
ADAPTING TO DYNAMIC HETEROGENEITY:

VIRTUALIZATION FOR THE MULTICORE ERA

by

Philip M. Wells

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2008

i

Abstract

As the computing industry enters the multicore era, exponential growth in the number of tran-

sistors on a chip continues to present challenges and opportunities to computer architects. This

dissertation identifies and addresses one emerging issue in particular: that of dynamic hetero-

geneity, which can arise, even among physically homogeneous cores, from changing reliability,

power, or thermal conditions, or different cache and TLB contents. This heterogeneity greatly

complicates software’s traditional task of assigning computation to cores because the conditions

can change more rapidly than software can adapt.

This dissertation begins a push toward hardware taking a more active role in the manage-

ment of its computation resources. This dissertation proposes hardware techniques to virtualize

the cores of a multicore processor, allowing hardware to transparently remap any number of the

virtual processors exposed even to a single operating system to any subset of physical cores. Mul-

ticore virtualization operates with minimal overhead, and is shown to enable three novel resource

management applications.

In the first, intermittent faults are exposed as an emerging reliability challenge for computer

systems. These faults, arising from a combination of physical variation and fluctuations in oper-

ating conditions, can cause certain cores to become unable to reliably execute for a short period

of time. Multicore virtualization can quickly adapt to cores’ changing capabilities, resulting in

numerous performance and other benefits compared to existing techniques.

Multicore virtualization is then used to improve the scheduling of consolidated servers, allow-

ing the cores of a chip to be dynamically partitioned among guest virtual machines. Compared

ii

to gang scheduling, dynamic partitioning provides higher throughput, lower transaction latency,

and more isolation, yet can quickly adapt to bursts in demand and changing capabilities of the

underlying hardware.

Finally, a Mixed-Mode Multicore (MMM) is proposed, which allows the simultaneous execu-

tion of applications that require high reliability, and those that require high performance. Though

conceptually simple, several challenges arise, requiring the use of multicore virtualization and

other techniques. The proposed MMM design is shown to improve overall system performance,

compared to a traditional DMR system, by approximately 2 times when one extra-reliable and

one extra-performance application are concurrently executing.

iii

Acknowledgments

First and foremost, I would like to thank my wife, Corinna, who’s love, patience, and encour-

agement has made these past eight years the best of my life. I am grateful also for little Clara,

who’s playful and loving spirit, unburdened by thoughts of defenses and dissertations, constantly

reminds me of the important things in life.

I am forever indebted to Guri, who has taught me to look at every problem as an opportunity,

and take every conference paper rejection with a shrug. I thank the other members of my commit-

tee for attending numerous practice talks, and providing excellent feedback for this and other work

throughout my studies at Wisconsin. I especially thank Mark and David for organizing several

Architecture Beers at the Terrace, where I learned from them a lot more than just architecture.

Koushik has been a friend, office-mate, and collaborator for six years, and I have learned more

from him that anyone else at Wisconsin. I am also grateful for the numerous discussions over the

years, about work and everything else, with Matthew and Jichaun. Without them, my thoughts

would have remained even more disorganized. I wish to acknowledge the other wonderful students

at Wisconsin, who taught me, both through feedback and by example, how to read research papers

critically, present ideas clearly, and save time for lunch.

Finally, I wish to say, ”Thank you,” to everyone else who has helped me get to where I am,

including my parents, family, friends, and teachers. You know who you are, though you probably

won’t read this.

iv

Table of Contents

Page

Abstract . i

List of Tables . viii

List of Figures . ix

1 Introduction . 1

1.1 Motivation: The Emergence of Dynamic Heterogeneity 3

1.1.1 Rethinking the Roles of Hardware and System Software 6

1.2 Thesis Statement . 7

1.3 Contributions . 8

1.4 Dissertation Outline . 9

2 Background: Virtualization and Reliability . 10

2.1 Processor Virtualization . 10

2.1.1 Server Consolidation . 12

2.2 Trends in Hardware Reliability . 13

2.2.1 Fault Frequency . 14

2.2.2 Detecting Faults . 16

2.2.3 Fault Recovery . 17

3 Experimental Methodology . 19

3.1 Simulator Implementation . 19

3.2 Target Multicore System Configuration . 22

3.2.1 Return Address Stack . 24

3.3 Workloads . 25

3.4 Methodology . 28

4 Multicore Virtualization . 29

4.1 Basic Multicore Virtualization . 30

4.1.1 Virtual Processor State . 32

v

Page

4.1.2 TLB Virtualization . 33

4.1.3 Interrupt Virtualization . 35

4.1.4 Virtualization Controller . 35

4.2 Overcommitted Virtual Machines . 36

4.2.1 The Problem: Synchronization Overhead 37

4.2.2 The Solution: Hardware Spin Detection 39

4.3 Hardware/Firmware Complexity . 42

4.4 Experimental Results . 43

4.4.1 Methodology . 43

4.4.2 Basic Virtualization Overheads . 45

4.4.3 Spinning in an Overcommitted System 48

4.4.4 Spin Detection Results . 51

4.5 Related Work . 54

4.5.1 Multicore Virtualization . 55

4.5.2 Enabling Overcommitted Systems . 56

4.5.3 Comparison of Techniques . 57

4.6 Chapter Summary . 61

5 Adapting to Intermittent Faults . 63

5.1 Intermittent Faults: An Emerging Challenge for Architects 64

5.1.1 Underlying Assumptions . 66

5.2 Adapting to Intermittent Faults . 69

5.2.1 Suspending the Use of a Core . 69

5.2.2 Recovering from Intermittent Faults . 70

5.3 Exploring Adaptation Techniques . 71

5.3.1 Technique 1: Pause Execution . 72

5.3.2 Technique 2: Spare Cores . 72

5.3.3 Technique 3: OS Reconfiguration . 73

5.3.4 Proposed Technique: Utilizing an Overcommitted System 74

5.4 Evaluation . 76

5.4.1 Experimental Overview . 76

5.4.2 Throughput During a Fault . 79

5.4.3 Microbenchmarking Latency & Fairness 85

5.4.4 Overall Impact of Different Fault Rates 89

5.5 Impact of Future Trends . 95

5.6 Related Work . 96

5.6.1 Detecting Intermittent faults . 96

5.6.2 Reconfiguring after Device-level Faults 98

vi

Page

5.6.3 Alternate Adaptation Methods . 99

5.6.4 Fault Tolerance in Distributed Systems 99

5.6.5 Formal Fault Models . 100

5.7 Chapter Summary . 101

6 Dynamic Core Partitioning for Consolidated Servers 103

6.1 Gang Scheduling: Conflicting Objectives . 104

6.2 Overcommitting and Dynamically Partitioning 109

6.2.1 Interrupt Handling and Transaction Latency 111

6.3 Evaluation . 112

6.3.1 Methodology . 112

6.3.2 Locality of Per-core Structures . 116

6.3.3 Throughput Performance . 127

6.3.4 Performance Isolation . 129

6.3.5 Sharing Real Pages Between VMs . 132

6.3.6 Transaction Latency . 136

6.4 Related Work . 142

6.5 Chapter Summary . 144

7 Mixed-Mode Multicore Reliability . 146

7.1 Mixed-Mode Objectives and Design Overview 148

7.1.1 Improving Performance . 148

7.1.2 Protecting System Integrity . 152

7.2 Mixed-Mode Implementation . 153

7.2.1 Reunion Overview and Adaptations . 153

7.2.2 Protecting System Integrity . 158

7.2.3 Protecting Registers . 162

7.2.4 Handling Mode Transitions . 162

7.2.5 Software Interface . 164

7.3 Evaluation . 166

7.3.1 Methodology . 166

7.3.2 Overhead of Dual Redundancy . 169

7.3.3 Overhead of Switching to and from DMR 177

7.3.4 Latency and Throughput of a Mixed-Mode Multicore 179

7.4 Related Work . 183

7.5 Chapter Summary . 185

vii

Page

8 Conclusions . 190

8.1 Contributions and Key Results . 191

8.2 Additional Uses for Multicore Virtualization . 193

8.2.1 Computation Spreading and Over-provisioned Multicore Systems 194

8.2.2 Support for Other Research . 195

8.3 Cost and Benefits of Hardware Virtualization 196

8.4 Revisiting the Thesis Statement . 197

8.5 Future Directions . 198

viii

List of Tables

Table Page

3.1 Target Multicore Parameters . 22

4.1 Effective Timeslice and Switching Overhead using the SDB (cycles) 54

5.1 OS Reconfiguration Latency . 82

5.2 Fairness of Metrics for Different Techniques . 89

5.3 Results Summary for Intermittent Fault Adaptation 101

6.1 Baseline Branch, TLB and Cache Rates . 117

6.2 Average Effective Timeslice and Switching Overhead for Dynamic Partitioning . . . 118

6.3 Fraction of Requests Shared Among Guest VMs 134

7.1 State Transitions for Entering and Leaving Reliable Mode 187

7.2 Impact of Serializing Instructions . 188

7.3 Fraction of Cycles Instructions Window or LSQ are Full 188

7.4 Mixed-Mode Switching Overheads . 189

7.5 Average Cycles Before Switching Modes for Single-OS 189

ix

List of Figures

Figure Page

2.1 Multicore Virtualization . 12

4.1 Spin Detection Buffer (SDB) Organization and Operation 41

4.2 Cache Overheads of Virtualization . 46

4.3 Runtime Overheads of Virtualization . 47

4.4 Normalized Instruction Count for Various Timeslices 49

4.5 Normalized Runtime for Various Timeslices . 50

4.6 Normalized Instruction Count using the SDB . 52

4.7 Normalized Runtime using the SDB . 53

4.8 Comparison of Normalized Instructions for Related Work 60

4.9 Comparison of Runtime for Related Work . 61

5.1 Core Suspension Techniques . 71

5.2 Throughput of Pausing Execution During a Fault 80

5.3 Cascading Livelock of Pause Scheme . 81

5.4 Throughput of OS Reconfiguration During a Fault 82

5.5 OS Reconfiguration of Zeus . 83

5.6 Throughput of Spare Cores During a Fault . 84

5.7 Throughput of an Overcommitted System During a Fault 84

x

Figure Page

5.8 Microbenchmark Transaction Latencies . 86

5.9 Committed Microbenchmark Transactions from each Software Thread 88

5.10 Overhead with Different Fault Duty-Cycles (Analytic Model) 90

5.11 Overhead with Different Fault Duty-Cycles (Execution Driven Simulation) 93

6.1 Techniques for Processor Virtualization of Consolidated Servers 106

6.2 Branch Prediction Performance . 119

6.3 Normalized TLB Misses . 122

6.4 L1 Instruction Misses from Different Scheduling Policies 123

6.5 L1 Data Misses from Different Scheduling Policies 124

6.6 Breakdown of L2 Misses for Different Scheduling Policies 126

6.7 Normalized Performance of Different Scheduling Policies 128

6.8 Performance Isolation . 130

6.9 Normalized L2 Misses when Sharing Real Pages 135

6.10 Transaction Latency Histograms for Gang Scheduling Policies (Half Utilization) . . 138

6.11 Transaction Latency Histograms for Gang Scheduling Policies (Quarter Utilization) . 139

6.12 Transaction Latency Histograms for Overcommitted and Dynamically Partitioned . . 140

7.1 Techniques for Performing Mixed-Mode Execution 149

7.2 Improving Throughput in a Mixed-Mode Multicore 151

7.3 The Structure of the Protection Assistance Buffer (PAB) 160

7.4 DMR L2 Cache-to-Cache Transfers . 169

7.5 DMR Performance Comparison: Single Thread Latency 174

7.6 DMR Performance Comparison: Throughput . 175

xi

Figure Page

7.7 Mixed-Mode Performance Comparison: Per-thread Latency 180

7.8 Mixed-Mode Performance Comparison: Overall Throughput 181

7.9 Performance Impact of PAB Latency . 182

1

Chapter 1

Introduction

Advances in technology are continuing to drive Moore’s Law and double the number of tran-

sistors available on a chip every two years. This exponential growth, however, presents several

challenges in determining how to use those transistors effectively. In the past, computer architects

were able to take these additional transistors and use them for creative purposes, such as out-of-

order execution and deep speculation, within a single processing core. Such hardware innovations

transparently improved the performance of unmodified applications every few years. However,

several issues, including wire delay, power consumption, and design complexity, have come to

prevent large, monolithic uniprocessors from continuing to be a viable design option.

Multicore processors are thus rapidly become ubiquitous in the desktop and server markets.

Intel, AMD, and Sun are each shipping processors with 4–8 cores [Dorsey et al., 2007; Laudon,

2005; Ramanathan, 2006], and have plans for systems with many more cores in the future [Held

et al., 2006]. Instead of trying to create one large, complex core to use all of the available transis-

tors, multicore processors integrate several cores across the chip. In this way, multicore processors

allow the performance of certain applications to continue to scale with Moore’s Law without re-

quiring frequent, slow, power-hungry cross-chip communication.

2

Though inevitable, the rapid emergence of multicore processors has presented numerous new

challenges to architects, system designers, and application programmers alike. One of the biggest

challenges facing the use of multicore processors is that improving performance commensurate

with Moore’s Law is now the responsibility of software. That is, software now has two new

complex tasks: 1) software (potentially including the OS, compiler, and application) must extract

enough concurrency to keep all the cores busy, and 2) software must explicitly manage the use of

those cores in order to express that concurrency to the hardware.

Although these are both important problems, this dissertation focuses on the second one. In

particular, dynamic heterogeneity among on-chip cores is identified as a source of both opportuni-

ties and challenges for future multicore processors. Attempting to address these opportunities and

challenges creates uncertainty in terms of which cores are available or most appropriate to run a

given computation at a particular time.

It is presently the responsibility of system and application software to unravel this uncertainty,

which greatly complicates software’s task of managing the use of those cores. In the spirit of

dynamically scheduled out-of-order processors, which remove software’s burden of directly man-

aging the functional units of a single core, this dissertation proposes to virtualize the multiple

on-chip cores. Virtualization allows the hardware designer to abstract the low-level details of the

cores, such as their dynamic heterogeneity, in order to alleviate software from the burden of this

uncertainty.

This work then examines three applications that use multicore virtualization to improve several

aspects of server-class systems. The first applies multicore virtualization to adapt to the effects

of an emerging reliability challenge: intermittent faults, which can prevent reliable operation

of one or more cores for a short period of time (less than 1 second). Virtualization allows the

chip to abstract the details of its fault management from the system software, while presenting

a view of continuous, fully-functional, reliable operation. The second example uses multicore

3

virtualization to improve the scheduling of consolidated servers, providing better performance,

better isolation between guest virtual machines, and lower transaction request latency. The third

example, Mixed-Mode Multicore reliability, enables a chip to be flexible to the different reliability

needs of different applications, transparently running a software thread redundantly on two cores

when necessary, and significantly improving performance by running it on only a single core when

extra reliability is not necessary.

1.1 Motivation: The Emergence of Dynamic Heterogeneity

Several proposals have exalted the benefits of designing processors with statically heterogeneous

cores — cores that are designed to have different physical characteristics in order to capitalize on

different engineering trade-offs (e.g., [Gschwind et al., 2005; Kumar et al., 2003, 2004]).

Future multicore chips will similarly contain dynamically heterogeneous cores as well —

cores which observe different, and rapidly changing, execution characteristics, even though they

may be physically homogeneous [Wells et al., 2007b]. These differing characteristics may arise

from power and thermal management, intermittent faults, different predictive state, among others

sources, and include not only changes in the characteristics of an individual core, but also changes

in the number of available or appropriate cores. Three categories of dynamic heterogeneity are

described below, which create numerous challenges and opportunities for managing the use of the

on-chip cores.

Reliability, Power and Thermal Challenges Hardware reliability trends, including reduced

noise margins and increased wear-out, process, voltage and thermal (PVT) variations, are con-

spiring to create circuits that will suffer from a variety of hardware faults, including transient,

permanent, and an emerging class of faults called intermittent faults [Borkar, 2004; Borkar et al.,

2003; Bowman et al., 2002; Constantinescu, 2003; Semiconductor Industry Association, 2005;

4

Shivakumar et al., 2002]. This latter class consists of hardware faults which occur in bursts

from several cycles to several seconds or more due to physical and operating condition varia-

tion [Borkar, 2004; Borkar et al., 2003; Constantinescu, 2007, 2003]. These faults can cause the

capabilities of the affected cores to vary during this time, or become temporarily unavailable,

creating rapidly changing dynamic heterogeneity (Chapter 5) [Wells et al., 2007a, 2008].

In addition to new reliability challenges, individual cores can also suffer from power density

problems, where intense computation raises the temperature of a core more quickly that it can

dissipate. Many proposals call for dynamic adjustment of voltage and/or frequency to tolerate

this effect [Brooks and Martonosi, 2001; Skadron et al., 2003; Wonyoung et al., 2008], or for

temporarily stopping the use of an affected core altogether [Chakraborty et al., 2007; Gunther

et al., 2001; Powell et al., 2004]. Global (chip-wide) power dissipation can also be a problem, as

multicore processors are already approaching the limits of cost-effective cooling. Such limitations

restrict the number of cores that can be simultaneously active to fewer than the number of cores

that can be integrated onto the chip, though which cores are currently active can vary dynamically

and rapidly [Chakraborty et al., 2007]. These mechanisms to tolerate different power and thermal

issues also create dynamic heterogeneity.

Opportunities for Dynamic Core Coupling In addition to cores’ varying capabilities due to

physical constraints, the software executing on a core can dynamically change its requirements.

For example, financial applications may require Dual-Modular Redundancy (DMR) (e.g., [Ber-

nick et al., 2005; Smolens et al., 2006]) to maintain sufficient levels of reliability in future systems,

while media or web applications can tolerate higher rates of hardware faults in exchange for better

performance and lower power consumption. Executing both types of applications on one machine,

by allowing cores to dynamically switch between operating together as one logical DMR pair, or

5

operating independently to run two separate threads, offers a way to provide this differentiated

level of service (Chapter 7).

Similar to the changing reliability requirements, software also has changing levels of paral-

lelism. Sometimes, task- or instruction-level parallelism of a single thread can be exploited via

multiple conjoined cores through speculative multithreading (e.g., [Sohi et al., 1995]) or dynamic

Core Fusion (e.g. [Ípek et al., 2007]). At other times, those cores can be reconfigured to take ad-

vantage of data-level parallelism [Kyo et al., 2007; Sankaralingam et al., 2003], or used to exploit

thread-level parallelism by independently executing multiple threads.

The dynamic coupling of cores, for reliability or the extraction of parallelism, not only creates

different capabilities of each logical core, but also a varying number of logical cores, capable of

concurrently executing a varying number of software threads.

Opportunities for Enhancing Cache Locality The third category of dynamic heterogeneity

examples involves manging the use of per-core predictive structures, such as caches, branch pre-

dictors, and TLBs. As noted by Torrellas et al. [1995] in a different context, heterogeneous ca-

pabilities of each core arise through differences in the contents of these structures create. Such

dynamic heterogeneity can be actively created and then exploited through careful assignment of

computation to cores.

In a consolidated server, for example, multiple guest virtual machines (VMs) sometime share

the physical cores in a system due to the inflexibility of the system and application software

running in each VM [Uhlig et al., 2004]. The cache, branch predictor, and TLB footprints of

these distinct VMs are largely or completely independent, leading to frequent thrashing in these

structures when context switches are frequent. A mechanism to flexibly map each VM’s virtual

processors to the physical cores, however, provides the opportunity to share a core among vir-

tual processors from the same VM. Such dynamic re-mapping specializes each core to execute

6

a certain kind of computation specific to a particular VM, improving performance and isolation

between VMs (Chapter 6).

Similarly, sharing a core among computation from multiple threads (from a single VM) can

create further opportunities to enhance cache locality [Chakraborty et al., 2006]. The key with

this so called Computation Spreading is to carefully map similar computation fragments from

different threads onto one core, while spreading dissimilar fragments from the same thread onto

other cores.

Computation Spreading and flexible consolidated server scheduling not only take advantage

of the dynamically heterogeneous capabilities of different cores, but actively create this hetero-

geneity through the fine-grained assignment of computation to cores to further improve execution

efficiency.

1.1.1 Rethinking the Roles of Hardware and System Software

These emerging opportunities and challenges of dynamic heterogeneity share two distinct traits.

First, the details of each example creates a new layer of complexity between the computation and

the physical hardware performing that computation. This complexity in turn creates uncertainty

in how computation should be efficiently mapped onto the hardware at any given moment. Un-

raveling this uncertainty requires detailed knowledge of the current configuration and capabilities

of each core — information that modern system and application software does not posses, and

cannot easily acquire due to the nature of the relatively static interfaces present in layered systems

design.

Second, the capabilities and configurations of the hardware can change very rapidly. Yet the

cost of trapping into the operating system to perform and implement a scheduling decision has

actually increased in the past several decades relative to the cost of computation [Nellans et al.,

2005]. As a result, system and application software often cannot implement policies to address

7

dynamic heterogeneity with sufficient timeliness, even if the hardware/software interface was

modified often enough to provide appropriate information.

Given these two issues, this dissertation argues that hardware must take a more active role in

the management of its resources, in particular, the on-chip cores. This management is made pos-

sible by abstracting the details of the on-chip cores using a thin virtualization layer implemented

in hardware and firmware. Such virtualization and abstraction allows simple homogeneous cores

to be exposed to the operating system via the hardware/software interface (i.e., ISA), while inno-

vations in multicore hardware adapt to the opportunities and challenges of dynamic heterogeneity.

1.2 Thesis Statement

The emergence of dynamic heterogeneity and observations of software’s limited ability to adapt

to it have led to the following thesis statement:

Future multicore processors should support software-transparent virtualization of on-

chip cores due to the emerging challenges and opportunities of dynamic heterogene-

ity.

To support this statement, this dissertation investigates two examples of dynamic heterogene-

ity, intermittent faults (Chapter 5) and mixed-mode reliability (Chapter 7), which the system soft-

ware is unable to adequately manage. In addition, a third example is examined where transparent

virtualization allows unmodified system software to take advantage of the dynamic capabilities of

hardware (Chapter 6).

8

1.3 Contributions

Within the context of dynamic heterogeneity, this dissertation makes several contributions. First,

it proposes a mechanism for virtualizing and abstracting on-chip cores, and then uses these tech-

niques to improve several aspects of server-class systems. The end result is that nearly-unmodified

software can seamlessly adapt to several of the opportunities and challenges of dynamic hetero-

geneity.

Multicore Virtualization A layer of virtualization, and techniques to support it, are proposed

in Chapter 4. This layer allows the chip manufacturer, through a combination of hardware and

firmware, to dynamically remap computation from one core to another more appropriate core, and

to seamlessly suspend computation on one or more cores when necessary. The unique contribution

of this chapter is to allow more virtual processors to be exposed to the system software (either a

software hypervisor or a single operating system) than there are physical cores available to execute

those virtual processors. Such a system is known as an overcommitted system.

Adapting to Intermittent Faults The work in Chapter 5 brings the inability of current system

software to tolerate the dynamic heterogeneity caused by intermittent faults to the attention of ar-

chitects and system designers. This chapter further demonstrates that the proposed multicore vir-

tualization techniques, the ability to operate as an overcommitted system in particular, allows easy

adaptation to the effects of these faults, while presenting a view of continuous, fully-functional

operation to the system software.

Improving Consolidated Servers Although the benefits of abstracting the details of hardware

reliability problems from the system software may be apparent, multicore virtualization tech-

niques can also be used to improve performance. As one demonstration of this fact, Chapter 6

9

uses the increased scheduling flexibility provided by the ability to overcommit a single guest vir-

tual (VM) machine to improve the performance and reduce the transaction latency of consolidated

servers. Isolation between guest VMs is also improved, while still allowing VMs to consume a

varying fraction of the physical resources to handle bursts in demand.

Mixed-mode Reliability Chapter 7 proposes Mixed-Mode Multicore Reliability to allow appli-

cations that require extra reliability, as well as applications that do not, to simultaneously execute

on one machine. The challenges of such a system are addressed by 1) replicating a small frac-

tion of the less-reliable application’s activities (TLB translations of L1 cache misses) to isolate

the state of critical applications, 2) operating as an overcommitted system to handle the varying

number of available physical cores, and 3) using virtualization to allow hardware to handle the

details while software specifies its requirements via a simple interface.

1.4 Dissertation Outline

Chapter 2 provides background information on virtualization and emerging trends in hardware re-

liability. Details of the experimental methodology are provided in Chapter 3. Chapter 4 proposes

techniques for virtualizing the cores of a multicore processor, focusing on the unique challenges

facing an overcommitted system. Chapter 5 discusses intermittent hardware faults, and compares

several techniques for adapting to the effects of these faults. Chapter 6 demonstrates how the mul-

ticore virtualization techniques can improve consolidated server scheduling. Chapter 7 examines

the challenges, and proposes solutions, to the simultaneous execution of both DMR and non-DMR

applications on the same machine. Chapter 8 summarizes the contributions and insights of this

dissertation, discusses how multicore virtualization has and can impact other research, and revisits

the thesis statement.

10

Chapter 2

Background: Virtualization and Reliability

Trends in hardware reliability provide a powerful qualitative and quantitative motivation to ab-

stract the details of hardware fault tolerance from the software. For this reason, two major com-

ponents of this dissertation (Chapters 5 and 7) identify and address emerging reliability issues.

Virtualization provides the means to achieve this abstraction. This dissertation proposes novel

mechanisms for virtualizing the cores of a multicore processor, which are described in detail in

Chapter 4. This chapter provides background information on virtualization and reliability.

2.1 Processor Virtualization

Virtualization is a generic term used to describe the translation of one interface into another inter-

face of equivalent complexity [Popek and Goldberg, 1974; Smith and Nair, 2005]. Virtualization

has been used for many decades by companies such as IBM to maintain backward binary compat-

ibility with legacy application and system software and new hardware running new ISAs [Popek

and Goldberg, 1974]. The original software is said to be running in a guest virtual machine (VM),

which appears to the software to be the equivalent of the original hardware. One or more VMs

may be running on a single physical machine (the host) under the control of a virtual machine

monitor (VMM). Virtualization has been used more recently by many companies to enable the

consolidation of multiple VMs onto a single machine (e.g., VMware [Waldspurger, 2002]).

11

Abstraction is a term used to denote the translation of an interface into one of lesser complex-

ity, in effect, hiding less relevant details of an underlying implementation [Smith and Nair, 2005].

Layered computer systems liberally use abstraction between layers in order to better understand

the issues within a given layer. Virtualization and abstraction are often related. For example,

this dissertation proposes to virtualize the cores of a multicore processor in order to abstract the

complexity of their emerging dynamic heterogeneity.

Virtualization of an entire system, especially to run multiple VMs on a single machine, in-

volves many complex tasks, including virtualization of memory, I/O, and processors. This pri-

mary focus of this dissertation is processor virtualization (PV) for multicores.

PV creates a level of indirection between the virtual processors (or VCPUs) that are exposed

to the operating system via the hardware/software interface (i.e., ISA), and the physical processors

(i.e., physical cores of a multicore system) actually implemented in hardware. PV refers to the

management and sharing of these physical core resources among the VCPUs [Mullender et al.,

1994]. In particular, PV answers the question: How and when is each VCPU allowed to use

which physical core? PV involves both the low-level mechanisms for correctly multiplexing the

architected processor state (e.g., registers and software-visible TLBs) among multiple VCPUs, as

well as the high-level policies governing their use.

PV can be performed in a manner entirely transparent to the guest OS (i.e., pure virtualization,

as in VMware [Waldspurger, 2002]), or in cooperation with the guest OS (i.e., para virtualization,

as in Xen [Barham et al., 2003], Denali [Whitaker et al., 2002], and the IBM Power5 Hypervisor

[Armstrong et al., 2005]). Both techniques have several advantages and disadvantages. Primar-

ily, pure virtualization can support unmodified, legacy software, but can suffer performance loss

when the software makes assumptions about the hardware that are invalid for virtualized resources

[Barham et al., 2003; Wells et al., 2006]. Para virtualization eliminates these assumptions, but

12

Figure 2.1 Multicore Virtualization. Four VCPUs are exposed the the system software via the

ISA, while only three physical cores are actually present. VCPUs V0, V1, and V3 have been

transparently migrated to cores C1, C0, and C2 respectively, while VCPU V2 has been

transparently suspended.

sometimes requires significant modification to the guest OSs and the hardware/software interface

in order to do so.

In the context of this dissertation, pure PV is used to provide software-transparent migration

of a VCPU from one core to another, and to provide support for suspending the execution of

one or more VCPUs, so that the number of VCPUs exposed to the system software can be more,

less, or the same as the number of physical cores. This multicore virtualization is performed

below the ISA, so that the lowest level of system software (e.g., the operating system (OS) or

traditional software hypervisor such as VMware) can remain completely unmodified. Multicore

virtualization is depicted in Figure 2.1, which shows transparent migration of VCPUs V0, V1,

and V3 to cores C1, C0, and C2 respectively, and the suspension of VCPU V2. Such multicore

virtualization allows hardware innovation to address dynamic heterogeneity while abstracting its

details and complexity from the system and application software.

2.1.1 Server Consolidation

Server consolidation is a term used to denote the process of moving two or more services, such as

web or email hosting, from multiple, separate machines onto one physical machine [Armstrong

13

et al., 2005; Figueiredo et al., 2005; Sun Microsystems, 1999; VMware, 2006b; Waldspurger,

2002]. Consolidation aims to simplify the operation and reduce the cost of an organization’s mul-

tiple servers (or of servers from multiple organizations). The installation of the original services,

including the system and application software, as well as the configuration, are kept intact as much

as possible, and simply copied to the new machine. A system VMM is employed to virtualize the

entire system, and preserve the illusion that each service, running in its own guest VM, is the

only service running on the machine. This is possible because, in the average case, each VM only

utilizes a small fraction of the physical machine simultaneously. Consolidated server workloads

are used to help motivate and evaluate the proposals in Chapters 6 and 7.

2.2 Trends in Hardware Reliability

The components of future multicore processors will become less reliable as technology scales,

because individual devices are increasingly susceptible to a variety of hardware faults caused by a

variety of factors, including high-energy particle strikes, manufacturing process variation, device

wear-out, and temperature and voltage fluctuations [Borkar, 2004; Borkar et al., 2003; Bowman

et al., 2002; Constantinescu, 2003; Semiconductor Industry Association, 2005; Shivakumar et al.,

2002].

Faults may manifest as transient faults, which can affect a single transistor or wire for less

than one cycle, causing a single bit flip. Transient faults are also called single-event upsets [Nor-

mand, 1996], or soft errors [Mukherjee et al., 2005; Shivakumar et al., 2002]. Numerous academic

and industry proposals have proposed software, architectural, microarchitectural, and circuit tech-

niques for tolerating transient faults [Aggarwal et al., 2007; Austin, 1999; Gomaa et al., 2003;

LaFrieda et al., 2007; Mitra et al., 2006a,b, 2005; Mukherjee et al., 2002, 2005; Reinhardt and

Mukherjee, 2000; Reis et al., 2005a,b; Rotenberg, 1999; Smolens, 2008; Smolens et al., 2004,

2006; Weaver and Austin, 2001; Yeh, 1996; Zhang et al., 2006; Zhou, 2006]. Many of these

14

proposals rely on the property that transient faults are independent and temporary, i.e., they may

affect one device in one cycle, but will not affect the same, or other, devices during the window

of time necessary to detect and recover from the fault.

Faults may also manifest as permanent faults, either due to a manufacturing defect, or after

irreversible wear-out damage has occurred. Several proposals have targeted these types of faults

as well [Aggarwal et al., 2007; Austin, 1999; Bower et al., 2005; Govil et al., 2000; LaFrieda

et al., 2007; Schlichting and Schneider, 1983; Shyam et al., 2006; Smolens et al., 2007; Weaver

and Austin, 2001; Yeh, 1996]. Many of these proposals rely on the property that permanent faults

will consistently affect the same devices in the same manner.

There is a third emerging class of faults called intermittent faults, however, which do not ob-

serve the properties of either transient or permanent faults [Borkar, 2004; Borkar et al., 2003;

Constantinescu, 2007, 2003]. Intermittent faults can occur frequently and irregularly for several

cycles to several seconds or more, and then disappear for a period of time. Because of this, inter-

mittent faults present further challenges for designers of reliable systems. These faults commonly

arise due to physical variation (e.g., process variation or in-progress wear-out), combined with

variation in the operating conditions (e.g., voltage and temperature fluctuations) [Borkar, 2004;

Borkar et al., 2003; Constantinescu, 2007, 2003]. Intermittent faults are discussed in more detail

in Chapter 5.

2.2.1 Fault Frequency

Due to the degree with which chip manufacturers guard any information concerning hardware

failures, it is difficult to ascertain the fault rates of current, let alone future, chips. Nonetheless,

gross, order of magnitude (OOM) estimates can be made from published data.

For example, considering only transients induced by high-energy particles, IBM’s Power4

systems, shipping in 2002, target a Mean Time To Failure (MTTF) from transient errors of 10

15

years [Bossen, 2002, as quoted by Mukherjee et al., 2005]. The MTTF of each processor chip in

a multiprocessor system must thus be at least one OOM longer, and possibly higher considering

other components in the system. Although low-cost, commodity chip manufacturers are unwilling

to disclose their target MTTF, their chips are likely to have a MTTF several (e.g., 2–3) OOM

shorter than IBM’s server products. In addition, the MTTF of combinational logic is decreasing

by approximately one OOM every two years due to the smaller amounts of charge these high-

energy particles need to impart to cause an error [Shivakumar et al., 2002]. Incorporating multiple

low-overhead circuit-level techniques (e.g. [Blough et al., 1999; Ernst et al., 2003; Hamilton and

Orailoglu, 1998; Ismaeel and Bhatnagar, 1997; Shyam et al., 2006; Smolens et al., 2007]) may

increase the MTTF by 2–3 OOM, but these techniques aren’t fully composable, as they often

target the same components and same causes or errors. It is thus plausible that the MTTF of

commodity processors from transient errors in 2012, as visible to the microarchitecture, will be

4–6 OOM shorter than IBM’s 10 years, or on the order of one failure every 5 minutes to 10 hours.

Though the details remain secret, permanent faults are already significant in commodity chips.

For example, results from industry indicate, based on confidential data, that approximately 10%

of processors experience a permanent fault of some kind (not necessarily debilitating) within 3

months and 25% within 1 year [Aggarwal et al., 2007]. These results are said to already include

numerous architectural enhancements to reduce the rate of errors. These faults are expected to

further increase in frequency in future technologies; a one OOM increase in rates results in 95%

of chips experiencing a permanent fault within one year [Aggarwal et al., 2007].

Such frequent errors can manifest to, or be masked by, software in a variety of ways [Li et al.,

2008]. Nonetheless, many applications, and users of those applications, cannot tolerate these high

fault rates. Or alternatively, many customers cannot tolerate the financial or other risks associated

with such rates. Some level of microarchitectural detection, recovery, and adaptation to the effects

of these faults thus appears to be necessary for future generations of multicores.

