
two successors.

Figure 5.3 the total Redirects Per Kilo Instructions (RPKI) labelled Total. The
figure also contains the RPKI resulting from the inability to store more than
two successor fragments labelled Frag-NotinTable. The difference between
these two values shows how often redirects occur due to the limitation of
pursuing only two paths.
Many applications have low RPKIs below 1, and for most of these applica-
tions, the majority of redirects stem from the inability to hold onto the suc-
cessor fragment in the table.
For applications with higher RPKIs, we observe that the difference between
the total redirects and the redirects from the inability to hold onto the succes-
sor fragment is quite large. This indicates that these applications experience
a non-trivial number of redirects due to the limitation of pursuing up to two
paths. While the scheme can be enhanced to overcome this limitation, this
enhancement is not explored in this dissertation.

5.4.3 Varying FT Size

Next, we vary the size of the fragment table (which is crucial for capturing
fragment-level control) for these benchmarks, as shown in Figure 5.4. This
figure examines redirects with 512-entry, 1K-entry, 2K-entry, 4K-entry, and
8K-entry fragment tables.
A 512-entry FT experiences a significantly higher number of redirects (one
or two orders of magnitude higher than a 4K-entry FT) due to its inability
to capture and reuse fragment-level control flow information. A 1K-entry FT
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Figure 5.4: RPKI Varying FT Size

shows a reduction in redirects, and a 2K-entry FT performs similarly to the
4K-entry and 8K-entry FTs. The benefits diminish beyond a 4K-entry FT. This
result is not surprising, as we observed in Chapter 3 that most applications
have 2K-4K active fragments.

5.4.4 Varying FT Associativity

Given that the Fragment Table (FT) is a key data structure holding the infor-
mation needed to sequence the program at a fragment level, we also study
the effect of varying FT associativity for an FT size of 4K entries on redirects,
as shown in Figure 5.5. We vary the associativity from 2-way to 16-way. A
2-way associativity results in increased table conflicts, resulting in the evic-
tion of FT entries and, consequently, increased redirects in many cases. A
4-way associativity improves this for many of the benchmarks. There is fur-
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Figure 5.5: RPKI Varying FT Associativity

ther improvement when increasing from 4-way to 8-way associativity, but
the benefits diminish beyond 8-way associativity.
Improved hashing schemes to index the FT are likely to help, but we do not
explore these alternatives in this dissertation.

5.4.5 Varying Rate of Aging Second Path

The DTT maintains aging bits that aid the IPU in avoiding less frequent (po-
tentially cold) paths. Figure 5.6 studies the effect on redirects of varying the
rate at which a path is aged out, where the second path is aged out if the pro-
cessor does not follow it 1 in 2, 4, 8, or 16 times. Clearly, aging out the path
very frequently, such as 1 in 2 times, results in greater redirects. In most
cases, aging out the paths 1 in 4 times provides benefits, and 1 in 8 times
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provides further benefits by continuing to use active paths maintained in the
DTT. The reduction in redirects beyond 1 in 8 times is marginal.
We also observe that there are a few workloads where aging out a path 1 in 4
times performs better than 1 in 8 or 16 times. For these benchmarks, the paths
remain in the DTT longer, resulting in instances where the IPU encounters
back-to-back fragments with two successor fragments and stops. In these
cases, aging out a path sooner allows the IPU to continue along one of the
two paths that remain active and have not aged out. This reduces redirects
compared to stopping or stalling.
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5.5 Block Movement to the L1i
In this section, we evaluate the movement of code cache blocks from the L3
cache to the L1i. We focus on the movement of code cache blocks from the
L3 cache to the L1i because all active code cache blocks typically fit within a
processor’s L3 cache, which is generally 2MB or larger in many commercial
processors. For example, AMD Zen4 utilizes a 4MB L3 cache per core [15].
Additionally, moving code from the L3 cache to the L1i frees up capacity in
the L2 cache for data.
Key metrics we use are:

– MPKI (Misses Per Kilo Instruction) - MPKI is a key performance met-
ric. While miss coverage is a commonly used metric to quantify miss
reductions, MPKI more effectively highlights the magnitude of these
miss reductions. For instance, a reduction from 100 to 10 MPKI is sig-
nificantly different from a reduction from 10 to 1 MPKI, even though
both represent a 90% miss coverage.

– L3 accesses per KI - Block movement measures the number of cache
blocks transferred between the lower-level cache and the L1i. Accuracy,
which refers to the proportion of blocks moved by a scheme that were
actually used by the processor, is a commonly used metric to quantify
the extra blocks moved between the lower-level cache and the L1i. How-
ever, simply showing raw accuracy can be misleading. For instance, an
application that was already moving 90 cache blocks every 1000 instruc-
tions might have this movement increased to 100 cache blocks with the
scheme, while another application with lower block movement might
have its block movement increased from 12 cache blocks every 1000 in-
structions to 24 blocks. Although the accuracy is quite low for the latter
(50% compared to 90% for the former), it might be acceptable given the
available bandwidth. Movement of blocks involves an L3 cache access,
as the movement of code occurs from the L3 to the L1i. Instead of show-



123

ing accuracy, we quantify the blocks moved using the metric L3 cache
accesses per KI to better highlight the magnitude of the increase in block
movement resulting from the scheme. The additional L3 cache accesses
are a key metric for block movement traffic. This metric not only offers
an alternative way to quantify accuracy but also highlights the magni-
tude of the increase in block movement.

In this section, we aim to study the reduction in misses achieved by Send.
Furthermore, we seek to evaluate the benefits in terms of miss reductions
resulting from exploring a second path and the use of overflow-region tables
(ORTs). We study the usage of a Pseudo-Inclusion Bit Table (PIT), which
is crucial for moving blocks of instructions without unnecessarily probing
the L1i tags. Additionally, we analyze the block movement traffic. We also
examine the Block Temperature Table (BTT), a component used to control
the block movement traffic.
We study two configurations for Send: one that employs a Block Tempera-
ture Table (BTT) (SendB) and one that does not (SendA). For SendB, we use
a 2K-entry BTT (we also study the effect of using different BTT sizes sepa-
rately). Unless explicitly mentioned, Send refers to SendA. For most of our
evaluation, we do not use the Pseudo Inclusion Bit Table and instead probe
tags to check for block presence, similar to other prefetchers. We do, how-
ever, present an evaluation in Section 5.5.2, where we study the effect of using
an inclusion bit and observe that the misses are quite close to those obtained
with tag probing.
Base refers to the baseline microarchitecture in all the results we present. We
do not show FDIP explicitly in our results relating to misses because FDIP
does not reduce MPKI over a microarchitecture without L1i prefetching. Al-
though FDIP misses in the L1i, it can significantly overlap the latency of these
misses by running ahead in the instruction stream. This effectively tolerates
much of the miss latency, resulting in reduced cycles that the processor waits
for an instruction. Overall cycles spent waiting for an instruction is a key
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metric to evaluate the supply of blocks of instructions, which in turn leads
to a performance benefit. We present detailed results for FDIP and the other
schemes evaluating these aspects in Sections 5.6 and 5.7.

5.5.1 Miss Reductions
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Figure 5.7: L1i MPKI

Figure 5.7 presents the L1i MPKI (log-scale) for various configurations. The
configurations include Base (Baseline microarchitecture), Shotgun (SG), SendA,
SendB, and Entangling Prefetcher (EP).
In Figure 5.7, we observe that the MPKI for SG is smaller than that for Base.
EP achieves a significantly lower MPKI than both Base and SG. Both Send
configurations achieve even lower MPKIs and outperform EP by an order of
magnitude for some benchmarks, particularly those with high Base MPKIs
or those where blocks are frequently moved into the L1i.
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For example, for server026, the Base MPKI is 54, while the MPKI for SG is 38.
EP reduces this to 9.4, and with Send, it is further reduced to 1.17. Similarly,
for server038, the Base MPKI is 80, while the MPKI for SG is 52. EP reduces
this to 11, and with Send, it is further reduced to 0.28. The MPKIs for SendA
and SendB are very similar in most cases, with either performing slightly
better in some instances. SendB primarily provides the benefit of controlling
the movement of blocks, which in some cases translates to a small reduction
in misses.

Miss Reduction from Exploring Second Path

While we evaluated the effect on redirects from exploring a second path in
Section 5.4.1. Here we assess the impact on miss reductions of exploring the
second path/track.
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Figure 5.8: Benefits of Pursuing Second Track
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Figure 5.8 helps us better understand the benefit Send has from exploring a
second track. It plots the MPKI for Base, Send which stalls when it encoun-
ters a fragment with multiple successor fragments until the processor reaches
the particular fragment to determine the next fragment (Send-StopOnFork),
Send which explores one path, choosing the previous successor fragment
(Send-OnePath), and the default configuration of Send that explores a sec-
ond track (Send).
Send-StopOnFork can significantly reduce misses compared to Base. Send-
OnePath further reduces misses, bringing performance close to that of Send
for some benchmarks. Send achieves additional miss reductions, sometimes
relatively higher compared to Send-OnePath, by exploring the second path.
Thus, one can use Send-OnePath and still achieve a substantial portion of the
miss reductions obtained from pursuing the second path.