16

2.2.2 Detecting Faults

Microarchitectural reliability techniques have shown great promise at tolerating faults, i.e., at

hiding the effects of faults that escape circuit reliability techniques from the system- and user-

level software running on the hardware. These techniques all use some form of spatial or temporal

redundancy to detect, and/or recover from faults in the underlying circuits.

Several microarchitectural techniques purport to be low-overhead [Bower et al., 2005; Shyam

et al., 2006; Smolens et al., 2007]. While this claim may be true, these techniques also only

increase the MTTF from one specific type of fault (e.g., permanent faults) by approximately one

OOM. Similar to the circuit techniques, these low-overhead microarchitectural techniques are

not always composable either. As devices become more unreliable, the ways in which faults

manifest increase, with a consequential increase in the complexity and overhead of the techniques

to tolerate them. Thus, such low-overhead techniques can likely help maintain current rates of

faults for one or two generations of processors, but not longer.

Several high-overhead reliability schemes such as those employing Dual Modular Redundancy

(DMR), have become popular for situations where high-coverage detection and/or recovery is

required. These DMR proposals provide spatial redundancy by joining two physical cores, each

executing a copy of the program, into one logical processor visible to the system software. Such

DMR schemes have been proposed and investigated by a multitude of academic and industry

researchers [Gomaa et al., 2003; LaFrieda et al., 2007; Mukherjee et al., 2002; Reinhardt and

Mukherjee, 2000; Rotenberg, 1999; Smolens et al., 2006; Weaver and Austin, 2001; Zhou, 2006],

and have been implemented to varying degrees in real products [Bernick et al., 2005; McEvoy,

1981; Slegel et al., 1999]. Most academic proposals focus on single-event transient faults, but

many can be adapted to provide very high fault coverage for intermittent and permanent faults

as well (e.g., [Aggarwal et al., 2007; Austin, 1999; LaFrieda et al., 2007; Smolens et al., 2006;

17

Weaver and Austin, 2001; Yeh, 1996]), making them suitable for the variety of factors producing

faults in future multicores.

Assuming that faults manifest independently on physically separate cores, and that only one

fault occurs at a time, DMR can provide perfect detection of faults. Even after relaxing these

assumptions, DMR can still provide many OOM reduction in fault rates. The benefits of dual

redundancy, however, come at a large overhead (approximately 100%) in terms of power and

throughput, and can also significantly impact the IPC of a single thread due to frequent synchro-

nization. An open question is whether the cost/benefit tradeoff of using DMR will allow circuit

and process researchers to use more aggressive designs with higher fault rates, but lower power,

faster clocks, and higher yields.

This dissertation takes the position that DMR will be useful for a growing number of applica-

tions with every technology generation, yet many applications will remain sufficiently reliable for

the next decade while using only lower-overhead microarchitectural and circuit techniques.

2.2.3 Fault Recovery

Detecting the occurrence of a fault is one important aspect to system reliability. A second, related

concern is recovering from the effects of the fault before it can corrupt the state of the software

running on the faulty hardware.

Proposed fault recovery schemes operate at many different levels in the hardware/software

stack, but nearly all of them delay the writing of a value to “safe” storage until fault-free execution

can be verified. If a fault is detected, the value is not committed, and a mechanism (such as rolling

back to the previously verified safe state) is invoked to ensure consistency with other values in the

system.

18

Circuit techniques typically prevent a value from being written to a pipeline latch before it is

verified fault-free, or use a second, delayed latch for recovery before writing a value to the register

file (e.g., [Ernst et al., 2003]).

Microarchitectural reliability techniques generally employ one of three techniques for fault

recovery: 1) store unverified results in the pipeline, and using the physical register file for safe

storage [Gomaa et al., 2003; Rotenberg, 1999; Smolens et al., 2006; Weaver and Austin, 2001;

Zhou, 2006], 2) store unverified results in the cache and/or register file without making them vis-

ible to other cores, and use the cache as safe storage [LaFrieda et al., 2007], or 3) store unverified

results in the cache hierarchy after making them visible to other cores, and use a double buffer-

ing checkpoint mechanism in the memory hierarchy to create a consistent, logically global safe

checkpoint, from which all cores can simultaneously recover when a fault is detected [Nakano

et al., 2006; Sorin et al., 2002].

Software reliability techniques rely on software’s ability to buffer and roll back to a consistent

checkpoint.

A large body of prior work has postulated about the pending increase in fault frequency as

technology continues to scale. This dissertation does not make significant contributions in terms

of the actual mechanisms for detecting or recovering from hardware faults. Instead, it addresses

the need to adapt to the dynamic heterogeneity caused by intermittent faults (Chapter 5), and to

remain flexible to the dynamic heterogeneity caused by the changing reliability needs of software

(Chapter 7).

19

Chapter 3

Experimental Methodology

Experimental results in this dissertation are derived from a full-system, execution driven simulator,

which models a single-chip multicore processor with 8 cores. Workloads consist of a diverse set

of commercial server, and other applications running Solaris 9 and Linux 2.6 operating systems

on the SPARC V9 platform.

This chapter presents the common details of the simulator, target multicore system, and work-

loads, as well as the methodology used in most experiments. Individual chapters include a detailed

explanation of the specific experiments in that chapter and any methodological differences.

3.1 Simulator Implementation

This simulation infrastructure consists of a functional component, based on Simics 2.0.28 [Mag-

nusson et al., 2002], as well as an 80k line C++, cycle-level architectural timing component de-

veloped within Dr. Sohi’s research group over the past five years, called ms2sim.

The functional component provides the ability to execute unmodified operating systems and

commercial workloads running on the SPARC V9 platform. It models the logical effects of in-

struction execution, devices, interrupts, etc., of a Sun Enterprise 8000 server with UltraSPARC

IIICu processors for Solaris workloads, or UltraSPARC II processors for Linux workloads.1 These

two processors are functionally very similar. The primary difference that can affect the results in

1Linux has not been properly ported to the UltraSPARC IIICu-based Enterprise servers.

20

this dissertation is the configuration of the TLBs. UltraSPARC II uses a 64-entry fully associative

TLB for both data and instruction. UltraSPARC IIICu uses a 16-entry fully associative plus a 128-

entry 2-way associative instruction TLB and a 16-entry fully associative plus a 1024-entry 2-way

associative data TLB, and results in dramatically lower miss rates for some workloads. In order

to keep the behavior of these two processors as similar as possible, the UltraSPARC II TLB was

modified to use the same configuration as the UltraSPARC IIICu, but maintain the functionality

of the UltraSPARC II TLB. Although source code for the SPARC TLBs was provided by Simics,

and modified extensively during the course of this research, source code for most other portions

of the functional simulator is not available.

The timing component models the execution characteristics of a single multicore processor,

including out-of-order cores and cache hierarchy. It uses the Simics Micro-Architectural Interface

(MAI) to tie into the functional simulator. MAI allows the timing simulator to dictate the exact

cycle in which the functional simulator should proceed each instruction through which pipe stage.

Within each core, ms2sim models the register file, functional units, instruction window, load/store

queue, store buffer if used, and control flow. It also handles all aspects of the memory hierar-

chy timing, including cache arrays, banking and bandwidth, network, coherence protocols, and

maintaining the appropriate consistency model. The memory hierarchy is not responsible for ma-

nipulating data. For functional correctness, ms2sim must properly handle control flow, load-store

dependencies within a core, the store buffer, and maintain multiprocessor consistency. Simics

MAI determines register dependencies among instructions and provides this information to the

timing simulator.

Simics MAI allows more fidelity in multiprocessor simulations compared to simulators which

use dynamically (or statically) generated traces, since the functional simulator observes loads re-

ceiving the proper architectural value at the appropriate time dictated by the timing simulator.

Compared to timing-first simulators (e.g., [Mauer et al., 2002]), MAI does not require the timing

21

simulator to duplicate the efforts of the functional simulator. In addition, this interface allows

slightly more fidelity compared to timing-first simulation in multiprocessor simulations. In cer-

tain cases, the timing-first simulator and the functional, shadow simulator can provide different,

though both valid, sequentially consistent memory orderings. In these cases, the timing simulator

assumes an error occurred in its execution, and restarts. Simics MAI also allows correct model-

ing of non-sequentially consistent (SC) memory models, though SC is used for all results in this

dissertation.

The simulation infrastructure also allows for the use of a simplified processor model to speed

up simulations, though it uses the same memory hierarchy. Simics models the simplified tim-

ing aspects of the cores, which represent a single-instruction, blocking core. This execution

model provides approximately a 10X improvement in simulator speed, allowing the examination

of longer periods of simulated execution.

The timing of other components of the system, such as disks and network interface cards, are

functionally modeled, but not modeled by the timing simulator.

Virtualization Implementation In general, the Simics functional simulator correctly handles

the execution of the VCPUs, while the timing component dictates when and with what timing

characteristics those VCPUs execute. However, the various components of multicore virtualiza-

tion interact with the functional and timing components of the simulator in different ways, and are

described in Section 4.4.1 after discussing the proposed virtualization techniques.

Consolidated Server Implementation Studies with consolidated workloads are performed in

Chapter 6. These studies assumes the use of a software VMM, similar to VMware ESX Server,

which virtualizes I/O, memory, and the execution of privileged instructions. Without access to

such a VMM that supports the SPARC Enterprise 8000 platform used in this dissertation, the

22

Fetch, issue, commit 4 instructions / cycle

Fetch buffer 2-entry

Integer pipeline 8 stages

I-Window & ROB 128 entries, OOO issue

Load and store queues 32 entries each, w/ bypassing

YAGS branch predictor 8k-entry choice, 2k-entry except tables [Eden and Mudge, 1998]

Cascaded indirect pred 256-entry filter, 1k-entry except tables [Driesen and Hölzle, 1998]

RAS 32-entry table, modified for commercial workloads (Section 3.2.1)

Private L1 instr cache 16KB, 2-way, 1-cycle, coherent

Private L1 data cache 16KB, 2-way, 1-cycle, write-back

Private L2 unified cache 512KB, 4-way assoc, 15 cycle ld-to-use, 4 banks, 4-stage, inclusive

On-chip shared L3 cache 8MB, 16-way, 55-cycle load to use, 8 banks, pipelined, exclusive

On-chip interconnect Logical crossbar, 10-cycle latency

Main Memory 365 cycle load-to-use, 24GB/sec

Table 3.1 Target Multicore Parameters

execution of consolidated workloads is emulated without modeling the overhead of this software

VMM. The timing simulator models the VMM, which is responsible for sharing the physical

resource of the target machine among guest VMs. By articulating which VCPUs from which

VM run on which cores at what time, the timing simulator causes VMs to dynamically share the

cores, caches, and TLBs. The methodology for consolidated servers is discussed in more detail in

Section 6.3.1.

3.2 Target Multicore System Configuration

Most experiments in this dissertation model a single-chip multicore processor with eight cores.

Experiments in Chapter 4 cannot use a larger number of cores because experiments are limited by

the maximum of 24 OS-visible VCPUs that can be installed in the simulated SunFire system. To

facilitate using the same workloads in all chapters, Chapter 5 also uses an 8-core processor, and

experiments in Chapter 7 use a 16-core processor with dual redundancy.

23

In most experiments, each core is modeled as a 4-wide, dynamically scheduled, out-of-order

core, with a 128-entry instruction window, executing at 3GHz. Within each core, ms2sim models

the register file, functional units, instruction window, load/store queue, control flow, and other

aspects of a dynamically scheduled pipeline. The configuration of the processing core is shown

in top of Table 3.1.

The processor implements a fetch buffer, containing two 64-byte cache lines worth of instruc-

tions, which can be fetched without accessing the cache. A hit in the fetch buffer prefetches the

next cache line.

The load-store queue performs conservative disambiguation. Loads wait until older stores

addresses are known before executing. Loads that cannot execute due to an older store with an

unknown address are prefetched. Stores prefetch write permission once both their address and

data are known, but do not write to the cache until they commit.

In order to run simulations for a longer simulated time, a second, in-order configuration, was

used for certain experiments. This second configuration uses a simple model which executes

one instruction at a time, with each instruction taking one cycle in the absence of a memory

stall. Memory stalls block the processor. Experiments using this in-order model are noted in the

corresponding chapter.

The on-chip cache hierarchy includes private L1 instruction and data caches, which are each

16KBytes and 2-way set-associative. The L1 data cache is write back. The L1 instruction cache is

kept coherent with the data cache and other cores. Located with each core is a 512KByte private,

unified L2 cache. L2s maintain coherence via a MOESI directory protocol. An on-chip directory

is co-located with an 8-way banked, shared, on-chip level 3 cache, which maintains exclusion with

the private L2s (i.e., acts like a large victim cache). L2s and L3 banks are connected via a logical

crossbar with a 10-cycle point-to-point latency, giving the L3 a 55-cycle load-to use. Off-chip

24

memory observes a 365-cycle load-to use, and is limited to a bandwidth of 24GBytes/sec. The

line size for all caches is 64 bytes. Caches do not perform prefetching.

The use of a 3-level on-chip hierarchy has not been common in academic research outside

of papers published in cooperation with this work [Chakraborty et al., 2006; Wells et al., 2006,

2008]. This may be due in part to the implementation complexity, or to a “follow the crowd”

mentality. Several years ago, private L2 caches and a shared, exclusive L3 cache seemed a good

compromise in the ongoing debate between 2-level multicore designs centered around better lo-

cality from private L2 accesses and better capacity from a shared L2 cache. IBM’s Power5 used a

similar hierarchy to the 3-level used in this work, though the Power5’s exclusive L3 sits off-chip

[Kalla et al., 2004]. More recently, this choice of design has been vindicated by the quad-core

AMD Opteron processors, which feature 512KByte private L2s, and a 2MByte L3 victim cache

[Conway and Hughes, 2007].

3.2.1 Return Address Stack

A conventional return address stack (RAS) consists of a FIFO of program counter (PC) addresses.

When a program makes a function call, the PC following the call is pushed onto the RAS, and

later popped from the RAS (and used as a branch target prediction) when a return is made from the

function. Modern RASs include support for multiple head pointers and other mechanisms to repair

a stack against addresses that were pushed or popped for speculative, wrong-path instructions

(e.g., [Jourdan et al., 2005; Skadron et al., 1998]).

With OS-intensive commercial workloads, however, hardware speculation is only once source

of problems with the RAS. Another arises, especially in Solaris code, when a function makes a

tail call (calls one function at the end of another). In this case, the compiler optimizes the

return path, so that the innermost function returns directly to its caller’s caller. Because SPARC

25

only includes jump and call instruction which link, e.g., save the return address to a register, the

return address of the middle function is placed onto the RAS, though that PC is never executed.

A typical method for repairing the stack after such a call is to search the rest of the RAS for

the correct return address on a RAS misprediction, and pop off any entries between the current

top and the correct return address. After one misprediction, the hope is that this method allows

the RAS to continue correctly. However, one misprediction on the compiler “optimized” call will

still occur.

To remedy this situation, a small filter table was added to the RAS to predict which PCs should

not be pushed onto the RAS during a call. On a misprediction, if the correct return PCs is found

in the top four entries of the RAS, all intervening PCs are added to the filter table. The next time

one of those PCs appears as the return address of a function call, it is not added to the RAS.

To the best of my knowledge, predicting not to push entries onto the RAS is a small, but novel

contribution. However, this optimization has not been studied in sufficient detail to determine

whether other architectures and operating systems are affected by this problem as well.

3.3 Workloads

Several different workloads were used for experiments in this dissertation. Most experiments

use several commercial workloads running on Solaris 9. Experiments in Chapter 4 were also

performed with several workloads running on Linux 2.6.10. The individual workloads are briefly

described below. Not every experiment was run with all workloads.

Apache The Surge client [Barford and Crovella, 1998] is used to drive the open-source Apache

web server, version 2.0.48. To reduce OS idle time, the Surge client was configured with no user

think time.

26

pmake Parallel compile using GNU make and the Sun Forte Developer 7 C compiler (on So-

laris) or gcc-3.3.4 (on Linux). Serial linking phases are avoided.

Zeus The Surge client was used to drive the commercial Zeus web server, configured similarly

to the Apache web server.

OLTP OLTP uses the IBM DB2 database to run queries from TPC-C. The database is scaled

down from TPC-C specification to about 800MB and runs 192 concurrent user threads with no

think time.

pgoltp pgoltp uses the PostgreSQL database version 8.1.3 [PostgreSQL Global Development

Group] to run TPC-C-like queries from the OSDL dbt2 test suite [Open Source Development

Labs]. The database is scaled down from TPC-C specification to about 800MB and runs 200

concurrent user threads with no think time.

pgbench Pgbench runs TPC-B like queries on the PostgreSQL database [PostgreSQL Global

Development Group]. Pgbench is packaged with the PostgreSQL source distribution.

Spec2000Mix This benchmark is used in Chapter 4 for experiments with 24 VCPUs. All

SPEC2000 benchmarks are concurrently run, except the FORTRAN90 FP benchmarks for which

no open source Linux compiler exists. Instead, two copies of gcc, mcf, and art are run to keep all

24 VCPUs busy. Benchmarks have been warmed-up for one billion cycles.

vortexMIX This benchmark is a simple multiprogramming workload consisting of 8 copies or

255.vortex from SpecINT2000 running reference inputs, and has been warmed-up for one billion

cycles. This benchmark is used in Chapter 5.

27

artOMP This benchmark is 330.art m from the SpecOMP2001 suite, using reference inputs,

and warmed up and running in steady-state. This benchmark is used in Chapter 5.

barnes This benchmark is from the Splash2 suite is also used in Chapter 5. This bench-

mark is setup with only 512 bodies in order to increase the impact of synchronization. It uses

pthreads cond wait() for barrier synchronization

barnes/U This is a variant of barnes, which implements barrier synchronization with user spin

locks.

All workloads are run for several simulated seconds, and sometimes minutes, using just the Simics

functional simulator to warm up the workload and OS disk cache before a checkpoint is taken that

is used by our timing simulations.

Although the timing simulator models a 3GHz processor, the OSs are configured for a 1GHz

processor. This difference can impact the frequency of OS timer interrupts, slightly increasing OS

scheduling overhead. Disk latencies are set arbitrarily low (1-10µs) in order to reduce the amount

of time that the CPUs spend idle.

Some workloads in Chapter 4 use 24 VCPUs, and were warmed up on a simulated system

with 24 processors. Other workloads use 8 VCPUs and are warmed up an an 8 processor system.

This chapter uses both Linux and Solaris workloads. Apache and pmake are run on both OSs.

Spec200Mix is only run on Linux, and the rest only on Solaris.

Some experiments in Chapter 5 use Solaris’s Dynamic Reconfiguration [Sun Microsystems,

Inc.] capabilities. For these workloads, the command cfgadm, which prints out the current

system slot configuration, was run prior to warming up the workload in order to load the necessary

kernel modules so that the appropriate kernel functions could be called directly by the simulator

28

without the overhead of the command. The technique for doing so is described in more detail in

Section 5.4.1.1.

Consolidated server workloads used in Chapter 6 were combined from the 8-processor work-

loads used elsewhere.

Microbenchmarks are used in Chapters 5 and 6, and are described in the appropriate chapter.

3.4 Methodology

Due to inherent variability in these workloads as described by Alameldeen and Wood [2003] (pri-

marily from interrupt processing and OS scheduling decisions), a small (up to 10-cycle) random

variation is added to the latency of each main memory access. Several trials of each benchmark

are then run per experiment. Results are averaged over these trials. The 95% confidence interval

is included on most performance graphs.

Experiments in Section 4.4.2 and Chapter 5 were started with warmed cache checkpoints.

Experiments in Sections 4.4.3–4.5.3.1 and Chapter 6 were not, but were run at least long enough

to have L3 misses ten times in excess of L3 cache lines (in practice, they were run much longer).

Experiments in Chapter 4 are each run for a specified number of workload transactions. Per-

formance is then determined using the total number of cycles taken. Unfortunately, this method

breaks down for shorter runs, especially with workloads such as pmake, OLTP, and pgoltp,

which contain long running, variable-length transactions.

To remedy this situation, experiments in other chapters are run for a specified number of cycles

or a specified number of user instructions. Performance is then determined by examining User

IPC: the number of committed user instructions across all VCPUs divided by the total number

of cycles from both user and OS. Data in this thesis (e.g., Figure 4.4) corroborates the results of

others (e.g., [Wenisch et al., 2005]) which conclude that user commits correlates very closely to

workload transactions for workloads without a significantly user spin component.

29

Chapter 4

Multicore Virtualization

Past generations of uniprocessors enabled software-transparent hardware innovation, such as dy-

namic branch prediction and out-of-order execution, within a single processing core. Future mul-

ticore processors will also require the ability to make hardware innovations among multiple cores

in order to address the challenges and opportunities of dynamic heterogeneity. This chapter dis-

cusses techniques for virtualizing the cores of a multicore processor to enable such hardware

innovation, while allowing this innovation to remain transparent to the system and application

software running on those cores.

In many respects, this multicore virtualization is analogous to the virtualization and abstrac-

tion provided by a dynamically scheduled out-of-order processor. Such a processor abstracts the

number and timing characteristics of the functional units from the compiler, automatically ex-

tracting parallelism from, while still providing the semantics of, a sequential instruction stream.

Similarly, a virtualized multicore can abstract the details of its multiple cores, including their

number and the complexity of their dynamic heterogeneity.

The goal of this chapter is to develop an underlying framework to support applications which

address the examples of dynamic heterogeneity from Chapter 1. These examples suggest two

main requirements for the multicore virtualization framework. First, basic multicore virtualization

must support both the ability to move the execution of a virtual processor (VCPU) from one core to

another, and the ability to temporarily suspend execution of a VCPU when there are no appropriate

30

cores on which it can run. Section 4.1 proposes techniques to implement this functionality, and

discusses how this problem is similar to that of traditional software Virtual Machine Monitors

(VMMs), but how its design objectives evolve for multicore processors.

The second major goal of the virtualization framework is to provide the basic support while

preserving not only the documented semantics of the hardware/software interface, but also the

illusion of other assumptions made by the software, such as simultaneous execution of all VCPUs

and performance symmetry. This second goal leads to new challenges, and novel contributions.

In particular, Section 4.2 defines and examines the problems of an overcommitted system, where

the number of VCPUs exposed to the OS exceeds the number of available cores. Hardware spin

detection is proposed as a solution to this problem, which allows multicore virtualization to exist

within the context of completely unmodified software.

An experimental evaluation in Section 4.4 presents the overheads of various components of

virtualization, helps understand the problems of an overcommitted system, and analyzes the effec-

tiveness of the proposed spin detection hardware. An overview of the experimental methodology

is described in Section 4.4.1. The complete methodology is presented in the Appendix.

4.1 Basic Multicore Virtualization

The most basic requirements for multicore processor virtualization are mechanisms to allow a

VCPU to be migrated from one core to another, or paused when no appropriate cores are available.

Such support is needed, for example, if a core is overheating or otherwise unable to perform

reliable computation. In this case, it may be desirable to pause the VCPU running on that core for

a period of time, or to move that VCPU to another core to continue running.

This basic support is very similar in concept to the processor virtualization performed by

traditional software VMMs. There are three primary differences, however, between traditional

31

processor virtualization, and the type of multicore virtualization needed to address emerging dy-

namic heterogeneity. First, the timescales at which multicore virtualization must act are often

shorter than for a typical software VMM. Second, the layer in the system performing the virtu-

alization functionality is different, providing new opportunities. Third, the basic virtualization

support is intended primarily to support a single guest VM, eliminating the burden of virtualizing

all other aspects of the system.

The first difference arises because several applications of dynamic heterogeneity require con-

text switching and migrating VCPUs on the order of 10 thousand to 100 thousand cycles (e.g,

Computation Spreading [Chakraborty et al., 2006] and Mixed-Mode Reliability in Chapter 7).

The latencies of such actions thus become much more critical compared to a software VMM,

which typically does not perform a VCPU context switch more often than every few milliseconds

(VMware ESX Server 3 defaults to 50ms [VMware, 2006a]).

The second difference is that since multicore virtualization is performed beneath the hard-

ware/software interface, a design can include hardware support that is appropriate for that partic-

ular generation or product, depending on a projects design goals. This chapter makes the assump-

tion that hardware support can be used to speed up certain operations. However, this hardware

support should be restricted to the cases where it most improves performance, and should be kept

as simple as possible to maintain designability.

Because the basic multicore virtualization is intended to support only a single guest VM, the

third difference arises since many aspects of the system can remain unvirtualized. Necessary tasks

involve virtualizing the visible processor state, TLBs, and interrupts, and providing control logic

to manage the virtualization. The manner in which these tasks are implemented, within the context

of multicore virtualization for dynamic heterogeneity, is described in Sections 4.1.1–4.1.4. Basic

multicore virtualization is similar to process migration one level lower: an OS might migrate one

32

of an application’s threads to another core, unbeknownst to the application, while a virtualized

multicore might migrate one of an OSs VCPUs, unbeknownst to the OS.

Other components of the system that are commonly virtualized by software VMMs include

memory, I/O, and privileged instruction execution. These are also the components that tend to

add significant overhead to software VMMs. But when supporting only a single guest VM, virtu-

alization of these is not necessary. Keep in mind however, that the use of multicore virtualization

does not preclude the use of a traditional software VMM. Such a system simply sits above the

hardware/software interface and operates as normal, possibly virtualizing multiple guest OSs.

Combining multicore virtualization with a software VMM is used in flexible consolidated server

scheduling (Chapter 6), and in Mixed-Mode Reliability (Chapter 7).

4.1.1 Virtual Processor State

A VCPU’s architected state, which consists of its memory, register values, and for SPARC, its

TLB state, must be preserved by the VMM. The memory state can simply be communicated as

needed via the on-chip coherence network that is already required to support shared memory

multiprocessing. Registers and certain TLB state must be saved and restored, similar in concept

to an OS saving the state of a process when it is context-switched.

The UltraSPARC IIICu architecture functionally modeled has a large number of architected

registers. Including windowed, alternate global, floating-point, privileged, ASI-mapped, and TLB

control registers, this comprises 277 64-bit registers, or 2.2KB.

This dissertation proposes using a simple mechanism with limited hardware support, and no

special-purpose storage, by simply storing the VCPU state in the memory hierarchy. A portion

of the physical address space is set aside for this storage, and microcode is used to load and store

the state values. When the VMM wishes to deschedule a VCPU, it interrupts the corresponding

core, which flushes its pipeline and executes the microcode to save the current VCPU state. The

33

microcode can then restore the state for the next VCPU (as specified by the VMM). The latency

of this operation is then determined by the available memory read (and write) ports and the cache

bandwidth. While this solution incurs some cache overhead, it is a small fraction of the multi-

megabyte caches found on current chips. If the VMM chooses to run the descheduled VCPU on

another core, the VCPU state can be transparently migrated using the on-chip coherence protocol

when the microcode executing on the new core begins loading the state.

4.1.2 TLB Virtualization

SPARC V9 uses a software managed TLB, which means that most storage and operational aspects

of the TLB are architected and OS-visible. TLB storage consists of control registers and cached

page translations (TLB entries). Control registers are treated just as all other processor control

registers, and migrated as part of the VCPU state.

TLB entries can also be treated just like the other registers, however, the Cheetah+ MMU used

in the UltraSPARC IIICu processor has nearly 20KB worth of TLB entries per VCPU (1,184 quad

word entries). Migrating these entries as part of VCPU state can result in significant cache and

latency overheads (see Section 4.4.2).

TLB entries can be either locked or unlocked. Locked entries are managed completely by

software. They are used for certain OS code pages (e.g., TLB miss handler), and other pages for

which the OS cannot tolerate a miss. Locked entries are sometimes different for different VCPUs,

even when all VCPUs are running the same OS. Thus, locked entries must be treated as part of the

VCPU state. Fortunately, the architecture is limited to 32 locked entries (16 each for instruction

and data TLB), comprising a small fraction of VCPU state.

With unlocked entries, the OS has more limited control. In particular, the TLB is allowed to

evict these entries at nearly any time. A second option for virtualization is thus to invalidate all

unlocked entries when a VCPU is descheduled. However, all future accesses after transferring to

34

a new core (or after being rescheduled on the same core) will result in a TLB miss, leading to high

overheads as well (see Section 4.4.2).

A third option is to tag each entry with a VCPU ID. During translation, a TLB entry is used

only if its VCPU ID matches the currently executing VCPU. Although this option keeps the

overhead of pausing and migrating VCPUs low, if migrations are frequent or TLB working sets

are small, it requires more hardware support than the prior options. First, it requires additional

storage for each entry and an additional tag match on each lookup. Second, TLB demap operations

must be handled with care, since a TLB entry can remain valid even after a VCPU has moved to

another core. If the translation is demapped on the new core, a hardware shootdown mechanism

is necessary to demap the translation on other cores as well.

In this work, we make the observation that a VCPU ID is not needed when sharing the TLB

array among multiple VCPUs from the same VM. This observation holds since SPARC V9 uses

OS-visible context IDs to tag TLB entries. Although an OS is free to use these context IDs for

whatever purpose it sees fit, both Solaris and Linux use a unique context for each process address

space. Thus, when a software process is migrated from one OS-visible VCPU to another, or when

multiple threads of the same process simultaneously execute on multiple VCPUs, the same TLB

context ID is used. VCPUs from the same VM are thus allowed to share unlocked TLB entries,

and do so without requiring additional tag hardware. Such sharing increases the effective size of

the TLB, since any translation shared among two or more VCPUs is not replicated.

This final option does not require any additional hardware on the critical path of a translation,

though unlocked entries are still invalidated when switching between VCPUs of different VMs

(e.g., in Chapter 6). A hardware shootdown mechanism is also still necessary. A comparison of

three of these possible mechanisms is presented in Section 4.4.2.

35

For other architectures, which do not implement an architected TLB, all of these proposed

techniques remain applicable. Sharing entries among VCPUs, however, requires context IDs,

which some architectures, e.g., X86, do not use.

4.1.3 Interrupt Virtualization

The final step in the virtualization of on-chip cores is a mechanism for properly handling inter-

rupts, including both hardware- and software-initiated interrupts.

This work assumes the use of a centralized interrupt control logic, implemented in hardware,

for this purpose. A simple table is used to map an incoming interrupt from the proper VCPU to

the core currently executing that VCPU. If the VCPU is currently executing, the interrupt is then

delivered to the physical core. If the table reports that the VCPU is currently paused, then the

interrupt is buffered until the VCPU is run again.

For most experiments, this dissertation uses the policy of quickly scheduling a paused VCPU

on the core where it was most previously executing, and then delivering the interrupt with minimal

delay. As discussed in Section 4.2, such a policy is particularly important for software-initiated

interrupts (i.e. CPU cross-calls), as the initiating software often waits for the recipient to acknowl-

edge receipt.

4.1.4 Virtualization Controller

Virtualization control logic is performed through a centralized physical structure called the Virtu-

alization Controller (VC). This structure is assumed to be implemented in hardware, and receives

inputs from the cores and its own timer. It consists of a table mapping each VCPU to its current

core (which can be none), and simple control logic to direct the scheduling of VCPUs. The actual

function of the control logic depends upon the virtualization application. A practical implemen-

tation of the VC could also use programmable logic.

36

4.2 Overcommitted Virtual Machines

Many examples of dynamic heterogeneity from Chapter 1 create a varying number of available

or appropriate physical cores. In order to provide efficient utilization of the machine when the

maximum number of cores are available, a chip manufacturer (or machine administrator) may

wish to expose each of those cores as an OS-visible VCPU. During times when fewer cores are

available than the number of exposed VCPUs, the system is said to be overcommitted, in the sense

that the OS expects each VCPU to continue executing, but there are not enough cores to do so

simultaneously. This section addresses how a virtualized multicore can make an overcommitted

system possible.

Current software VMMs, such as VMware, allow the total number of VCPUs, across multi-

ple VMs (each VM running its own OS), to be overcommitted as long as the number of VCPUs

exposed to any individual VM is less than or equal to the minimum number of available cores.

The unique contribution of this section is that the proposed techniques enable a single VM to

be overcommitted as well. These techniques, for example, allow one or more VMs running in

a traditional software VMM to each be overcommitted, allow a single OS running on the ma-

chine without a software VMM to be overcommitted, or even allow a software VMM itself to be

overcommitted.

This section discusses the problems associated with overcommitting for a single OS, and pro-

poses a solution to do so even with completely unmodified software. Section 4.4 presents an

experimental analysis of the problems and proposed techniques. Chapters 5, 6, and 7 qualitatively

and quantitatively demonstrate why overcommitting a single OS is desirable, and perhaps even

necessary, for future multicores.

37

4.2.1 The Problem: Synchronization Overhead

When overcommitting the cores of a processor, multiple VCPUs must share each core. But a

multiprocessor OS which is unaware of any virtualization underneath assumes all its VCPUs are

executing simultaneously. Obviously, this assumption does not hold for an overcommitted system.

In order for each VCPU to make forward progress, the Virtualization Controller (VC) al-

lows each VCPU sharing a particular core to run for a maximum amount of time before context

switching the running VCPU for another one. This maximum time is called the timeslice. For

correctness reasons, especially with overcommitting with a single OS, the timeslice must be short

enough such that the OS doesn’t panic after realizing several of its VCPUs are not executing. For

Solaris 9, the maximum timeslice is approximately one second. The maximum timeslice used by

the VC is specified in a register, and can be updated by the system administrator.

Kernel panics with long timeslices are not the only problem, however. In particular, a paused

VCPU can be holding an OS kernel lock, or be the recipient of a software interrupt (CPU cross

call), leading to synchronization problems and live-lock and/or severe performance loss. The two

major components of this synchronization problem are described in more detail below.

Mutex Locks The first problem manifests itself through the use of mutex spin locks to protect

critical sections in the OS kernel. For example, a Solaris kernel thread attempting to acquire an

adaptive mutex lock will sometimes block when the lock is already held, but for performance

reasons, will spin when the owner of the lock is running on another VCPU (assuming the lock

will not be held long). If this lock-holding VCPU is not currently executing on a core, however,

the thread will spin unnecessarily. Other, non-adaptive locks are not preemptible and always spin.

Linux 2.6.10, the version used for this study, does not use adaptive locks and always spins, though

it sometimes uses semaphores for preemptible synchronization.1

1The Linux 2.6.16 kernel added support for adaptive mutex locks using a similar policy as Solaris.

38

Cross-Calls A multiprocessor OS often employs synchronous software interrupts, or cross-

calls, to communicate between different (virtual) CPUs. An example of this use is for TLB

shootdowns, where one CPU wishes to change a page mapping (e.g., to invalidate an entry or

update the protection bits) that may be cached in other CPUs’ TLBs [Rosenburg, 1989]. Another

example, prevalent in the Solaris kernel, is the use of cross-calls to preempt one or more remote

CPU(s) to run a higher priority thread. Linux does not use cross-calls for this type of scheduling

action. When a cross-call is invoked, the software spin-waits until the hardware notifies it that the

interrupt has actually been delivered to the remote CPU.

For SPARC, the remote CPU sends a NACK when it already has an outstanding software

interrupt, in which case, the sender must continue to retry until the request is ACKed. Other

architectures, such as x86, also require software to ensure that these interrupts are not lost.

Fast execution of cross-calls becomes challenging in an overcommitted environment where all

the VCPUs of a VM are not running concurrently. Since OSs typically do not use nested locking,

the forward progress of the lock-holder is always guaranteed in a simple mutex lock. But in a

cross-call, the forward progress of the initiating VCPU, which is often holding a lock (such as

page table lock or run-queue lock), is dependent upon the recipient VCPUs. For example, when

multiple VCPUs send interrupts to a paused VCPU before they can be handled, one or more of

the senders will continue to spin until its interrupt can be delivered. In other words, when any

responding VCPU is paused with a pending software interrupt, it will thwart the forward progress

of the interrupt initiator, which in turn will cause a cascading affect on other VCPUs attempting

to acquire the lock held by the initiator.

Modifying the interface between the OS and hardware to allow (and guarantee delivery of) an

unlimited number of outstanding interrupts might alleviate this problem. This chapter, however,

focuses on unmodified software.

39

4.2.1.1 User Code

The problems associated with preempting a lock holder are well understood in the context of user

programs [Anderson et al., 1992; Wisniewski et al., 1993; Zahorjan et al., 1991]. The results

of this work has led developers of many parallel applications to realize that a user application

is already running in a virtual environment provided by the OS. The OS can, and will, preempt

a user thread at any time for any number of reasons. User applications thus tend not to use

synchronization constructs that assume all threads are always simultaneously scheduled. Instead,

user applications often also use an form of an adaptive mutex lock, i.e., one that may spin for

a short period of time, and then block. None of the server-class applications in this study have

a significant user spin component. barnes does have user spin, but implements adaptive locks

that yield to the OS scheduler after a short time.

4.2.2 The Solution: Hardware Spin Detection

In any parallel application (a multiprocessor OS being a complex and interesting example), there

are two generic approaches to mitigate the synchronization problem among threads which are not

concurrently executing: 1) avoid preempting a thread holding a lock or 2) pro-actively preempt a

thread that is excessively spinning in favor of executing a more productive thread.

In an optimized parallel application, the length of critical sections is typically short. Avoiding

preemption of the lock holder can often yield good performance for such applications. However,

this approach requires precise information about the lock holder, which is unavailable from an

unmodified multiprocessor OS running in a virtual machine.

The second approach to reduce synchronization overhead is to detect when a VCPU is ex-

cessively spinning on a lock and preempt the VCPU at that point. In order to avoid making any

modifications to the OS, this section proposes a simple yet effective heuristic to identify spin loops

in hardware by observing the dynamic instruction stream.

40

The proposed heuristic relies on the observation that a program executing in a spin loop has

a distinctive execution pattern. While waiting for certain events and not making any forward

progress, a thread typically makes very few, if any, modifications to the program state. We can

infer this lack of program state modifications from the absence of store instructions that change

values in memory. Consequently, this execution pattern can be easily recognized by observing

few unique stores committed by the program in a given interval, where the uniqueness of a store

is determined by having an address or value different from other stores.

An important exception to the above observation arises when a memory location is register

allocated. For example, while searching an array structure, a program may not execute any store

instructions since the array index variable is likely to be register allocated. Therefore, during long

search operations, predominantly found in user code, a program may not execute any store in-

structions. To avoid such false positive spin detections, we also check for unique load instructions

(uniqueness determined by the load address only) when executing user code.

Thus, a kernel spin is detected when the number of unique stores executed within N commit-

ted instructions is less than some pre-defined threshold. On the other hand, a user spin will be

detected when both unique stores and loads are less than that threshold. Sensitivity experiments

demonstrate that for a period of N=1024 committed instructions, a threshold value of eight is

effective to detect all known spin loops with near-zero false positives.

4.2.2.1 Spin Detection Buffer

This section proposes a simple hardware structure, the Spin Detection Buffer (SDB), to implement

spin detection functionality. It employs two fully associative, eight entry content-addressable

memory (CAM) structures to hold the unique stores and loads, respectively. During a given period

N instruction (N=1024 for the experiments here), each committed store (and load when in user

mode) searches the appropriate CAM to determine if its address/value is unique. A unique load

41

The core commits an instruction and incre-
ments the Instruction Count register.

For a store, the SDB inspects the store table
to determine if that store is unique, and if so,
inserts it. The current store is not unique, and
the table is not updated.

For a load, if the processor is in user mode, the
SDB inspects the load table, and inserts an en-
try if the load is unique.

When the committed instruction count reaches
1024, the number of entries in each of the tables
is examined. If either table reaches 8 entries
before the counter reaches 1024, steps 2a and
2b are not performed.

If one table has 8 entries, the SDB is reset by
clearing the tables and zeroing the counter. The
SDB is also reset when a user/OS mode switch
occurs.

If neither table has 8 entries, insufficient unique
stores and/or loads were observed during the
1024 window of instructions, and a spin is re-
ported to the Virtualization Controller.

Figure 4.1 Spin Detection Buffer (SDB) Organization and Operation

or store then inserts its address/value into the appropriate CAM array. Once either array becomes

full, subsequent instructions need not search the CAM.

At the end of the period of committed instructions, the SDB simply checks the number of

entries in each array. If there are less than eight valid entries in the store array and the VCPU is

executing in the OS, the SDB indicates a spin. If there are less than eight entries in both arrays

and the VCPU is executing user code, the SDB again indicates a spin. Otherwise, the arrays are

flushed and it is assumed that the VCPU is making forward progress. If a user/OS mode change

occurs within the period, forward progress is assumed regardless of the number of entries in the

arrays. Figure 4.1 shows the organization and describes the operation of the SDB.

Updates to these structures are not on the critical path, since they are performed after instruc-

tions commit. Because these arrays do not have a strict correctness requirement, other optimiza-

tions could be performed to avoid using a CAM, if desired (e.g., a Bloom filter). Even with a

42

CAM, however, the power requirements of the SDB are likely to be minimal because each struc-

ture is only 8 entries, and during normal (non-spinning) execution, is accessed at most 8 times in

a window of 1024 instructions.

Using the SDB, the maximum timeslice offered to each VCPU by the VC can be cut short if

that VCPU is observed to be spinning. The result is that the effective timeslice, i.e., the amount of

time each VCPU actually executes on the core before being preempted, can be much smaller than

the maximum timeslice specified by the system administrator. The minimum effective timeslice

is the amount of time taken to commit 1024 instructions.

4.3 Hardware/Firmware Complexity

The multicore virtualization techniques presented in this chapter involve modest hardware and

firmware complexity. Hardware support is needed to load and store VCPU state, handle TLB

shootdowns, implement the Virtualization Controller (VC), and spin detection.

The functionality of transferring a VCPU from one core to another is assumed to be im-

plemented mostly using firmware/microcode with loads and stores to a reserved portion of the

physical address space. Yet some hardware support is necessary to allow microcode to run with

sufficient permission to access all state registers. The microcode itself is expected to be relatively

simple.

TLB demaps from a VCPU running on a core need to be sent to other cores on which that

VCPU may have executed. This operation is simpler than a normal hardware TLB shootdown,

however, since the shootdown does not have nearly as strict synchronization requirements. The

shootdown needs only to occur before the VCPU performing the demap is migrated again to the

other cores, but not before the remapping VCPU is allowed to continue executing. The reason

is that, in the absence of migration, the system software still maintains TLB consistency among

VCPUs.

43

The VC requires a small, infrequently accessed table mapping VCPUs to their currently as-

signed cores. This table is necessary both for scheduling decisions and for interrupt delivery.

The VC also requires scheduling logic with inputs from each core, spin detection hardware, and

mapping table. This logic performs simple scheduling decisions, directs the migration of virtual

processors, and maintains the mapping table. For Chapters 5 and 7 the VC is assumed to be

hardened or replicated to protect against faults.

The hardware complexity of the SDB is described in Section 4.2.2.1.

4.4 Experimental Results

After describing the virtualization methodology, this section presents experimental results for the

overheads of basic virtualization, the need for spin detection in an overcommitted system, and

results of an overcommitted system using the SDB.

4.4.1 Methodology

As described in Chapter 3, experimental results in this and other chapters are derived from a full-

system, execution driven simulator. Experiments in this chapter use both the out-of-order (OoO)

and in-order core models. Experiments in Section 4.4.2 use the OoO core, are run for 90-150

million cycles, and start with caches already warmed up.

In order to run simulations for a longer simulated time, the in-order model is used for Sections

4.4.3, 4.4.4, and 4.5. Most simulations using this configuration are run for more than 1 billion

cycles, and start with cold caches.

Virtualization Implementation In general, the Simics functional simulator correctly handles

the execution of the VCPUs, while the timing component dictates when and with what timing

44

characteristics those VCPUs execute. However, the various components of virtualization interact

with the functional and timing components of the simulator in different ways.

The scheduling controller is implemented in the timing simulator. It receives input from vari-

ous parts of the simulator, makes a scheduling decision, and implements that decision by inform-

ing each core which VCPU it should be running presently. Timing aspects of the the scheduling

controller are not modeled.

VCPU state manipulation (Section 4.1.1) is implemented entirely within the timing simulator.

Real firmware instructions are not implemented. Instead, when a core receives a request to stop

executing a particular VCPU, it drains the pipeline, and then begins storing the register state

into a dedicated physical address space set aside for that VCPU. Stores are sent to the memory

hierarchy two per cycle to model execution bandwidth constraints. This bandwidth also matches

the bandwidth of the L1 caches. Once the state has been stored, the core notifies the scheduling

controller, which will then either inform the core to load the state of a different VCPU, or to go

idle. Two loads are also issued to the memory hierarchy per cycle, invoking coherence and main

memory misses when necessary, and may complete out of order. This methodology essentially

models hardware support to store and load registers without any overheads from software. A true

firmware-based mechanism, though allowing simpler hardware, may involve additional overhead.

Interrupt virtualization is handled mostly by the functional simulator. Interrupts are simply

delivered to the appropriate VCPU by Simics. However, if that VCPU is not currently running on

a core, the interrupt is buffered by the functional simulator and actually delivered once the VCPU

begins executing again. Only one interrupt is buffered per VCPU. Any additional interrupts are

NACKed.

A significant portion of the TLB virtualization is performed by modifying the TLBs used by

the functional simulator. The mapping of VCPUs to TLBs is not altered, meaning that control

registers need not be manipulated. However, the TLB mappings are changed (or invalidated)

45

during simulation to reflect the mapping that would be present in the appropriate physical core’s

TLB.

During normal execution, when the OS wishes to modify a virtual-to-physical mapping (i.e.,

virtual-to-real mapping in the context of processor virtualization), it will send a TLB shootdown

request to every processor (i.e., VCPU) which might be caching that translation. Rather than send

shootdowns to all processors, Solaris tracks which processors execute a particular applications,

and only sends shootdown requests to that subset. When VCPUs are moved from one core to

another, and when the TLB arrays are shared among different VCPUs, the OS cannot know which

cores’ TLBs may contain a mapping that it wishes to change or invalidate. Thus, for execution cor-

rectness, the timing simulator must cooperate with the functional TLBs to perform shootdowns on

any core which may have executed the VCPU performing a TLB demap operation. The simulator

pessimistically shoots down all cores’ TLBs, and does not model the latency of that operation.

The SDB is modeled within the timing simulator by examining the committing instruction

stream. It notifies the scheduling controller when a VCPU is suspected of spinning.

The control logic controls the maximum (non-spinning) timeslice of each VCPU. This value

can be configured to meet the demands of the application.

4.4.2 Basic Virtualization Overheads

Several experiments were performed to measure various components of the overhead involved in

the proposed multicore virtualization. In these experiments, the number of VCPUs matches the

number of cores, and the VCPUs are not migrated among cores. Instead, VCPUs are periodi-

cally interrupted, descheduled (which involves draining the pipeline, storing VCPU state into the

memory hierarchy, and taking any appropriate action with TLB entries), and then immediately

rescheduled on the same core (which involves reloading the VCPU state from the memory hier-

archy). This enables the measurement of the latency and cache overheads of saving and restoring

46

Apache Zeus OLTP pgoltp pgbench pmake artOMP barnes Apache pmake SpecMix

L1
 C

ac
he

 M
is

s
B

re
ak

do
w

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L2 Hit L3 Mit Main Memory

︸ ︷︷ ︸ ︸ ︷︷ ︸

Solaris Linux

Figure 4.2 Cache Overheads of Virtualization. Breakdown of the cache overhead (additional

misses) of the various TLB schemes relative to an unvirtualized machine. Bars from left

represent the unvirtualized baseline, Ideal TLB, Shared TLB, Transfer, and Invalidate schemes.

VCPU state, as well as the overheads of the various options for handling TLB entries, while

avoiding the cache effects of migration. The periodic interrupts occur every 100k cycles (33µs)

for these experiments.

Figures 4.2 and 4.3 show the cache and runtime overheads of the basic multicore virtualization,

relative to an unvirtualized machine, using several schemes for handling the architected SPARC

TLB. L1 cache misses are broken down into L2 hits, L3 hits, and misses to main memory. Misses

incurred for lines containing VCPU state are not included, only the additional misses to other

lines resulting from the additional cache pressure of the VCPU state. Ideal TLB represents the

performance of an unvirtualized TLB, where each VCPU maintains its architected TLB without

cost, though the remainder of the VCPU state is properly virtualized. Shared TLB represents

the scheme, used throughout the rest of this dissertation, where unlocked TLB entries are shared

47

Apache Zeus OLTP pgoltp pgbench pmake artOMP barnes Apache pmake SpecMix

R
un

tim
e

O
ve

rh
ea

d

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Ideal TLB Shared TLB Transfer Invalidate

︸ ︷︷ ︸ ︸ ︷︷ ︸

Solaris Linux

Figure 4.3 Runtime Overheads of Virtualization. Runtime overhead of the various TLB

schemes relative to an unvirtualized machine.

among VCPUs from the same VM. For this experiment, without multiple VCPUs on each core,

Shared TLB differs from Ideal TLB in that the overheads from maintaining TLB control registers,

locked entries, and hardware shootdowns are included. Transfer represents the scheme where

all TLB entries are included in the VCPU state and hence saved and restored from the caches.

Invalidate represents the overhead from invalidating all unlocked entries on a VCPU switch.

The cache overheads when the TLB is ideally virtualized are minimal, as shown by Figure

4.2. Many workloads incur a few additional L1 and L2 misses, but not significant additional off-

chip misses. Results are very similar for the Shared scheme, the primary difference being only

280 bytes of state per VCPU. Treating the entire TLB state as architecturally visible VCPU state,

as is done with the Transfer scheme, however, does create significant additional cache pressure,

resulting in 5–10% additional L1 and L2 misses. Notably, invalidating the TLB also creates

48

significant cache pressure for several TLB-intensive workloads, including apache and pmake.

Although the VCPU state is the same size as with the Shared scheme, the act of refilling the TLB

entries using the TLB miss handler causes additional misses to the caches that are not present for

the other schemes.

As shown in Figure 4.3, the runtime overhead when the TLB is ideally considered is negligible

for all benchmarks. In addition to minimal cache pressure, the latency of storing and loading the

register state is approximately 350 cycles, less than 1% of the 100k cycle period. Similarly, the

runtime overhead for the Shared scheme is also minimal — less than 1% for all benchmarks. The

overhead when transfering all TLB entries, however, is 10–20%. This significant overhead is due

in part to additional cache pressure, and in part to the time required to load and restore 22KBytes

worth of VCPU state (which is also likely to incur many cache misses).

For applications which make heavy use of the TLB, such as Apache, invalidating all entries

every 100k cycles has a performance nearly as large, or greater than, the Transfer scheme. For

other applications, which have such a large TLB footprint that most of the entries are dead (e.g.,

artOMP), the runtime overheads are similar to the Shared scheme.

In summary, the overheads of the Shared scheme, used throughout the rest of this disserta-

tion, are less than 1% of runtime for all workloads when using a timeslice of 100k cycles (33µs).

Even with significantly smaller timeslices, the overheads are still small. Thus, a more hardware-

intensive solution for managing VCPU state is unnecessary for the applications of multicore vir-

tualization that are considered in this dissertation.

4.4.3 Spinning in an Overcommitted System

To expose the challenges of virtualizing a multiprocessor OS in an overcommitted environment,

we consider the case of a single guest VM, configured to use 24 VCPUs, but run on an eight core

system. In other words, a multicore processor with only eight (available) cores still exposes 24

49

Apache Zeus OLTP pgbench pmake barnes barnes/U Apache pmake SpecMix

C
om

m
itt

ed
 In

st
r.

 (
R

el
. t

o
3µ

s)

0

0.5

1

1.5

2

2.5

3

3.5

4 OS

User

5.4 7.8

︸ ︷︷ ︸ ︸ ︷︷ ︸

Solaris Linux

Figure 4.4 Normalized Instruction Count for Various Timeslices. Five bars for each benchmark

(from left to right) represent results for 3µs, 6µs, 17µs, 33µs and 66µs timeslices. Results are

normalized to the 3µs timeslice.

cores to the OS. There are possibly hundreds of software threads that the OS schedules among

its 24 VCPUs. The hardware/firmware layer implemented within the processor then selects 8

VCPUs to execute on the cores at any given time. To maintain cache and TLB affinity, we assume

that three VCPUs are mapped to a given core, though only one is executing at a time. We avoid

live-lock and kernel panic by ensuring that each VCPU periodically receives a share of the time

on its assigned core. Each core preempts the running VCPU after a given timeslice so that the

other VCPUs can run. Preemption occurs independently for each core.

Figure 4.6 shows the breakdown of instructions executed by the user code and the OS, re-

spectively, for various VCPU timeslices, while performing the same amount of work (i.e., the

same number of workload transactions). While the aggregate user instructions executed remain

50

Apache Zeus OLTP pgbench pmake barnes barnes/U Apache pmake SpecMix

C
yc

le
s

(R
el

at
iv

e
to

 3
µs

)

0

0.5

1

1.5

2

2.5

OS

User

3.2 5.5

︸ ︷︷ ︸ ︸ ︷︷ ︸

Solaris Linux

Figure 4.5 Normalized Runtime for Various Timeslices. Five bars for each benchmark (from left

to right) represent results for 3µs, 6µs, 17µs, 33µs and 66µs timeslices. Results are normalized

to the 3µs timeslice.

very stable across different timeslices, several workloads observe a dramatic increase in OS in-

structions for larger timeslices. For example, OLTP executes 2.2 times more instructions with a

timeslice of 66µs compared to 3µs, entirely due to OS instructions. Longer timeslices, such as

1ms, can cause a kernel panic in several Solaris workloads. barnes and barnes/U are inter-

esting cases, as they are the only benchmarks to have any increase in user instructions. These

benchmarks execute two barriers every time step, synchronizing all 24 VCPUs. In barnes, the

barrier wait, implemented by a call to pthreads cond wait(), spins for awhile in user mode,

and then blocks, yielding the thread to the OS scheduler. But the OS scheduler has nothing else to

run on that VCPU, so it becomes idle. Nearly all of the increase in OS instructions from barnes

are from the OS idle loop. For barnes/U, which implements the barrier with user spin locks, the

increased instructions is almost entirely from this simple while(barrier.spin) loop. Note

51

that the problem size of both barnes and barnes/U has been reduced to make synchronization

important.

The workloads running on Linux show significantly less overhead due to additional OS in-

structions compared to their Solaris counterparts, largely due to the absence of frequent cross-

calls. However, Apache on Linux also shows excessive spinning when using longer timeslices.

The relative runtime for the same timeslices is shown in Figure 4.7. Although not as dramatic

for some benchmarks (note the different scale on the y-axis), the runtime for Apache on Solaris

for the 66µs timeslice is still more then 2.5 times that of the 3µs case, and that of barnes

and barnes/U balloons by 3.2 and 5.5 times, respectively. While a timeslice as low as 3µs

can mitigate the OS spin problem, it can also hurt cache locality (in addition to incurring the

other virtualization overheads from Section 4.4.2). For example, the 66µs timeslice of pmake on

Solaris, despite a 50% increase in instructions due to spinning, has no change in runtime since

it observes a 33% reduction in L1 misses compared to the 3µs timeslice. pmake on Linux,

which has little to no synchronization overhead, sees a 35% reduction in L1 misses, and a 20%

reduction in runtime. These results clearly indicate that, in order to maximize cache locality, we

need a virtualization solution which allows VCPUs to run for a longer timeslice when they are

performing useful work.

4.4.4 Spin Detection Results

This section examines the ability of the SDB to mitigate the synchronization overhead apparent

from Section 4.4.3. Figures 4.6 and 4.7 show the committed instructions and runtime, respectively,

when using the SDB to detect spins. Experiments use a base (non-spinning) timeslices of 3–66µs.

Results in both graphs are normalized to the 3µs timeslice without spin detection.

52

Apache Zeus OLTP pgbench pmake barnes barnes/U Apache pmake SpecMix

C
om

m
itt

ed
 In

st
r.

 (
R

el
. t

o
3µ

s)

0

0.5

1

1.5

2
OS

User

︸ ︷︷ ︸ ︸ ︷︷ ︸

Solaris Linux

Figure 4.6 Normalized Instruction Count using the SDB. Five bars for each benchmark (from

left to right) represent results for 3µs, 6µs, 17µs, 33µs and 66µs timeslices. Results are

normalized to the 3µs timeslice.

Unlike the results without spin detection, increasing the timeslice has little if any effect on the

number of committed instructions when using the SDB (Figure 4.6). Both user and OS instruc-

tions now remain stable across a range of timeslices. For Apache, Zeus, and OLTP on Solaris,

even the baseline 3µs timeslice has significant spinning, which is eliminated with the SDB. For

barnes, and to some extent, OLTP, often all three VCPUs that are assigned to a given core are

spinning waiting for one or more VCPUs on some other cores. In this case, the spinning VC-

PUs will continuously rotate on their core, each executing 1024 useless instructions every time,

slightly inflating the number of instructions for longer timeslices. When all VCPUs currently

assigned to a core are idle, a more sophisticated Virtualization Controller could migrate non-idle

VCPUs currently paused on other cores, but this additional complexity is not modeled.

As evident from Figure 4.7, however, increasing the timeslice improves cache locality and

reduces virtualization overheads, providing runtime reductions of 10–20% for most benchmarks.

53

Apache Zeus OLTP pgbench pmake barnes barnes/U Apache pmake SpecMix

C
yc

le
s

(R
el

at
iv

e
to

 3
µ

s)

0

0.5

1

1.5

2
OS

User

︸ ︷︷ ︸ ︸ ︷︷ ︸

Solaris Linux

Figure 4.7 Normalized Runtime using the SDB. Five bars for each benchmark (from left to

right) represent results for 3µs, 6µs, 17µs, 33µs and 66µs timeslices. Results are normalized to

the 3µs timeslice.

Though the number of instructions is stable, the runtime of both OS and user code decreases with

longer timeslices due to decreased cache misses.

The first column of Table 4.1 shows the average effective timeslice when using spin detection

with a maximum timeslice of 200k cycles (the configuration shown in the rightmost bars of Fig-

ures 4.6 and 4.7). Workloads with the most spinning when not using the SDB (e.g., Apache,

Zeus, OLTP, barnes and barnes/U) have the shortest effective timeslices, since whenever

a spinning VCPU is rescheduled, it will only execute for 1024 instruction, or approximately 4k

cycles (at average IPCs of ∼0.25). On the other hand, workloads such as SpecMix, which ob-

serves practically no spinning, and pmake on Linux, which observes very little spinning, often

allow their VCPUs to use the maximum timeslice of 200k cycles.

The second column of Table 4.1 shows the average latency to switch out one VCPU and switch

in another. The switch requires 277 stores and 277 loads, which with a bandwidth of 2 each per

cycle, take a minimum of 277 plus 15, or 292 cycles, if all lines are in the L2 cache (but not

all are in the L1). Workloads with the shortest average timeslice access the VCPU state most

54

Workload Effective Timeslice Average Switch Latency

Apache 21k 291

Zeus 29k 293

OLTP 32k 294

pgbench 164k 333

pmake 82k 315

barnes 13k 286

barnes/U 20k 291

Apache (Linux) 113k 320

pmake (Linux) 174k 329

SpecMix (Linux) 199k 335

Table 4.1 Effective Timeslice and Switching Overhead using the SDB (cycles)

frequently, and are thus most likely to find all lines in the L2 and have the shortest latencies.

Some benchmarks, notably barnes, often find most of their VCPU state in the L1, and are thus

slightly faster than 292 cycles on average. The other workloads may need to go to the shared L3,

or even off chip, to get some of the lines, and observe additional overheads of up to 43 cycles.

These overheads are kept low because the order in which VCPU state addresses are accessed is

optimized to pipeline cache misses. These latencies do not include draining the pipeline.

4.5 Related Work

There is a large body of work from virtualization research and practice. This section focuses on

the two categories which are most closely related to the multicore virtualization presented in this

section: hardware support for virtualizing VCPU state, and techniques that may also enable an

overcommitted system.

55

4.5.1 Multicore Virtualization

Recently, both Intel and AMD have introduced hardware virtualization support with their Virtual-

ization Technology (VT) [Uhlig et al., 2005] and SVM [Advanced Micro Devices, 2005] projects,

respectively. Of particular relevance, both projects provide hardware support for VCPU switching

and migration.

The primary difference between these technologies and the ones proposed in this chapter is

that the hardware mechanisms are directly exposed to the software and exploited under the direct

control of a traditional software VMM such as VMware or Xen. This chapter assumes that any

hardware support is under the direction of a hardware/firmware virtualization layer that exposes a

standard homogeneous multicore to the lowest level of system software.

One result of this difference in layering is that the VCPU state in this chapter is stored in re-

served physical memory, whereas storage for the VCPU state in VT and SVM is created and ma-

nipulated by the software VMM. When the software VMM wishes to pause a VCPU, it executes

an instruction to swap out the current VCPU, and another instruction to swap in the new VCPU.

The effect of software managed storage, however, means that migrating VCPU state among cores

requires significant software/hardware cooperation to ensure consistent state.

The microarchitectural mechanisms for managing and migrating VCPU state are not disclosed.

But since VCPU state is stored in the VMM’s visible physical memory, it would be reasonable to

assume that migration is similarly implemented by utilizing the cache coherence protocol.

In an effort to maintain strict backward ISA compatibility, SVM tags TLB entries with VCPU

IDs, similar to the approach proposed in Section 4.1.2, allowing entries from multiple VCPUs to

coexist in the TLB, but not necessarily sharing them even if they are from the same guest VM. It

is not clear whether Intel’s VT does the same.

56

4.5.2 Enabling Overcommitted Systems

The primary issue when overcommitting a single guest VM is managing the overheads of software

synchronization. As mentioned in Section 4.2.2, there are two basic techniques that can be used

to do so: 1) avoid preempting a thread holding a lock or 2) pro-actively preempt a thread that is

excessively spinning in favor of executing a more productive thread.

Uhlig, et al., have proposed one technique for avoiding lock-holder preemption, with the sim-

ilar objective of flexibly executing a subset of a guest VM’s VCPUs on a restricted number of

available cores [Uhlig et al., 2004]. They make the observation that a VCPU executing in user

mode is not holding a kernel lock, and can thus be safely preempted. These preemptible locations

are referred to as safe points. A VCPU executing in the OS may be holding a kernel lock, and

thus, the VMM will try not to preempt it at that point.

Speculative Lock Elision provides another way to avoid preempting a lock holder: infer the

acquisition and release of a lock from the atomic operations typically used by software to imple-

ment the lock semantics [Rajwar and Goodman, 2001]. An atomic read-modify-write (e.g., casa

or ldstub in SPARC) which return non-zero is assumed to be a lock acquire. A subsequent store

to the same address is presumed to be a lock release.

Both of these techniques have the potential to identify when the OS (or user application for

SLE) is holding a lock, and thus, can help prevent some of the synchronization overheads. How-

ever, both schemes fail to efficiently handle the frequent cross-calls seen in the applications run-

ning Solaris. A reimplementation and performance evaluation of Safe-Points is discussed below.

SLE-style inference is not evaluated.

The second approach to reduce the synchronization overhead is to detect when a VCPU is

excessively spinning on a lock and preempt the VCPU at that point. This is similar in concept

to helping locks proposed by Hohmuth and Hartig [2001]. Most current solutions for identifying

57

spin locks and loops (including the OS idle loop) involve OS-intrusive modifications or kernel

PC annotations. Several existing projects use this method (often just for the idle loop), including

IBM’s Power5 Hypervisor [Armstrong et al., 2005], Cellular Disco [Govil et al., 1999, 2000], and

one of the solutions offered by Uhlig et al. [2004].

Li, et al., proposed a different mechanism for hardware spin detection [Li et al., 2006], simul-

taneously with the proposals in this chapter [Wells et al., 2006]. Their technique detects a spin

loop when it can be guaranteed that no forward progress is being made by an application. They

rely on a significant hardware component in order to detect temporally silent register writes, but

require that after each iteration of a loop, no changes have been made to the architectural state of

the processor.

Both the SDB proposed in this chapter and the hardware proposed by Li, et al., aim to dynam-

ically determine spin loops in hardware without any software modifications. But while the Li, et

al., technique is sufficient for simple spin loops, it fails to capture the lack of forward progress

occurring in the complex Solaris 9 idle loop, or in the adaptive mutex locks in Solaris 9, both of

which perform loop counting and other accounting functions while spinning.

4.5.3 Comparison of Techniques

This section provides a comparison of the Safe-Points technique for avoiding preemption of a

kernel lock holder [Uhlig et al., 2004], and the Li et al. [2006] spin detection hardware, with the

SDB proposed in this chapter.

4.5.3.1 Implementing Safe Points

Though conceptually appealing, implementing an efficient version of Safe-Points is not straight-

forward. To avoid starvation of other VMs, Uhlig et al. [2004] suggest using a 1ms grace period,

after which point a VCPU will be preempted even if it has not reached a safe point. When the

58

number of VCPUs exceeds the number of cores, this grace period is also necessary to avoid dead-

lock in a single VM.

In Solaris, which frequently sends software interrupts to implement cross-calls, it is critical to

schedule the interrupted VCPU as soon as possible to ensure forward progress of the sender. But

when several running VCPUs are either sending cross-calls or attempting to acquire a lock held

by one of the senders, most executing VCPUs start spinning in the kernel (and are thus considered

unsafe to preempt). Often no core is available to run the interrupted VCPUs until the grace periods

for these spinning VCPUs expire.

There are a range of possible strategies for dealing with this problem, including reducing

the grace period when paused VCPUs have outstanding interrupts, or delaying scheduling of the

interrupted VCPU until it can be scheduled on its currently assigned core (to maintain affinity).

We find that the best overall policy is to maintain the 1ms grace period, but run the interrupted

VCPU on the next available core, regardless of cache affinity. While this results in frequent VCPU

migrations, it greatly reduces the synchronization overhead compared to the other alternatives.

Uhlig, et al., do not observe this seemingly pathological cross-call behavior with their evalua-

tion methodology, since 1) this mode of synchronization is fairly uncommon in Linux, and 2) they

use their technique to enable more flexible scheduling (similar to Chapter 6), but do not actually

overcommit a single VM, and can thus concurrently schedule all VCPUs of a given guest VM

when necessary.

To determine safe preemption points while inside the OS, Uhlig et al. [2004] also investigate

injecting additional safe points into OS execution by installing a fake device driver and sending

interrupts from the VMM to this driver. Since they assume the OS is not holding a lock while

executing this driver, they can safely preempt the VCPU at that point. Our evaluation does not

implement this additional complexity, which would not prevent the cross-call problem for occur-

ring anyway.

59

4.5.3.2 Implementing Li, et al., Spin Detection

The Li et al. [2006] spin detection hinges on two conditions: 1) “The observable state of the

thread [VCPU] for the period between ta and tb is the same at ta and tb,” and 2) “Any change

made by the thread [VCPU] to its observable state between ta and tb is not observed by any thread

[VCPU] outside processor [core] P.” Together, these conditions guarantee that no forward progress

has been made, while allowing temporally silent [Lepak and Lipasti, 2002] writes to registers or

memory.

To detect these cases, Li et al. [2006] suggest using hardware to inspect program state at a

backward control transfer (BCT) point. A BCT must exist in a dynamically executing spin loop.

This technique ensures that the register state is the same at one execution of the BCT as it is at the

next execution (i.e., one loop iteration), and that only silent stores have been observed within this

time. They recognize that nested spin loops can also be a problem, where one inner loop inside

an outer spin loop may change state, only to be changed back before the end of the outer loop. To

tolerate nested loops, they propose keeping a table to track multiple BCTs, and the register state

present the last time each branch was executed. They claim 16 entries is sufficient in the table,

though the evaluation presented below optimistically assumes an infinite-sized table.

4.5.3.3 Comparison Results

Figure 4.8 presents the relative instruction count with different policies for managing synchro-

nization overheads. From left to right, the bars for each benchmark represent the SDB scheme

with a base timeslice of 33µs, the Safe-Points scheme with a 33µs timeslice and a 1ms grace

period, and the Li, et al. spin detection with a 33µs timeslice. Results are normalized to SDB.

For the Linux benchmarks, Safe-Points is quite effective. In fact, it outperforms the SDB scheme

for pmake on Linux since it incurs less frequent context switching. For the Solaris benchmarks,

however, this scheme is often unable to find preemptible VCPUs during concurrent cross-calls (as

60

Apache Zeus OLTP pgbench pmake Apache pmake

N
or

m
al

iz
ed

 In
st

ru
ct

io
ns

0

0.5

1

1.5

2

2.5

3

3.5

4

SDB Safe−Points Li, et al.

︸ ︷︷ ︸ ︸ ︷︷ ︸

Solaris Linux

Figure 4.8 Comparison of Normalized Instructions for Related Work

discussed in Section 4.5.3.1), leading to a dramatic increase in spinning. The Li, et al., hardware

spin detection is quite effective for several benchmarks. Their mechanism is able to detect the

simple spin loops present in Linux, and in Solaris while waiting for cross calls, and thus does

not see the same dramatic increase as the Safe-Points scheme for Solaris benchmarks. However,

this mechanism is unable to detect spins in the more complicated Solaris 9 mutex lock or idle

loop. For Solaris benchmarks with significant kernel lock contention, such as Apache, Zeus,

and OLTP, it still incurs 50–80% more overhead than the SDB. The Li, et al., spin detection is

said to capture these mutex locks in Solaris 8, the platform on which their paper was based [Li

et al., 2006].

The relative runtime of these three configuration is shown in Figure 4.9. These results track

very closely with committed instructions from Figure 4.8. The notable exception is the Safe-

Points scheme for Apache on Linux. Although this scheme is particularly effective at eliminating

61

Apache Zeus OLTP pgbench pmake Apache pmake

N
or

m
al

iz
ed

 R
un

tim
e

0

0.5

1

1.5

2

2.5

3

3.5

4

SDB Safe−Points Li, et al.