Miss Reduction from Using Overflow Region Table (ORT)

Metric (I) (II) (III) (IV) (V)
ORT-2 21.21 21.52 13.74 12.68 10.56
ORT-4 2.53 1.63 0.60 0.41 0.11
ORT-16 0.05 0.04 0.07 0.07 0.01

Table 5.7: Dynamic ORT Accesses

Control flow within a fragment often results in accesses to discontiguous
blocks, necessitating the use of the Overflow Regions Table (ORT). Rows 1-3
in Table 5.7 studies the percentage of FT accesses that involve the different
ORTs for the different MPKI bins. The percentage of accesses to ORT-2 and
ORT-4 is relatively higher for bins I and II, which have more control instruc-
tions per fragment on average (we had seen in Table 5.5), as we observe in
Rows 1 and 2 in Table 5.9. The percentage of accesses to ORT-16 is very small
for all the bins.
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Figure 5.9 analyzes the effect of using ORTs on the L1i MPKI. It presents
the MPKI for Base, the MPKI for Send without using ORT using only the
adjoint region stored in the FT (Send-NoORT), the MPKI using only ORT-
2 that allows for up to 2 code regions per fragment (Send-ORT2), the MPKI
using only ORT-2 and ORT-4 that allows for up to 4 code regions per fragment
(Send-ORT2,4) and the MPKI using all ORTs (Send-ORT2,4,16). Using only
the single region stored in the FT reduces the MPKI to single digits for Send.
Utilizing ORT-2 alone further reduces MPKI. The combined use of ORT-2 and
ORT-4 brings down misses even more, effectively covering most accesses to
separate regions for fragments. The usage of ORT-16 provides a marginal
improvement. This is expected, as the ORT-16 is accessed very infrequently.



128

0 20 40 60 80
Workloads

100

M
PK

I
8Kbit
16Kbit
32Kbit

64Kbit
PerBlock

Figure 5.10: MPKI Using Different PIT Sizes

5.5.2 Usage of Pseuso-Inclusion Bit Table

Send can utilize a Pseudo Inclusion Bit Table (PIT), a bit-vector indexed us-
ing bits from the block address, separate from the L1i. PIT approximates the
presence of blocks in the L1i. The use of a PIT enables decoupled operation,
which could also be employed by other prefetching techniques, and can sig-
nificantly reduce the number of L1i tag probes.
First, we examine the effect of different PIT sizes on L1i MPKI, studied in Fig-
ure 5.10. We evaluate PIT sizes ranging from 8Kbits to 64Kbits. Additionally,
we assess a configuration where an inclusion bit is maintained along with
every block in the L3 cache (PerBlock), amounting to a total of 32Kbits for a
2MB cache with a 64B cache block size. The 8Kbit configuration leaves a sig-
nificant number of misses uncovered, whereas the 16Kbit and 32Kbit tables
provide substantial miss reductions over the 8Kbit table. The 32Kbit configu-
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ration approaches the performance of the 64Kbit table on many benchmarks.
The per-block configuration provides significant miss reductions on some
benchmarks compared to the 64Kbit configuration, primarily due to aliasing
in the fixed-size PIT. Per-block configuration benefits from the associativity
in the L3 cache, minimizing effects of aliasing.
In our current implementation, the PIT is indexed using the lower n-bits of
the block address. Aliasing in the PIT causes missed opportunities for some
benchmarks. We leave further enhancements to this to minimize aliasing to
future work. Next, we present some results using a 64Kbit-sized (8KB) PIT,
to study the impact of using a PIT on L1i tag accesses and on L1i MPKI.
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Figure 5.11: Tag Probes Using Inclusion Bit Table

A key benefit of using the PIT is that it reduces the number of L1i tag accesses
by utilizing the bit vector to approximate the presence of a cache block in the
L1i. We evaluate this aspect next. Figure 5.11 examines the frequency of



130

L1i tag accesses (Tag Probes) made by Send (with a PIT) as well as config-
urations that probe the tags (Send Tag, EP Tag) and Base. We quantify the
frequency of L1i tag probes as Tag Probes Per KI. EP Tag makes significantly
more tag probes compared to Send Tag because EP probes tags on instruction
fetch, whereas Send is coupled to a block access. Send PIT can further reduce
the tag probes significantly, providing additional benefits and coming close
to the tag probes made by Base. Any prefetch scheme will have some extra
probes over a baseline because of having to install blocks in the L1i ahead of
time.
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Figure 5.12: MPKI Using Inclusion Bit Table

Figure 5.12 plots the L1i MPKI for the same configurations. Both Send PIT
and Send Tag perform signficantly better than EP. From Figure 5.12, we ob-
serve that Send Incl Bit performs comparably to Send Tag in many cases.
However, in some instances, it experiences more misses compared to Send
Tag. This is because Send Tag, during its operation of probing tags to check
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for presence, also updates the replacement bits for the block. In some cases,
this helps prevent the eviction of the block before it is referenced by the pro-
cessor. On the other hand, Send PIT checks the PIT for presence, and if it
indicates the presence of the block, it does not move the block to the L1i.
This check happens in advance of when the processor is likely to reference
the block, as Send tries to always stay ahead in the instruction stream. In
some instances, the replacement policy in the L1i replaces the block from the
cache before the block is actually referenced by the processor, resulting in a
miss. These are the instances where Send PIT experiences significantly more
misses compared to Send Tag.

5.5.3 Block Movement Traffic

To recap, the movement of blocks to the L1i involves the L3 cache. To better
quantify the increase in the magnitude of block movements, we use the met-
ric L3 cache accesses per KI. We first present some results to understand the
BTT, a data structure that is key to controlling the block movement traffic.

Traffic Control Using BTT

The Block Temperature Table (BTT) is a linear array of 3-bit temperature val-
ues used to indicate whether a block is cold or hot. The idea is that cold
blocks need not be moved to the L1i. The BTT is indexed using the lower
n-bits of the block address. This key data structure can be used to control the
block movement traffic between the L3 cache and the L1i.
We first present an evaluation of the traffic with different BTT sizes. Figure
5.13 shows the block movement traffic with no BTT and with different BTT
sizes: 1K, 2K, and 4K entries, corresponding to sizes of 384B, 768B, and 1.5KB,
respectively, as well as with a block temperature value maintained alongside
every code cache block in the L3 cache (PerBlk). Clearly, the use of the BTT
can significantly reduce block movement traffic for some benchmarks. For
example, in server002, the block movement traffic decreases from 41 to 22.7
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Figure 5.13: Traffic With Different BTT Sizes

L3 cache accesses per KI, with a 2K-entry BTT. The benefit offered by a 1K-
entry BTT is quite substantial, and going beyond 1K entries provides only
a small benefit. Beyond 2K entries, the benefit is very marginal. For our
simulations, we use a 2K-entry BTT.

Traffic Increase With Send

Next, we evaluate the additional block movement introduced by Send as well
as other schemes, as shown in Figure 5.14. The Base results are somewhat
optimistic because we do not evaluate the effect of wrong-path prefetching
given the trace-based infrastructure we are using. The extra traffic for SG is
similar to Base, though slightly higher in a few cases. Send exhibits higher
traffic in most cases, but the relative increase in traffic is small for benchmarks
that already have high traffic. SendB can reduce traffic compared to SendA
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through the use of temperature bits in some cases, as previously discussed.
The extra traffic for EP is also higher compared to Base and SG, and is on par
with SendA and SendB.
We next provide a more detailed evaluation of the extra code movement for
Send.

Excess Block Movement Breakdown

Blocks can be wastefully sent to the L1i for two reasons:

– The IPU pursues multiple tracks when a fragment has multiple succes-
sor fragments.

– A fragment encapsulates all fragment internal control flow, and not all
blocks in a fragment may be used based on the outcomes of the control
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instructions within the fragment.

Figure 5.15 plots the traffic for Base, Send, and traffic from Send along the
correct path alone (Send - 1 Path). The difference between Send and Send - 1
Path highlights the extra traffic generated from pursuing a second track/path.
The difference between Base and Send -1 Path highlights the extra traffic
from encapsulating all fragment internal control flow. For some benchmarks,
we observe a significant contribution to extra traffic from pursuing a second
path. For some of the benchmarks, most of the contribution appears to stem
from encapsulating all the local control flow, as the traffic from Send - 1 Path
is almost the same as the traffic for Send.
We also present the traffic for Base, Send - 1 Path, and Send for the different
L1i MPKI bins in Table 5.8 to better highlight some trends. The first three
data rows present the average traffic for Base, Send - 1 Path, and Send. For
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Metric (I) (II) (III) (IV) (V)
Base 5.42 (1.00) 24.45 (1.00) 40.65 (1.00) 50.14 (1.00) 69.38 (1.00)

Send- 1 Path 6.98 (1.28) 30.26 (1.24) 46.75 (1.15) 54.99 (1.1) 74.37 (1.07)
Send 8.48 (1.56) 36.05 (1.47) 53.28 (1.31) 60.71 (1.21) 77.70 (1.12)
DTT 6.11 9.49 6.69 5.69 4.06

Table 5.8: Traffic Breakdown for MPKI Bins

each of the fields in these rows, the relative increase in traffic over Base is
shown in parentheses. The last data row presents the average percentage of
FT accesses that access the DTT. For bins I, II, and III, the relative increase in
traffic from Send over Base is significant (over 45% for bins I and II). Addi-
tionally, the traffic increase from pursuing a second path is notable (a 23%
increase over Base for bin II which is the difference between Send and Send-1
Path) due to more frequent DTT accesses (9.5% for bin II), as these bins have
more fragments with multiple successor fragments. The relative increase in
traffic for Send over Base in bins IV and V is smaller (12-20%), with similar
contributions from pursuing a second path and and from encapsulating all
fragment internal control flow. These bins also make fewer DTT accesses.

5.6 Timeliness Evaluation
To recap, timeliness refers to the scheme’s ability to fully tolerate the latency
associated with fetching instructions from a lower-level cache, thereby mini-
mizing the time spent waiting for instructions. While reducing cache misses
is important, the ability to overlap these misses can reduce the average miss
latency. Misses can have varying latencies depending on the scheme’s ef-
fectiveness in overlapping them. The impact on the frontend is primarily
determined by how much time it spends waiting for instructions, making
the cycles spent by the processor waiting for an instruction a crucial metric.
Maintaining a low cycle count in this regard is key to achieving high fron-
tend performance and improving overall application performance. First, we



136

evaluate this aspect, followed by an assessment of the impact of instruction
lookahead on timeliness.
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Figure 5.16: Cycles Waiting for Instruction Per KI with 20-cycle L3 Latency

5.6.1 Cycles Spent Waiting for an Instruction

Figure 5.16 quantifies the cycles spent waiting for an instruction to be fetched,
expressed as cycles waiting for an instruction per kilo instructions (in log
scale). The figure plots these cycles for FDIP-512 (with a 512 BTB), FDIP
(with an 8K BTB), FDIP-Inf (FDIP with an infinite BTB), SG, EP, SendA, and
SendB. For Send, we use the default configuration with a lookahead of 120
instructions. FDIP-512 experiences an order of magnitude higher cycles wait-
ing for instructions compared to FDIP, as the large BTB (8K-entry BTB) allows
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Figure 5.17: Cycles Waiting for Instruction Per KI with 40-cycle L3 Latency

FDIP to effective runahead in the instruction stream, thereby better tolerat-
ing the latency of fetching instructions from a lower-level cache. This sig-
nificantly reduces the waiting cycles. FDIP experiences almost an order of
magnitude higher cycles waiting for instructions compared to Send, some-
times even two orders of magnitude higher. FDIP-Inf improves this slightly.
SG further reduces the cycles waiting for instructions. EP further reduces the
cycles waiting for an instruction. However, both SendA and SendB still pro-
vide higher reductions over EP, in many cases an order of magnitude higher
compared to EP, often reducing the cycles waiting for instructions to single
digits or close to zero. The difference in cycles waiting for an instructions
between SendA and SendB is very small.
Similarly, Figure 5.17 quantifies the cycles spent waiting for an instruction to
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be fetched, expressed as cycles waiting for an instruction per kilo-instructions
(in log scale), for the same configurations, with a higher L3 latency of 40
cycles. For Send, the instruction lookahead is increased to 240 instructions
to tolerate the higher latency. The trends are mostly similar. Cycles spent
waiting for an instruction are higher for the FDIP configurations and SG. We
observe that both EP and Send continue to maintain low cycles waiting for in-
structions (though slightly higher than with an L3 latency of 20 cycles), with
Send performing better and maintaining cycles waiting for an instruction in
the single digits in many cases.

5.6.2 Sensitivity to Instruction Lookahead
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Figure 5.18: Varying Instruction Lookahead with 20-cycle L3 Latency

Instruction based lookahead is a key parameter for Send, determining its abil-
ity to tolerate the L3 latency from which blocks are moved to the L1i and
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Figure 5.19: Varying Instruction Lookahead with 40-cycle L3 Latency

ensure a timely supply of instruction blocks. For all of our simulations, the
default instruction lookahead is 120 instructions. In Figure 5.18, we vary the
instruction lookahead for Send from 40 to 240 (Icount40, Icount80, Icount120,
Icount160, and Icount240) and show the Cycles Waiting for an Instr/KI in
log-scale.
Program phases that fetch 6 instructions per cycle benefit from higher looka-
heads. Icount40 brings down the cycles waiting for an instruction to the sin-
gle digits in many cases. Icount80 improves cycles waiting for instructions
further, and beyond Icount120, the cycles waiting for an instruction remains
almost the same.
In Figure 5.19, we show the same configurations, this time with an L3 la-
tency of 40 cycles. We expect higher instruction lookaheads to effectively tol-
erate this increased latency of fetching instructions from a lower-level cache.
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Clearly, we observe that there is a significant difference in the cycles wait-
ing for instructions when going from Icount40 to Icount120. Going from
Icount120 to Icount160 further provides a significant reduction in many cases.
Beyond Icount160, the reduction in cycles waiting is quite small. Send can
effectively keep ahead in the instruction stream, and this becomes more im-
portant as we try to tolerate higher fetch latencies.

5.6.3 Using Cycle Counts Instead of Instructions
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Figure 5.20: Varying Cycle Lookahead with 20-cycle L3 Latency

Next, we study the effect of using fetch cycle counts for a fragment instead of
dynamic instruction counts to keep ahead of the processor. This parameter
determines the ability to tolerate the L3 latency from which blocks are moved
to the L1i. In Figure 5.20, we vary the cycle lookahead for Send from 5 to 30
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Figure 5.21: Varying Cycle Lookahead with 40-cycle L3 Latency

cycles (5-cycle, 10-cycle, 20-cycle, and 30-cycle) and show the Cycles Waiting
for an Instruction per Kilo-Instruction in log scale.
We observe a significant reduction in waiting cycles when increasing the
lookahead from 5 cycles to 10 cycles. Furthermore, many benchmarks show
additional reductions when increasing from 10 cycles to 20 cycles. However,
reductions are marginal beyond 20 cycles. This is expected, as we are tolerat-
ing a latency of 20 cycles when fetching instructions from an L3 cache. This
illustrates that cycle counts could also be used as an alternative to instruction
counts to aid in keeping ahead of the processor.
Similarly, in Figure 5.21, we vary the cycle lookahead for Send from 5 to 40
cycles (5-cycle, 10-cycle, 20-cycle, and 40-cycle) and show the Cycles Waiting
for an Instruction per Kilo-Instruction in log scale, with an L3 latency of 40
cycles. A higher cycle lookahead is required to tolerate the L3 latency. In-
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creasing the lookahead from 5 to 20 cycles results in a significant reduction
in cycles waiting. Some benchmarks continue to see improvements when
increasing the lookahead from 20 to 40 cycles.

5.7 IPC Performance
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Figure 5.22: L1i IPC

Reducing the cycles spent waiting for an instruction enhances the supply
of instructions to the processor’s backend, leading to improved IPC perfor-
mance. Next, we quantify this increase in IPC performance.
The figure 5.22 presents the relative IPC over FDIP with an 8K BTB. The re-
sults are shown for Infinite L1i (InfCache), SendA, SendB (with the use of a
BTT), Entangling Prefetcher (EP), Shotgun (SG), and FDIP with an infinite
BTB (FDIP-Inf).
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FDIP-Inf and SG achieve some performance benefits over FDIP, with SG out-
performing FDIP-Inf in many cases. As we saw in the previous Section 5.6.1,
FDIP-Inf reduces the cycles spent waiting for an instruction slightly com-
pared to FDIP with an 8K-BTB, while SG reduces this even further. One rea-
son for SG’s enhanced performance over FDIP is that it is allowed to prefetch
blocks spanning multiple UBTB entries, which are part of a fragment in one
step, whereas FDIP would prefetch them in multiple steps. EP further re-
duces the cycles spent waiting for an instruction compared to SG and FDIP-
Inf, resulting in a 10-20% performance improvement over FDIP with an 8K
BTB in many cases.
Send reduces cycles waiting for an instruction even further in some cases,
which we saw in Figure 5.16, leading to a slightly higher IPC performance
benefit compared to EP. The cycles waiting differences between SendA and
SendB are minimal, so their IPC performance benefits are nearly identical.
Send provides an IPC performance benefit of 10-27% over FDIP with an 8K
BTB for many benchmarks, approaching the performance of InfCache in many
cases. For some benchmarks, we observe greater differences between the
performance of Send and InfCache; these are the benchmarks where Send
experiences higher redirects (RPKI). We next present data for the different
L1i MPKI bins to better illustrate this.
Table 5.9 presents the absolute IPC, RPKI, and Cycles Waiting for an Instruc-
tion Per KI averages across different MPKI bins for various configurations.
We do not show the RPKI for EP since it is identical to FDIP-8K, as EP does
not explicitly sequence the program control flow. RPKI for both SendA and
SendB are also identical. The first 7 data rows show the absolute IPC for the
different configurations, followed by 4 data rows presenting the RPKI for se-
lect configurations. The last 6 data rows show the Cycles Waiting for Instruc-
tion Per KI for the various configurations. The InfCache configuration has
zero waiting cycles since instructions are always available to the processor.
We observe that the IPC difference between InfCache and Send is minimal
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Metric (I) (II) (III) (IV) (V)
IPC

FDIP-8K 1.32 1.42 0.83 0.77 1.43
FDIP-Inf 1.34 1.51 0.84 0.78 1.43

SG 1.34 1.51 0.86 0.80 1.51
EP 1.36 1.61 0.88 0.81 1.54

SendA 1.36 1.65 0.89 0.81 1.55
SendB 1.36 1.64 0.89 0.81 1.55

InfCache 1.40 1.69 0.90 0.82 1.56
RPKI

FDIP-8K 5.57 7.11 5.53 4.39 5.13
FDIP-Inf 5.50 6.25 5.23 4.29 5.12

SG 5.63 7.69 5.81 4.56 5.40
Send 0.15 1.08 0.19 0.15 0.09

Cycles Waiting for Instruction Per KI
FDIP-8K 34.76 145.06 127.00 125.46 154.13
FDIP-Inf 31.96 99.69 110.26 119.29 153.31