︸ ︷︷ ︸ ︸ ︷︷ ︸

Solaris Linux

Figure 4.9 Comparison of Runtime for Related Work

spins, doing so requires VCPUs to frequently migrate among cores, hurting cache locality, and

increasing runtime by 10%.

4.6 Chapter Summary

Many of the emerging challenges and opportunities of dynamic heterogeneity result in a chip

where the number of cores that are available or appropriate for a particular type of computation

are fewer than the number of VCPUs that a single OS (or guest VM) wishes to concurrently

execute. Such a system is referred to as an overcommitted system.

Allowing VCPUs to move among cores in such a system requires techniques to virtualize the

cores. This chapter proposes a technique to properly maintain and migrate the state, including

registers, TLBs, and interrupts, associated with each VCPU, using limited hardware support. This

technique was shown to be sufficiently low-overhead for relatively frequent VCPU transitions.

62

Overcommitting a single OS requires further support, since the OS incurs large synchroniza-

tion overheads due to mutex locks and cross-calls when not all of its VCPUs are concurrently

executing. This chapter proposed the Spin Detection Buffer (SDB), a hardware mechanism for

heuristically identifying a spinning VCPU from its dynamic instruction stream. Combined with

the other virtualization techniques, the SDB nearly eliminates the overhead of this synchroniza-

tion. The SDB also outperforms two other techniques for mitigating the synchronization over-

heads.

Overall, the proposed SDB technique works well for virtualized environments as it automat-

ically detects other cases where a VCPU is not doing useful work, such as the OS idle loop and

spins in user code. Together, these techniques for multicore virtualization enable a multitude of

applications for adapting to dynamic heterogeneity.

63

Chapter 5

Adapting to Intermittent Faults

Although transient and permanent hardware faults have been studied by a multitude of architecture

researchers, few if any architects have previously investigated intermittent faults, an “in-between”

class of faults that is likely to gain importance as technology continues to scale [Borkar, 2004;

Borkar et al., 2003; Constantinescu, 2007, 2003]. Intermittent faults arise from a combination of

physical variation (e.g., manufacturing variation or in-progress wear-out), and variations in the

operating conditions (e.g., temperature or voltage). The result of this variation are bursty faults

that occur for a period of time, and can then disappear as operating conditions change.

Intermittent faults exhibit some of the worst properties of both transient and permanent faults,

in that they cannot be relied upon to either go away, as required by most techniques to tolerate

transient faults, or to consistently stay, as required by several techniques to tolerate permanent

faults. In this way, intermittent fault present new challenges to architects and system designers

— not the least of which is the creation of rapidly changing dynamic heterogeneity in terms of

different cores’ abilities to perform reliable computation.

Despite these challenges, several hardware schemes appear capable (with minor modifica-

tions) of detecting and recovering from a variety of intermittent faults (e.g., [Ernst et al., 2003;

Gomaa et al., 2003; Hamilton and Orailoglu, 1998; Ismaeel and Bhatnagar, 1997; LaFrieda et al.,

2007; Smolens et al., 2006; Weaver and Austin, 2001]). However, applying such techniques in

isolation, without consideration for the nature and causes of intermittent faults, will require these

64

schemes to be so complex and have such high overhead that they will be neither practical nor

desirable in many cases.

Instead, this chapter proposes techniques to adapt to the effects of intermittent faults in a way

that makes existing low-overhead detection and recovery techniques more practical and effective.

In particular, this work argues that the ability to temporarily suspend program execution on a core

that is sustaining intermittent faults will be an effective ploy for 1) reducing several of the factors

contributing to the faults in the first place, 2) simplifying system design by reducing the fault

coverage requirements, and 3) aiding in the diagnosis of permanent circuit damage. In this way,

a core can simply be avoided when its capacity to correctly execute code becomes temporarily

limited by a burst of intermittent faults.

Naively suspending a processing core is not a common practice because it is not transparent

to software and can lead to serious system-level consequences. Fortunately, multicore proces-

sors provide unique opportunities for enabling techniques to adapt to the dynamically changing

resource availability created by intermittent faults. A qualitative and quantitative comparison of

three of the most logical adaptation techniques is presented, which are, 1) pausing execution on

the faulty core without notifying the OS, 2) using spare cores, and 3) asking the OS to stop using

the faulty core. Each of these techniques, however, is shown to be deficient with respect to one

or more system design goals. To remedy several drawbacks of these three, this chapter propose

a fourth technique: utilizing the multicore virtualization techniques developed in Chapter 4 to

manage an overcommitted system during periods of intermittent faults.

5.1 Intermittent Faults: An Emerging Challenge for Architects

Intermittent faults, as their name implies, occur in bursts for a period of time, but can then seem-

ingly disappear for a long period of time as well. They arise from a combination of physical

65

variation, and variation in the operating conditions. These two factors are discussed in more

detail below.

Physical Variation Manufacturing parameter variation, or in-progress wear-out, can give rise

to physical variation.

Manufacturing variation is caused by the limitations of photo-lithography. As wires and de-

vices become smaller, extremely small variation in the width of a gate or wire can constitute a

significant fraction of the overall width of the device, creating a variation in the physical attributes

(e.g., capacitance or resistance) [Borkar et al., 2003].

As devices age, they can experience wear-out effects such as electro-migration or gate oxide

breakdown, which progress over the course of days to months [Smolens et al., 2007]. Eventually,

wear-out can lead to a complete short or break in a wire, or an inoperable gate, becoming a

permanent fault [Constantinescu, 2003]. During the progression of the wear-out, however, the

device will again incur variation in its physical attributes.

These physical attribute variations eat into the voltage and timing margins that are built into the

design. However, these margins must also become smaller as we scale technology [Eisele et al.,

1996; Najm and Menezes, 2004]. Thus, these physical variation makes a design more susceptible

to smaller and smaller variation in the operating conditions. These variations can result in timing

errors even when operating conditions are well within the specified noise margins.

Operating Condition Variation Operating conditions, such as voltage and temperature, vary

over time. Higher temperatures impart more resistance on wires, causing circuits to operate more

slowly. Similarly, reduced voltages also cause circuits to operate more slowly. If timing margins

are nearly violated at nominal temperature and voltage levels, timing faults will occur with higher

probability during periods of temperature and voltage fluctuations.

66

Different software phases, which can exercise different components, and different critical

paths through the circuits within those components, can also be considered a variation in op-

erating conditions which affects the occurrence of these timing faults.

Intermittent hardware faults are hardware timing errors which occur in bursts for a period of time,

due to the combination of these physical and operating condition variations [Borkar, 2004; Borkar

et al., 2003; Constantinescu, 2007, 2003].

Because intermittent faults are affected by a large number of factors, the duration of bursty

faults can vary across a wide range of timescales. For example, voltage fluctuations are typically

short-lived, on the order of several to hundreds of nanoseconds [Borkar et al., 2003; Joseph et al.,

2003; Powell and Vijaykumar, 2004]. Temperature fluctuations alter a device’s timing charac-

teristics over millisecond to second time scales [Powell et al., 2004]. Different software phases,

which can change on the order of 100ms to several seconds [Sherwood et al., 2003], can exercise

different components of a core, activating different intermittent faults. Finally, as wear-out pro-

gresses over the course of days [Smolens et al., 2007], it can cause intermittent faults to become

frequent enough to be classified as permanent [Constantinescu, 2003].

5.1.1 Underlying Assumptions

Many uncertainties remain regarding the occurrence of intermittent faults in future technologies.

However, based on technology trends, this dissertation makes three primary assumptions regard-

ing these faults. These assumptions and the insights that led to them are discussed below.

1) Bursty intermittent faults will occur frequently. While the exact rates of various faults are

not certain for future processors, current technology trends clearly indicate that even the design of

commodity processors will be greatly affected by these faults. Section 2.2.1 provided a discussion

67

of fault rates in future processors for permanent and transient sources, but there has been no known

circuit and manufacturing study on intermittent fault.

The fault rates examined in this chapter are in the range of 0.1% Fault Duty-Cycle and up,

meaning each core is affected by a fault 0.1% of the time or more. Though much higher than

current processors, study such high rates are important to study for several reasons. First, by

studying and proposing solutions that remain effective at such rates, process researchers can begin

to understand what frequencies of hardware faults can be tolerated by higher layers in the system.

Second, it is unclear whether intermittent faults between multiple cores will be correlated, though

our evaluations assume course-granularity failures are independent.1 Experimenting with high

rates make it likely that multiple cores will fail at the same time, approximating a period of

correlated faults. Finally, while these rates are well beyond the expectation for current systems,

they are not beyond the public considerations of industry technologists [Borkar, 2004].

2) Practical circuits cannot mask all intermittent faults. Intermittent faults can affect nearly

every component of a core, from register files and instruction window entries, to the bypass net-

work and control logic, as well as clock and power distribution networks. While many techniques

for tolerating various faults have been proposed [Blough et al., 1999; Ernst et al., 2003; Hamilton

and Orailoglu, 1998; Ismaeel and Bhatnagar, 1997; Liang and Brooks, 2006; Mitra et al., 2006a;

Nanya and Goosen, 1989; Shyam et al., 2006; Smolens et al., 2007], the ways in which faults

manifest are likely to increase as devices become more unreliable. This will lead to a continued

increase in the complexity and overhead of the techniques to tolerate the faults. We believe cir-

cuit, and higher-level, techniques will thus be employed to reduce the frequency of intermittent

faults, but cost-effective techniques are unlikely to completely eliminate these faults, or prevent

their occurrence from being noticed by system or application software.

1This assumption is only relevant to Section 5.4.4.

68

3) Intermittent faults manifest as circuit timing errors. In order to frame the continued dis-

cussion and evaluation in this chapter, the fault model is restricted to intermittent faults which

manifest as timing delays in logic circuits within the core.

As operating conditions change, timing delays can become larger, leading to a fault when the

delay is large enough that the pipeline latch improperly latches the previous value. Some circuit

techniques can be used to detect and recover from errors resulting from circuits which operate

too slowly. For example, Razor [Austin et al., 2004; Ernst et al., 2003, 2004] or the self-tuning

circuits from Kehl [1993] use one or more pipeline latches to recapture the circuit’s output using

a delayed clock. The delayed latch can detect cases where the circuit output is late at the first

latch, but resolves to the correct output before the delayed latch latches. Other techniques, such

as BISER [Mitra et al., 2005; Zhang et al., 2006] similarly use a second pipeline latch, and can

be modified to delay the inputs to the second latch [Hill et al., 2008]. By delaying the inputs,

changes in timing can also be detected (at the possible expense of a longer clock cycle). The

challenge with all of these techniques is that the delay cannot be too long, or the circuit outputs

may already change to reflect the inputs for the next clock. Thus, these techniques can detect and

recover from many timing errors up to the point that they become too large. Prior to that point,

some higher-level corrective adaptation must have taken place in order to continue to provide

reliable operation. This chapter assumes that operating conditions do not change so rapidly that

all affected circuits go from operating with no appreciable delay during one cycle, to being slower

than is detectable by the delayed latch in the next cycle.

One additional important assumption about the target multicore is made: that the memory hi-

erarchy is reliable. Most architectural redundancy work (e.g., [Bower et al., 2005; Gomaa et al.,

2003; LaFrieda et al., 2007; Mukherjee et al., 2002; Reinhardt and Mukherjee, 2000; Rotenberg,

1999; Shyam et al., 2006; Smolens, 2008; Smolens et al., 2006; Weaver and Austin, 2001; Zhou,

2006]), likewise focuses reliability efforts on the core logic, and makes similar assumptions about

69

reliable caches. Research attention must certainly be paid to cache reliability, but the above as-

sumptions seem reasonable because cache data and tag arrays are very regular structures, easily

protected with parity or ECC. While the cache logic controller is less regular than the arrays,

compared to the logic of the core itself, cache logic is comprised of smaller, simpler circuits that

are likely easier to protect by other means.

5.2 Adapting to Intermittent Faults

The inability of circuit-level techniques to detect and recover from timing errors that become too

large creates the need for adapting to the effects of intermittent faults. This need gives rise to the

further contributions of this chapter. In particular, this chapter examines suspending the use of

a core as a means of preventing timing-related errors during periods of intermittent faults from

affecting the execution of the user code.

5.2.1 Suspending the Use of a Core

Suspending the use of a core may not be able to repair manufacturing variation or in-progress

wear-out. However, temporarily suspending computation on a core will cause temperature and

voltages to stabilize, reducing the further occurrence of any intermittent faults caused by these

two major factors.

Suspending the use of a core when a burst of faults begins, or is expected to occur, can also

improve the overall reliability of the system. Due to the factors influencing intermittent faults,

correlated faults within a core or other localized area are very likely. Thus, the kinds of events that

are most challenging for existing techniques to protect against, e.g., multiple concurrent faults or

faults affecting critical structures, are most likely to occur together during temperature, voltage, or

other fluctuations. All reliability techniques have a certain probability of manifesting unprotected

70

errors to higher levels in the system. By reducing the number of faults they must protect, especially

the ones they are least likely to protect, the number of faults they miss is reduced.

Current high-availability systems already take a similar approach by having service techni-

cians replacing chips when correctable intermittent faults begin to occur [Constantinescu, 2003].

However, the granularity of failure in a multicore (portions as opposed to an entire chip), and the

increasing frequency of these faults even for commodity processors, make chip-level replacement

undesirable.

5.2.2 Recovering from Intermittent Faults

Several adaptation mechanisms require the virtual processor (VCPU) previously executing on the

suspended core be moved to a different core. Though recovering the VCPU state from a suspended

core may be possible in certain circumstances (e.g., [Litt, 1998]), it is clearly infeasible for others.

At other times, it may be possible to detect or predict a burst of errors with sufficient timeliness

to write out the VCPU state error free. However, this work pessimistically assumes that the fault

recovery mechanism periodically creates checkpoints, similar to SafetyNet [Sorin et al., 2002],

ReViveI/O [Nakano et al., 2006], or the techniques used by Shyam et al. [2006] or Dynamic Core

Coupling [LaFrieda et al., 2007]. The checkpoints are stored into the cache every 10k cycles, and

on I/O, and are consistent across the on-chip cores [LaFrieda et al., 2007; Nakano et al., 2006;

Sorin et al., 2002].

Further discussions and evaluations in this chapter assume the use of circuit-level techniques

such as Razor for detecting and recovering from many simple faults, whereas upon detecting a

rash of intermittent faults on a core, these circuit mechanisms initiate a rollback to the previous

validated checkpoint and then begin the adaptation mechanisms.

71

(a) Pause Execution (b) Spare Cores

(c) OS Reconfiguration (d) Overcommitted

Figure 5.1 Core Suspension Techniques

5.3 Exploring Adaptation Techniques

Naively suspending program execution on a core is not a common practice because it is not trans-

parent to software and can have serious system-level implications. Fortunately, multicore proces-

sors provide unique opportunities, including inherent redundancy, low on-chip latency, and high

bandwidth, which enable several techniques for adapting to the temporary loss of one or more

cores. This section discusses three such techniques which represent the current state-of-the-art,

and proposes a fourth technique, which utilizes the multicore virtualization techniques from Chap-

ter 4, to remedy serious drawbacks in each of the first three. Section 5.4 presents a quantitative

comparison of all four techniques, considering throughput, effects on latency-critical applications,

fairness, and overheads at different fault rates.

For simplicity, this chapters refers to the lowest software layer as the operating system (OS),

which could be replaced with hypervisor throughout with no loss of generality.

72

5.3.1 Technique 1: Pause Execution

The first plausible technique for suspending the use of a core is to just pause the execution of

instructions for a period of time. As shown in Figure 5.1(a), when a core (C2 in this case) sustains

an intermittent fault, the microarchitecture pauses the execution of instructions from the VCPU

assigned to that core (V2).

Pausing execution is the simplest technique examined in this chapter, and has been used, in

a uniprocessor at least, for thermal management [Gunther et al., 2001]. In a multicore, other

cores continue to execute instructions, thus pausing execution on one core will not drastically

affect the other cores as long as they do not attempt to communicate with the thread assigned to

the paused core. If communication is present, however, pausing one core can cause a cascading

effect, livelocking other cores.

This technique is not fair, because threads scheduled on the paused virtual processor are

starved, and it can similarly impact the latency of critical applications. Low throughput during a

fault would be expected from this technique for workloads where threads frequently communicate,

but for faults of short duration, this technique may be adequate for some applications.

5.3.2 Technique 2: Spare Cores

Unlike pausing, setting aside one or more cores as spares is expected to have little impact on

software during a fault. For example, an eight-core chip might only expose seven cores to the OS.

During a fault, the chip, using a hardware/firmware layer, can transparently remap the affected

virtual processor from the faulty core to the spare. Core sparing is depicted in Figure 5.1(b).

Hot (powered up) spares are appropriate for short duration intermittent faults as circuit tech-

niques can reduce leakage power when the core is not needed [Tschanz et al., 2003]. Since the

performance degradation is negligible during a fault (as long as the number of faults do not exceed

the number of spares), spare cores are also effective for long-duration or permanent faults. Partly

73

for these reason, spares are used in real systems, at least for permanent faults [Bernick et al., 2005;

Slegel et al., 1999].

The major drawback of setting aside spare cores, especially for commodity processors, is the

high overhead of not using these cores during fault-free execution. In addition, this technique

cannot tolerate more concurrent failures than the number of spares without an additional fall-back

mechanism.

5.3.3 Technique 3: OS Reconfiguration

A third possible technique is to ask the OS (or hypervisor) to reconfigure itself to only use the

remaining fault-free cores. This technique is depicted in Figure 5.1(c), where the de-configured

virtual processor is not assigned any software threads or guest virtual machines to run. Some

current OSs (such as Solaris) and hypervisors (such as those that run on the IBM zSeries) already

contain this functionality [Armstrong et al., 2005; Sun Microsystems, Inc.]. For other systems,

this technique requires intrusive software modifications.

Software reconfiguration can take several milliseconds, and can cause high overheads for

faults of short duration. But the performance of the system should gracefully degrade once re-

configuration is complete, since the OS retains responsibility for scheduling threads, maintaining

fairness, and achieving low latency for critical applications.

On the surface, this technique also appears to eliminate the need for hardware adaptation

mechanisms. Unfortunately, that is not the case, since current operating systems requires the

faulty core, and all other cores, to operate correctly until reconfiguration is complete [Litt, 1998;

Sun Microsystems, Inc.]. For the evaluations in Section 5.4, the proposed overcommitted tech-

nique (discussed next) is utilized during reconfiguration, though it is not needed once reconfigu-

ration has taken place.

74

5.3.4 Proposed Technique: Utilizing an Overcommitted System

A qualitative look at three existing techniques for suspending the use of a core has revealed several

deficiencies: fairness and latency concerns, along with the possibility of cascading livelock; high

fault-free overhead and the need for a fall-back mechanism; and OS-intrusive modifications plus

the need for advanced notice of an upcoming fault.

To alleviate these drawbacks, this section proposes a fourth technique which uses a thin hard-

ware/firmware layer to abstract the details of fault management from the system software, while

presenting a view of continuous, fully-functional, reliable operation. Such abstraction is achieved

during periods of intermittent faults by building on the multicore virtualization proposed in Chap-

ter 4. Since this technique operates beneath the ISA, it is applicable to all system software that

can be loaded on the machine.

VCPU Scheduling Applying the multicore virtualization techniques to intermittent faults al-

lows the hardware/firmware layer to manage the mapping of VCPUs to cores, such that a given

VCPU, unbeknownst to the system software, can be quickly migrated to a different physical core,

or briefly paused.

Two (or more) OS-visible VCPUs must share a single physical core during a fault. Figure

5.1(d) shows an example of using this technique, with virtual processors V2 and V3 sharing core

C3. V2 is currently executing, while V3 is not. Utilizing spin detection hardware allows the two

VCPUs to be frequently switched as necessary to avoid the issues associated with the generic

Pause technique.

Using an overcommitted system to preserve the illusion of continuous, reliable operation of all

VCPUs can result in performance asymmetry when two or more VCPUs share a core, while other

VCPUs execute alone on other cores [Balakrishnan et al., 2005]. To achieve continued symmetry

and fairness during a fault, VCPUs that are co-assigned are rotated. For example, at some point,

75

V2 may have C3 to itself while V3 and V0 share C0. Later, V0 will rotate and share C1 with V1.

For the 8-core experiments in Section 5.4, VCPUs are rotated in this manner frequently enough

such that symmetry is maintained over a 5ms window, which is slowly enough that cache affinity

is largely maintained.

Hardware Complexity As described in Section 4.3, the proposed overcommitted technique

involve modest hardware/firmware complexity. Required features involve a mechanism to context

switch a virtual processor, a VCPU to core mapping table, spin detection hardware, and control

logic. Overall, this is a modest amount of complexity, though certainly more than is required for

the Pause technique. However, all of these components except spin detection are already required

in order to use spare cores.

ISA Transparency By placing control over the use of faulty and non-faulty cores below the

ISA, the abstraction of fault-free operation occurs transparently to both the OS and a traditional

hypervisor such as VMware or IBM’s Power5 Hypervisor. Such a model allows chip manufac-

turers to ship a chip that is expected to experience intermittent faults, but will continue to operate

correctly regardless of the system software installed on the machine. The model provides sev-

eral benefits for chip makers: first, the burden of correct hardware operation remains with the

hardware vendor, not the system software vendor; second, the new chip automatically works with

products from multiple system software vendors, and with legacy system software as well; and

finally, as shown in Section 5.4, placing control of faulty cores beneath the ISA allows some of

the functionality to be implemented in hardware, making it easier to quickly adapt to frequent

changes in hardware configuration.

76

5.4 Evaluation

This section focuses on two kinds of experiments. First, system behavior is inspected in detail dur-

ing a fault by measuring throughput, latency and fairness. After understanding these implications,

the overall impact of these faults, including fault-free execution, for a wide range of fault dura-

tions and frequencies is inspected using both a simple mathematical model and execution-driven

simulation. An overview of the experiments and methodology is described below.

5.4.1 Experimental Overview

Experiments were performed on an 8-core system, which exposes 8 VCPUs to the OS in most

experiments. A mix of commercial and other workloads running Solaris 9 were evaluated. Details

of the target system and workloads are provided in Chapter 3.

5.4.1.1 Methodology

In all simulations, we pause all cores for 10k cycles (3.3µsec) upon initiation of fault recovery to

roll back to the latest verified checkpoint and account for the work lost.

Evaluating the Pause technique is straightforward. The virtualization of the Overcommitted

technique is described in Section 4.4.1. The methodology for experimenting with OS Reconfigu-

ration and the Pause technique are described below.

OS Reconfiguration To perform OS adaptation, Solaris is instructed to unconfigure one of its

eight virtual processors, CPU4. In simulation, this operation starts similarly to software generating

an interrupt. The timing simulator sets up a fake memory operation on CPU1, which is passed

to the appropriate ASI handler within the functional simulator. Included in the interrupt packet

is the PC of the interrupt handler on the destination CPU. The functional simulator then delivers

the interrupt to the appropriate (virtual) CPU (in this case, a third processor, CPU3). The arriving

77

interrupt causes control-flow on CPU3 to vector into the trap table, which sets up the processor

state for OS execution, and then jumps to the specified interrupt handler included in the interrupt

packet.

The interrupt handler is specified to be a small, otherwise blank portion of OS memory in

which a short, hand-assembled code snippet has been placed by the timing simulator. The code

segment simply acts as a launching point for calling arbitrary kernel functions as directed by the

timing simulator. When the timing simulator detects that control flow has entered this launching

point, it copies over the desired call parameters (registers and memory) and target PC, and contin-

ues simulation. Solaris then calls the desired function, which executes as normal. Upon finishing,

Solaris simply returns to the launching point function, then the trap table, and finally back to the

user or OS code that was executing before the interrupt took place.

The simulator forces the launching point function to call sbd ioctl() with the necessary

arguments to unconfigure CPU4. The function and arguments are the same as would be called

by the command cfgadm -C unconfigure CPU4, but the interrupt mechanism creates the

ability to call this function at arbitrary points without the overhead of the command. The Solaris

psradm command, which can take CPU4 ‘off-line’ is insufficient, as the processor is still re-

quired to process cross-calls. We use the overcommitted technique as the fall-back mechanism

until the virtual processor is unconfigured.

Additional changes had to be made to the default Simics configuration to enable cfgadm to

unconfigure a CPU. In particular, an on-board, CPU SRAM structure was added to the configu-

ration. This SRAM is used in a real Sun system to allow an unconfigured CPU to execute code

and spin in a special idle loop without creating any bus traffic. Before unconfiguring the CPU, the

kernel copies a shutdown function onto this SRAM, and then jumps to the function.

After repeated attempts, further limitations in the Simics functional model could not be over-

come to enable these experiments to be performed with newer versions of Solaris, or to perform

78

the analogous experiment of reconfiguring a CPU. Posts to the Simics forum solicited no useful

response from Virtutech.

Spare Cores Due to the methodology used, comparing runs using separate commercial work-

load checkpoints with different numbers of OS-visible VCPUs is impractical. The reason is due to

the complex, variable nature of the commercial workloads, and the fact that only a small portion

of the each workload’s execution can be modeled in detail. In particular, there is little way to en-

sure that two workloads, set up and warmed up on separate machine configurations, are executing

at nearly the same point, or that the OS disk caches have similar contents. These differences can

impact performance by as much or more than the difference between seven and eight cores.

For the throughput experiments, the Spare Cores scheme is instead modeled using the over-

committed technique with oracle spin detection and without charging overhead for storing, mi-

grating, or switching VCPU state. A seven-processor system is properly simulated with the mi-

crobenchmark for latency and fairness experiments, since the microbenchmark (discussed below)

is very regular and is dominated by user code.

5.4.1.2 Experiments

Measuring Throughput For these experiments, one core experiences a detected fault at the

beginning of execution; simulations are then run for a range of times from 100µs to 1 second.

Measuring Latency and Fairness For both the latency and fairness experiments in Section

5.4.3, a single 10ms fault is simulated beginning at 100µs of simulation, and then run for 11ms.

A microbenchmark is used for these experiments, consisting of one thread per processor, where

threads each execute short CPU-bound transactions and have no communication. Threads call

thr yield() every transaction to improve the OS’s ability to maintain fairness, especially for

79

the OS reconfiguration experiments. The spare cores experiments have seven threads and seven

VCPUs, with eight threads and eight VCPUs for the rest.

Measuring Overall Performance Impact Determining the overall impact of intermittent faults

requires accounting for periods of fault-free execution as well. Several experiments are run with

faults randomly occurring at a particular rate. The fault duration is fixed in each experiment, but

the inter-arrival time of faults is sampled, independently for each core, from a normal distribution

of moderate variance.

Tracing Faults In order to better understand the results of other experiments, traces are take of

the number of cores performing useful work during a fault of 100ms. Useful work is defined, for

each processor, as whether or not any user instructions were executed in each 100µs period, and

sum this Boolean value over all eight OS-visible processors. These traces are taken for the Pause

an OS Reconfiguration techniques.

5.4.2 Throughput During a Fault

This section demonstrates the throughput of all four techniques during intermittent faults of vari-

ous durations. Each technique is discussed in turn. The line at 7

8
in throughput graphs represents

the expected best-case slowdown of losing one core.

Pause Execution Figure 5.2 shows the throughput of each benchmark when pausing execu-

tion for faults of various durations. For the shorter 100µs and 1ms faults, all workloads observe

throughput within 25% of the best case. Across a range of fault durations, vortex continues

to have throughput similar to the best case, while artOMP is only slightly lower than that. The

commercial workloads, on the other hand, which have significant OS activity and communication

80

Fault duration
100µs 1ms 10ms 100ms 1sec

R
el

at
iv

e
T

hr
ou

gh
pu

t

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

Apache artOMP OLTP pmake vortex Zeus

Figure 5.2 Throughput of Pausing Execution During a Fault

between cores, observe much lower throughput for faults of duration greater than 1ms — even

approaching zero throughput for 100ms and 1sec faults.

Figure 5.3 helps explain this throughput loss for longer faults. This figure shows the first

portion of a trace of the number of cores performing useful work during every 0.3ms of a 100ms

fault. For all workloads, the number of cores performing useful work immediately drops to seven

(or lower) after the fault. vortex, with eight independent processes, remains at seven for the

duration of the fault. For artOMP, a second core stops performing work after 2ms because it has

blocked waiting on a TLB shootdown request sent to the VCPU formerly executing on the paused

core.

The other four workloads, however, have much more frequent interaction among cores, caus-

ing rapid degradation of the entire system’s forward progress. For Apache and Zeus, nearly

half of the VCPUs in the system stop making forward progress within 1ms of the fault. For the

three commercial workloads in this graph, all VCPUs stop making forward within 3–11ms. The

fault-free cores are simply executing OS spin loops waiting for either cross calls to complete, or

81

msec
0 2 4 6 8 10 12 14

C
or

es
 P

er
fo

rm
in

g
U

se
fu

l W
or

k

0

1

2

3

4

5

6

7

8
���

Fault

vortexMIX

artOMP

OLTP

pmake

Zeus

Apache

Figure 5.3 Cascading Livelock of Pause Scheme

locks held by the faulting processor. While not shown in the graph, all cores will eventually re-

sume useful work after the paused core is re-enabled, provided the paused interval is short enough

that the OS kernel does not panic (∼1 second for Solaris 9).

Despite its simplicity, Figures 5.2 and 5.3 show that the cascading livelock suffered by many

workloads makes pausing execution unattractive for long faults. On the other hand, for short

(<1ms) periods, this technique may be appropriate in some environments.

OS Reconfiguration To determine the performance of OS Reconfiguration, faults of various

durations are again injected in the simulation. For these experiments, an interrupt is sent to the to

the OS telling it to unconfigure the VCPU that was running on the core sustaining the fault.

The time required for reconfiguration to complete is shown in Table 5.1. During this time, the

OS requires all eight VCPUs to continue to execute code, by either using a fall-back adaptation

mechanism, or by continuing to execute code on the faulty core itself. In addition, this latency

also represents the minimum length of time that overheads from reconfiguration will be incurred,

82

Apache artOMP OLTP pmake vortex Zeus

2.12 1.69 2.12 2.40 1.89 4.09

Table 5.1 OS Reconfiguration Latency

OS Reconfiguration Latency (ms)

Fault duration
100µs 1ms 10ms 100ms 1sec

R
el

at
iv

e
T

hr
ou

gh
pu

t

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

Apache artOMP OLTP pmake vortex Zeus

Figure 5.4 Throughput of OS Reconfiguration During a Fault

even if the suspended core is re-enabled in the meantime (since reconfiguration cannot simply be

stopped once in progress).

Figure 5.4 shows the throughput of each benchmark when using OS Reconfiguration to con-

tinue execution during faults of various durations. The first point for each benchmark in this figure

is placed on the x-axis (and measured against the baseline) at point in time that the VCPU is fi-

nally disabled. During the longer 100ms and 1sec fault durations, the cost of OS reconfiguration

begins to amortize, and the throughput of all the workloads approaches the expected value of one

less core compared to the baseline. For the shorter intervals, however, the cost of reconfiguration

is not amortized — the loss in throughput is 2–6 times the loss expected from a single disabled

core.

83

msec
0 1 2 3 4 5

C
or

es
 P

er
fo

rm
in

g
U

se
fu

l W
or

k

0

1

2

3

4

5

6

7

8
HHY Fault

���
Unconfig.

Figure 5.5 OS Reconfiguration of Zeus

Similar to Figure 5.3, Figure 5.5 explains this data by measuring useful work during various

intervals. At 1.3ms (label ‘Fault’), both the VCPU executing on the faulty core (Solaris’s CPU4)

and the recipient of the interrupt (Solaris’s CPU3), stop committing user instructions. At 3.7ms

(label ‘Unconfig.’), CPU4 is finally unconfigured and enters a PROM idle loop. All processors

in the system are quiesced twice to avoid deadlock arising from outstanding cross calls. The

first is during the higher-level task of taking the CPU “off-line” [Sun Microsystems, Inc., 2008,

line 1376], the second is during the lower-level task of actually “unconfiguring” the CPU [Sun

Microsystems, Inc., 2006, line 424].

Note that the latencies in Table 5.1 are an average — the trace in Figure 5.5 took only 2.4ms.

Spare Cores Spare cores provide throughput during a fault that roughly matches the fault-free

throughput (which also uses one less core than the baseline). Figure 5.6 demonstrates this fact.

For the shortest fault, 100µs, the 10k cycles assumed for recovering from the fault introduces

some overhead. Likewise, the process of transferring VCPU state and then incurring misses on

84

Fault duration
100µs 1ms 10ms 100ms 1sec

R
el

at
iv

e
T

hr
ou

gh
pu

t

0.5

0.625

0.75

0.875

1

Apache artOMP OLTP pmake vortex Zeus

Figure 5.6 Throughput of Spare Cores During a Fault

Fault duration
100µs 1ms 10ms 100ms 1sec

R
el

at
iv

e
T

hr
ou

gh
pu

t

0.5

0.625

0.75

0.875

1

Apache artOMP OLTP pmake vortex Zeus

Figure 5.7 Throughput of an Overcommitted System During a Fault

all cached data causes additional initial overhead. For all the longer durations, however, there

is practically no loss in throughput compared to the best expectation. artOMP appears to incur

sub-linear slowdown for certain runs. This is an artifact of our methodology for simulating spare

cores (see Section 5.4.1): a VCPU in the baseline system enters a spin loop waiting for all other

VCPUs to acknowledge one of the aforementioned TLB shootdowns, causing our perfect spin

detection to yield the core to a productive thread.

Overcommitted System Figure 5.7 demonstrates the high performance of the overcommitted

system. Similar to using spare cores, this technique incurs some overhead for the shortest faults

85

due to the recovery time and cache misses. However, this overhead is small and is quickly amor-

tized for longer fault rates.

Using an overcommitted system with spin detection during periods of intermittent faults yields

throughput similar to using spare cores. Unlike spare cores, however, this technique retains the

ability to utilize the entire machine during periods of fault-free execution, and can handle concur-

rent failures.

5.4.3 Microbenchmarking Latency & Fairness

While throughput is important, other performance metrics are equally important for certain ap-

plications. For example, latency is critical for Multiplayer Online Games [Deen et al., 2006], or

for telemetry applications, and fairness may be important for consolidated servers. Other metrics

may be of interest as well. Ideally, we would use these target applications to measure transaction

latency and fairness, but the complexity of building such workloads, combined with irregular or

long transactions and the distorting effects of other software components, conspire to make such

an evaluation difficult. Instead, a microbenchmark is constructed, as described in Section 5.4.1,

to understand the underlying behavior of our four adaptation techniques. Experiments focus on a

fault duration of 10ms, but results can be easily extrapolated to other fault durations.

5.4.3.1 Latency

Figure 5.8 shows the cumulative distribution of transaction latencies from each software thread

for the microbenchmark. Both axes are logarithmic to highlight transactions that deviate from the

common case.

In the baseline, fault-free system, 99.5% of transactions take 16µs or less, while several trans-

actions take 40–100µs. Very similar data occurs when using a spare core, and when pausing

execution, except that one transaction, the one on the paused core, takes over 10ms. Note that the

86

Transaction Latency

10µs 100us 1ms 10ms

C
um

m
ul

ta
iv

e
T

ra
ns

ac
tio

ns

0

.9

.99

.999

.9999

Baseline (Fault Free)

Overcommitted System

Pause Execution

Spare Cores

OS Reconfiguration

Figure 5.8 Microbenchmark Transaction Latencies

microbenchmark, dominated by user code with no communication, represents the best case for

pausing execution. With OS reconfiguration, many transactions are delayed by 100µs–1ms, while

the OS quiesces all VCPUs. Because the OS migrates threads off the faulty core, no transactions

are delayed as long as the 10ms fault, but many outliers remain.

VCPUs that are sharing a core using the Overcommitted technique are allowed a maximum

timeslice on the core before the the running VCPU is swapped for a paused one. As discussed in

Section 4.2.1, this maximum timeslice is tunable by the system administrator. The length of this

timeslice can potentially impact latency critical applications, but can be decreased if necessary

for a small increase in switching overhead. For the experiments in this section the Virtualization

Controller performs a VCPU context-switch at least every 20µs. Since transactions that are started

but not finished before the timeslice is over will finish when that VCPU is rescheduled the next

time. The SDB does not detect any spinning when running the microbenchmark, so each VCPU

87

uses its maximum timeslice every time. Thus 12% of transactions take approximately 20µs longer

than the baseline (since two VCPUs are vying for the same core). No outliers are delayed by

more than 20µs longer than the baseline, however, unlike with the Pause and OS Reconfiguration

techniques.

5.4.3.2 Fairness

Using the microbenchmark, fairness is measured by examining the total number of transactions

committed by each software thread. Figure 5.9 graphs this number for the baseline (fault free)

and for each scheme. Again, a 10ms fault is simulated at the beginning of simulations that last for

11ms. Figure 5.9(a) shows that the baseline system commits a nearly equal number of transactions

per thread. A system with a spare core also commits a nearly equal number of transactions per

thread, though with one fewer thread (Figure 5.9(b)). Note that the graph for spare cores only has

seven bars, while the others have eight. This result assumes that the application software can be

easily partitioned seven ways, which is not the case for many scientific applications.

On the other hand, pausing execution causes one thread to be significantly impeded by the

fault (Figure 5.9(c)). Since the OS is still scheduling software threads among all eight VCPUs,

one application thread is starved when pausing.

Due to the overhead of using at least one VCPU to orchestrate reconfiguration, and the qui-

escing of all VCPUs, OS reconfiguration cannot maintain fairness among software threads during

the 11ms interval simulated (Figure 5.9(d)). The OS Reconfiguration scheme might fare better for

longer fault durations.

The overcommitted system is able to provide conceptually similar fairness as spare cores and

the baseline, even during the failure of one core (Figure 5.9(e)).

To quantify the degree of fairness, both the fair speedup (F.S.) metric used by Chang [2007],

and the ΣM0 metric from Kim et al. [2004] are examined. Results for the F.S. use the harmonic

88

Software Thread ID

0 1 2 3 4 5 6 7

C
om

m
itt

ed
 T

ra
ns

ac
tio

ns

0

100

200

300

400

500

600

700

800

(a) Baseline

Software Thread ID

0 1 2 3 4 5 6

C
om

m
itt

ed
 T

ra
ns

ac
tio

ns

0

100

200

300

400

500

600

700

800

(b) Spare Cores

Software Thread ID

0 1 2 3 4 5 6 7

C
om

m
itt

ed
 T

ra
ns

ac
tio

ns

0

100

200

300

400

500

600

700

800

(c) Pause Execution

Software Thread ID

0 1 2 3 4 5 6 7

C
om

m
itt

ed
 T

ra
ns

ac
tio

ns

0

100

200

300

400

500

600

700

800

(d) OS Reconfiguration

Software Thread ID

0 1 2 3 4 5 6 7

C
om

m
itt

ed
 T

ra
ns

ac
tio

ns

0

100

200

300

400

500

600

700

800

(e) Overcommitted

Figure 5.9 Committed Microbenchmark Transactions from each Software Thread

89

Base Spare Pause OS OverC

F.S. [Chang and Sohi, 2007] ↑ 1.00 1.00 0.44 0.49 0.94

ΣM0 [Kim et al., 2004] ↓ 0.92 1.00 5.47 7.14 1.17

Table 5.2 Fairness of Metrics for Different Techniques

mean of the speedup between each software thread and the most productive thread in that experi-

ment. ΣM0 is derived from the sum of M0 across all pairs of threads i, j, where M
ij
0 = ‖Xi−Xj‖,

Xi = Transi

Transp
, and p is the most productive thread.

For fair speedup, higher is better, and for ΣM0, lower is better. These metrics are shown in

Table 5.2. For both metrics, the baseline and spare cores are very close, while the overcommitted

system is only slightly worse than both of them. Pausing and OS reconfiguration are significantly

worse. Though the metrics differ in how much they penalize the OS and pausing schemes, both

clearly show that these two techniques are inferior in terms of fairness.

5.4.4 Overall Impact of Different Fault Rates

Results thus far have examined throughput during faults without considering intervening periods

of fault-free execution. This section looks at the overall impact of the four techniques across a

range of fault durations and frequencies.

Using an analytic model, the throughput data from Section 5.4.2 is extrapolated to determine

the overhead at various fault rates. The analytic model allows examination of the overheads in a

more controlled environment, which is necessary because limitations in Simics prevent execution-

driven simulation of OS reconfiguration, and limitations on the spare cores technique itself pre-

vents it from handling more concurrent faults than spares (see Section 5.4.1). Execution-driven

simulations using the other two techniques are used in the next section to validate the model and

to explore multiple concurrent failures.

90

Fault duration
100µs 1ms 10ms 100ms 1sec

O
ve

rh
ea

d
(%

)

0

20

40

60

80

100

OS Pause 1 Pause 2 Spare OverC

(a) 10% Duty Overhead

Fault duration
100µs 1ms 10ms 100ms 1sec

O
ve

rh
ea

d
(%

) 20

40

60

80
100

10

20

30
40
50

100

OS Pause 1 Pause 2 Spare OverC

(b) 1% Duty Overhead

Fault duration
100µs 1ms 10ms 100ms 1sec

O
ve

rh
ea

d
(%

)

5

10

15

20

10

20

OS Pause 1 Pause 2 Spare OverC

(c) 0.1% Duty Overhead

Figure 5.10 Overhead with Different Fault Duty-Cycles (Analytic Model)

91

5.4.4.1 Analytic Model

To get a basic understanding of the impact of different faults rates on overall performance, a

simple analytic model was derived from data similar to the throughput data collected in Section

5.4.2. The experiments used for the model differ only in that the faulty core is re-enabled after the

fault duration, and experiments are run for twice as long as that duration. For OS Reconfiguration,

where Simics does not allow a core to be re-enabled, the model assumes that adding the faulty

core back has 50% of the overhead of removing it.

To gauge overhead, the model examines a variety of fault duty-cycles, i.e. the expected fraction

of time faults are affecting each core. For simplicity, we assume no concurrent faults.

The simple equation defining the overhead for each duty cycle d and fault duration l is as

follows:

Overheadd,l = (1.0 − AvgThroughputl) × d × N × 2

where AvgThroughputl is the throughput during a fault of duration l averaged together for all

six benchmarks, and N = 8 is the number of cores. The reason the result is multiplied by 2 is

that AvgThroughputl is for an experiment twice as long as the fault duration l. When averaging

each benchmark, the Pause scheme is broken into two groups, Pause 1, containing the commercial

workloads (i.e., Apache, Zeus, OLTP, and pmake) for which pausing works poorly, and Pause

2, containing vortex and artOMP, for which pausing works well. For OS reconfiguration with

timeslices less than the reconfiguration latencies from Table 5.1, a throughput of zero is used.

Data where the overhead is more than 100% are capped at 100%.

As an example calculation, the Pause technique for the group Pause 1, has nearly 0% through-

put for a 1sec fault duration (Figure 5.2), and approximately 50% throughput for a 2 second run

when the failed processor is reenabled after 1 second. For a 10% duty-cycle d, and N = 8, the

overhead is thus (1.0 − 0.5)(.10)(8) × 2, or 80%.

92

In Figure 5.10, each line in the graph keeps the duty-cycle constant. Thus, 100µs faults with a

duty cycle of 1% are occuring, on average, every 10ms, and 1sec faults are occurring, on average

every 100sec. Figure 5.10(a) represents a duty cycle of 10%, Figure 5.10(b) represents a duty

cycle of 1%, Figure 5.10(c) represents 0.1%. Note that the y-axis is logarithmic in Figures 5.10(b)

and 5.10(c). In all three graphs, a dashed line is drawn at the expected overhead represented by

the appropriate fault duty cycle.

Because the model assumes no concurrent faults, Spare Cores incurs ∼12.5% overhead for

0.1–1% duty cycle, and slightly more for 10%. In all experiments, the group Pause 2, as well

as the overcommitted scheme, incur overheads from 1–2 times the duty cycle. The same is true

for the group Pause 1 for 100µs faults, and for OS reconfiguration for 1sec faults. However, for

longer faults, Pause 2 observes overheads of approximately eight times the duty cycle, since a

fault on each core affects the other eight as well. Similarly for OS reconfiguration, not only does a

fault on one core affect the others, but the latency of reconfiguration causes overheads 2–3 orders

of magnitude larger that the duty cycle for the shortest faults.

All techniques are expected to incur low overheads when fault rates are low, but even when

fault rates create a duty cycle of 0.1%, care must be taken when invoking the Pause or OS Recon-

figuration techniques.

5.4.4.2 Execution-Driven Simulation

The simple analytic model in the previous section is unable to handle multiple concurrent fail-

ures. With higher fault duty-cycles, however, concurrent failures become much more likely. This

section presents results of execution-driven simulation using randomly generated periods of inter-

mittent faults.

Figure 5.11 shows similar plots as 5.10, though results are directly driven by execution-based

simulation. OS reconfiguration cannot be shown in this figure, since cores cannot be re-enabled

93

Fault duration
100µs 1ms 10ms 100ms 1sec

O
ve

rh
ea

d
(%

)

0

20

40

60

80

100

Pause 1 Pause 2 OverC

(a) 50% Duty Overhead

Fault duration
100µs 1ms 10ms 100ms 1sec

O
ve

rh
ea

d
(%

)

0

20

40

60

80

100

Pause 1 Pause 2 OverC

(b) 10% Duty Overhead

Fault duration
100µs 1ms 10ms 100ms 1sec

O
ve

rh
ea

d
(%

)

0

2

4

6

8

10

Pause 1 Pause 2 OverC

(c) 1% Duty Overhead

Figure 5.11 Overhead with Different Fault Duty-Cycles (Execution Driven Simulation)

94

in the simulation environment. Spare Cores is not show either, since this scheme itself is unable

to tolerate more concurrent failures than the number of spares.

Figure 5.11(a) represents a duty cycle of 50%, Figure 5.11(b) represents a duty cycle of 10%,

Figure 5.11(c) represents 1%. None of the y-axes are logarithmic. Again a dashed line is drawn

at the expected overhead represented by the appropriate fault duty cycle in all three graphs.

A fault duty cycle of 50%, meaning that on average, half of the cores are experiencing a fault,

is well beyond the expectation of systems in the near future. But a duty cycle this high demon-

strates the scalability of overcommitting: for every fault duration, the Overcommitted technique is

within 10% of the expected 50% overhead. The same is true for the infrequently communicating

benchmarks in group Pause 2.

Confidence intervals were left off the graphs to improve clarity, however, variability in the 50%

duty cycle experiments causes the 95% confidence intervals to reach ±15% for some datapoints

due not only to workload variability, but also variability in the randomly generated faults.2 Thus,

some data points appear lower than the expected duty cycle for Pause 2 and Overcommitted, but

both are near the duty cycle in all experiments. Confidence intervals for the 1% and 10% duty

cycle experiments do not rise higher than ±8%.

For Pause 1 benchmarks, a duty cycle of 50% creates overheads that rise to greater than

90% for longer fault durations. The reason is that little to no work is being performed for these

benchmarks after a single core is paused for more than about 10ms (see Figure 5.2). For a duty

cycle of 50%, the probability that no cores are faulty is <1%. Despite the fact that at least one core

is almost always paused, individual cores regularly come and go offline during simulation. This

enables those cores to processes any pending interrupts and critical sections for which other cores

2Up to 24 trials were performed per benchmark per datapoint to reduce the impact of variability, but for a given

sample variance, the confidence interval reaches an asymtote after ∼10 trials.

95

may be waiting, allowing some work to be performed. For shorter durations, Pause 1 benchmarks

are much closer to the expected overhead for a given duty cycle.

For longer faults, multiple concurrent failures actually benefit the pause scheme in comparison

to the duty cycle, since other cores that might be affected by pausing one have some probability

of already being paused themselves. This can be observed in Figure 5.11(b) by looking at the

100ms duration: Pause 1 incurs a 55% overhead with simulation, but a projected 80% overhead

from the analytic model. The reason for this discrepancy is that the analytic model treats the 10%

duty cycle as though 8 faults (one per core) occur evenly spaced in an execution window 10 times

as long as the fault duration. That is, in the analytic model, exactly one core is faulty exactly

80% of the time, or in other words, all cores are active only 20% of the time. In the execution

driven experiments with a 10% duty cycle, all cores are active 43% of the time on average (0.908).

A much smaller discrepancy is observed for the 1% fault duration, since both models predict all

cores to be active ∼92% of the time (0.998 ≈ 1.0−(0.1×8)). The execution-drive experiments are

more accurate for the higher fault rates, given the assumptions made about the fault distribution.

The benefits of using an overcommitted system become apparent from the experiments in this

section. Even when half of the cores, on average, are faulty, this technique provides overheads

commensurate with the duty cycle in all experiments. The same is not true for any of the other

schemes.

5.5 Impact of Future Trends

Using spare cores becomes more viable as fault rates increase and the relative granularity of spares

decreases. However, this technique still cannot easily adapt to long or short-term changes in the

number of concurrent faults. For example, when using a laptop on an airplane, or when one section

of a data center becomes too hot, fault rates may increase, requiring more spares. At other times,

few if any spares may be necessary. Setting the number of spares too high introduces overhead,

96

and setting it too low increases the probability of observing more concurrent faults than spares.

An overcommitted system, on the other hand, has a distinct advantage since it can dynamically

adapt to these changes.

Based on what we can assume about future multicores, we believe that the qualitative results

of our experiments will generally hold. Future technologies will allow room for many more than

eight cores, and this will undoubtedly have an impact on techniques for adapting to intermittent

faults. If applications are partitioned so that they each use no more cores that they do in our simu-

lations, we would expect the results for pausing execution to be similar. However, this technique

could be devastating if a single application, with occasional communication, is using all cores of

the chip. As long as all the cores are under the control of a single OS, or single hypervisor, the

system software may still have to quiesce all cores to prevent deadlock, increasing the latency and

overheads of software reconfiguration.

5.6 Related Work

Related work fall into several categories, from detection to adaptation and formal fault models.

These are discussed below in turn.

5.6.1 Detecting Intermittent faults

Many circuit-level techniques for tolerating intermittent faults have been proposed [Blough et al.,

1999; Hamilton and Orailoglu, 1998; Ismaeel and Bhatnagar, 1997; Nanya and Goosen, 1989],

but they are generally applicable only to individual components. Consequently, they are likely to

be useful for reducing the frequency, but not eliminating, intermittent faults. Similarly, thermal

management techniques (e.g., [Brooks and Martonosi, 2001; Powell et al., 2004; Skadron et al.,

2003]) can be used to reduce the frequency of faults by managing thermal variations. However,

97

for future processors, avoiding intermittent faults with these techniques will require them to be

overly conservative, thus providing low performance.

Shyam, et al., use Built-In Self Test (BIST) to detect, and course-grained checkpoints to re-

cover from, permanent faults [Shyam et al., 2006]. Although fairly low cost, this approach cannot

reliably detect intermittent faults for the same reason it makes no effort to detect transient faults:

an intermittent (or transient) fault may appear during the computation, but not during the BIST

phase.

FIRST [Smolens et al., 2007] detects wear-out-based intermittent faults by running a BIST

at lower that normal noise margins. The adaptation mechanisms proposed in this chapter would

allow these tests to be run without halting the entire system.

DIVA [Austin, 1999; Weaver and Austin, 2001] relies on a ‘checker’ processor to verify the

output of the main processor before it commits instructions. Among DIVA’s advantages, it tol-

erate permanent, transient, and intermittent faults in the main processor, as well as design bugs.

However, this proposal requires that a second processor be designed and verified, and that this

second processor be fault free.

Application-level software [Reis et al., 2005a] and hybrid [Reis et al., 2005b] fault detection

schemes typically assume limited fault models and have low fault coverage. It is also unclear how

to apply these techniques to OS and hypervisor software.

Relaxing the Fault Model The fault model used for the evaluation assumes that intermittent

faults will manifest as timing errors (Section 5.1). Relaxing this assumption may mean that

circuit-level techniques such as Razor are insufficient, even when combined with the adaptation

techniques presented in this chapter. The use of Dual-Modular Redundancy (DMR) as a detection

and recovery mechanism might then be reasonable.

98

Many architecture papers consider using high-overhead Dual-Modular Redundancy for detec-

tion and recovery of particle-induced transient faults [Gomaa et al., 2003; LaFrieda et al., 2007;

Mukherjee et al., 2002; Reinhardt and Mukherjee, 2000; Rotenberg, 1999; Smolens et al., 2006],

however, transient faults do not require techniques for adaptation. Others architecture papers con-

sider permanent faults [Bower et al., 2005; Govil et al., 2000; LaFrieda et al., 2007; Shyam et al.,

2006], which requires permanent reconfiguration only. Weaver and Austin do mention intermit-

tent faults [Weaver and Austin, 2001], but present no methods for adapting to them.

Although they do not discuss intermittent faults, several proposals, such as Reunion [Smolens

et al., 2006], DCC [LaFrieda et al., 2007], and CRTR [Gomaa et al., 2003], execute two loosely-

coupled threads on different cores. With minor modification, these techniques can thus be used

to detect most intermittent and permanent faults, even with relaxed model assumptions, though

they incur ∼2X overheads in terms of power and throughput. Several other techniques (e.g.,

[Reinhardt and Mukherjee, 2000; Rotenberg, 1999]) execute the checking thread on the same

core as the original, and thus cannot detect most permanent or intermittent faults.

Since this work focuses on the effects these faults have on software, the results presented

herein would remain unchanged if one considers DMR cores to form one logical processing core,

and then performs the adaptation techniques on the logical core.

5.6.2 Reconfiguring after Device-level Faults

Several methods have been presented to continue use of a core despite permanent faults. These

techniques involve fine-grained diagnosis and reconfiguration of a core’s components [Bower

et al., 2005; Shyam et al., 2006], or attempt to match a program’s requirements and a core’s

capabilities, such as Core Salvage [Joseph, 2006]. We believe that the ability to suspend execution

on a core in order to perform diagnosis and reconfiguration would likely be a simplifying addition

to these techniques.

99

5.6.3 Alternate Adaptation Methods

There are other plausible techniques for adapting to the occurrence of bursty intermittent faults,

without temporarily “losing” a core’s ability to execute instructions. In particular, increasing volt-

ages to speed the computations paths of a circuit, or lowering frequency to allow more time for a

delayed path, would be logical to employ. However, going forward, fully suspending the use of

a core is not necessarily a worse solution, especially after considering three main points. First,

increasing voltages may actually worsen operating conditions such as temperature, creating a pos-

itive feedback loop, requiring even higher voltages. Second, reducing frequency is not transparent

to software either, as it can create performance asymmetry [Balakrishnan et al., 2005]. Finally, as

we enter an era where many more cores can be integrated onto the same sized die every few years,

yet the number of cores that can be simultaneously powered does not increase to the same degree

[Chakraborty et al., 2007], a handful of cores may be suspended at any time for with almost no

loss in expected performance.

5.6.4 Fault Tolerance in Distributed Systems

Much distributed systems research has addressed fault tolerance for clusters of computers, e.g.,

[Bernick et al., 2005; Blough et al., 1992; Contant et al., 2004; Govil et al., 2000; Kalbarczyk

et al., 1999; Lamport et al., 1982; McEvoy, 1981]. For most of this research, the unit of failure

is an entire machine, including the CPU(s), memory, and system software. Such course-grained

units are not applicable to systems comprised of only a few, or even one, multicore chip.

In addition, the comparatively short timescales of device-level intermittent faults render these

software-based adaptation techniques ineffective because they cannot adapt quickly enough (see

Section 5.3.3). For example, if certain cores on a chip observe intermittent faults every few

seconds, software techniques will, by necessity, consider the entire chip to be permanently faulty.

100

Chameleon [Kalbarczyk et al., 1999] provides a reliable software-based fault tolerant system.

They use the term Adaptive Fault Tolerance to describe a system that is flexible to the dynamic

demands of applications, but not necessarily to the dynamic conditions of the hardware.

5.6.5 Formal Fault Models

Formal fault models are a useful tool for reliability researchers, as the can allow a researcher to

prove their design covers all possible faults within the model (subject to certain assumptions).

However, identifying or creating a good formal fault model is a tricky endeavor, walking the line

between capturing all causes and manifestations of the faults under consideration, and being sim-

ple enough to allow effective reasoning. For example, the simplistic Stuck-at model and Fail-stop

model [Schlichting and Schneider, 1983], are unable to capture the dynamic nature of intermittent

faults. At the other extreme, the Byzantine Hardware Fault model [Nanya and Goosen, 1989],

which places simplifying constraints on the Byzantine Generals Problem [Lamport et al., 1982],

captures not only transient and permanent faults, but also the inconsistency of intermittent faults.

However, this model is so overly general that provably correct solutions require at least triplicate

redundancy [Lamport et al., 1982].3

The Fail-stutter fault model [Arpaci-Dusseau and Arpaci-Dusseau, 2001] attempts to bridge

the gap between the simple Fail-stop and Byzantine models, by addressing performance faults in

addition to fail-stop faults. From a higher level, the intermittent inability of a core to perform

reliable computation could be considered an example of “unexpected and low performance of a

component,” but is of no use from the perspective of detecting and recovering from faults.

While this chapter makes every attempt to clearly articulate the device-level and architectural

fault models, but for the reasons presented above, it does not formally define the models.

3Nanya and Goosen [1989] propose a circuit solution which only captures a small subset of the Byzantine Hard-

ware Fault model they propose.

101

Quantitative Goals Qualitative Goals Appropriate

Fairness Latency Thrghpt. Fault-free Complx. Concurrent Timescales

Pause Exec. X X X
√

Low
√ ≤1ms

Spare Cores
√ √ √

X Med. X 100µs–1sec+

OS Reconfig. X X X
√

High X ≥100ms

Overcommit
√ √ √ √

Med.
√

100µs–1sec+

Table 5.3 Results Summary for Intermittent Fault Adaptation

5.7 Chapter Summary

This chapter takes a look at the system-level implications of intermittent hardware faults, an

emerging reliability issue for future multicores. These are faults that arise from a combination

of physical variation (e.g., manufacturing variation or in-progress wear-out), and variations in the

operating conditions (e.g., temperature or voltage). The result of this variation are bursty faults

that occur for a period of time, and can then disappear as operating conditions change. These

bursty faults, in turn, create rapidly changing dynamic heterogeneity, in terms of different cores’

ability to correctly execute instructions.

Although complex reliability techniques may tolerate many intermittent faults without affect-

ing the rest of the system, we believe these approaches will require, or be greatly simplified by,

the ability to temporarily suspend computation on a core during bursts of such faults. With this

in mind, this chapter does not fully answer the question, “How do we build a reliable chip?”,

but rather answers the question, “Given that a reliable chip may need to suspend execution on

a particular core, how can that be achieved?” To this end, the contributions of the work in this

chapter are threefold. First, the emerging class of intermittent faults is discussed and brought to

the attention of the architecture community. Second, three existing techniques for adapting to in-

termittent faults are qualitatively and quantitatively examined, exposing several deficiencies that

are summarized in Table 5.3. Finally, a new adaptation technique, involving the virtualization

mechanisms from Chapter 4, is proposed and evaluated. Utilizing an overcommitted system is

102

the only mechanism to achieve high marks on all of the performance metrics across a range of

timescales, gracefully handle multiple concurrent failures, and involve only moderate complexity.

By eliminating the system-level concerns through our proposed overcommitted system, re-

searchers may find the ability to suspend execution on a core to be a useful tool — both to sim-

plify the design and improve the coverage of reliable chips, and for other uses that have yet to be

discovered.

103

Chapter 6

Dynamic Core Partitioning for Consolidated Servers

As mentioned in Chapter 2, server consolidation is a term used to denote the process of moving

two or more services from multiple, separate machines onto one physical machine [Armstrong

et al., 2005; Figueiredo et al., 2005; Sun Microsystems, 1999; VMware, 2006b; Waldspurger,

2002]. Server consolidation is a large and growing business, with many major computer compa-

nies, such as IBM, Sun, VMware jumping in to provide products, and major IT departments re-

porting to save millions of dollars in costs [Forrester Research, Inc., 2004; IBM, 2008; VMware,

2006c]. In addition, the U.S. Environmental Protection Agency lists server consolidation as one

of the major tools that should be aggressively employed to reduce the environmental impact of

datacenter energy usage [U.S. Environmental Protection Agency, 2007].

When configuring a server for running a single service, sufficient resources must be provi-

sioned to allow the server to handle the expected peak demands on that service. However, during

the expected case of non-peak operation, a majority of these resources can be left idle. Reclaiming

these idle resources is the primary benefit of server consolidation. By joining multiple services

that incur peaks at different times, resources are idle much less frequently, leading to lower capital

costs, less power usage and machine room space, and often reductions in other operational costs,

such as staffing.

A system Virtual Machine Monitor (VMM) is responsible for sharing the physical resources,

such as processors, memory, disks, and network devices of the machine among multiple VMs,

104

which might number 5–10 guest VMs [Waldspurger, 2002]. There are a multitude of issues that a

system VMM must address in order to share these resources. This chapter focuses on the aspect

of processor virtualization for single-chip multicore systems. In particular, the rapid switch to

multicore processors provides new challenges and opportunities for the policies and mechanisms

of processor virtualization on these servers. For example, multicores encourage an increase in the

number of virtual processors (VCPUs) exposed to each guest virtual machine (VM). This increase

is partly due to 1) the fact that the original services being consolidated may already be running

on and configured for a multicore, and 2) the fact that increasing the parallelism of a workload

is now required in order to increase its performance. The result is an increase in the number of

VCPUs exposed to each guest VM, with a consequential increase in the complexity of managing

these VCPUs.

In order to tolerate the complexity of managing multiple VCPUs of each guest VM, VMMs

often adopt the policy of gang scheduling these VCPUs. Gang scheduling, or co-scheduling

[Ousterhout, 1982], simply refers to the policy of either concurrently running all VCPUs of a

given VM, or none of them. Though simple, gang scheduling is one of the major obstacles to

efficient use of the processing resources in a consolidated server. This chapter proposed to utilize

the multicore virtualization techniques from Chapter 4 to eliminate the need for gang scheduling,

and by doing so, provides to opportunity to 1) efficiently handle the varying demands placed on

each service, 2) improve performance by actively creating dynamic heterogeneity through the as-

signment of VCPUs to cores, and 3) quickly adapt to other dynamically changing characteristics,

such as power, thermal, or reliability issues affecting future multicores.

6.1 Gang Scheduling: Conflicting Objectives

The VMM for a consolidated server has two primary objectives. First, it must maintain, for

each VM, the degree of performance (e.g., throughput and request latency) and predictability

105

(e.g. isolation from other VMs) required by the customer paying for the hosted server. If these

performance goals cannot be met reliably, the customer will look for other alternatives.

Provided the performance goals are met, the other main objective is to maximize the efficiency

of the server. Additional performance can lead to lower static resource requirements (such as

fewer machines and machine room space), and additional power efficiency can lead to lower

dynamic requirements such as electrical delivery and cooling.

Maximizing efficiency first requires the VMM to adapt to varying demand on the services of

each guest VM — this ability is the reason servers are consolidated in the first place. Adapting to

demand implies that one VM must be allowed to utilize a large fraction of the available resources

(e.g., physical cores) during periods of peak demand, but be able to offer those resources to a

second VM when that second VM experiences high demand.

Second, VMMs can improve efficiency, as well as performance isolation, by improving the

locality of per-core predictive structures, such as caches, TLBs, and branch predictors. By careful

assignment of VCPUs to cores, these predictive structures can become dynamically specialized

for a particular type of task, and can execute those tasks more efficiently.

Adapting to demand and maximizing locality are required to improve efficiency, but the chal-

lenges of these problems are exacerbated by the need of most VMMs to gang schedule the VCPUs

belonging to each VM. Gang scheduling is used by VMware ESX server [VMware] and Cellular

Disco [Govil et al., 1999], among others, in order to avoid the serious synchronization issues that

arise when not all of the VCPUs of a given guest VM are concurrently executing (see Section

4.2).

To satisfy the first goal of allowing a single VM to utilize all (or most) physical cores during

high demand for the services running in that VM, a consolidated server can be configured to

expose as many VCPUs to each VM as there are physical cores. This configuration is depicted

in Figure 6.1(a) for a 4-core system. The figure depicts the hardware/software stack starting from

106

(a) Gang Scheduling

(b) Static Partitioning

(c) Overcommitting and Dynamic Partitioning with Multicore Virtualization

Figure 6.1 Techniques for Processor Virtualization of Consolidated Servers

107

the physical cores on the bottom, and two guest VMs, A and B at the top. In the middle, a

software system VMM maps the VCPUs exposed to the guest VMs via the Virtual ISA (V-ISA) to

the physical cores exposed by the chip’s ISA. At this moment, the software VMM is running all

VCPUs of A and none of B.

Such a configuration time partitions the processing resources of the machine. By adjusting

the amount of time each VM executes before relinquishing control of the physical cores to other

VMs (its timeslice), the VMM can dynamically adjust the fraction of resources consumed by each

VM according to demand. Adjusting the timeslice also allows the VMM to optimize the request

latency of each VM, i.e., the amount of time an incoming request must wait to be serviced.

The problem with gang scheduling in this manner, however, is that it is inflexible. In particular,

the timesharing of each physical core among two or more unrelated activities erodes opportunities

to optimize performance, efficiency, and maintain isolation due to two different problems.

First, when many VCPUs of a guest VM are idle, gang scheduling leads to inefficient use

of the cores since idle virtual processors of one VM are scheduled even when non-idle virtual

processors of another VM could run. To combat this problem, some gang schedulers use tech-

niques to identify the idle loop of the guest OSs [Govil et al., 1999, 2000]. However, even with

precise information about which VCPUs of VM A are idle, it is not straightforward to allow only

some of VM B’s virtual processors to execute, since they will be seriously affected by kernel

synchronization unless all non-idle virtual processors of VM B can be co-scheduled.

Second, by timesharing multiple, unrelated operations onto each core, gang scheduling harms

cache, TLB, and branch predictor locality. Depending on the timeslice offered to each VM, such

destructive interference can be significant, and can lead to both performance and isolation prob-

lems (see Section 6.3). In an attempt to reduce the interference, the timeslice offered to each VM

can be increased, directly analogous to single-OS scheduling [Torrellas et al., 1995]. However,

longer timeslices come at the expense of increased latency for new requests arriving at paused

108

VMs, and most applications cannot tolerate an arbitrarily long delay in responses. For example,

low response times for Multiplayer Online Game (MOG) servers are critical in order to provide a

satisfactory user experience [Deen et al., 2006].

If isolation and/or cache performance are of primary concern for a particular system, an al-

ternate configuration could statically partition the cores, such that each guest VMs is allocated a

number of VCPUs that is only a fraction of the total cores in the system. A statically partitioned

configuration is depicted in Figure 6.1(b), and involves space partitioning (or physical partition-

ing [Smith and Nair, 2005]) of the processing resources of the machine. Such a configuration is

enabled by IBM’s Logical Partitioning (LPAR) [Borden et al., 1989], or Sun’s System Domains

[Charlesworth, 1998]. Here, the same two guest VMs are each configured with only two VCPUs,

allowing each VM to utilize half of the physical core resource of the machine. By repeatedly

running each VM on only a subset of the cores, the predictive structures of each core becomes

specialized for executing that VM efficiently. That is, dynamic heterogeneity is created from

physically homogeneous cores. Structures that are private to each core, such as TLBs, branch

predictors, L1 caches, and for the target multicore in this dissertation, L2 caches as well, are

unaffected by the execution characteristics of the other VM, leading to improved isolation and

performance predictability.

Static partitioning reduces the impact of interference, improves performance isolation, and can

also insulate one VM from hardware or other failures on cores allocated to a different VM [Govil

et al., 2000; Whitaker et al., 2002]. In addition, static partitioning as depicted in Figure 6.1(b),

can reduce the overheads of processor virtualization when there is a one-to-one mapping between

VCPUs and cores, as in this example. However, static partitioning trades-off the possibility of

adjusting a guest VM’s ability to handle periods of high demand and doesn’t allow one VM to

use cores left idle by another VM. Neither gang scheduling or static partitioning easily allows

109

the system to adapt to underlying changes in the chip, such as the emerging power, thermal, or

reliability challenges discussed in Chapters 1 and 5.

6.2 Overcommitting and Dynamically Partitioning

The reason VMMs typically adopt gang scheduling is that serious synchronization issues arise

when not all the VCPUs of a given guest VM are concurrently executing (see Section 4.2). By

using gang scheduling, an execution environment similar to a non-virtualized system is created,

resulting in OS synchronization overheads that are similar to a non-virtualized machine.

This chapter proposes to utilize the multicore virtualization techniques from Chapter 4 to break

the trade-offs inherent with gang scheduled consolidated servers, by allowing flexible assignment

of VCPUs, from any VM, to any set of cores. A system designer and/or administrator can then

choose a policy that best serves the specific needs of that specific system.

To avoid the conflicting objectives that plague gang scheduling, this chapter proposes dynamic

partitioning, which uses the multicore virtualization techniques from Chapter 4 to enable the

ability to respond to changes in both workload demand and the changing characteristics of the

underlying chip, as well as the ability to optimize performance, efficiency, and isolation. To do

this, a number of VCPUs equal to the number of cores is exposed to each guest VM, allowing it

to execute those VCPUs on the entire machine when necessary during peaks in demand. Then,

during periods of normal demand, the physical cores are dynamically partitioned among guest

VMs, allowing the VMM to only execute a subset of each VM’s VCPUs at a time. Since guest

VMs are allocated fewer cores than VCPUs, the system becomes overcommitted.

Dynamic partitioning can be performed with an unmodified, traditional software VMM, by

implementing the type of multicore virtualization proposed in Chapter 4 underneath the ISA. In

this case, the chip can expose more processors to the software VMM than there are physical

110

cores. These processors are called real processors to distinguish them from the virtual processors

exposed to the guest OSs by the software VMM.