SG 19.42 79.28 59.35 51.90 50.82
EP 12.41 30.17 33.30 30.22 31.10

SendA 6.42 12.86 10.99 6.99 1.33
SendB 6.72 12.92 11.39 7.15 1.43

Table 5.9: Absolute IPC, RPKI and Cycles Waiting Per KI for MPKI Bins

for bins III, IV, and V because they maintain very low RPKI, an order of mag-
nitude smaller than FDIP with both an 8K BTB and an infinite BTB, as well as
SG. Additionally, the waiting cycles are in the single digits for bins IV and V,
slightly higher for bin III. The IPC difference is more significant for bin II due
to higher RPKI and a higher cycles waiting for an instruction with Send. The
IPC difference becomes more pronounced with an aggressive microarchitec-
ture, as discussed in Section 5.7.1. In bin I, many applications have a low
RPKI, but a few have higher RPKI and higher cycles waiting for an instruc-
tion, making the average IPC difference between InfCache and Send more
noticeable.
Although the performance benefit of Send over EP is small, we shall see in
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Processor Decoupled Front-end
Width 8 instructions
Fetch queue 192 instructions
Decode queue 60 entry
Dispatch queue 60 entry
Branch target buffer 8K entries
Target cache 4K entries
Return Address stack 64 entries
Branch penalty 2 cycles (decode stage)
Branch Predictor Hashed perceptron

Processor Back-end
Execute width 10 instructions
Retire width 8 instructions
Re-order buffer 1000 entries
Load, store queue 300, 300 entries

Memory hierarchy
L1i 32KB, 8-way, 4-hit cycles, 16 MSHR
iTLB 64-entry, 4-way, 1 hit cycle
L1-D cache Perfect, 3 hit cycles, next-line
L2 cache 512 KB, 8-way, 10 hit cycles, spp-dev
L2 BTB 16K-entry, 8-way, 8 hit cycle
L2 TLB 2K-entry, 8-way, 8-hit cycle
L3 cache 2MB, 16-way, 20 hit cycles, no pref
DRAM 4 GB, one 8B channel, 1600 MT/s
Table 5.10: Aggressive Microarchitecture Parameters (uA2)

Chapter 7 that Send can provide similar performance even with a small-sized
primary L1 BTB, while EP relies on a large primary L1 BTB.

5.7.1 Using an Aggressive Microarchitecture (uA2)

Send achieves a low MPKI and a low cycles waiting for an instruction and is
not dependent on any processor microarchitectural events, branch direction
predictor, or BTB. Therefore, we expect Send to keep up as the demands on
the front end grow. To illustrate this, we evaluate Send with an aggressive
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backend, which puts more pressure on the processor frontend, making the
timely supply of instructions even more critical.
For this evaluation, we simulate a machine with the parameters described
in Table 5.10. The key changes include the use of an ideal data cache (3-
cycle hit latency) that always hits, 8-wide fetch, 10-wide issue, and a 1000-
entry reorder buffer. Additionally, we allow multiple-taken branches to be
predicted in a single cycle.
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Figure 5.23: Varying Cycle Lookahead with 20-cycle L3 Latency (uA2)

Figure 5.23 quantifies the cycles spent waiting for an instruction to be fetched,
expressed as cycles waiting per kilo-instructions (on a logarithmic scale),
with an L3 latency of 20 cycles, using the aggressive microarchitecture. The
figure shows these cycles for FDIP-512 (with a 512-entry BTB), FDIP (with
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Figure 5.24: Varying Cycle Lookahead with 40-cycle L3 Latency (uA2)

an 8K-entry BTB), FDIP-Inf (FDIP with an infinite BTB), SG, EP, SendA, and
SendB. The trends remain consistent with those observed earlier, with Send
continuing to maintain low cycles waiting per KI even with an aggressive
backend.
Similarly, figure 5.24 quantifies the cycles spent waiting for an instruction to
be fetched, expressed as cycles waiting for an instruction per kilo-instructions
(in log scale), for the same configurations, with a higher L3 latency of 40 cy-
cles, using the aggressive microarchitecture. For Send, we use a configura-
tion with a lookahead of 240 instructions. The trends remain similar to those
observed earlier: cycles waiting are increased for all configurations, but Send
continues to outperform the other configurations and maintain small cycles
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waiting in many cases. Send continues to maintain low cycles waiting with
an aggressive backend and a slower L3.
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Figure 5.25: Relative IPC uA2

Reducing the cycles spent waiting for an instruction enhances the supply of
instructions to the processor’s backend, leading to improved performance.
These performance benefits are likely to be further amplified given the more
aggressive backend. Next, we quantify the increase in IPC performance.
Figure 5.25 plots the relative IPC over FDIP with an 8K BTB. We study the
relative IPC of SendA, SendB, EP, Infinite L1i (InfCache), SG, and FDIP with
an infinite BTB (FDIP-Inf).
SendA, SendB, and EP continue to outperform SG and FDIP-Inf by a larger
margin in this more aggressive setup. The performance difference between
Send and EP also becomes more noticeable. Send can keep up with the
increased demands on the front end and outperforms EP in many of the
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Metric (I) (II) (III) (IV) (V)
FDIP-8K 2.11 2.08 1.72 1.79 2.12
FDIP-Inf 2.14 2.28 1.77 1.81 2.12
Shotgun 2.16 2.32 1.84 1.89 2.32
SendA 2.21 2.66 1.92 1.92 2.37
SendB 2.20 2.66 1.92 1.92 2.37

EP 2.19 2.56 1.88 1.91 2.35
InfCache 2.23 2.75 1.93 1.92 2.38

RPKI
FDIP-8K 5.57 7.11 5.53 4.39 5.13
FDIP-Inf 5.50 6.25 5.23 4.29 5.12

SG 5.63 7.69 5.81 4.56 5.40
Send 0.15 1.08 0.19 0.15 0.09

Cycles Waiting for Instruction Per KI
FDIP-8K 23.48 127.32 105.33 104.23 159.26
FDIP-Inf 21.43 88.29 93.49 99.84 158.56

SG 14.23 77.50 60.39 58.19 80.96
EP 9.60 36.80 37.77 34.06 51.94

SendA 3.81 12.39 8.26 5.40 4.09
SendB 3.91 12.64 8.45 5.54 3.80

Table 5.11: Absolute IPC, RPKI and Cycles Waiting Per KI for MPKI Bins with an
aggressive microarchitecture

benchmarks by 2-6%. Send comes close to the performance of InfCache on
some benchmarks, there remains room for improvement on others. We next
present data for the different L1i MPKI bins to better illustrate this.
Table 5.11 presents the absolute IPC, RPKI, and Cycles Waiting for an In-
struction Per KI averages across different MPKI bins for various configura-
tions, with the aggressive microarchitecture. We do not show the RPKI for
EP since it is identical to FDIP-8K, as EP does not explicitly sequence the
program control flow. RPKI for both SendA and SendB are also identical.
The first 7 data rows show the absolute IPC for the different configurations,
followed by 4 data rows presenting the RPKI for select configurations. The
last 6 data rows show the Cycles Waiting for Instruction Per KI for the vari-
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ous configurations. The InfCache configuration has zero waiting cycles since
instructions are always available to the processor. The difference in IPC be-
tween the InfCache and Send continues to be small for bins III, IV, and V
because they maintain a very low RPKI, with an aggressive backend. The
difference is more significant for bin II due to a higher RPKI and higher cy-
cles spent waiting for an instruction per KI. The difference becomes quite
pronounced with an aggressive backend. Many applications in bin I have a
low RPKI, but a few applications have a higher RPKI, resulting in the IPC
difference between InfCache and Send.

Varying Coupling with Processor
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Figure 5.26: Varying Rate of Sending Fragment IDs

The IPU stays coupled to the processor using fragment identifiers to ensure
it remains in sync. For the aggressive microarchitecture presented, we also
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Config (I) (II) (III) (IV) (V)
FDIP-8K 2.11 2.08 1.72 1.79 2.12

Send-1in1 2.21 2.66 1.92 1.92 2.37
Send-1in2 2.19 2.54 1.89 1.91 2.35
Send-1in4 2.18 2.49 1.88 1.91 2.34

Table 5.12: Absolute IPC Varying Fragment ID Send Rate

study the effect of varying the rate of sending fragment identifiers to under-
stand the impact of further reducing the coupling with the processor.
Figure 5.26 shows the IPC of Send when every 1 in 2 and 1 in 4 fragment IDs
are sent from the processor to the IPU, relative to the IPC of sending every
fragment ID to the IPU. For some benchmarks, the performance degradation
is higher compared to others where the performance degradation is minimal.
Table 5.12 provides more insight into this aspect. We present the average
absolute IPC for all MPKI bins. The average IPC is presented for FDIP (FDIP-
8K) as well as Send when every fragment ID is sent from the processor to
the IPU (Send-1in1) and when 1 in 2 (Send-1in2) and 1 in 4 (Send-1in4)
fragment IDs are sent.
As shown in Table 5.12, there is a performance benefit with all differing rates
of fragment ID sending compared to FDIP. However, for all bins except bin
II, the performance degradation from S32-1in1-IPC to S32-1in4-IPC is small.
The degradation is higher for bin II because this bin has higher redirects and
benefits from closer coupling to the processor. The other bins, which have
fewer redirects, continue to stay on track with reduced coupling to the pro-
cessor.

5.8 Creation and Updating of Fragment Table
Next, we present data to illustrate the amount of communication with the
processor required to create and maintain the Fragment Table (FT), which is
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Figure 5.27: FT Creation and Updating

the key data structure used by the IPU.
Figure 5.27 shows the percentage of fragments processed (dynamic frag-
ments) that are involved in the creation or update of the FT for all bench-
marks. Note the minimal percentage for most benchmarks. This percentage
is as small as 0.03% for some benchmarks meaning that only 0.03% of the
dynamic fragments are involved in the creation or updating of the FT, while
99.97% of the fragments are not. This indicates that very little communica-
tion is required with the processor to create and maintain an FT.