Dynamic partitioning is depicted in Figure 6.1(c). As shown in the figure, multicore virtual-

ization logically adds a second layer of indirection between the virtual processors exposed the the

guest VMs, and the physical cores on the chip. The software VMM is responsible for mapping the

virtual processors (VCPUs) to the real processors, and the multicore virtualization implemented

on the chip itself is responsible for mapping the real processors to the physical cores using the

techniques in Chapter 4. Here, the physical cores are partitioned between guest VMs, but each

partition is overcommitted, since there are more VCPUs exposed to each guest OS than there are

available cores. However, unlike the static logical partitioning in Figure 6.1(b), the partitions in

Figure 6.1(c) can easily and dynamically change so that Guest OS B can execute on zero, one,

two, three, or four cores depending on its workload demands compared to those of Guest OS A.

When using an unmodified software VMM and operating systems, the use of the basic virtualiza-

tion and spin detection is required in order to execute efficiently.

Dynamic partitioning can lead to better cache, TLB, and branch predictor locality by improv-

ing constructive interference in the private structures of a core (within a partition) while eliminat-

ing destructive interference from the other VM. Locality is especially improved when the guest

VM is running a shared memory application where different VCPUs from the same VM share

instructions and data.

Though it need not necessarily be the case, in Figure 6.1(c) and the experiments in this chapter,

there is a one-to-one correspondence between VCPUs and real processors. Thus the responsibility

of managing the virtual processors has, in effect, moved from the software VMM to the chip. The

chip is responsible for processor virtualization, and the software VMM remains responsible for the

other aspects of system virtualization. The net result is that there is no additional overhead from

processor virtualization when adding another layer to the stack, since there need be no overhead

111

from the software VMM’s mapping VCPUs to real processors. Even if a gang scheduling policy

was still used, runtime overhead of processor virtualization is actually likely to be lower when

adding multicore virtualization, since several common functions are implemented in hardware.

By adjusting the number of cores allocated to each VM, dynamic load balancing can be

achieved without changing the timeslice, and hence response latency, of the other guest VM. One

method to for dynamic load balancing over short timescales is to simply schedule non-idle VCPUs

from one VM onto cores used by a second VM, when that VM has no non-idle VCPUs to run.

Since the spin detection hardware automatically detects these idle VCPUs, only minor changes to

the scheduling logic are needed. Throttling can be used to prevent VCPUs from switching cores

too frequently to maintain cache locality.

A discussion of dynamic partitioning with para-virtualized VMMs is presented in the related

work (Section 6.4).

6.2.1 Interrupt Handling and Transaction Latency

When a new transaction request arrives at a server, it typically comes in the form of a network

I/O packet, which is handled by the processor when it receives an interrupt from the network

controller. When performing processor virtualization, the VMM (whether a software VMM or

the proposed multicore virtualization) has a choice when such an interrupt arrives for a particular

VCPU that is not currently running. The VMM can either queue the interrupt for delivery once the

VCPU is next scheduled as normal, or it can attempt to schedule that VCPU as soon as possible

and deliver the interrupt more quickly.

Queuing results in extra delay for the transaction request. When gang scheduling two VMs,

queuing interrupts increases the latency of request arriving when the VM is paused by (on average)

half of the scheduling quantum. This average time is the expected amount of time before that VM

112

is rescheduled and can process the interrupt, and is, for example, 25ms for a default VMware ESX

Server 3.0 setup [VMware, 2006a].

To avoid this extra delay, the VMM could alternately schedule the paused VM as quickly as

possible when an interrupt arrives for a paused VM. But with gang scheduling, the entire VM

must be rescheduled, which destroys the locality of private, per-core structures.

Due to the sharing of cache, TLB, and branch predictor entries between VCPUs of the same

VM, and hardware support for quickly moving the state of a VCPU in and out of the core, the

overhead of context switching VCPUs from the same VM is small compared to the overhead

of switching VCPUs of different VMs. In addition, by not requiring gang scheduling, only one

VCPU needs to be switched on an interrupt to process that interrupt as quickly as possible. The

result is that with dynamic partitioning, the latency of responding to interrupts is much closer to

that of an unvirtualized system.

6.3 Evaluation

In this section, several aspect of dynamic partitioned are evaluated in comparison to gang schedul-

ing, with a particular focus on the locality of per-core predictive structures such as branch pre-

dictors, TLBs, and caches. Details of the methodology for evaluating consolidated servers is

described in Section 6.3.1, followed by a locality study in Section 6.3.2 and its effects on through-

out and performance isolation in Sections 6.3.3 and 6.3.4. The impact of sharing read-only pages

between VMs is discussed and evaluated in Section 6.3.5, and finally, the effects of scheduling

policy on individual transaction latency is demonstrated in Section 6.3.6.

6.3.1 Methodology

An evaluation of consolidated servers was performed using the same ms2sim infrastructure de-

scribed Chapter 3. Studies with consolidated workloads assumes the use of a software VMM,

113

similar to VMware ESX Server, which virtualizes I/O, memory, and the execution of privileged

instructions. Without access to such a VMM that supports the SPARC Enterprise 8000 platform

used in this dissertation, the execution of consolidated workloads is emulated without modeling

the overhead of this software VMM.

To create a consolidated workload, the same benchmark checkpoints used for single-VM ex-

periments in previous chapters were combined together to create a single checkpoint which simul-

taneously loads both benchmarks. Each benchmark represents a guest VM, and contains its own

Solaris 9 image and own application. The original benchmarks were set up and configured using

the entire 8-core system. Each guest VM is configured with its own I/O devices and physical

memory space, just as in the original workloads. From the perspective of the Simics functional

simulator, simulating a consolidated workload simply means that it is loading multiple machines

from the same checkpoint. In the absence of any intervention from the timing simulator, both

VMs would concurrently and independently execute.

A Perl script was used to combine the checkpoints, and rename devices, such that when the

Simics functional model load the single, combined checkpoint, it seamlessly loads all of the sys-

tem components for two separate machines, and can execute them simultaneously. The timing

model then manages the multiplexing of physical resources between the guest VMs.

The timing simulator models the VMM, which is responsible for sharing the physical resource

of the target machine among guest VMs. By articulating which VCPUs from which VM run on

which cores at what time, the timing simulator causes VMs to dynamically share all components

modeled by the timing simulator, including the cores, caches, and TLBs.

The two guest OSs are allocated enough physical memory so that the VMM does not need

to swap the real memory allocated to each guest VM to disk. For the experiments in Sections

6.3.2–6.3.4, the timing simulator translates real addresses to non-overlapping physical addresses

using a simple linear map.

114

Section 6.3.5 examines the effects of sharing real pages among multiple VMs. Accesses to

read-only pages that are potential candidates for sharing are identified when the virtual address is

translated to the physical address within the Simics functional TLB. All pages in the instruction

TLB are read-only. Read-only pages in the data TLB are identified by a cleared Writable bit. On

a successful translation, the TLB informs the timing simulator that the page was read-only. The

timing simulator then determines whether to share this page or not, depending on the policy of the

experiment. For experiments in Section 6.3.5, sharing is accomplished by simply mapping shared

pages from VM 2 into the physical memory space used by VM 1.

The methodology and tools developed for this dissertation were subsequently used in other

research with consolidated servers [Marty and Hill, 2008, 2007].

Consolidated Server Workloads Several sets of workloads were created for experiments in

this chapter. The first combines two guest VMs, where each guest VM is warmed up and fully

utilizes all 8 VCPUs (i.e., it achieves near 0% idle time when run by itself on the 8-core processor).

This full utilization set represents a worst-case load for the consolidated server. The second set

combines two guest VMs where each guest is warmed up, but only utilizes approximately 50-80%

of the 8 cores when run by itself. The lower-utilization set of workloads represents the expected

common case, since servers are consolidated expressly for the purpose of increasing the utilization

of the physical resources.

Creating workloads with a target level of utilization is a time consuming, trial and error pro-

cess. First, for most workloads, the fraction of time processors spend idle does not maintain a

linear relationship compared to the number of threads, or user think time, present in the workload

driver. Second, the level of CPU utilization changes with the IPC of the simulated processor.

During fast, functional simulators, processors have an IPC of one. During detailed out-of-order

simulation, IPCs range from 0.3–0.8. Thus the speed of the processor changes compared to the

115

speed of the disks and timer events for which the processor is idle waiting, and therefore the

fraction of idle time changes. Third, idle time, as reported by the operating system cannot be

determined until 1–2 seconds of simulated time have elapsed — longer than can reasonably be

simulated with the specific IPC of the detailed timing simulator. The bottom line is that lower

utilization workloads all experience some fraction of idle time, but the fraction is imprecise.

Heterogeneous workloads were created by pairing different benchmarks, executing in different

VMs, and homogeneous workloads by pairing the same benchmark executing in different VMs.

These first sets of workloads are used for experiments that examine throughput the cache behavior

of predictive structures in Sections 6.3.2, 6.3.3, and 6.3.5.

A set of workloads is used in Section 6.3.4, which pairs one of the commercial benchmarks

with one of two microbenchmarks in order to examine the effects of performance isolation. The

first microbenchmark, Comp, is computationally intensive with a small cache footprint. The sec-

ond, Stream is extremely cache intensive: it repeatedly streams through a large array, effectively

replacing the entire private L2 caches (but only a fraction of the shared L3).

Finally, a third microbenchmark, µServer, is used for experiments in Section 6.3.6 for mea-

suring the transaction processing latency of guest VMs using different scheduling policies. A

guest VM running µServer is paired with a second guest VM running the Comp benchmark.

µServer measures the latency of both the time a transaction spends processing, and the time

an arrived transaction spends waiting to begin processing. This microbenchmark was created in

order to isolate the effects of scheduling policy, without observing the variability and additional

overheads of OS network processing and the limited bandwidth of the simulated Ethernet devices

and OS drivers. Instead, client and server communicate directly via memory-based queues. Each

of 8 threads has its own queue. The client periodically sends transactions to the server by writ-

ing each request into the appropriate queue. A thread of the µServer benchmark will begin

running a transaction immediately if it is idle waiting for requests, or will hold the transaction in

116

its queue if either the thread is processing another request, or the VCPU running that thread is

paused. Transactions and are sent and enqueued both when the µServer guest VM is running

and when it is paused. µServer runs CPU-bound floating-point transactions that each take 96k

cycles (∼32µs) on a lightly-loaded single-VM machine. The timing simulator itself acts as the

simulated client. It sends transactions at a rate slightly less than twice the transaction latency,

i.e., 8 transactions are sent every 200k cycles (67µs) for half utilization experiments, and at a rate

slightly less than four times the transaction latency, i.e., 8 transactions every 400k cycles (133µs)

for the quarter utilization experiments.

The out-of-order processor model was used for all experiments in this chapter. Workloads are

run for 40ms (120 million cycles).

6.3.2 Locality of Per-core Structures

This section compares the branch predictor, cache, and TLB locality of configurations with two

guest VMs that are configured like Figure 6.1(a) and gang scheduled with various timeslices, and

that are configured like 6.1(c) to be overcommitted and dynamically partitioned.

Baseline Data Most figures in this section present data normalized to the 100µs gang scheduled

configuration. For this baseline configuration, the YAGS direct branch misprediction ratio (mis-

predictions divided by total predictions), and TLB and cache miss rates (per thousand instructions)

are shown in Table 6.1 for reference. Since experiments are run for a certain number of cycles,

they can perform different amounts of work during that time. Normalized results factor in the

relative amount of work performed, which is defined as user committed instructions as described

in Section 3.4.

Basic Virtualization Overheads To cover workloads from different domains, gang scheduling

is evaluated with timeslices ranging from a short 100µs timeslice, to ensure low response time in

117

Workload Br Mis % TLB Miss L1 Instr L1 Data L2 Miss L3 Miss

Homo Apache/Apache 2.7 6.9 58.4 108.7 65.7 8

Full OLTP/OLTP 2.7 5.3 38.5 107.6 48 4.8

pgoltp/pgoltp 1.7 2.2 33.9 36.9 23.7 5.8

pmake/pmake 3.5 1.4 22.4 49.5 12.4 3.2

Hetero Apache/Zeus 2.9 6.2 57 95.8 57.4 11.1

Full OLTP/pmake 3.5 2.9 39.4 89.8 31.8 5.3

OLTP/Zeus 3.1 5.6 43.5 91.9 45.7 9.3

Zeus/pmake 3.2 3.7 53.4 92.1 36.4 11.1

Hetero OLTP/pmake 2.5 2.1 128 67.3 21.2 2.5

Lower OLTP/Zeus 3.2 3.9 98.2 95.7 44.9 1.8

Zeus/pmake 3.3 2.3 103.1 84 29 3.1

Table 6.1 Baseline Branch Misprediction Rates (%), and TLB and Cache Misses per Thousand

Instructions (Gang Scheduling 100µs)

environments like Multiplayer Online Gaming (MOG), to a longer 10ms timeslice, which is used

by many OSs as a scheduling timeslice. A 1 ms timeslice is also evaluated.

Overcommitted dynamic partitioning experiments use a maximum scheduling timeslice of

100µs (300k cycles), meaning that VCPUs are context switched at least as frequently as they are

in the the 100µs gang scheduled timeslice. As discussed in Sections 4.2.1 and 4.4.4, however, the

effective timeslice actually used by a VCPU can be much shorter than the maximum allowable

timeslice if spins (including OS idle loops) are detected.

The middle column of Table 6.2 shows the average effective timeslice for each of the bench-

marks for the overcommitted and partitioned configuration. Similar to the data from Section

4.4.4, using overcommitting with dynamic reconfiguration causes VCPUs to switch on average

much more frequently than the maximum timeslice. The gang scheduled configurations observe

effective timeslices that are exactly as long as specified by the gang scheduling policy, which is

100µs, 1ms, or 10ms.

118

Workload Effective Timeslice Switching OH

Homogeneous Apache/Apache 11k 1.3%

Full Utilization OLTP/OLTP 28k 0.5%

pgoltp/pgoltp 66k 0.2%

pmake/pmake 12k 1.2%

Heterogeneous Apache/Zeus 15k 1%

Full Utilization OLTP/pmake 31k 0.5%

OLTP/Zeus 29k 0.5%

Zeus/pmake 17k 0.9%

Heterogeneous OLTP/pmake 10k 1.5%

Lower Util. OLTP/Zeus 13k 1.1%

Zeus/pmake 14k 1%

Table 6.2 Average Effective Timeslice for Overcommitted and Dynamic Partitioning (cycles),

and Overhead for Switching (% of runtime).

The runtime overhead of basic virtualization is shown in the rightmost column of Table 6.2,

and includes only the cost of transferring VCPU state into and out of the cores on a switch as

described in Section 4.1.1. The overhead of saving and restoring VCPU state at the timeslices

used for gang scheduling is negligible.

6.3.2.1 Branch Prediction Behavior

When multiple VCPUs are mapped to a single core, they can cause interference in the branch

predictor of that core due to aliasing (i.e., conflicts) and to capacity pressure. Similar to aliasing

between OS and user code [Chakraborty et al., 2006; Li et al., 2002], aliasing can occur between

two VCPUs accessing the same hardware structures. Aliasing arises because the branch predictor

is indexed and tagged using virtual addresses, which overlap among VCPUs from different VMs.

When those VCPUs are executing similar code, e.g., the same OS, or same user application, that

aliasing can be constructive if branches are biased in the same direction for both VCPUs. Entries

in the predictor for such branches are essentially shared. When VCPUs are executing different

119

A
pa

ch
e/

A
pa

ch
e

O
LT

P
/O

LT
P

pg
ol

tp
/p

go
ltp

pm
ak

e/
pm

ak
e

A
pa

ch
e/

Z
eu

s

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

N
or

m
al

iz
ed

 B
ra

nc
h

M
is

sp
re

di
ct

io
ns

0

0.2

0.4

0.6

0.8

1

Gang 100µs Gang 1ms Gang 10ms Dynamic Partition

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Homogeneous (100%) Heterogenous (100%) Hetero (∼50-80%)

Figure 6.2 Branch predictor performance of consolidated workloads with different scheduling

policies

code, branches that alias are more likely to be biased differently, since they are more likely to

refer to different static branches. These entries are not shared, and the aliasing creates conflicts.

Capacity pressure arises when branches that do not alias (i.e., have different virtual addresses)

either evict entries that map to the same index in the tagged “exception” tables of the YAGS

predictor, or overwrite the bias stored in the untagged “choice” table.

When the timeslice that each VCPUs executes before switching to the next VCPU is short,

both capacity and aliasing are larger problems, since the second VCPU will overwrite or evict

many of the non-shared (i.e., conflicting) entries used by the first VCPU, so that when the first

VCPU is rescheduled, many entries in the predictor are incorrect. As the timeslice increase, we

120

would expect interference from the other VCPUs to diminish, and therefore branch misprediction

rates to improve.

Figure 6.2 shows the branch misprediction rates (misrates) for the four scheduling policies,

normalized to the baseline 100µs gang scheduled configuration. Indeed, for all but one workload,

the branch misrates drop significantly. With the exception of the full utilization Zeus/pmake,

workloads see a 3–19% reduction in mispredictions for the 1ms timeslice, and 16–38% improve-

ment for the 10ms timeslice.

Across all benchmarks, dynamic partitioning decreases the misprediction rates by 12–28%.

Despite a short average timeslice, the overcommitted and partitioned configuration multiplexes

multiple VCPUs from the same VM onto each core, creating constructive instead of destructive

aliasing. For seven of the eleven workloads, the branch prediction performance of dynamic par-

titioning rivals that of the 10ms gang-scheduled configuration, and beats the 1ms gang-scheduled

configuration in all but one workload.

Surprisingly, there is not a significant difference between the homogeneous (same application)

workloads and the heterogeneous workloads. It would be reasonable to expect that the homoge-

neous workloads would provide constructive aliasing, since all VCPUs in both VMs are execut-

ing the same OS and application. While this constructive aliasing might be occurring, given the

slightly lower baseline misrates for the homogeneous workloads, as shown in Table 6.1, it does not

make a sizable impact on the relative performance of the different scheduling policies compared

to the heterogeneous workloads.

The homogeneous Apache/Apache workload sees the largest improvement from longer

gang scheduling timeslices. The reason is likely due to the fact that Apache has a very large

OS and user instruction footprint, sees significant interference within a single VM from these two

components, and shows the most improvement among similar workloads when spreading OS and

121

user entries across separate structures [Chakraborty et al., 2006]. It is thus no surprise that this

benchmark would also show significant interference between different VMs.

6.3.2.2 TLB Behavior

As with the branch predictor, different VCPUs can cause interference in the TLB of a core. When

those VCPUs are from the same VM, and when using the policy of sharing entries among those

VCPUs, the interference is again capacity or conflict. We would thus expect interference to dimin-

ish for longer timeslices. Due to the policy of invalidating unlocked TLB entries when switching

to a VCPU from a different VM, entry-by-entry interference does not occur. The TLB overhead

for different gang scheduled timeslices simply becomes a measure of the ability to amortize the

cost of the switch.

Figure 6.3 shows the TLB misses normalized to that of the gang-scheduled 100µs timeslice.

TLB misses for this baseline are provided in Table 6.1. As expected, when moving to longer

timeslices, the number of TLB misses with gang scheduling is reduced. For most of the full

utilization workloads, the fraction of TLB misses for the 1ms and 10ms gang-scheduled and the

dynamically partitioned configurations are very similar. The improvement for workloads contain-

ing pmake (i.e., pmake/pmake, OLTP/pmake, and Zeus/pmake) is the most pronounced.

This is because pmake does not put as much pressure on the TLB as the other benchmarks, as

evident from Table 6.1. Thus, a more significant fraction of the misses in the baseline, 100µs

configuration are from invaliding on a VCPU switch rather than demand misses. This benchmark

does incur an order of magnitude more page faults due to never-before mapped pages than other

benchmarks, however.

Unlike the full utilization workloads, dynamic partitioning does not provide as much benefit

for the lower utilization workloads. This is because the cores switch VCPUs more frequently as

VCPUs become idle (see Table 6.2), creating additional interference.

122

A
pa

ch
e/

A
pa

ch
e

O
LT

P
/O

LT
P

pg
ol

tp
/p

go
ltp

pm
ak

e/
pm

ak
e

A
pa

ch
e/

Z
eu

s

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

N
or

m
al

iz
ed

 T
LB

 M
is

se
s

0

0.2

0.4

0.6

0.8

1

Gang 100µs Gang 1ms Gang 10ms Dynamic Partition

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Homogeneous (100%) Heterogenous (100%) Hetero (∼50-80%)

Figure 6.3 Normalized TLB misses of consolidated workloads with different scheduling policies

Using another policy for managing the TLB contents of different VMs, such as transferring the

entire TLB with the rest of the VCPU state, would certainly be possible. However, the Transfer

policy incurred more runtime overhead than did invalidating (Section 4.4.2).

6.3.2.3 Cache Behavior

Figure 6.4 shows L1 instruction and Figure 6.5 shows L1 data cache misses for the four scheduling

policies. Misses are again normalized to the 100µs gang-scheduled policy.

For most workloads, the fraction of instruction cache misses is very stable across the range of

scheduling policies. Most of the gang scheduling policies show minimal changes in L1 instruction

123

A
pa

ch
e/

A
pa

ch
e

O
LT

P
/O

LT
P

pg
ol

tp
/p

go
ltp

pm
ak

e/
pm

ak
e

A
pa

ch
e/

Z
eu

s

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

N
or

m
al

iz
ed

 L
1

In
st

r.
 C

ac
he

 M
is

se
s

0

0.2

0.4

0.6

0.8

1

1.2

Gang 100µs Gang 1ms Gang 10ms Dynamic Partition

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Homogeneous (100%) Heterogenous (100%) Hetero (∼50-80%)

Figure 6.4 L1 Instruction Misses from Different Scheduling Policies. Results are normalized to

gang scheduling with a 100µs timeslice (lower is better).

cache behavior. For these benchmarks, the small (16 KByte) L1 caches are replaced multiple times

within even the shortest gang scheduling timeslices.

With dynamic partitioning, especially with workloads containing pmake, instruction cache

misses go down by up to 16%. The reason pmake is most affected is that its instruction cache

footprint and baseline miss rate are smaller than the other benchmarks.

With the L1 data cache, as shown in Figure 6.5, longer gang scheduling timeslices help more:

many see a 5-10% decrease with 1ms and 10ms timeslices, and also significant decreases for dy-

namic partitioning. pmake/pmake and pgoltp/pgoltp have fewer L1 data misses compared

to the other benchmarks (see Table 6.1), and therefore see a larger relative change.

124

A
pa

ch
e/

A
pa

ch
e

O
LT

P
/O

LT
P

pg
ol

tp
/p

go
ltp

pm
ak

e/
pm

ak
e

A
pa

ch
e/

Z
eu

s

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

N
or

m
al

iz
ed

 L
1

D
at

a
C

ac
he

 M
is

se
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Gang 100µs Gang 1ms Gang 10ms Dynamic Partition
1.92

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Homogeneous (100%) Heterogenous (100%) Hetero (∼50-80%)

Figure 6.5 L1 Data Misses from Different Scheduling Policies. Results are normalized to gang

scheduling with a 100µs timeslice (lower is better).

With dynamic partitioning, data cache misses increase for OLTP/OLTP by 22%. Even though

VCPUs share the address space, they do not have as much data in common in the L1 working set

as do the other workloads. For the lower utilization workloads OLTP/pmake and Zeus/pmake,

dynamic partitioning results in a significant drop in data cache misses. This is due partly, again,

to the fact that pmake has low baseline miss rates, and due partly to the fact that the dynamically

partitioned workloads are not repeatedly entering and leaving the OS idle loop and incurring

misses in the OS scheduler.

The most obvious outliers in Figure 6.5 are the lower-utilization workloads OLTP/pmake

and OLTP/Zeus with gang scheduling for a 10ms timeslice. These benchmarks see a significant

125

increase in OS activity, and subsequent increase in L1 misses (but not L2 misses). The other

50% utilization workload, Zeus/pmake, as well as the full-utilization Apache/Zeus also see

7–18% more data cache misses for gang scheduling with 10ms. Due to the complexity of the

workloads and their interactions with virtualization, the root cause of this increased activity is not

entirely understood, but appears to be related to the handling of hardware generated interrupts.

One hypothesis for these additional misses relates to the fact that the OS and hardware timers

are not virtualized, e.g., multiple hardware interrupts (including timer interrupts) can become

queued up (or NACKed and retried) when a VM is rescheduled after being paused for 30 million

cycles. Time (e.g., additional OS instruction) and effort (e.g. additional data cache misses) are are

required in order to process these additional interrupts. Full-utilization workloads with the longer

gang-scheduling timeslice are not affected as significantly.

Unlike the small L1 caches, the larger, 512KByte L2 caches do see a significant change in

behavior with different scheduling policies. The reason is that the L2 caches, similar to the branch

predictors and TLBs, exhibit locality on long enough timescales to be affected by the VCPU

timeslice.

Figure 6.6 shows the total L2 misses for different scheduling policies, and breaks down these

misses into their various components. Similar to the previous graphs, the four sets of bars for each

workload represent, from the left, the baseline 100µs gang-scheduled configuration, to which oth-

ers are normalized, the 1ms gang-scheduled, 10ms gang-scheduled, and on the right, the dynam-

ically partitioned configuration. The total height of the bars represents the total L2 misses. The

dark bars at the bottom represent L2 misses that are satisfied by a cache-to-cache transfer from

another L2. Above that, the light bars in the middle represent misses satisfied by the shared L3

cache, and at the top, the medium gray bars represent L2 misses that go to main memory.

Overall, as the timeslice for gang scheduling increases, the total number of L2 misses drops

dramatically for most workloads. A 25–47% reduction is observed for the 10ms timeslice. Even

126

A
pa

ch
e/

A
pa

ch
e

O
LT

P
/O

LT
P

pg
ol

tp
/p

go
ltp

pm
ak

e/
pm

ak
e

A
pa

ch
e/

Z
eu

s

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

L2
 C

ac
he

 M
is

s
B

re
ak

do
w

n

0

0.2

0.4

0.6

0.8

1

L2 Cache to Cache L3 Cache Main Memory

G
an

g
10

0µ
s

G
an

g
1µ

s
G

an
g

10
µ

s
D

yn
am

ic
 P

ar
tit

io
n

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Homogeneous (100%) Heterogenous (100%) Hetero (∼50-80%)

Figure 6.6 Breakdown of L2 Misses for Different Scheduling Policies. Results are normalized to

gang scheduling with a 100µs timeslice (lower is better).

though the timeslices for dynamic partitioning are on average much smaller, the number of misses

is less than the 1ms gang-scheduled timeslice for all but one workload, and often comparable with

the 10ms timeslice.

Cache-to-cache transfers satisfy nearly half of all L2 misses for most workloads. The reason

is that the L3 cache is exclusive with the L2s, thus a miss to any shared data (such as instructions)

must be satisfied through a transfer. As the timeslice increases for gang scheduling, the interfer-

ence in the private L2s is reduced, and thus shared data is more likely to be retained, preventing a

127

miss. Cache-to-cache transfers are especially reduced for the dynamic partitioning configuration,

since only half as many private L2s are potentially able to source the data. Compared to 10ms

gang scheduling, the number of misses satisfied by the L3 increases in every benchmark to make

up for fewer cache-to-cache transfers.

For most benchmarks, the number of off-chip misses remains stable across all scheduling

policies. Note, however, than pgoltp/pgoltp observes only half of the off-chip misses for the

10ms gang scheduling configuration compared to the other 3 configurations. The reason for this

dramatic drop is that 1) the working set requirements for pgoltp/pgoltp are only somewhat

larger than the 12MBytes of on-chip space, and 2) this workload observes significant temporal

locality in the 8MByte shared L3 cache, but does so only over long timescales. With each 1ms

timeslice, the L3 cache observes enough misses to evict one third of the entries in the L3, but the

new lines that are installed are not reused again for several more milliseconds. Thus, the 10ms

configuration sees abundant reuse, whereas the shorter timeslices do not.

6.3.3 Throughput Performance

Given the effect of scheduling policy on the predictive structures, we now turn to look at the over-

all impact on performance. For most experiments, we would expect the overall performance to

track closely with the changes in the behavior of the predictive components. The notable exception

is for the lower utilization workloads, where each of the gang scheduled VMs observes VCPUs

entering the OS idle loop for some fraction of the time, whereas the spin detection hardware used

by the overcommitted technique can detect an idle VCPU and schedule a more productive one.

Figure 6.7 shows the overall performance of each VM for the consolidated workloads for the

four scheduling policies. Total performance is normalized to gang scheduling at 100µs. Speedup,

for two experiments ExpA and ExpB is simply the average speedup of the two VMs, and is

128

A
pa

ch
e/

A
pa

ch
e

O
LT

P
/O

LT
P

pg
ol

tp
/p

go
ltp

pm
ak

e/
pm

ak
e

A
pa

ch
e/

Z
eu

s

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

R
el

at
iv

e
P

er
fo

rm
an

ce

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Partition VM 2

Partition VM 1

Gang 10ms VM 2

Gang 10ms VM 1

Gang 1ms VM 2

Gang 1ms VM 1

Gang 100µs VM 2

Gang 100µsVM 1

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Homogeneous (100%) Heterogenous (100%) Hetero (∼50-80%)

Figure 6.7 Normalized Performance of Different Scheduling Policies. Results are normalized to

gang scheduling with a 100µs timeslice (higher is better).

calculated as:

Speedup =
1

2

(

UserIPC
ExpB
V M0

UserIPC
ExpA
V M0

+
UserIPC

ExpB
V M1

UserIPC
ExpA
V M1

)

where UserIPC is the number of committed user instructions over the total number of cycles for

the reasons discussed in Section 3.4. The graph breaks down the speedup component from each

VM. Striped bars represent VM 1, and solid bars, VM 2. Error bars represent the 95% confidence

interval, which is calculated independently for each VM.

As expected from the previous cache, TLB and branch prediction results, overcommitting and

dynamic partitioning provides speedups from 10–20% for all but one full utilization workloads,

and a slightly higher 18–25% for the lower utilization workloads, where it can recover some of the

129

time VCPUs spend idle. Dynamic partitioning for OLTP/OLTP, which incurs additional L1 data

misses, and doesn’t improve the TLB as much as many workloads, observes only a 5% speedup,

which is considerably worse than the 1ms and 10ms gang scheduled configurations. Interestingly,

the overcommitting and dynamic partitioning proposal is able to achieve these speedups while

context switching VCPUs on average every 2–20µs.

Using a 1ms timeslice for gang scheduling improves performance in all experiments by 5–

19%, although this comes at the price of additional latency on each request.

In most cases, gang scheduling with a 10ms timeslice improves performance similarly to, or

marginally better than a timeslice of 1ms, as would be expected from the previous data. The first

exception is pgoltp/pgoltp, which observes a 40% speedup. As noted in Section 6.3.2.3 this

benchmark observes a 50% drop is off-chip misses, directly impacting performance. The other

exceptions are the lower-utilization OLTP/pmake and OLTP/Zeus workloads, which see an

increase in L1 data cache misses, as discussed is Section 6.3.2.3.

Although the speedups for dynamic partitioning are modest, these experiments demonstrates

that more flexible scheduling algorithms, enabled by the ability to overcommit the cores used by

a single VM, can be important by providing the throughput of a long gang scheduling timeslice,

while providing the expected transaction latency of a short timeslice.

6.3.4 Performance Isolation

Any resource shared among VMs can become a point of contention. When one VM dispropor-

tionately utilizes the resource, it can significantly impact the performance of the other VMs. When

one VM suffers low performance at the hands of another, a consolidated server’s overall efficiency

can be affected. Also important for customers paying for the service is predictability of the per-

formance their applications provide. If performance of a particular application is always lower

130

A
pa

ch
e

O
LT

P

pm
ak

e

Z
eu

s

R
el

at
iv

e
P

er
fo

rm
an

ce

0.5

0.6

0.7

0.8

0.9

1

Gang 100µs Gang 1ms Gang 10ms Partition

Figure 6.8 Performance Isolation. For each scheduling policy, bars represent the difference in

performance between pairing the commercial workload in one VM with either a

computationally-intensive (Comp), or cache-intensive (Stream), microbenchmark in the second

VM. Higher is better.

than needed, more computing power can typically be purchased. But if performance is sometimes

adequate and sometimes not, customers will look elsewhere.

Performance isolation refers to the ability of a system to insulate one application, or guest VM,

from performance artifacts attributed to another application or guest VM. Numerous resources,

including memory, I/O devices, and caches can affect the performance isolation (or lack thereof)

of a system. For this reason, consolidated servers often partition these resources (statically or

dynamically) among guest VMs [Borden et al., 1989; Charlesworth, 1998; Jann et al., 2003], or

use other mechanisms to prevent interference [Waldspurger, 2002].

Of interest to the study in this chapter is the impact of interference from the on-chip predictive

structures. In particular, this study examines the private L2 caches, where the scheduling pol-

icy mapping VCPUs to cores can create or minimize interference. With short gang scheduling

131

timeslices, guest VMs share the private L2 caches, with both VMs frequently accessing lines and

evicting each other’s data. When one VM heavily utilizes these caches, it can significantly inter-

fere with the cache performance of the other VM. Longer gang scheduling timeslices allow one

VM to evict even more of the other VM’s data, though longer timeslices also allow this cost to be

amortized. As evident from Section 6.3.2.3, however, the the ability to flexibly assign VCPUs to

cores by overcommitting and partitioning can naturally reduce this interference. The shared L3

cache is still subject to interference from different VMs, but could adopt other policies to improve

isolation [Kim et al., 2004; Rafique et al., 2006; Suh et al., 2004].

Figure 6.8 compares the ability of the four scheduling policies from Section 6.3.2 to isolate

the effects of sharing the L2 caches. Each bar represents the performance of the commercial

workloads running with the Stream microbenchmark relative to the performance of the same

scheduling policy with the same workload paired with the Comp microbenchmark. A value close

to 1.0 means that the workload is nearly unaffected by cache interference caused by the Stream

microbenchmark. Only the performance of the workload is measured, not that of the microbench-

marks.

When combined with the Stream microbenchmark, the commercial workloads’ performance

suffers substantially with gang scheduling at the 100µs timeslice (by 13–23%). Longer timeslices

amortize the interference created the stream benchmark, resulting in 1–6% loss for the 1ms, and

nearly zero loss for 10ms.

Overcommitting and dynamically partitioning the L2 caches between the guest VMs can also

nearly eliminate the interference from the Stream microbenchmark, resulting in a small per-

formance loss of 1.5–3% compared to being paired with the Comp microbenchmark. This per-

formance is better than 1ms gang scheduling for all workloads except Apache, and similar or

slightly worse than 10ms gang scheduling. As with the previous sections, this positive result

132

for dynamic partitioning is obtained without the need for a long timeslice, and therefore without

impacting the latency of requests arriving for the VM.

pmake appears to speedup with the Stream microbenchmark for the 30ms gang scheduling

timeslice, though this is just an artifact of workload variability.