5.9 Study with Small Cache Sizes
The program representation learned by Send is independent of the L1i size,
suggesting that Send is likely to maintain a low MPKI and cycles waiting for
an instruction even with smaller instruction caches, provided it can maintain
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low redirects. This section aims to evaluate this aspect.
To quantify this, we study the MPKI and cycles waiting for an instruction for
Send with smaller L1i sizes in Figure 5.28. This figure plots the L1i MPKI for
Base with L1i sizes of 8KB, 16KB, and 32KB (Base-8K, Base-16K, and Base-
32K), and Send with L1i sizes of 8KB, 16KB, and 32KB (Send-8K, Send-16K,
and Send-32K) on a log scale.
Send maintains a significantly lower MPKI even with an 8KB cache compared
to all Base configurations. For applications with substantial miss reductions
using Send (from nearly 100 to single digits and below 1), the Send MPKI
with a 16KB cache closely approaches the MPKI of Send with a 32KB cache.
In some cases, even an 8KB cache achieves an MPKI close to that of a 32KB
cache.
Similarly, for some applications, Base MPKI minimally changes with the use
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of larger caches, in contrast to other applications where there is a more sig-
nificant reduction in MPKI with larger cache sizes.
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Figure 5.29: Cycles Waiting for Instruction Per KI with Small Cache Sizes

Next, we present the cycles the processor spends waiting for an instruction
across all these configurations. Figure 5.29 studies the cycles waiting for in-
structions per KI for all of these configurations. We observe that for some
benchmarks, the cycles waiting are similar for all Base configurations, while
for others, Base-16K and Base-32K significantly reduce the waiting cycles.
Send-8K significantly reduces the waiting cycles compared to all Base config-
urations, in some cases coming close to Send-16K and Send-32K. Send-16K
often comes close to Send-32K. Send-32K reduces the cycles waiting to the
single digits or lower, as we had seen in Figure 5.16.
Table 5.13 provides further insight into the impact of different L1i cache sizes
on MPKI and Cycles Waiting for Instruction Per KI across various MPKI bins.
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Metric (I) (II) (III) (IV) (V)
MPKI

Base-8K 29.16 40.55 60.85 67.89 82.57
Base-16K 12.44 30.78 53.61 61.81 76.50
Base-32K 5.42 24.45 40.65 50.14 69.38
Send-8K 2.35 7.75 3.90 2.95 1.32

Send-16K 0.71 3.59 2.67 1.89 0.68
Send-32K 0.35 2.04 1.35 0.95 0.51

Cycles Waiting for Instruction Per KI
Base-8K 109.35 196.91 164.10 153.37 174.87

Base-16K 63.52 162.55 154.03 144.36 166.31
Base-32K 34.76 145.06 127.00 125.46 154.13
Send-8K 10.89 36.86 17.33 11.90 6.09

Send-16K 6.46 16.24 12.41 7.49 1.97
Send-32K 6.42 12.86 10.99 6.99 1.33

RPKI 0.15 1.08 0.19 0.15 0.09
Table 5.13: Small Cache MPKIs

The first three data rows show the L1i MPKI (averages) for different MPKI
bins with the Base configuration and cache sizes of 8KB, 16KB, and 32KB.
The next three data rows show the L1i MPKI for the different bins with Send
and cache sizes of 8KB, 16KB, and 32KB. Similarly, the next three data rows
show the Cycles Waiting for Instruction Per KI (averages) for different MPKI
bins with the Base configuration and the following three data rows shows
the waiting cycles per KI with Send for the different configurations. The last
data row presents the RPKI with Send for the different bins.
For bins I and II, the MPKI for Base increases by over 50% when reducing the
cache size from 32KB to 8KB. Similarly, we also observe a significant increase
in waiting cycles for these applications. This indicates that a 32KB cache cap-
tures a lot of temporal reuse for these benchmarks, leading to many more
misses with the smaller cache size. The relative increase in MPKI is much
smaller for bins III, IV, and V, suggesting less temporal reuse.
Send can maintain low MPKIs and waiting cycles per KI even with an 8KB
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cache for most bins. However, for bin II, the MPKI and waiting cycles per
KI is relatively higher due to more frequent redirects. Similarly, Send main-
tains low MPKIs with a 16KB cache for all bins, indicating its effectiveness in
reducing misses across different cache sizes.

5.10 Fetch FragmentIDs and Wrong Path
Execution
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Figure 5.30: Fragment Level Control (Wrong Path)

In this section, we study some properties of dynamic fragment-level control
flow to understand how redirects are likely to be affected in the presence of
wrong-path execution.
The Unique Successor Fragment curve in Figure 5.30 measures the percent-
age of dynamic fragments that contain a branch misprediction yet still have



157

a unique successor fragment. This percentage exceeds 80% for many bench-
marks, indicating that fragment-level control flow remains unaffected by branch
mispredictions within a fragment more than 80% of the time.
The Fragment In Table (FT/DTT) curve in Figure 5.30 measures the percent-
age of dynamic fragments containing a mispredicted branch where the suc-
cessor fragment is found either in the FT or the DTT. For most benchmarks,
this percentage is around 99%. This indicates that even in the presence of a
branch misprediction, the IPU can operate without experiencing a redirect
by pursuing upto two tracks for approximately 99% of the fragments, using
the Fetch FragmentID to stay synchronized with the processor.

5.11 Using Retire Fragment Identifiers
The IPU stays synchronized with the processor using fragment IDs. Through-
out our evaluation, we have used fetch fragment IDs. Using fetch fragment
IDs offers the advantage of providing early feedback to the IPU if it is on an
incorrect path, allowing it to quickly correct. However, many of the bench-
marks we study have a low frequency of redirects, suggesting that they could
perform well even if this feedback comes later in the pipeline. Retire frag-
ment IDs have the advantage of not being affected by wrong-path execution,
thus avoiding redirections caused due to wrong-path execution. However,
retire fragment IDs provide feedback to the IPU much later in the instruction
pipeline, delaying corrections. Given the low redirect rates for many bench-
marks, we expect the impact of using retire fragment IDs on performance to
be minimal, which we will evaluate next.
Figure 5.31 shows the relative IPC over FDIP with an 8K BTB for Send using
fetch fragment IDs and retire fragment IDs. This evaluation is carried out us-
ing the aggressive microarchitecture detailed in Section 5.7.1. Although the
use of retire fragment IDs still performs better than FDIP, it clearly results in
slowdowns compared to using fetch fragment IDs. This is not surprising, as



158

0 20 40 60 80
Workloads

1.0

1.1

1.2

1.3

1.4

Re
la

tiv
e 

IP
C 

uA
2

Fetch Retire

Figure 5.31: Relative IPC Retire Fragment IDs

Metric (I) (II) (III) (IV) (V)
% Slowdown 1.66 12.57 5.80 2.39 3.65

RPKI 0.15 1.08 0.19 0.15 0.09
Table 5.14: Performance Degradation with Retire Fragments for MPKI Bins

the IPU receives feedback that it is on an incorrect path much later than when
using fetch fragment IDs. In some cases, the slowdowns are significantly
higher. When redirects are more frequent, the slowdowns are expected to be
greater than when redirects are less frequent. We study this aspect next.
Row 1 in Table 5.14 shows the average slowdowns associated with the usage
of retire fragments compared to the use of fetch fragment identifiers for all
MPKI bins. Additionally, row 2 in the table presents the RPKI values for the
different MPKI bins. Bin II has a high RPKI and also experiences more than a
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10% slowdown in IPC performance, compared to other bins that have much
lower RPKI and relatively smaller slowdowns when using retire fragment
identifiers, as expected.
A very low rate of redirects opens up the possibility of using retire fragment
identifiers in place of fetch fragment identifiers.

5.12 Summary
In this chapter, we first presented the experimental infrastructure and setup
used for evaluating Send.
We quantified that for many applications, Send can sequence the program
at a high level with near-perfect accuracy, maintaining low rates of redirects.
We examined high-level sequencing in detail, focusing on how it is influ-
enced by the scheme’s operation and the size of key data structures. This
sequencing can effectively identify the blocks of code likely to be referenced
by the processor. Next, we quantified the miss reductions achieved by Send,
stemming from this sequencing and block identification, which significantly
reduces misses for many benchmarks. We also analyzed the block movement
traffic introduced by Send in detail.
The significantly reduced misses with Send resulted in the processor spend-
ing very little time waiting for instructions. We studied in great detail this
metric and also observed that Send continues to maintain a small cycles wait-
ing for an instruction when the L3 is made slower. Next we presented the
overall IPC performance improvement for Send and related schemes. As
a result of maintaining a small cycles waiting for an instruction, its perfor-
mance often approached that of an infinite cache. Furthermore, Send con-
tinued to maintain small cycles waiting for an instruction and deliver high
performance close to that of an infinite cache, even as the backend was made
more aggressive.
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Additionally, we studied other aspects of the design, such as the Block Tem-
perature Table (BTT), which can be used to control block movement, and the
Pseudo Inclusion Table (PIT), which can be used to reduce L1i tag probes.
Moreover, we examined the impact of using retire fragment IDs, the effect
of wrong-path execution on redirects, and the implications of working with
smaller L1is.
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Chapter 6

Presending for an iTLB

Instruction Presending, as described in the last two chapters, creates a shadow
program representation that is used to proactively move code cache blocks
from a lower-level cache to an L1i. Given that instruction TLB entries are
closely related to the static code cache blocks accessed, this program repre-
sentation can potentially be enhanced to support the proactive movement of
TLB entries from an L2 TLB to an L1 TLB (iTLB).
First, we describe the additions to the program representation created ear-
lier for the movement of code cache blocks. Next, we outline the necessary
changes to Presending to support the movement of TLB entries. Finally, we
evaluate the movement of TLB entries with this functional enhancement.