6.3.5 Sharing Real Pages Between VMs

Similar to processor virtualization, memory virtualization in a system VMM also adds another

layer of indirection between the virtual memory visible to a user application and the physical

memory implemented in the hardware. This intermediate real memory is the memory that each

guest OS sees as the physical memory of its own machine. The OSs are responsible for managing

the mapping between virtual and real memory, and the VMM manages the mapping between real

and physical memory [Smith and Nair, 2005].

Multiple guest VMs that are executing the same OS, and/or running the same applications,

have a tendency to use real memory pages that contain the exact same contents [Bugnion et al.,

1997; Waldspurger, 2002]. The reason is that pages containing instructions, or read-only data

structures, are expected to be identical among instances of the same OS and applications. A high-

performance VMM then has the opportunity to share the physical memory used by such pages

among the multiple real memory pages from multiple machines. Waldspurger [2002] reports

that 10–43% of real memory is shareable among 5–10 real-world guest VMs with VMware ESX

Server.

VMware identified identical real pages by scanning their contents. It allows such pages to

be shared among guest VMs using standard copy-on-write techniques within the VMM [Wald-

spurger, 2002]. This technique is able to identify not only instruction and read-only data pages,

but also writable data pages that happen to have the same contents.

133

Sharing identical real pages reduces the burden on physical memory, allowing a VMM to

further overcommit the physical memory, while reducing the amount of time spend swapping

real pages to disk. Of interest to the study in this chapter, real page sharing can also increase

memory access locality and reduce the burden on the caches, though Waldspurger [2002] reports

that the effect is generally small. The reason the effect of cache locality can be different than the

fractional physical memory savings is because of the data access patterns: if proportionally more

accesses arrive for private rather than shared pages, cache locality is only minimally enhanced,

and vice-versa.

Examining the Impact Several experiments were performed to examine the impact of sharing

real memory among guest VMs. In the experimental setup in this chapter, physical memory is

not overcommitted, and thus sharing real memory can only improve cache locality. Rather than

examine the contents of each page, these experiments assume that only (real) pages marked read-

only by the guest OS are candidates for sharing. Read-only pages include all instruction pages,

and a small but significant fraction of data pages, both in the OS and several user applications.

Since all workloads are running the same OS (Solaris 9), all accesses to read-only OS pages,

including all instruction fetches, are shared. For homogeneous workloads, where the same appli-

cation is running in each VM, read-only pages are shared for user pages as well.

Table 6.3 reports the fraction of instruction fetches and data loads for shared real pages. All

instruction fetches are shared for homogeneous workloads. All OS fetches are shared in other

workloads. Since many workloads spend a significant fraction of their time executing OS code,

33–90% of fetches are shared even for heterogeneous workloads. Since instruction misses con-

tribute significantly to the overall memory footprint and cache misses of these workloads [Ail-

amaki et al., 1999; Chakraborty et al., 2006], such significant sharing could have an impact on

performance.

134

% Shared

Workload Fetches Loads

Homogeneous Apache/Apache 100% 5.8%

Full Utilization OLTP/OLTP 100% 3.1%

pgoltp/pgoltp 100% 1.8%

pmake/pmake 100% 13%

Heterogeneous Apache/Zeus 89.8% 2.5%

Full Utilization OLTP/pmake 33.9% 1.3%

OLTP/Zeus 68% 1.9%

Zeus/pmake 54% 2.7%

Heterogeneous Zeus/pmake 71.2% 3.2%

Lower Util. OLTP/pmake 68.4% 0.9%

OLTP/Zeus 80.5% 2.8%

Table 6.3 Fraction of Requests Shared Among Guest VMs

Data sharing is much more limited however, even among homogeneous workloads with VMs

running the same user applications. When two VMs of pmake are running, 13% of loads are

shared. In this benchmark, most of the shared loads go one of two read-only segments in the cc

compiler binary. In addition, pmake observes numerous loads to a handful of read-only kernel

pages in part of a data segment used by the UFS file system kernel module. Other homogeneous

workloads, on the other hand, see less than 6% of loads being shared.

All heterogeneous workloads observe 3.2% or fewer shared loads, since only OS pages are

shareable. With the exception of pmake, the fraction of loads to shared data is expected to have

little, if any, impact on cache performance.

The amount of real memory pages shared among VMs if not expected to further increase, as a

fraction of total allocated real memory, when more than two VMs are consolidated [Waldspurger,

2002].

Figure 6.9 examines the cache impact of shared real pages. The figure shows L2 misses nor-

malized to the 100µs gang-scheduled experiment without the sharing of real pages. Normalized

135

A
pa

ch
e/

A
pa

ch
e

O
LT

P
/O

LT
P

pg
ol

tp
/p

go
ltp

pm
ak

e/
pm

ak
e

A
pa

ch
e/

Z
eu

s

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

O
LT

P
/p

m
ak

e

O
LT

P
/Z

eu
s

Z
eu

s/
pm

ak
e

N
or

m
al

iz
ed

 L
2

C
ac

he
 M

is
se

s

0

0.2

0.4

0.6

0.8

1

Gang 100µs

Gang 1ms

Gang 10ms

Dynamic Partition

G
an

g
10

0µ
s

G
an

g
1µ

s
G

an
g

10
µ

s
D

yn
am

ic
 P

ar
tit

io
n

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Homogeneous (100%) Heterogenous (100%) Hetero (∼50-80%)

Figure 6.9 Normalized L2 Misses when Sharing Real Pages. Results are normalized to the

non-shared 100µs gang scheduled configuration (lower is better). White, outlined bars

represent L2 misses without sharing.

misses from the shared experiments are shown in colored bars. The outlined, white bars on top

represent the non-shared experiments (the same data from Figure 6.6).

For homogeneous workloads on the left, sharing read-only pages make a considerable differ-

ence in the number of L2 misses for the 100µs timeslice, and a 5–7% different in misses for the

1ms timeslice. This reduction is expected since on a VM switch, the new VM can potentially use

any of the instructions brought into the L2 cache. Also as expected, sharing has little impact on

136

the dynamically partitioned experiments, since VMs do not compete for private L2 space. It sim-

ilarly has little impact on the 10ms timeslice, since 30 million cycles is long enough to amortize

the cost of a VM switch.

When sharing real pages, and consolidating the same applications on the same OS, the times-

lice and scheduling policy has significantly less impact on cache performance than when real

pages are not shared. The differences in L2 cache misses are much less pronounced, however,

when consolidating workloads running different applications. The Apache/Zeus workload ob-

serves 18% fewer misses, all the rest see less than a 5% change. Branch predictions and TLB

misses remain unchanged, since both operate on virtual addresses.

6.3.6 Transaction Latency

As discussed in Section 6.2.1, the choice of scheduling policy can have implications on the la-

tency of transactions arriving at the machine. To determine the effects of scheduling policy on

transaction latency, experiments were performed using the µServer microbenchmark described

in Section 6.3.1. Transactions arriving for idle threads on running VCPUs are processed immedi-

ately. Transactions arriving for threads already busy processing a transaction are enqueued, as are

transactions arriving when the VCPU running the thread is paused.

Experiments were performed using two transaction arrival rates. In the first, Half Utilization

experiments, transactions arrive at just less than the processing rate of the consolidated guest

VM (i.e, half the processing rate of a single-VM machine). In the second, Quarter Utilization

experiments, transactions arrive at just less than the half processing rate of the consolidated guest

VM, or one quarter the processing rate of a single-VM machine. Similar to Section 6.3.4, the

performance of the second guest VM is not monitored.

Figure 6.10 shows histograms of the transaction latencies for the three gang scheduling times-

lices, 100µs, 1ms, and 10ms, for the half utilization experiments. Note the that scale of the x-axis

137

is different for the 10ms configuration. Each bin represents 33µs for Figures 6.10(a) and 6.10(b)

and 180µs for Figure 6.10(c). Transaction execution time when running on the core is approxi-

mately 32µs. Note also that the y-axis is different for the different gang scheduling timeslices (but

the same scale is used for each respective configuration in both Figure 6.10 and Figure 6.11).

When using a 100µs timeslice, most transactions finish in less than 100µs, though many are

delayed up to 265µs due to both time spent waiting for the µServer guest VM to be rescheduled,

and for any previously enqueued transactions to be processed. This effects of these two delays

are more obvious for the 1ms timeslice configuration in Figure 6.10(b). Many transactions, those

arriving when the server is scheduled and mostly idle, finish within 33µs. Many more are roughly

uniformly spread out for the next 1ms, due to their arrival during periods when the guest VM is

paused, and several transactions take up to 2ms due to the additive effect of previously enqueued

transactions. For gang scheduling with a 30ms timeslice (Figure 6.10(c)), 36% of transactions are

processed within the 33µs execution latency, the rest are spread out to just over 10ms.

The half utilization configurations roughly represent the worst-case latencies for a gang-

scheduled server that is still capable of sustaining the load. The quarter utilization configurations

provide much more favorable latencies. In the quarter utilization experiments, half of the trans-

actions, on average, are expected to arrive when the µServer guest VM is paused, and will still

experience delay, but transactions arriving when the µServer VM is scheduled have a much

lower probability of waiting for the processing of older queued transactions.

Figure 6.11 shows the same data for the quarter utilization experiments. For all gang schedul-

ing timeslices, many transactions are still delayed by long amounts of time, although the number

(and fraction) of transactions being delayed drops. For the 100µs timeslice, 53% of transactions

are finished within the first 33µs. All transactions finish within 140µs (roughly the 100µs times-

lice plus 33µs processing time). The total number of committed transactions is half that of Figure

6.10(a).

138

Transaction Latency (ms)
0 0.5 1 1.5 2

N
um

be
r

of
 T

ra
ns

ac
tio

ns

0

200

400

600

800

1000

1200

1400

(a) Gang Scheduling with a 100µs Timeslice

Transaction Latency (ms)
0 0.5 1 1.5 2

N
um

be
r

of
 T

ra
ns

ac
tio

ns

0

50

100

150

200

250

(b) Gang Scheduling with a 1ms Timeslice

Transaction Latency (ms)
0 2 4 6 8 10

N
um

be
r

of
 T

ra
ns

ac
tio

ns

0

50

100

150

200

250
1295

(c) Gang Scheduling with a 10ms Timeslice

Figure 6.10 Transaction Latency Histograms for Gang Scheduling Policies (Half Utilization)

139

Transaction Latency (ms)
0 0.5 1 1.5 2

N
um

be
r

of
 T

ra
ns

ac
tio

ns

0

200

400

600

800

1000

1200

1400

(a) Gang Scheduling with a 100µs Timeslice

Transaction Latency (ms)
0 0.5 1 1.5 2

N
um

be
r

of
 T

ra
ns

ac
tio

ns

0

50

100

150

200

250
552

(b) Gang Scheduling with a 1ms Timeslice

Transaction Latency (ms)
0 2 4 6 8 10

N
um

be
r

of
 T

ra
ns

ac
tio

ns

0

50

100

150

200

250
1024

(c) Gang Scheduling with a 10ms Timeslice

Figure 6.11 Transaction Latency Histograms for Gang Scheduling Policies (Quarter Utilization)

140

Transaction Latency (ms)
0 0.5 1 1.5 2

N
um

be
r

of
 T

ra
ns

ac
tio

ns

0

500

1000

1500

2000

2500

(a) Half Utilization

Transaction Latency (ms)
0 0.5 1 1.5 2

N
um

be
r

of
 T

ra
ns

ac
tio

ns

0

500

1000

1500

2000

2500

(b) Quarter Utilization

Figure 6.12 Transaction Latency Histograms for Overcommitted and Dynamically Partitioned

For the 1ms timeslice, twice as many transactions finish within the 33µs processing time,

even though half as many transactions are executed overall. Transactions are still spread out over

the 2ms, but the fraction that are delayed drops by half, and the number that are delayed drops

to one quarter. For the 10ms timeslice, slightly fewer transactions finish within 33µs with the

quarter utilization as opposed to half utilization experiments, but still nearly twice as large of a

fraction (57%) of transactions finish with little to no delay. The remaining 43% are still spread

out uniformly until just over 10ms.

141

Finally, Figure 6.12 shows transaction latency histograms for the overcommitted and dy-

namic partitioning configuration. Figure 6.12(a) shows the half utilization experiment, and Figure

6.12(b) shows the quarter utilization experiment.

In stark contrast to all of the gang scheduling configurations, nearly all transactions are com-

pleted within 67µs of the request’s arrival for both utilizations (though fewer transactions are

committed for the quarter utilization experiment). Because the guest VM is always running, no

transactions need to wait for the VM to be rescheduled. And also because the guest VM is always

running, it can sustain the load nearly all the time without transactions being delayed waiting for

currently executing transactions.

Like the rest of the overcommitted and dynamically partitioned experiments in this chapter,

these experiments use a maximum timeslice of 100µs. Transactions running on, or queued up

to run on, a paused VCPU can thus observe additional delays of up to 100µs. This data may be

surprising then, since almost no transactions are delayed by that long, even for the half-utilization

experiments. The reason is twofold. The first part is that the uniform transaction arrival rate does

not cause bursts of transactions to queue up waiting for processing, instead, transactions arrive

at just under the rate at which they are processed. The second part of the reason is that when a

thread finished processing a transactions, it spins waiting for another transaction if there is not

already one on its queue. Since there are rarely transactions already queued for that same thread,

the spin is detected and the VCPU executing that thread is descheduled shortly after completing

the transaction.

Thus, the dynamic partitioning experiments are easily able to process nearly all transactions

shortly after they arrive, providing a transactions latencies much better than gang scheduling with

long timeslices, and even provide latencies shorter than gang scheduling with a 100µs timeslice.

142

6.4 Related Work

Several companies [Armstrong et al., 2005; Sun Microsystems, 1999; Waldspurger, 2002] and

academic researchers [Bugnion et al., 1997; Govil et al., 1999, 2000; Whitaker et al., 2002] use

software system VMMs to consolidate multiple services, each running its own OS and applica-

tions in a guest VM, onto a single physical server. All of these VMMs, with the possible exception

of the IBM Power5 hypervisor, require the use of gang scheduling and would potentially benefit

from the dynamic partitioning proposed in this chapter.

IBM’s Logical Partitioning [Borden et al., 1989] allows the static partitioning of processors,

and well as other resources, as depicted in Figure 6.1(b) and discussed in Section 6.1. IBM uses

the term partitions to refer to both the guest VMs and the resources allocated to those VMs.

Of particular relevance to the proposals in this chapter are other VMMs which enable dynamic

partitioning to varying degrees. IBM’s Dynamic Logical Partitioning (DLPAR) [Jann et al., 2003],

and Sun’s Dynamic System Domains [Charlesworth, 1998], both allow physical processors to be

moved from one guest VM to another, either manually by the system administrator [Charlesworth,

1998] or automatically as requested by a guest operating system [Jann et al., 2003]. Both systems

thus allow the physical processing resource to be portioned between guest VMs and allow the

number of processors in those partitions to change over time.

There are two primary differences between these existing systems and the proposed dynamic

partitioning enabled by multicore virtualization. First, the proposals in this chapter work with

completely unmodified operating systems. IBM and Sun, on the other hand, have each invested

heavily in significant OS modification to AIX and Solaris, respectively, to enable dynamic recon-

figuration [Charlesworth, 1998; Jann et al., 2003].

Second, the dynamic reconfiguration in both systems is a heavy-weight procedure, involving

a complex set of steps to reconfigure the first OS to use fewer processors (similar to Section 5.4),

143

reconfigure the VMM, and then reconfigure the second OS to add the processors [Charlesworth,

1998; Jann et al., 2003]. Each of these steps can involve significant overhead and latency (again,

see Section 5.4), meaning that they may be applicable for long-term shifts in user demand, but

not to adapt to short term heterogeneity created by power, thermal, or reliability concerns (e.g.,

Chapters 1 and 5).

Unlike Sun and IBM, but like the proposal in this chapter, Uhlig et al. [2004] allow the cores

currently assigned to a single VMs to be overcommitted (as long as the total cores in the system

are not overcommitted by a single guest VM). Their paper is similarly motivated by the need

to both partition cores among simultaneously executing VMs, and adapt to changes in workload

demands. For a discussion of the limitations of their proposal, see Section 4.5.

In a para-virtual environment, the interface is changes to better support virtualization. With

para-virtualization, a VMM could be created to allow the cores used by a single guest VM to be

overcommitted relative to that VM’s VCPUs, and hence gain several additional benefits of the

proposed rapid dynamic partitioning. As mentioned in Section 2.1, when operating system and

software VMM developers cooperate on a new interface between these components, the OS is in a

position to pass useful information directly to the VMM. For example, system such as the Power5

[Armstrong et al., 2005] have an interface that allows an OS to indicate when it is not performing

useful work. Such para-virtualized interfaces can enable a software VMM to overcommit the

cores used by a single guest OS is much the same way that the proposed multicore virtualization

allows, but without the necessity of hardware spin detection. Such interface modifications can

allow next-generation software VMMs and operating systems to take advantage of the dynamic

partitioning policies proposed in this chapter. We are unaware of software VMMs which actually

do this, however.

Numerous studies have examined partitioning and performance isolation of on-chip caches

within the context of multiple applications running within a single VM [Chang, 2007; Kim et al.,

144

2004; Rafique et al., 2006; Suh et al., 2004]. Several of these proposals could be applied to

the shared L3 cache in the target multicore to further improve performance isolation. These

techniques could also be applied to individual L2 caches which are time-shared among multiple

VCPUs.

6.5 Chapter Summary

At present, server consolidation a big business, with multiple economic and environmental drivers

encouraging consolidation of multiple services onto a single physical host. Maintaining the effi-

ciency objectives of such a server, however, becomes increasingly challenging as the number of

VCPUs exposed to each guest VM increases in the multicore era. In particular, the necessity of

most existing software VMMs to gang schedule, or co-schedule, the VCPUs of each VM creates

conflicting objectives with respect to the efficiency of the server. A gang scheduled configuration

can choose to either adapt to changing workload demands, or optimize locality through careful

assignment of VCPUs to cores, but not both.

This chapter proposes to utilize the multicore virtualization techniques from Chapter 4, includ-

ing the basic virtualization and hardware spin detection, to simultaneously permit both of these

objectives, while working with unmodified software system VMMs and unmodified, commodity

operating systems running within them.

This chapter demonstrates that dynamic partitioning of the cores among guest VMs, while

overcommitting the cores within each partition, can be beneficial in three ways. First, it creates

more cache, TLB, and branch predictor locality compared to gang scheduling at short timeslices,

by dynamically specializing these structures for executing VCPUs from a particular VM. This

dynamic heterogeneity leads to significant improvements in both throughput and performance

isolation. Second, short effective timeslices does not increase the latency of requests arriving for

either VM. Third, by exposing as many VCPUs to each VM as there are total physical cores,

145

the partitions can be dynamically adjusted, quickly and easily, to changes in the demand for the

services. Furthermore, the flexibility arising from the ability to assign any subset of VCPUs to

any subset of cores, allows the system to quickly adapt to other emerging challenges of future

multicores, including power, temperature, or reliability issues.

146

Chapter 7

Mixed-Mode Multicore Reliability

Technology experts continue to warn about the increasing rates of hardware faults in processor

components, due to a variety of transient, intermittent, and permanent sources [Borkar, 2004;

Borkar et al., 2003; Bowman et al., 2002; Constantinescu, 2007, 2003; Semiconductor Industry

Association, 2005; Shivakumar et al., 2002]. Chapters 2 and 5 provide more details on these

trends. Today, certain applications and users already desire high reliability and the peace of mind

that comes with it — and are willing to pay extra in terms of performance and machine cost

[Aggarwal et al., 2007; Bernick et al., 2005; McEvoy, 1981; Slegel et al., 1999]. If these reliability

trends continue, as expected, many more users are likely to need or want extra levels of protection

in the future.

A multitude of circuit and microarchitectural techniques have been proposed to tolerate vari-

ous hardware faults, while preserving the view of continuous, reliable operation that the system

and application software have come to expect. One technique in particular, Dual-Modular Re-

dundancy (DMR), can provide very high coverage from many difference sources of faults. Yet

when leveraging a previously proposed microarchitectural DMR technique [Smolens et al., 2006],

experiments in this chapter demonstrate that applications can observe up to a 50% reduction in

the IPC of each thread, and nearly a 4X reduction in overall throughpout.

While a growing number of applications may be be willing to trade reduced throughput and

increased latency for reduced risk of hardware errors, other circumstances compel software users

147

to forgo extra levels of reliability in favor of performance. One such example is a media player

that can tolerate both visual artifacts due to simple data corruption, and occasional application

crashes due to control-flow or other errors. Another example is a consolidated server hosting mul-

tiple guest virtual machines (VMs) for multiple customers with different service-level agreements

(SLAs). Some customers may require very high reliability (at a premium price). Other customers

may be willing to tolerate occasional data corruption and down-time due to crashes, while paying

an economy price.

These scenarios result in a system where one set of application, the reliable application, need

the protection of DMR, while another set, the performance applications, need the high perfor-

mance offered by avoiding DMR. This chapter makes the observation that a user may want to

run both types of applications on the same machine at the same time.

To address this need, this chapter proposes a design of a Mixed-Mode Multicore (MMM), a

system for supporting mixed-mode reliability, i.e., the ability to simultaneously execute reliable

and performance applications.

The basics of an MMM seem simple: use DMR for reliable applications, and turn off DMR for

performance applications. Several architectural DMR proposals suggest that DMR can easily be

turned on and off (e.g, [Mukherjee et al., 2002; Walcott et al., 2007]), though they do not actually

investigate the issues involved in doing so.

A key contribution of the research in this chapter is that dynamically switching between DMR

and non-DMR operation within a single system is not as straightforward as it might first appear.

In particular, this chapter observes that 1) care must be taken both during execution, and during a

mode switch in order to protect the integrity of the system, and 2) providing a simple interface to

software complicates the scheduling of VCPUs to cores. To address the first problem, this chapter

proposes to maintain a small amount of redundancy for non-DMR applications by re-validating

permission for any store misses to the trusted components of the cache hierarchy. To address the

148

second problem, this chapter proposes to use the multicore virtualization techniques from Chapter

4 to flexibility assign VCPUs to cores.

The final MMM system is able to protect the integrity of reliable applications needing DMR,

improve the latency and throughput of performance applications which do not, and preserve a

simple interface to the system software.

7.1 Mixed-Mode Objectives and Design Overview

This section begins the discussion of mixed-mode reliability by examining several design objec-

tives and providing an overview of the proposed MMM system. Details of the implementation

are provided in Section 7.2. The primary objectives of an MMM are threefold. First an MMM

should provide a simple, clean interface to software. Second, an MMM must protect the integrity

of the system despite running certain applications with lower reliability. Third, an MMM needs

to improve the performance of the system when running less reliable applications — that is the

whole reason to operate in mixed-mode, as opposed to always DMR.

The first and third objectives are discussed together in Section 7.1.1, while the second is

discussed in Section 7.1.2.

7.1.1 Improving Performance

The reason for implementing an MMM in the first place is to provide reliability for applications

that require it, while reducing DMR overheads and improving the performance of for application

which do not.

DMR overheads arise primarily from two sources: throughput and latency overheads. For

example, threads running in DMR mode observe additional single thread latency (i.e., loss in IPC)

of 35–50% because redundant threads must periodically synchronize execution with each other

(Section 7.3.2). When operating in less reliable mode, this latency overhead can be eliminated.

149

(a) Operating in Dual Modular Redundancy (DMR) Mode

(b) Static Mixed-Mode Improving Latency

Figure 7.1 Techniques for Performing Mixed-Mode Execution

This scenarios is depicted in Figure 7.1 for a 6-core multicore system. Figure 7.1(a) shows an

MMM operating in a standard DMR configuration. Three VCPUs are exposed to the OS, each of

which is executing on two physical cores joined together to make a redundant pair. The system,

as currently used by the OS, acts like an extra-reliable 3-core system.

The OS (or system VMM) dictates whether each VCPU needs extra reliability or not depend-

ing on which application threads are scheduled on that VCPU. As threads are rescheduled, the

VCPU’s need for extra reliability can change dynamically, changing the number of cores required

to execute that VCPU. Thus, the OS’s scheduling decisions create dynamic heterogeneity in terms

150

of the requirements for executing the software. Figure 7.1(b) shows the same system after the OS

has scheduled three threads onto those VCPUs (V0, V1, and V2) that do not need extra reliabil-

ity. Each VCPU observes ∼35–50% improvement in performance since the core continuing to

execute that VCPU is not required to synchronize execution with its redundant pair. Statically

mapping VCPUs to a pair of redundant cores is a simple way to handle scheduling for an MMM.

When DMR mode is enabled for a VCPU, both cores redundantly execute the VCPU. When DMR

mode is disabled, one core executes the VCPU, and the other enters an idle state. For a multicore

processor, different VCPUs can be executing in different modes at different times.

As an additional benefit, when operating in less reliable mode, the extra cores that would be

used for executing the redundant threads can be used to execute new threads, improving through-

put for scalable applications. To improve throughput, the desired system may look something like

Figure 7.2(a), which shows a similar system to Figures 7.1(a) and 7.1(b), except that six VCPUs

have been exposed to the operating system, which has scheduled six software threads that do not

need the extra reliability of DMR. The six cores each independently execute one of the VCPUs,

just like in a standard, non-DMR system. Throughput in this dynamically scheduled MMM sys-

tem can be improved by nearly 100% compared to Figure 7.1(b), and by 3–4 times Figure 7.1(a)

(Section 7.3.2).

Comparing the systems in Figures 7.2(a) and 7.1(b), however, demonstrates a problem: the

number of VCPUs that must be exposed to the OS in order to improve throughput increases.

Dynamically adjusting the number of VCPUs in the system, however, is a cumbersome process,

as discussed in Section 6.4, and shown in Section 5.4.

By using the multicore virtualization techniques in Chapter 4, however, the cores can be over-

committed, such that more VCPUs are exposed to the OS than there are available pairs of physical

cores. When many VCPUs wish to execute with dual-redundancy, some of them are unable to run.

151

(a) The Goal: Improving Throughput and Latency

(b) The Solution: Overcommitted Mixed-Mode Execution

Figure 7.2 Improving Throughput in a Mixed-Mode Multicore

But when many VCPUs do not require dual-redundancy, all of the cores can be utilized to increase

throughput.

An overcommitted mixed-mode system is depicted in Figure 7.2. Here, one VCPU (V2)

requires DMR, and is executing redundantly on cores C2 and C3. V3 is paused since there are

no cores available to execute it. Using an overcommitted mixed-mode system allows throughput

to be improved compared to a static mixed-mode, while still improving the latency of any non-

redundant VCPUs.

152

Single-OS and Consolidated Server Systems Mixed-mode execution can offer differentiated

service to either different applications within a single OS system, or to different VMs within a

consolidated server system. In either case, the lower level of system software (i.e, the OS or

system VMM, respectively) is responsible for deciding which virtual (or real) processors require

redundancy at any given time. Most of the issues with these two systems are the same. Thus,

without loss of generality, most of the following discussions focus on a single-OS system.

7.1.2 Protecting System Integrity

When performing mixed-mode reliability, a second key challenge is to protect the integrity of the

system while executing a core in the less reliable mode.

During fault-free execution, or when executing with dual redundancy, correct unprivileged

(i.e., non-OS) software will not access or modify state for which it does not have the appropriate

permission; incorrect software will get caught doing so. However, when executing without dual

redundancy, simple hardware faults, such as a bit flip in the privileged mode bit, checking logic, or

TLB can result in an successful privilege check. Such faults can allow buggy software, or another

fault, to corrupt other system state.

While an MMM should allow certain software to execute with lower reliability and higher

performance, it should not allow that software to corrupt the state of the system, or corrupt the

state of any applications running in DMR mode. Thus, a mechanism is needed to protect critical

state when executing without DMR. The overhead and complexity of this mechanism should be

small enough for it to be advantageous over always executing in DMR mode.

The three key components of the proposed implementation involve 1) always executing priv-

ileged software (i.e., the OS or system VMM) in DMR mode, 2) carefully handling register and

cache state during mode-transitions, and 3) re-validating permission for stores when they leave

153

the untrusted private L1 caches. A detailed discussion of these components is provided in Section

7.2.2.

If the integrity of the system cannot be maintained when running less-reliable software, users

will enable reliable mode at all times, and forgo any possible performance gains from mixed-mode

execution.

7.2 Mixed-Mode Implementation

The previous section outlined the objectives and high-level mixed-mode design. This section

presents the implementation details of a mixed-mode multicore (MMM). First, an overview of

the Reunion DMR proposal [Smolens, 2008; Smolens et al., 2006], and necessary adaptations for

mixed-mode use, are provided. This section then focuses on the other aspects mixed-mode imple-

mentation: the mechanisms for protecting system state, and the proposed software interface. The

virtualization mechanisms required for an overcommitted MMM have been described, discussed,

and evaluated in detail in Chapters 4, 5, and 6.

7.2.1 Reunion Overview and Adaptations

The Reunion proposal [Smolens, 2008; Smolens et al., 2006] was chosen as the base DMR imple-

mentation for several reasons. First, it allows any pair of cores to be joined together as one logical

DMR pair. Second, it involves only modest hardware changes within each core. Third, it works

with a directory-based coherence protocol, and requires only modest changes to the protocol. Fi-

nally, it is the only DMR proposal of which I am aware to have investigated and tackled several

of the issues involved with using DMR on multithreaded commercial workloads.

Reunion defines a logical processing pair as two cores which redundantly execute the same

instruction stream, and are presented to the system software as one logical core. The vocal core,

i.e., the master, implements full coherence, and communicates with other cores and caches in the

154

system as normal. The mute core, i.e., the slave, loads data from its own private cache hierarchy,

but does not expose new values outside of that hierarchy.

An additional in-order pipeline stage, Check, is added to each core after execution and before

retirement. When entering Check, instructions compute a fingerprint, or hash of their results,

and send these fingerprints to the other core. Each instruction waits in the Check stage until it

receives the other core’s fingerprints for the same instruction. The instructions are then committed

to the architected state of each core. Fingerprints capture all outputs, branch targets, and store

addresses and values. Multiple instructions can update a single fingerprint to reduce bandwidth.

Fingerprints are communicated to the other core via either the normal on-chip network, or a

dedicated fingerprint network. Each core independently detects a fingerprint mismatch, flushes its

pipeline, and proceeds through a re-execution protocol described below.

Because load values are not strictly replicated, mute and vocal cores can each read different,

but correct, sequentially consistent values from the memory hierarchy. This phenomenon is called

input incoherence, and triggers the detection of an error. In addition, a mute core is not actually

required to maintain coherence with the rest of the system. Instead, all requests emanating from

the private cache hierarchy of a mute core are labeled as phantom requests, which do not change

the state of the line in the directory or any other caches, but for which the cache hierarchy makes

a best-effort attempt to provide the correct value. Should that attempt fail, input coherence and

a fingerprint mismatch will result, which will be detected and corrected. Using a best-effort

approach, input incoherence is reported to occur very infrequently: less than 1.5 events per million

instructions for 7 of 8 workloads, and 21 events per million for the 8th (DB2 DSS Q1) [Smolens

et al., 2006]. A discussion of mute coherence and mixed-mode execution is presented in Section

7.2.1.1.

155

In order to guarantee forward progress from reoccurring input incoherence, a re-execution

protocol is proposed. This protocol involves each core non-speculatively single-stepping execu-

tion up to the first memory request. A synchronizing memory request is then sent from both cores

to the on-chip directory, which obtains a coherent copy of the block on behalf of both cores and

sends the copy to each core. Each core is then guaranteed to load the same value (in the absence

of a hardware fault).

Certain errors, such as fingerprint aliasing, cannot always be detected before the mute core has

corrupted its architectural state. For these cases, the vocal core is responsible for maintaining the

“safe” register state from which both cores recover when such a fault is detected by a mismatch

on subsequent instructions.

Relaxed-input replication allows vocal and mute threads to be scheduled on any cores, but

they have the constraint of being co-scheduled.

7.2.1.1 Mute Coherence

Reunion suggests that the private caches of mute cores need not, and should not, maintain co-

herence with respect to the rest of the system. When operating in mixed-mode, however, a core

switching from operating as a mute core of a DMR pair to operating independently to run another

VCPU faces private L1 and L2 caches with incoherent data. These caches must then be flushed

on a mode switch.

If mode switches are very infrequent the cost of flushing the cache can be amortized when

switching from a VCPU that requires DMR to one that does not. Such a scenario can arise for a

gang-scheduled consolidated server providing differentiated service to two VMs. It the timeslice

is long, the new guest VM is likely to evict most of the contents of the cache during its timeslice

anyway.

156

When mode switches are frequent, however, the cost of flushing the cache can become pro-

hibitive. This scenario can arise when performing mixed-mode on a single-OS system, where

traps into the OS require a switch to reliable mode. As an optimization for mixed-mode operation

with frequent switching between DMR and non-DMR mode, private caches of a mute core can

be kept coherent. A read from a mute core returns a line whose data and permission are coherent

with the rest of the system. A write from a mute core invalidates the line in the private hierarchy

if present, without writing the data. A subsequent read to a written line will cause a coherence

miss, which will return the correct, coherent data from the vocal core.

Such an optimization improves the cost of switching cores, but comes at the price of more

coherence for load-modify-store operations on the vocal core: A load miss for an unshared line in

this case should not (cannot) be returned in Exclusive state, since the mute core will soon (or has

already) acquired a Shared copy of the line. The following store from the vocal core must now

acquire Exclusive permission before writing. This coherence miss on the vocal core must at least

travel another round-trip to the directory to acquire permission. The vocal’s store may not require

a 3-hop transfer all the time, however. The reason is that when the mute core’s store arrives at its

own L2, it will automatically invalidate the line and notify the directory that it no longer owns a

copy. Should the mute’s invalidation happen before or during the vocal’s coherence miss, some

or all of the 3-hop latency will be overlapped.

With either option, another issue arises when performing loads and stores of VCPU state dur-

ing a VCPU context switch or mode switch. These requests from a mute core must be processed

as normal, regardless of whether the mute maintains coherence for other memory requests, or

implements Reunion’s mute incoherence policy. This means that the cache at a mute core can si-

multaneously consist of both incoherent lines brought into the cache via phantom mute requests,

and lines (containing VCPU state) which are coherent with the system. A bit is added to the state

field of the each line indicating whether or not the line is coherent with the system.

157

As a result of mixing coherent and non-coherent lines, flushing lines during normal Reunion

mode is not as simple as gang-invalidating the cache. Instead, lines must be inspected one by

one to see if they are dirty and need to be written back. This operation proceeds at cache request

bandwidth.

7.2.1.2 Target Multicore Assumptions

It should be noted that little attempt was made to optimize the cache and core configurations of the

target multicore used elsewhere in this dissertation for use with Reunion or mixed-mode. In par-

ticular, the 3-level cache hierarchy adds complexity and overhead to DMR operation, especially

for an MMM. Had such reconfiguration been performed, several issues relating to mixed-mode

and DMR would have been simpler. On the other hand, the chosen path of taking a given design

and determining what changes need to be made may better reflect the approach often undertaken

in industry.