6.1 Program Representation Enhancements
The program representation facilitates sequencing fragment-level control flow
to identify the blocks of instructions the processor is likely to reference. Ad-
ditionally, this representation can be used to identify the VPN-PTEs the pro-
cessor is likely to reference. We describe the additions to the program repre-
sentation next.
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6.1.1 Representing TLB Entries for a Fragment

Frag ID VPN PTE

Figure 6.1: Code Region for TLB

In many cases, there is likely to be spatial locality in the blocks accessed by a
fragment, resulting in accesses to contiguous blocks of code or code regions,
as discussed in the previous chapter. Code regions are encoded as a block
and a count of blocks to identify the blocks accessed. In addition, they could
be encoded using a Virtual Page Number (VPN) and Page Table Entry (PTE)
pair to encode the translation accessed by the code region. An example en-
coding for a code region accessed by a fragment is shown in Figure 6.1.
Alternatively, a pointer to the L2 TLB entry could be stored in place of the
VPN-PTE pair as a space optimization.
Separate (discontiguous) code regions can be handled similarly to code re-
gions for blocks, with the VPN-PTEs for the separate regions stored sepa-
rately.
While storing the pointer to the L2 TLB results in space optimization, evic-
tions of L2 TLB entries would result in the program representation contain-
ing pointers to incorrect TLB entries. This would cause incorrect TLB entries
to be moved to the iTLB, which has no functional implication. It would lead
to subsequent iTLB misses, at which point the pointer can be updated to the
new location.
Further, processor designs such as AMD’s Zen3 [28] are moving towards a
split L2 TLB between data and instructions, making evictions in the L2 TLB
less frequent. To avoid performance pathologies, we can periodically clear
the VPN-PTEs in the representation and relearn them on subsequent iTLB
misses.
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Any changes to the VPN-PTEs can simply clear all the VPN-PTEs in the rep-
resentation, resulting in relearning the VPN-PTEs accessed by the different
fragments on subsequent iTLB misses.

6.2 Hardware and Operational Enhancements for
TLB Entry Movement

RetCallRetCallRetCallRetCall
1/01/01/01/0ValueValuecallPC

/ret
callPC
/ret 

Addr,
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L2-TLB 
ptr

Addr,
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Figure 6.2: Entry of a Fragment Table for Blocks and TLB Entry Movement
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Figure 6.3: Entry of a Fragment Table for only TLB Entry Movement

Figure 6.2 shows an entry in the FT entry with all components integrated,
where the code region in every entry is augmented with a pointer to an L2
TLB entry to facilitate the movement of corresponding VPN-PTEs for the
code regions from a lower-level TLB to the L1 TLB. L2 TLB pointers are also
added to the code regions stored in the Overflow Regions Table (ORT).
Alternatively, if the FT is used to only identify the VPN-PTEs likely to be
referenced by the processor, it can hold only the VPN-PTEs accessed by the
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Figure 6.4: Instruction Presending Unit (IPU) operation for an iTLB

fragments without storing the code block regions, as shown in Figure 6.3.
This approach can result in storage savings, if important.
The pointers of the L2 TLB entries in that fragment are placed into an Up-
coming Page Table Addresses Queue (UPTAQ), as shown in Figure 6.4. For
entries in the UPTAQ, a decision is made (similar to blocks, to reduce the
movement of VPN-PTEs into the L1 TLB) whether to read a TLB entry from
the L2 TLB and send it to the L1 TLB (iTLB).

6.3 Evaluation
All the parameters used for the simulation are the same as those used in the
previous chapter for the evaluation of Instruction Presending for code blocks.
All evaluations are performed with a unified 3K L2 TLB, which is reasonable
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given the increase in L2 TLB sizes, such as the 3K L2 DTLB in the AMD Zen
4 microarchitecture [15].
An additional 13.5KB of storage is required on top of the existing 68KB to
encode the L2 TLB pointers (1.5B each) for all the code regions accessed by
different fragments. This facilitates the identification of both code blocks and
VPN-PTEs for the various fragments. Alternatively, representing only VPN-
PTEs via L2 TLB pointers, to facilitate the identification of only the VPN-PTEs
likely to be referenced, results in a total storage requirement of 49KB.
For Instruction Presending (Send), we only evaluate the movement of TLB
entries in this Chapter.
Next we provide a brief outline of the results we present:

– We primarily focus on evaluating the movement of TLB entries and the
associated overheads, as this is the key functional enhancement intro-
duced.

– We study the overall IPC performance with Send and provide compar-
isons against a large iTLB and an infinite iTLB.

Next, we describe some of the key metrics used for our evaluation.

– MPKI is used to better demonstrate the magnitude of miss reduction,
similar to the evaluation of block movement.

– Traffic/L2 TLB Accesses per KI Movement of iTLB entries involve an
L2 TLB access. So we use L2 TLB Accesses per KI to better illustrate
the increase in TLB entry movement resulting from the operation of the
scheme, similar to the evaluation of block movement.

6.3.1 Miss Reductions

Figure 6.5 presents the iTLB MPKI (log-scale). The results are shown for
the baseline microarchitecture (with no TLB prefetching) with a 64-entry,
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Figure 6.5: iTLB MPKI

and a 256-entry iTLB (Base-64, Base-256), and for Send with a 32-entry and
a 64-entry iTLB (SendTLB-32 and SendTLB-64). SendTLB-64 significantly
outperforms Base-64 and Base-256 in all cases. SendTLB-32 outperforms
Base-64 and outperforms or comes close to Base-256 in many cases. These
results demonstrate that Send can effectively identify and move iTLB entries
to a small-sized iTLB bringing down the misses over a normal iTLB without
prefetching by one or two orders of magnitude in many cases.
Next, we evaluate the impact on misses when using a Block Temperature Ta-
ble (BTT) to reduce the movement of VPN-PTEs, instead of blocks, as shown
in Figure 6.6. The BTT is indexed using the lower n bits of the virtual page
address and has 2K entries. We present the iTLB MPKI (log-scale) for Base-
64 and for Send with a 64-entry iTLB, both with and without a BTT (SendB
and SendA, respectively).
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Figure 6.6: iTLB MPKI with BTT

Both SendA and SendB are nearly equally effective in reducing misses com-
pared to Base-64. However, SendB performs slightly worse in a few cases
because SendA unconditionally moves VPN-PTEs, whereas SendB may oc-
casionally make incorrect decisions to reduce movement, resulting in slightly
higher misses.

6.3.2 TLB Entry Movement Traffic

Next, we quantify the L2 TLB accesses per KI to provide an idea of how many
extra translations are installed in the iTLB by Send with a 64-entry TLB, both
with and without a BTT (SendB and SendA). Figure 6.7 quantifies the TLB
entry movement for Base-64 and Send-64. For some of the benchmarks, we
see a relatively higher increase in TLB entry movement, for some other ap-
plications, the relative increase in traffic with Send is small. We present more



168

0 10 20 30 40 50 60 70 80 90
Workloads

0

2

4

6

8

10

12

14
L2

 T
LB

 A
cc

es
s P

er
 K

I
Base-64
SendTLB-64 (SendA)
SendTLB-64 (SendB)

Figure 6.7: iTLB Traffic

Metric (I) (II) (III) (IV) (V)
Base-64 0.99 (1.0) 3.96 (1.0) 6.97 (1.0) 8.47 (1.0) 11.23 (1.0)

SendTLB-64 (SendA) 1.32 (1.33) 5.41 (1.36) 8.18 (1.17) 9.59 (1.13) 12.16 (1.08)
SendTLB-64 (SendB) 1.21 (1.22) 4.99 (1.26) 7.91 (1.13) 9.3 (1.09) 12.02 (1.07)

Table 6.1: L2 TLB Accesses per KI for L1i MPKI Bins

data next to provide a better understanding. Further, we observe that SendB
is able to bring down the TLB entry movement over SendA in many applica-
tions.
Table 6.1 presents the average L2 TLB accesses per KI for the different L1i
MPKI bins. For each of the fields in these rows, the relative increase in traffic
over Base-64 is shown in parentheses. We observe that the L2 TLB Accesses
per KI for Base-64 is highest for bin V and lowest for bin I. The relative in-
crease in L2 TLB accesses for both SendA and SendB is higher for bins I and
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II compared to bins III, IV, and V. However, the total magnitude of L2 TLB
accesses with Send is smaller compared to the other bins.
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Figure 6.8: iTLB Speedup

6.3.3 IPC Performance Improvements

Reduction of iTLB misses results in an improved IPC performance which
we quantify next. We plot the IPC performance speedups of SendTLB-32,
SendTLB-64 (both SendA and SendB), Base-256, and Base with an infinite-
entry iTLB (Base-inf) over Base-64 in Figure 6.8. Both SendTLB-32 and SendTLB-
64 come close to the performance of Base-inf, outperforming Base-256 on
most workloads. Speedups for SendA and SendB are mostly identical. This
illustrates that Send can operate quite effectively with a small-sized iTLB, ap-
proaching the performance provided by an infinite-sized iTLB. These results
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mostly follow from what we observed in Section 6.3.1, where we saw that
Send comes quite close to an infinite TLB in most cases.

6.4 Summary
This chapter proposed Presending for iTLBs. We described the enhance-
ments to Presending to facilitate this movement and evaluated the supply
of iTLB entries to the L1 TLB (iTLB).
From the above results, we clearly saw that Presending can effectively iden-
tify the iTLB entries likely to be referenced by the processor and keep a small-
sized iTLB supplied with the necessary iTLB entries.
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Chapter 7

Presending for a BTB

Instruction Presending, as described in the last three chapters, creates a shadow
program representation that proactively moves code cache blocks and in-
struction TLB entries from a lower-level cache or L2 TLB to an L1i or iTLB.
BTB entries are used to correctly fetch instructions past previously taken
branches, jumps, and calls, and are closely related to the static instructions
or static code cache blocks. This suggests that the Instruction Presending
scheme could potentially be enhanced to support the movement of BTB en-
tries from an L2 BTB to an L1 BTB.
First, we describe the operational enhancements to the Presending scheme to
support the movement of BTB entries. Finally, we evaluate the movement of
BTB entries with this functional enhancement.

7.1 Presending Operational Enhancement for
BTB
Identifying BTB entries requires no additions to the program representation.
Information used to identify the VPN-PTEs as well as code cache blocks ac-
cessed by fragments can collectively be used to identify the BTB entries likely
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to be referenced by the processor.

VPN Physical Block Address

Virtual Block Address

Combine VPN with Page Offset Bits 
from the Physical Block Address

L2 BTB

BTB Entry 0
BTB Entry 1
BTB Entry 2

Figure 7.1: Accessing L2 BTB for BTB Entry Movement

BTBs are generally accessed using virtual addresses. To facilitate the move-
ment of BTB entries from an L2 BTB to an L1 BTB, as shown in Figure 7.1, the
IPU needs virtual addresses. Virtual page numbers can be extracted from the
VPN-PTE entries corresponding to the different code regions in the FT/ORT,
as is typically required for the movement of iTLB entries. Similarly, physical
block addresses can be extracted for the code regions from the FT/ORT, as is
typically required for the movement of cache blocks.
The virtual page number for a code region can be combined with the page
offset for a given physical block address of the code region. The virtual block
address generated using this process can then be used to query the BTB. In
the case shown in Figure 7.1, BTB Entries 0-2 are part of the given virtual
cache block address. All of these entries are accessed (over multiple BTB
accesses) and copied to the L1 BTB. This process can be repeated for all cache
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blocks that are part of the code region. Presence checks, similar to those used
for cache blocks, can be performed to reduce unnecessary movement.
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Figure 7.2: Instruction Presending Unit (IPU) operation for BTB

Operationally, this process involves placing the generated virtual block ad-
dresses in a queue (UBAQ) as shown in Figure 7.2 during the IPU’s opera-
tion. For entries in the UBAQ, a decision is made (similar to blocks and iTLB
entries) on whether to read BTB entries that are part of the given block and
send them to the L1 BTB.

7.1.1 Working without an L2 BTB

In some implementations, an L2 BTB might not be present. In such cases,
most BTB entries can be derived from the instructions within the correspond-
ing code cache blocks through pre-decoding. The branch type and the target
address are encoded in the static instruction within the code cache block.
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Pre-decoding can be utilized to extract the target addresses for most control
instructions (except for indirect jumps and indirect calls) to create BTB en-
tries for installation in the L1 BTB.

7.2 Evaluation
All the parameters used for the simulation are the same as those used in the
previous chapter for the evaluation of Instruction Presending for code blocks
and iTLB entries. All evaluations are performed with a 16K-entry L2 BTB,
which is typical of the L2 BTB sizes used in processors such as the Samsung
M3 [66].
For Instruction Presending (Send), we only evaluate the movement of BTB
entries in this Chapter, except the last plot where we evaluate the ability of
Send to move both blocks and BTB entries simultaneously. For Shotgun, we
use a configuration with a 4K U-BTB and a 1K-entry C-BTB, amounting to a
total storage of approximately 64KB, same as the configuration used in Chap-
ter 5.

– We primarily focus on evaluating the movement of BTB entries and the
associated overheads for Instruction Presending, as this is the key oper-
ational enhancement introduced.

– IPC performance which shows that Send performs as well as the base-
line microarchitecture with an infinite BTB.

7.3 BTB Entry Movement

7.3.1 Key Metrics

– MPKI is used to better illustrate the magnitude of miss reduction, simi-
lar to its use in the evaluation of block movement and TLB entry move-
ment.
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– BTB Fills Per KI (FPKI) is slightly different from the metric used for
block movement because the baseline operation for a BTB does not in-
volve an L2 BTB. The movement of BTB entries involves the installation
of entries in the L1 BTB, so we use this metric instead. This metric is
used to better illustrate the magnitude of increase in BTB installs in the
L1 BTB resulting from the operation of the scheme.
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Figure 7.3: BTB MPKI

7.3.2 Miss Reductions

Figure 7.3 presents BTB MPKI (log-scale). The results are shown for the base-
line microarchitecture with a 512-entry, 8K-entry L1 BTB (Base-512, Base-
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8K), which do not have any BTB prefetching; for Shotgun (SG); and for Send
with a 256-entry and 512-entry L1 BTB (SendBTB-256 and SendBTB-512).
Base-512 falls short due to a lack of capacity to hold targets for active con-
trol instructions.Base-8K significantly brings down the BTB MPKI. Send-256
outperforms Base-8K in many cases. Send-512 brings down the misses even
further, outperforming Base-8K in some cases. Shotgun performs similarly
to Base-8K and slightly better for some benchmarks.
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Figure 7.4: BTB MPKI with BTT

Next, we evaluate the effect on misses of using a Block Temperature Table
(BTT), as shown in Figure 7.4, to reduce the movement of BTB entries. The
BTT is indexed using the lower n bits of the block address and has 2K entries.
We present the BTB MPKI (log-scale) for Base-512 and for Send with a 512-
entry BTB, both with and without a BTT (SendB and SendA, respectively).
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Both SendA and SendB are highly effective at reducing misses compared to
Base-512 without BTB prefetching. In some cases, SendA performs better
than SendB because the BTT can sometimes make incorrect decisions to re-
duce BTB entry movement, resulting in increased misses for some bench-
marks.
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Figure 7.5: BTB FPKI

7.3.3 BTB Fills

We quantify the BTB fills per KI to illustrate the number of extra BTB entries
installed in the L1 BTB by Send. Figure 7.5 quantifies the number of BTB fills
per KI for Base-512 and SendBTB-512 with and without a BTT (SendB and
SendA). We observe that SendB is able to bring down the BTB entry move-
ment over SendA in many applications. We present more data to provide
more insights into the added BTB entry movement.
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Metric (I) (II) (III) (IV) (V)
FPKI

Base-512 3.12 (1.0) 16.65 (1.0) 26.95 (1.0) 32.39 (1.0) 52.08 (1.0)
SendBTB-512 (SendA) 6.45 (2.06) 33.57 (2.01) 40.34 (1.49) 41.28 (1.27) 66.05 (1.26)
SendBTB-512 (SendB) 6.22 (1.99) 33.39 (2.00) 38.72 (1.20) 39.97 (1.23) 64.88 (1.25)

MPKI
Base-512 3.12 16.65 26.95 32.39 52.08

SendBTB-512 (SendA) 0.08 0.33 0.09 0.06 0.05
SendBTB-512 (SendB) 0.10 0.34 0.26 0.11 0.14

Table 7.1: BTB FPKI and MPKI for L1i MPKI Bins

First three data rows in Table 7.1 presents the average BTB Fills Per KI for
the different L1i MPKI bins. First data row quantifies the BTB entry move-
ment for Base-512 and the second and third data rows quantifies the BTB
entry movement for SendBTB-512. For each of the fields in these rows, the
relative increase in traffic over Base-512 is shown in parentheses. BTB entry
movement for Base-512 is lowest for bin I and is highest for bin V. Relative
increase in BTB entry movement is highest for bin I and bin II (over 100%)
for both configurations of Send, though the magnitude is smaller compared
to the other bins. Relative increase in BTB entry movement is smaller for bins
IV and V, where there is higher BTB entry movement to begin with.
The last three data rows in Table 7.1 present the average BTB MPKI across
the different L1i MPKI bins. Send is effective in reducing BTB MPKI across
all bins, though bin II shows slightly higher BTB MPKI. We also observe that
BTB MPKI is higher for the bins with SendB, as the use of BTT can occasion-
ally lead to incorrect decisions.

7.3.4 IPC Performance Improvement

Given that presending can significantly reduce BTB misses even with a small-
sized L1 BTB, we next evaluate the IPC performance of Send with small-
sized L1 BTBs. This evaluation aims to understand how closely it approaches
the performance of the Base configurations, particularly those with larger L1
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Figure 7.6: BTB IPC

BTBs (an 8K-entry BTB and an infinite BTB). Figure 7.6 presents the relative
IPC of all configurations with respect to Base-8K. We also present the relative
IPC for a baseline with an infinite BTB (Base-Inf). Base-512 has an IPC sig-
nificantly lower than Base-8K. This is because of the significantly higher BTB
misses with Base-512 compared to Base-8K, as we saw in Section 7.3.2. The
baseline microarchitecture simulated is FDIP and frequent BTB misses re-
sult in a significant slowdown. SG performs quite close to Base-8K, as its BTB
MPKI is very similar to Base-8K, as we saw in Section 7.3.2. Send achieves bet-
ter IPC than Base-8K for many applications with just 256 BTB entries. With
512 BTB entries, Send comes close to the performance of an infinite BTB for
most benchmarks studied. The relative IPC for SendA and SendB are mostly
identical.
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7.3.5 IPC Performance with BTB+Block Presending
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Figure 7.7: BTB+Blocks IPC

We observed that presending can effectively supply a small-sized L1 BTB
with the necessary entries, resulting in performance comparable to that of an
infinite BTB in many cases. Next, we evaluate the performance of presending
BTB entries to a small-sized L1 BTB in conjunction with presending code
cache blocks to the L1i.
In Figure 7.7, we present results demonstrating the performance improve-
ment of Send with an 8K-entry L1 BTB when presending only code cache
blocks to a 32KB L1i (SendBlks) and with presending both BTB entries to a
512-entry L1 BTB and code cache blocks to a 32KB L1i (SendBlks+BTB). IPC
results are shown relative to baseline microarchitecture with an 8K-entry L1
BTB. Send with a 512-entry BTB and presending both code cache blocks and
BTB entries achieves performance comparable to an 8K-entry BTB with pre-
sending of only code cache blocks.
These results demonstrate that with Send, we can effectively keep an L1i sup-
plied with the necessary instruction blocks and a small-sized L1 BTB sup-
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plied with the necessary BTB entries for processing these blocks of instruc-
tions.

7.3.6 Summary

This chapter proposed Instruction Presending for BTBs. We described the
operational enhancements to Instruction Presending to facilitate the move-
ment and evaluated the supply of BTB entries to the L1 BTB and associated
overheads.
These results suggest that with Send, a smaller-sized primary BTB is suffi-
cient and we can achieve a very similar performance as with an infinite BTB.
Send allows for BTB entries to be moved from a secondary BTB to a small-
sized primary BTB in a timely manner for assisting in the correct fetching of
instructions from the L1i.
Augmenting information about control independence is likely to allow FDIP
to come closer to the performance of a perfect L1i. However, it would still
require a large primary BTB or orthogonal BTB management to facilitate the
movement of blocks. Send can achieve this with a smaller-sized primary BTB.
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Chapter 8

Conclusions

In this chapter, we review the key contributions of this dissertation, summa-
rizing the problem, the work that preceded our research, and the key findings
of this dissertation. We then outline some directions for future work. Lastly,
we provide some unsubstantiated opinions regarding the design of future
microprocessors, the traces used, and the simulation infrastructure.

8.1 Dissertation Contributions and Summary
Instruction supply is a critical component of any high-performance processor
aiming to exploit significant amounts of instruction-level parallelism. This
aspect of the processor has faced challenges with the advent of new appli-
cations and modern software development practices, which begin to over-
whelm reasonably sized primary on-chip structures that facilitate effective
instruction fetching. Over the past two decades, considerable research has
focused on preloading primary structures with the necessary information to
efficiently fetch instructions. This research addresses emerging challenges
and utilizes the abundance of on-chip transistors to improve processor ef-
ficiency, predominantly through a plethora of instruction prefetching tech-
niques [29, 30, 45, 43, 44, 62, 69, 75].
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Most instruction prefetching techniques focus on preloading the L1i. Tech-
niques such as FDIP [62] use the logic within the instruction fetch unit to
get ahead in the instruction stream and preload blocks of instructions into
the L1i. Most other techniques [29, 30, 43, 69, 75] establish correlations with
events within the instruction fetch process, such as the state of the branch
predictor, return address stack, or instruction cache accesses, and use these
events to trigger the preloading of cache blocks. All of these techniques are
tied to the instruction fetch process. One key limitation within instruction
fetch arises from BTB misses, and to mitigate this, an orthogonal BTB man-
agement [5, 39, 45, 60] scheme is employed.
This dissertation presented an alternative approach for moving blocks of
instructions and information closely related to static instructions, such as
BTB and iTLB entries, from their resident locations in the memory hierar-
chy (lower-level caches or secondary structures) to primary structures like
the L1i, iTLB, and BTB. This was done in time for processing the requisite in-
structions and operated independently of any processor microarchitectural
events or instruction fetch processes.
We observed that high-level control flow, specifically at the call graph level,
was relatively easy to capture and remained mostly unchanging for the tar-
geted applications. Further, determination and movement of blocks to be ref-
erenced do not require a generation of a precise instruction stream, and can
tolerate some imprecision. Building on these insights, this dissertation pro-
posed a technique called Instruction Presending to sequence high-level control
flow to know where the processor is likely to be and identify and move the
code cache blocks it is likely to reference. Data was presented demonstrating
that this scheme near perfectly resolves upcoming high-level control flow in
many cases and ensures a timely delivery of instructions, achieving perfor-
mance close to that of a perfect L1i in many scenarios.
Additionally, the dissertation also proposed utilizing the same high-level se-
quencing to identify and move the iTLB and BTB entries the processor is
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likely to reference. These entries were proactively moved to the iTLB and
BTB, resulting in performance that approached that of a perfect iTLB and
BTB in many cases.
The thesis of this dissertation is: (1) It proposes a method that can sequence
high-level control flow near perfectly in many cases; (2) It used this technique
to identify code cache blocks, iTLB, and BTB entries that the processor is
likely to need, moving them to the respective primary structures, resulting
in improved fetching of instructions. To substantiate this thesis, we presented
the following empirical and experimental evaluation:

– High-Level Control Flow Characteristics: A detailed analysis of the
fragment-level control flow characteristics across numerous applications.

– Instruction Presending: The design and implementation of a technique
to sequence fragment-level control flow and identify the blocks of in-
structions the processor is likely to reference, independent of the logic
for fetching instructions.

– Presending Code Cache Blocks: An evaluation of the ability to accu-
rately resolve upcoming control flow at a high-level and a detailed eval-
uation of the technique to move necessary code cache blocks to the L1i,
compared against state-of-the-art instruction prefetching techniques.

– Presending iTLB/BTB Entries: Enhancements (and an evaluation) of
the technique to identify the necessary iTLB and BTB entries that the
processor is likely to need and move them to the iTLB and BTB in a
timely manner.

8.2 Directions for Future Work

8.2.1 Movement of Branch Predictor Entries

While we addressed key primary structures needed for efficient instruction
fetching, this work did not consider branch direction predictors. Branch di-
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rection predictors are crucial for fetching instructions efficiently; however,
entries in the predictor are not solely identified by the instructions. Instead,
entries in the branch predictor are indexed using parts of the instruction as
well as recent branch history, which makes identifying the branch predic-
tor entries likely to be needed more involved. Moreover, the contents of the
branch predictor are dynamic, unlike entries in a BTB, iTLB, or code cache
blocks, which are mostly static. Branch direction predictors are also impacted
by larger code footprints, necessitating large tables to store all the informa-
tion required for accurate predictions. There is an opportunity for innovation
in this area.

8.2.2 Duplication of Information in Program
Representation

While our work presents a program representation capable of identifying the
blocks of instructions, iTLB entries, and BTB entries likely to be needed by
the processor, this representation does include some redundancy. For exam-
ple, fragments sequenced close in time might reference the same code page,
resulting in the replication of the same VPN-PTE in multiple Fragment Table
entries. This duplication in our key data structures can certainly be reduced
to optimize storage and efficiency.

8.2.3 Movement of Other Information for Processing

While we have focused on the information necessary to improve the effi-
ciency of fetching instructions, the high-level sequencing we proposed can
also be used to identify and move other pieces of information to enhance in-
struction processing. For example, this approach can be extended to move
Value Prediction entries [46, 47]. By doing so, we can further optimize the
performance of the processor by preloading these prediction entries. Further,
the instruction blocks moved can be predecoded and analyzed to further im-
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prove processing of instructions.

8.3 Reflections
In this section, I share some observations concerning the design of future
microprocessors, traces used for this work and the simulation infrastructure.
These are based on our experiences and conversations with others, and are
simply opinions.

8.3.1 Design of Future Microprocessors

In this dissertation, we presented a high-level sequencing technique to preload
different structures in time to facilitate effective fetching of instructions. The
process of instruction fetching, which creates a precise stream of instructions
to execute, relies on accurately going past every control instruction in the pro-
gram. Today we have wide machines capable of fetching and executing over
eight instructions every cycle. These designs put more pressure on instruc-
tion fetch, which must predict the outcome of multiple control instructions
every cycle. This process is inherently sequential, and there have been pro-
posals to address this challenge [68]. Some proposals [57, 58] aim to break
this sequential requirement by making the process parallel. These propos-
als exploit control independence in the instruction stream to enable parallel
fetching of instructions.
Instruction Presending maintains high-level control information at the call
graph level, allowing it to go past multiple control instructions in each step
while remaining agnostic to local control. Given the high accuracy in re-
solving high-level control flow, exposing this information to the instruction
fetch process can facilitate fetching instructions from a control-independent
point following a subsequent call or return instruction. This could result
in higher collective fetch bandwidth when fetching instructions from these
control-independent points in the instruction stream.
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Beyond instruction fetching, this also opens up the opportunity to rename
[58] and execute independent instructions [73] from the control-independent
portion of the instruction stream even before prior instructions have been
fetched. This could further allow for moving away from monolithic back-
ends.
Overall, exploiting control independence at the call graph level opens up op-
portunities to revisit many old ideas and rethink and improve the microar-
chitectures for tomorrow.

8.3.2 Application Traces

While the commercial traces were extremely useful for understanding and
developing the technique proposed in this thesis, their anonymized nature
posed challenges for achieving a more detailed understanding. For instance,
identifying which program constructs lead to discontiguous block regions.
Although anonymized traces provided by industry are sufficient for devel-
oping a general-purpose solution, knowing the specific applications these
traces correspond to would likely make the results more exciting.

8.3.3 Simulation Infrastructure

The use of ChampSim, a trace-driven simulation infrastructure compatible
with these traces, streamlined the implementation and evaluation of the tech-
nique. It avoided the complications associated with running applications on
a typical execution-driven simulation infrastructure. This approach simpli-
fied many aspects of the work. However, it is worth noting that some benefits,
particularly those related to IPC performance, may be overestimated due to
the lack of modeling certain features, such as wrong-path execution.
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