Two changes to the target multicore were made, however. First, the L1 caches are assumed to

be write-through, non-allocate, not write-back as in the previous chapters. This change facilitates

switching of modes without flushing the untrusted L1 caches. Second, the multicore is assumed to

have 16 physical cores to facilitate executing in DMR mode with the same 8-processor workloads

used elsewhere in this dissertation.

As with Chapter 5, shared components of the memory hierarchy are assumed to implement

other reliability techniques. Unlike Chapter 5, however, the L1 caches are not assumed to be

reliable. While in DMR mode, accesses to the private L2s are replicated,1 but any coherent line

placed in the L2s must remain coherent and uncorrupted. That said, accesses to all parts of the

cache, and even off-chip memory, could be replicated if the need arose.

1Accesses to VCPU state are not replicated to the same address, as are accesses to normal program state, but are

instead redundantly performed to different addresses.

158

7.2.2 Protecting System Integrity

When performing mixed-mode reliability, a key challenge is to protect the integrity of the system

while executing a core in the less reliable mode. When executing with dual redundancy, correct

unprivileged (i.e., non-OS) software will not access or modify state for which it does not have the

appropriate permission; incorrect software will get caught doing so. However, when executing

without dual redundancy, simple hardware faults, such as a flip in the privileged mode bit, check-

ing logic, or TLB can result in a successful privilege check. This can allow buggy software to

corrupt other system state. Thus, a mechanism is needed to protect critical state when executing

without dual redundancy.

7.2.2.1 Protecting System Software

The first step to protect the integrity of the system is to ensure that the system software itself

is not corrupted. All privileged state is conservatively assumed to be critical. The result of this

observation leads to the policy of always executing privileged software in reliable mode. This

privileged software may be the OS in a single-OS system, or the software VMM or hypervisor in

a consolidated server system.

As a consequence, a user application executing in less reliable mode must switch to reliable,

DMR mode before executing the OS code. For many commercial applications, system calls occur

as frequently as every 10-100k instructions. Thus the latency of switching modes can become

significant, as we will see in Section 7.3.3. A core in performance mode cannot execute any

privileged instructions without causing a transition to reliable mode.

A second consequence of this policy is that applications, such as Apache, which spend 80–

90% of their time in the OS, are unlikely to observe significant savings when operating on a

single-OS system. On a consolidated server, however, a guest VM running Apache may still

see improvements, since the guest OS running in the VM does not require reliability mode. The

159

system VMM or hypervisor must still excecute in reliable mode, but does not typically execute as

frequently as does the guest OS.

7.2.2.2 Protecting Memory

The TLB maintains sufficient information to prevent any user application from illegally accessing

memory state. However a hardware fault in the TLB array, checking logic, privileged registers, or

L1 cache can allow such an access.

One option may be to harden these structures by making the transistors larger, slower, and/or

liberally applying other circuit-level reliability techniques. The problem is that all of these struc-

tures are on the critical load path, and hardening could impact the latency of every memory access.

If hardening is not an option, then an MMM will require a separate mechanism to prevent against

illegal memory accesses.

To prevent arbitrary software from accessing memory for which it does not have permission,

this section proposes to duplicate the TLB protection check using a separate structure, called the

Protection Assistance Buffer (PAB). The PAB is placed between the private L1 caches and the

private L2 cache. When the core is executing in non-DMR mode, the permission of each L1

write-through is rechecked, either before or in parallel with the L2 access.

For non-malicious code, it is sufficient to only prevent erroneous stores from illegally writ-

ing memory. For security reasons, preventing erroneous fetches and loads from reading illegal

memory addresses may also be required, but is not addressed in this work.

The PAB is a physically tagged and indexed structure whose entries contain one bit. This

bit indicates whether code operating in less reliable mode is allowed to access this page. The

implication of only using one bit, instead of a larger address-space identifier, is that less reliable

software can potentially corrupt the memory of other less reliable software, but not that of the OS

160

Figure 7.3 The Structure of the Protection Assistance Buffer (PAB)

or software operating in reliable mode. The PAB also contains an active/inactive control bit, and

some simple control logic.

Figure 7.3 shows a diagram of PAB placement and structure for one core in the system. It is

organized much like a cache, with a tag array and data array containing protection information.

The PAB operates on physical addresses, since the virtual address is assumed to no longer

be known for a store accessing the L2 cache. Because the tagging and indexing of the PAB thus

differs from that of the TLB, the PAB and TLB can experience misses at different times. This

fact has an important consequence: there is no benefit to a PAB organization and structure similar

to that of the TLB. In particular, the need for a ∼20-bit tag per 1-bit entry disappears. Instead,

each entry of the proposed PAB contains a 64-byte, cache-line sized array of bits, representing

protection information for a total of 4MBytes worth of physical memory. A valid bit is also

needed for each line. For a 43-bit address space with 8KByte (213) pages, like the UltraSPARC

IIICu, a 128-entry (27), direct-mapped PAB, with each 64-byte entry mapping 512 (29) pages,

161

thus requires 14-bit tags plus 1-bit for state. This results in a tag overhead of less than 3%. A

128-entry PAB requires 8.2KBytes, can map 512MBytes of physical memory, and represents a

storage overhead of 1.6% compared to the private L2 cache.

Assuming an acceptably low probability of faults occurring to both the PAB and TLB, the

PAB does not need any special hardening or ECC protection. This is because the PAB’s operation

is checked by the TLB, and vice-versa. However, using ECC, or some other circuit reliability

mechanism in one or both structures can reduce the number of false positive fault detections.

Basic PAB Operation When in DMR mode, the PAB in deactivated, since all address trans-

lation and permission verification is already redundantly performed. All accesses bypass the

structure and access the L2 cache as normal. When not in DMR mode, the PAB is activated, and

stores (i.e., write-throughs from the L1) examine the PAB in parallel with their access to the L2

cache. Should the PAB indicate an invalid store, the L2 access is aborted.

A parallel lookup and transaction abort adds complexity to the L2 cache controller. Waiting

to access the L2 cache until the store is validated by the PAB is also possible. This serial lookup

incurs additional latency for stores, but due to the small size of the PAB, the latency is expected

to be small. Experiments in Section 7.3 evaluate both parallel and serial lookups.

Loads and fetches bypass the PAB.

PAB Misses The PAB is updated through a memory structure called the Protection Assistance

Table (PAT). The PAT is similar to an inverse page table: for each physical page currently mapped

by the system, a “1” entry indicates that page can only be accessed by DMR applications, and a

“0” entry indicates that page can potentially be accessed by any software. At one bit per 8KByte

page, the PAT thus requires 1

216 the space of physical memory, or 16MBytes for one TBytes of

physical memory.

162

The PAT resides in cacheable memory. On a PAB miss, the PAB simply sends a request to

local L2 cache requesting the appropriate PAT line. Since stores are prefetched before retirement,

the PAB miss and possible L2 cache miss can be prefetched in parallel before the actual write

requested is made.

The PAB is kept coherent during a TLB demap operation, even when the PAB is deactivated.

On a demap, the TLB sends the physical page address of the demapped page to the PAB, which

invalidates the corresponding entry.

System software is responsible for maintaining the PAT. It must set aside physical memory for

the PAT, and update the entries when it updates its page table.

7.2.3 Protecting Registers

Unprivileged software is not allowed write most privileged registers. However, a fault can cause

unprivileged software to corrupt a privileged register, or erroneously allow buggy of malicious

software to write one of these registers.

To protect against such faults the mixed-mode framework simply copies their contents to re-

served physical memory before beginning non-redundant execution. When redundant execution

is re-entered, the current contents of those register are compared with the saved copy to detect a

fault. If differences are detected, one or more faults must have occurred. A (non-precise) excep-

tion can be then be triggered to notify system software.

7.2.4 Handling Mode Transitions

Each core contains a small hardware state machine to handle mode transitions. Each core com-

municates with the centralized Virtualization Controller, described in Chapter 4, which is also

implemented as a hardware state machine. On a transition between performance and reliable

163

mode, and when context switching VCPUs, these hardware state machines cooperate to perform

the steps outlined below, and detailed in Table 7.1.

At a high level, all reliability and VCPU transitions involve two steps: switch out the currently

executing VCPU (if any), and then switch in the next scheduled VCPU (if any). For the basic

multicore virtualization proposed in Chapter 4, cores go through two states when switching out

one VCPU, and only one state when switching in another. These states are shown in the top two

boxes of Table 7.1.

Switching to and from reliable mode is similar in concept, especially for the mute core: when

entering reliable mode, it needs to acquire the necessary VCPU state in order to switch in and start

executing a VCPU, and when leaving reliable mode, it needs to save that state to be loaded later.

The details, however, are more involved. State transitions are also different depending on

whether the cores are switching in new VCPUs that have a different reliability requirement, or

whether they are switching to/from reliable mode while executing the same VCPU (e.g., due to a

system call).

If a core is switching to a new VCPU, but not switching reliability modes, then it performs the

same basic switch out as in Chapter 4. In reliability mode, both cores perform the same actions,

though they use different addresses to duplicate VCPU state.

If a core is switching to a new VCPU, and switching modes, since the reliability needs of the

new VCPU differ from the current one, then the state transitions in the middle boxes of Table 7.1

are used. Compared to the basic switch transition, the primary difference is additional synchro-

nization between vocal and mute cores, and the need for the mute core to flush non-coherent data

from its L2 cache and write back any coherent data (i.e., VCPU state).

If a pair of cores is leaving DMR modes because of the program returning from a system

call, for example, the transitions in the lower boxes of Table 7.1 are used. Leaving reliability

mode is similar to the previous case, except that the cores need only store their privileged VCPU

164

state to the cache hierarchy. Entering DMR, however, is substantially different. The vocal core

(previously running in performance mode) already has all of the necessary state, but the mute core

does not. In addition to simply loading the state, however, the mute core also needs to verify that

the contents of privileged registers are the same as they were when last in reliable mode. This

check is necessary to prevent faults from corrupting privileged state during performance mode.

Frequent synchronization is necessary during these processes, especially when entering DMR,

because these steps can be initiated at different times for the vocal and mute cores depending on

what each core was previously doing. If the core was idle, it can take action immediately. If the

core was previously executing some other VCPU, then the process of switching out the previous

VCPU must conclude before switching in another.

These mode transition protocols, as described, are believed to be sufficient to further the goals

of an MMM. No claim of optimality is made regarding these protocols, however.

7.2.5 Software Interface

This work proposes to implement the reliability mechanisms in a thin virtual machine layer be-

neath the ISA. The chip exposes three things to software via the ISA. First, the interface exposes

that the chip has multiple operating modes with different levels of reliability. Ideally, a chip might

expose maximum FIT rates for these different levels of reliability as well, though in practice,

companies may be reluctant to do so. Second, the interface exposes that choosing to operate in

the most reliable mode comes at a price in terms of performance and power. Third, the interface

exposes the fact that software is responsible for determining the desired mode, and can do so

dynamically on a VCPU by VCPU basis.

This chapter assumes that the reliable mode is implemented via Dual-Modular Redundancy

(DMR), while the less reliable mode uses only a single core, but may implement numerous circuit

or microarchitectural techniques within that core to maintain reasonable levels of reliability.

165

Similar to the virtualization mechanisms in Chapter 4, the chip exposes a certain number of

virtual processors (VCPUs) to the operating system (OS), and is responsible for mapping the

VCPUs to the physical cores. Software is simply responsible for determining when reliability is

necessary depending upon what software is running on each VCPU. The number of cores required

to execute each VCPU changes dynamically depending on the whims of the OS scheduler, creating

dynamic heterogeneity in terms of the requirements of the software.

The basis of the mixed-mode hardware/software interface is a single register per VCPU spec-

ifying whether reliability is needed or not. This 2-bit register specifies one of three modes: 1)

operate with high reliability, 2) operate with lower reliability and higher performance, or 3) oper-

ate with lower reliability only when executing non-privileged (user) software.

When the privileged software is about to context switch to a application or VM which requires

less reliability, it can write this register to indicate that the software running on that virtual pro-

cessor need not be reliable. The hardware implementation then has the opportunity to run with

less reliability.

This register is only writable by privileged software. It is expected that most commonly, an

individual application will run from start to finish with either lower or higher reliability.

An MMM could leave the management of reliability to the system software, however, the

choice of pushing the responsibility down to the chip has several desirable properties similar to

Section 5.3.4. Most importantly, as will be shown in Section 7.3.3, the need to switch modes

occurs much more frequently than an OS would be able to maintain. The chip, on the other hand,

can implement certain functionality in hardware to reduce the overhead. Second, changes to the

interface are minimal, allowing multiple OSs from multiple vendors to easily take advantage of the

new functionality, while unmodified software can just default to one mode or the other. Finally, by

abstracting the details of hardware reliability from the software, those details more easily change

with every generation of hardware without requiring interface or software modifications.

166

Requiring all privileged software to run with reliability greatly reduces the burden of correct-

ness on OS software. However, this technique does require that the OS (or hypervisor) be able

to tolerate invalid input across its defined interfaces (such as system calls). This is because a ap-

plication that sustains faults can modify data (such as the length of an array) that is passed as an

argument to these calls. Similarly, if a DMR and non-DMR application memory-map any of the

same pages, the DMR application must be able to handle bogus data in that page.

System software is also required to maintain the PAT in a memory location agreed upon by

the software and hardware.

7.3 Evaluation

To demonstrate the effectiveness of mixed-mode reliability, several experiments were performed

to demonstrate and examine the overheads of DMR, the overheads and frequency of mode transi-

tions in an MMM, and the overall performance improvement resulting from mixed-mode opera-

tion.

7.3.1 Methodology

Details of the workloads, target multicore configurations, basic methodology are provided in

Chapter 3. In this chapter, some workloads use a single guest VM with 16-VCPUs. In order to

avoid the problems comparing separate 16-processor and 8-processor checkpoints (as described in

Section 5.4.1.1), these single guest VMs are emulated by combining two 8-processor checkpoints.

All experiments are run for 90 million cycles.

167

Timing First Simulation Unfortunately, using MAI in the traditional manner, as described in

Section 3.1, imparts the functional simulator’s limitations onto the timing simulator (e.g., re-

strictions on which instructions are allowed to execute when). For this reason, a second simula-

tor, ms2sim-tf, was developed in order to perform experiments with Dual-Modular Redundancy

(DMR).

The timing component of ms2sim-tf is nearly identical to ms2sim, however, the use of Simics

MAI is greatly changed. Similar to TFSim [Mauer et al., 2002], ms2sim-tf executes each instruc-

tion, with the appropriate timings, and then at commit stage, calls Simics MAI to execute the

entire instruction all at once, as a shadow processor, and compares the outputs. Unlike TFSim,

however, ms2sim-tf still uses Simics to functionally execute most instructions. But instead of

stepping each instruction through the pipeline as dictated by the timing simulator as in normal

MAI usage, ms2sim-tf steps each instruction up to the appropriate stage, and then tells Simics

to squash the instruction before it can change visible program state. In order to do so, ms2sim-tf

must properly handle dependencies and the register file, supply input values to each instruction,

and copy output values before it is squashed. Instructions which cannot be squashed after execute

are not executed by Simics until commit. Instead they are either executed within ms2sim-tf, or

have their output copied from Simics at commit time. Although Simics executes each instruction

multiple times, ms2sim-tf incurs little additional overhead over ms2sim, likely due to the fact that

Simics only ever observes one instruction in the window at a time.

Implementing Reunion Dual Modular Redundancy (DMR) is implemented in ms2sim-tf by

allowing the timing-first components of two cores to execute instructions on, and verify their

committed instructions with, one Simics-visible “shadow” processor. The timing components of

the two cores compare fingerprints before the vocal core checks the instruction with the Simics

shadow.

168

A dedicated fingerprint network with a 10-cycle latency is assumed, as was done in the original

Reunion proposal [Smolens et al., 2006]. Sync requests are not implemented through L2 directory

protocol modifications, but rather through direct messages sent from the vocal to the mute core.

The first set of experiments in Section 7.3.4 assumes a parallel PAB and L2 access. A PAB

latency of two cycles is used for experiments in Section 7.3.4.1

Limitations of the Simulation Model Timing differences between the vocal and mute cores can

create input incoherence, as described in Section 7.2.1.1, when they direct the functional simulator

to read memory at different times. But since the simulated memory hierarchy is not a functional

model, the mute core is not guaranteed to observe the proper data value. This limitation is not

expected to affect results significantly, however, since Smolens et al. [2006] report less than 1.5

input incoherence events per million instructions for all but one workload when using best-effort

(“Global”) coherence for mute requests, as done for this work.

Timing first simulation has another related limitation: even if the vocal and mute cores load

the same, sequentially consistent, value from memory, the functional “shadow” simulator can

receive a different sequentially consistent value when it executes the instruction as the vocal cores

commits. Such an error causes both cores to synchronize, flush their pipelines, copy all VCPU

state from the shadow CPU, and return to normal operation. These errors occur up to once per

million instructions for the baseline non-DMR system, and twice per million instructions for the

DMR configurations.

Misses in the PAB are not modeled, since a 128-entry PAB maps one quarter of the 4GByte

physical memory of the simulated machine, which is substantially more memory than can be

accessed during a simulation. In addition, the PAB is only accessed by non-DMR applications,

which can consume only part of the available memory. Finally, accesses and misses to the PAB

can only occur for L1 write-throughs. Since stores are prefetched before retirement, PAB misses

169

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 L
2

C
ac

he
−

to
−

C
ac

he
 T

ra
ns

fe
rs

0

0.5

1

1.5

2

2.5

3

3.5

4

No DMR No DMR 2X Reunion Mute Coher Ideal Mute Mem

12.9

Figure 7.4 DMR L2 Cache-to-Cache Transfers

and any L2 cache misses can operate in parallel before the actual store request is made. Thus,

little if any overhead from misses to this structure is expected for the experimental setup in this

chapter.

7.3.2 Overhead of Dual Redundancy

This section compares the overheads of a Reunion-like, always-DMR system which performs no

mode switching, to a baseline system without DMR. Overheads arise from L2 cache-to-cache

transfers and mute coherence, serializing instructions, and instruction window pressure. These

three sources of overhead are each examined in detail, followed by a look at the overall DMR

performance impact.

Cache-to-Cache Transfers Figure 7.4 shows the number of L2 cache-to-cache (C2C) transfers

per core. Data are normalized to the baseline non-DMR configuration and account for differences

170

in the amount of work performed. The first bar, No DMR represents a non-DMR system running

the eight VCPUs on only eight cores. The other eight cores are idle. The second bar, No DMR

2X represents a non-DMR using all 16 cores for running independent VCPUs. With these two

non-DMR systems, three DMR systems are compared, each of which is running the same eight

VCPUs as No DMR, but running them redundantly across all 16 cores. The third bar, Reunion is

for the best-effort re-implementation of Reunion. The fourth, Mute Coher, is the same as Reunion,

except that mute cores maintain coherence as a potential optimization for mixed-mode. Finally,

the rightmost bar, Ideal Mute Mem, is again similar to Reunion, except that all memory accesses

from mute cores complete in zero cycles.

For the idealized DMR configuration, we might expect approximately half the number of C2C

transfers as the baseline, since only half of the active cores access the cache hierarchy (mute core

accesses are idealized). This is indeed the case for every benchmark.

For the No DMR 2X, as well as the Reunion, configurations, we would expect the number

of C2C transfers per core to stay the same. The reason is these schemes both have twice as

many active cores, yet cores are either independently accessing approximately twice as much total

data as the baseline, or redundantly accessing approximately the same total data as the baseline.

Because mute cores do not maintain coherence, the vocal cores should observe almost exactly the

same L2 behavior as the baseline. The reason is that even if a mute core acquires an incoherent

“exclusive” copy of a line before the vocal core does, the directory is not updated to reflect this

information. Thus, the vocal core will still receive its copy of the line from another L2, the shared

L3, or main memory just like in the baseline case. Since both redundant cores are accessing

the same data at roughly the same time, doubling the number of C2C transfers should result in a

similar number of off-chip misses and similar performance as the baseline (in the absence of other

overheads).

171

Experiments show, however, that the number of C2C misses for both No DMR 2X and Reunion

increases by 7–250%. The reason No DMR 2x observes an increase is because twice as many cores

have active data in their respective L2 caches, which means that data is not held in the exclusive

shared L3.

The reason DMR observes an increase is that when the vocal core acquires the line first from

any source, the mute core’s later request is likely to receive it via a C2C transfer from the vocal

core.

These additional C2C transfers are one source of overhead for Reunion (since in the target

multicore, a 3-hop C2C transfer incurs additional latency compared to a 2-hop L3 hit). These

additional transfers occur primarily due to the use an exclusive shared cache. An inclusive shared

cache would still see these C2C transfers for data that the vocal core loads in exclusive state, but

not for shared data with a copy still in an inclusive L3 cache.

The effect of prefetching main-memory misses with Reunion is negligible, since neither core

runs significantly ahead of the other due to frequent serialization (see below).

When maintaining mute coherence (the third bar) L2 C2C transfers increase by 2.6–3.5 time

for most benchmarks, and by a whopping 12.9 times for pmake. As described in Section 7.2.1.1,

the reason for these additional transfers is that on every load-modify-store sequence, the vocal

core must invalidate the shared (coherent) line just loaded by the mute core. These transfers create

additional runtime overhead for maintaining mute coherence, but may be offset by eliminating the

need to flush the cache when performing a mode switch during mixed-mode execution.

The reason the relative increase in cache-to-cache transfers is so dramatic for pmake is that

it has lower baseline L2 miss rates than the other benchmarks. The absolute increase in similar to

the other benchmarks.

172

Serializing Instructions OS-intensive workloads, like most of the commercial workloads stud-

ied in this dissertation, typically encounter frequent Serializing Instructions (SIs), such as those

that write control registers [Wells and Sohi, 2008]. Due to their complex dependencies, executing

SIs out-of-order (OoO) can be difficult. Instead, these instruction are often implemented in real

processors by draining the pipeline and executing the SI as the only instruction in the window

[Compaq Computer Corp., 2000; Intel Corporation, 2007; Sun Microsystems, Inc., 2003].

The instructions can cause a significant (3–17%) performance bottleneck with OoO processors

[Wells and Sohi, 2008]. With Reunion the impact is even worse for two reasons. First, instruc-

tions younger than an SI must be committed before the SI executes, but the Check stage incurs

additional latency due to the delay of communicating fingerprints between cores (the comparison

latency). Then, the SI itself must be validated before younger instructions can enter the pipeline,

incurring an extra fingerprint transmission and comparison latency delay.

Smolens et al. [2006] report a performance loss of up to 28% with a 40-cycle comparison

latency, or approximately 10% with the 10-cycle latency they use as a default. The Flexus simula-

tor user for their study [Wenisch and Wunderlich, 2005], does serialize writes to register-mapped

ASIs [Smolens et al., 2006], but does not serialize of all of the register writes considered by Wells

and Sohi [2008] and this dissertation to be serializing [Wenisch, 2008]. Thus, the performance

impact of SIs reported by Smolens et al. [2006] is optimistic compared to the infrastructure used

for this dissertation. It is not clear which more closely approximates a real microprocessor.

Table 7.2 examines the frequency and impact of serializing instructions (SIs) on the non-DMR

baseline and the Reunion configuration. The second column show the number of SIs encountered

per thousand committed (user and OS) instructions. This data closely matches serializing register

writes presented by Wells and Sohi [2008] for similar workloads running on a uniprocessor.

SIs are implemented by flushing younger instructions from the window and blocking fetch

until the SI executes as the only instruction in the window. The right two columns of Table 7.2

173

present the fraction of cycles that fetch is stalled due to an SI in the window. While SIs stall

fetch for a significant fraction (10-42%) of cycles in the baseline, this number grows to an even

larger value of 16–49% when using Reunion. Certainly, fetch stall does not necessarily imply that

something useful could be fetched, but the stall does prevent the opportunity to try.

The other two DMR configurations observe nearly identical SI behavior compared to Reunion,

and are not shown.

Due to limitation of Simics MAI, and of the methodology for performing timing-first simu-

lated used in this chapter, it is not possible to evaluate the performance of a hypothetical SI free

configuration.

Instruction Window Utilization The third overhead affecting DMR execution is capacity pres-

sure on the instruction window and load/store queue (LSQ). This pressure arises primarily from

two sources: 1) the requirement that instructions wait in the Check stage before releasing their

instruction window resources, and 2) the use of sequential consistency (SC).

Table 7.3 shows the fraction of cycles either the instruction window or LSQ are full for the

baseline non-DMR system, and each of the three DMR configuration. Reunion observes full

structures for approximately 4–15% more cycles than the baseline. The other DMR configurations

are similar. pmake, with the highest IPC and fewest SIs, sees the largest impact, where these

structures are full more than 50% of the time for all DMR configurations.

The original reunion evaluation does not report the impact of this additional pressure, but

this impact is likely to be larger for the evaluation in this chapter because a 128-entry instruction

window is used instead of a 256-entry window.

The impact in this dissertation’s evaluation is also likely larger because the target multicore

maintains sequential consistency (SC), meaning that stores are only retired after they are written to

the cache in-order. The original Reunion evaluation assumes a Total Store Order (TSO) memory

174

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 P
er

−
th

re
ad

 U
se

r
IP

C

0

0.2

0.4

0.6

0.8

1

1.2

No DMR 2X No DMR Reunion Mute Coher Ideal Mute Mem

Figure 7.5 DMR Performance Comparison: Single Thread Latency

consistency model. Compared to TSO, SC prevents instructions younger than a store from retiring

before that store, keeping them in the window and LSQ longer. Like serializing instructions, when

these structures are full, fetch is stalled, hurting performance. TSO would allow those stores to be

moved into a store buffer, after verification, but before waiting on any cache misses.

Overall DMR Performance Impact Given these sources of overhead examined above, Figures

7.5 and 7.6 examine the performance overheads of DMR. Figure 7.5 shows the per-thread latency

impact, and Figure 7.6 shows the overall throughput impact. The two non-DMR configurations

and three Reunion-like configurations are again represented. Note that, in contrast to Figure 7.4,

performance data are normalized to the No DMR 2X configuration, which is utilizing all 16 cores

like the DMR configurations.

In Figure 7.5, per-thread latency is measured as the average of each active VCPU’s User IPC,

as described in Section 3.4. The No DMR configuration, running only 8 VCPUs, observes 6–15%

higher IPC than the No DMR 2X configuration, since it has approximately half of the bandwidth

175

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.2

0.4

0.6

0.8

1

No DMR 2X No DMR Reunion Mute Coher Ideal Mute Mem

Figure 7.6 DMR Performance Comparison: Throughput

and capacity pressure on the shared cache and network resources. The Reunion configuration,

however, sees a 22–47% decrease in the IPC of each VCPU. The performance penalty of using

Reunion is 35–53% compared to the 8 VCPU No DMR configuration.

This result is in contrast to the published Reunion work [Smolens, 2008; Smolens et al., 2006],

which reports 5–10% overheads for the 10-cycle comparison latency used here. The reasons for

this discrepancy are directly related to the data presented above: increased latency from the 3-

level cache hierarchy, increased serializing instructions, and increased instruction window pres-

sure from maintaining sequential consistency. Although the benchmarks (SPEC CPU95) and tar-

get microarchitecture (SMT) are very different, Mukherjee et al. [2002] report a similar 32–40%

per-threads performance loss for their Simultaneously and Redundant Threading (SRT) processor.

Walcott et al. [2007] also report a 43% loss for one benchmark (twolf from SPEC CPU2000)

when using DMR.

176

While this increase in per-thread latency is larger than some previous work, and similar to

others, none of this prior work examined the impact on throughput created by the need to use

twice as many core (or thread contexts) to run the same number of threads.

Figure 7.6 shows this overall throughput impact, and the results are dramatic. As expected,

throughput lost by No DMR, when not running VCPUs on all cores, is nearly half that of No DMR

2X. The loss isn’t quite half (43–45%) due to fewer cache-to-cache transfers, as shown in Figure

7.4, and due to less pressure on the capacity of the shared L3 and main memory bandwidth. The

throughput for the Reunion configurations is approximately one third to one quarter that of No

DMR 2X, due not only to half as many VCPUs running, but to the fact that those VCPUs each

slow down by nearly a factor of two.

As discussed in Section 7.2.1.1, the original baseline Reunion configuration does not maintain

coherence for the private caches of the mute cores, instead, making a best-effort approximation

of coherence to deliver the correct value. But maintaining coherence can avoid the need to flush

the caches on a mode switch in mixed-mode operation. The second DMR configuration (fourth

bar, labeled Mute Coher) shows the overhead of maintaining coherence for mute caches when not

switching modes. This throughput overhead ranges from 0–5% beyond that of Reunion due to the

additional C2C transfers.

Though not as bad, Ideal Mute Mem still observes a 50–60% drop in throughput, even after

idealizing all memory accesses from the mute cores. In the absence of serializing events, the mute

core will nearly always run ahead of the vocal core, providing fingerprints by the time the vocal

core needs them, and insulating it from the fingerprint comparison latency. This configuration

does not observe memory overheads, but still observes overheads from SIs and instruction window

and LSQ pressure.

Overall, the runtime overheads of Reunion execution are quite large, and arise due to increased

L2 cache-to-cache transfers, increased latency for processing serializing instructions, and increase

177

pressure on the instruction window and LSQ. Clearly, certain customers and applications are

willing to pay the penalty of for the peace of mind of the high reliability it provides. However,

the fact that the overheads of DMR are significantly higher than reported by Smolens et al. [2006]

only reinforces the notion that DMR should only be used for applications which actually need that

high level of reliability.

7.3.3 Overhead of Switching to and from DMR

Mixed-mode operation can help save some of the overhead of DMR, but incurs additional over-

heads of its own. In particular, this section first examines the overhead of entering and leaving

dual-redundancy, by using two mixed-mode consolidated server configurations, and a redundant

consolidated server baseline, and then examines the frequency that mode switching is necessary

in a single-OS system.

Given the SPARC infrastructure, there is no way of evaluating switches to and from the system

VMM. Thus consolidated server workloads only switch to or from DMR mode during at the end

of each VMs timeslice. Two guest VMs, one which requires DMR and one which does not, are

gang scheduled at a 3ms timeslice. Dynamically (or statically) partitioned consolidated workloads

are not investigated in this chapter, since VCPUs would not switch modes frequently enough to

be of interest.

The baseline full DMR configuration runs both guest VMs in redundant mode. The first

mixed-mode configuration, the static MMM scheme depicted in Figure 7.1(b), allows unused

redundant cores to idle when the non-redundant VM is scheduled. The second mixed-mode con-

figuration represents a dynamic MMM system, similar to 7.2(a), which can take advantage of the

idle cores to execute additional VCPUs.

178

Switching Overhead Base DMR does not perform mode switching, it just redundantly per-

forms the normal multicore virtualization VCPU context switch. But this VCPU switching takes,

on average, 800-1400 cycles. The overheads for switching in are higher than in Chapter 4 due to

both the cost of synchronizing the redundant cores, and the fact that less frequent switches means

more VCPU state will be found in the L3 cache or main memory. The Base DMR system syn-

chronizes the cores at the beginning of switching one VCPU out, and synchronizes again and the

end of switching the next one in. This second synchronization can be costly due to different cache

latencies observed by all of the operations. The additional overheads for switching out arise due

to the more limited bandwidth of the write-through cache.

Mixed-mode performs a basic switch in of a VCPU after performing the exit DMR mode

switch transition, and performs a DMR enter transition after a basic switch out. Mute cores in

the static MMM system do not perform basic switching of non-DMR VCPUs, since they go idle

instead. Unlike the full DMR configuration, the cores in the mixed mode do not have to wait to

synchronize after they switch in a non-DMR thread. This reduces the overheads of switching in

by 20–40%.

The cost of entering DMR is somewhat larger than the cost of the baseline DMR system

switching in a new thread, due to additional synchronization. The overheads for performing DMR

mode exit transitions are, as expected, much higher than that of basic virtualization. In particular

the cost of flushing the L2 cache lies near 8k cycles. This operation proceeds at the bandwidth of

the L2 cache, which with its 15 cycle latency, 4 banks, and 4-stage pipeline, can process one line

on average per cycle. It is this cost that maintaining mute coherence completely removes. The

reason the cache flush is not strictly greater than 8192 cycles is that the data averages both the

time the mute spends flushing and the time the vocal spends waiting for the mute. The vocal cores

tend to finish their state manipulation and begin waiting few cycles after the flush has begun.

179

Switching Frequency The cost of the mode transitions in Table 7.4 is relatively small if these

transitions occur infrequently, as in the mixed-mode consolidated servers these data are from.

However, when performing mixed-mode operation on a single-OS system, transitions become

necessary whenever the user applications enters the kernel, e.g., for an interrupt or system call.

To examine the impact the switching latencies have in a single-OS system, Table 7.5 presents

the average number of cycles before switching from a user application to the OS, and from the OS

back to the user application. These data are for the baseline, non-DMR system. All benchmarks

except Apache and Zeus spend at least 200k cycles in user mode before entering the OS. All

benchmarks except Apache make a set of transitions into and out of the OS only every 245k

cycles or more (for Apache it is approximately 160k cycles).

The cost of switching into and out of DMR mode, from Table 7.4 is approximately 10k cycles

for all benchmarks. The implication of this data is that flushing the L2 cache to allow Reunion’s

mute incoherence results in at least a 6.5% overhead for Apache, and at least a 4% overhead

for the other benchmarks. Given that the overhead of maintaining mute coherence is 0–5%, from

Figure 7.6, both are viable techniques for single-OS mixed-mode operation. Reunion’s original

incoherence proposal is better for consolidated servers that use long timeslices.

7.3.4 Latency and Throughput of a Mixed-Mode Multicore

A mixed-mode consolidated server can provide differentiated service to different VMs. Figure

7.7 demonstrates the per-thread performance gains of mixed-mode operation. The striped bars at

the bottom (labeled VM 2) represent the per-thread performance of the guest VM which requires

redundancy. The solid, top bars (labeled VM 1) represent the guest VM which does not require

redundancy.

In a traditional consolidated server, if guest VM 2 require DMR, the all guests would need

to run with DMR to protect the integrity of VM 2. The left set of bars (labeled DMR Base for

180

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 P
er

−
th

re
ad

 U
se

r
IP

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

VM 1: MMM Dynamic

VM 2: DMR

VM 1: MMM Static

VM 2: DMR

VM 1: DMR Base

VM 2: DMR

Figure 7.7 Mixed-Mode Performance Comparison: Per-thread Latency

VM 1) thus represents the Reunion DMR baseline, where DMR is used all of the time. The

second set of bars, labeled MMM Static, represents the static MMM scheme depicted in Figure

7.1(b), where unused redundant cores are allowed to idle. Due to the latency overhead of DMR

execution, VM 1 observes 36–90% speedup over the full DMR configuration. The performance

of VM 2 is virtually unchanged, though pgoltp observes a 6.5% slowdown. A system VMM

could potentially adjust the timeslice of VM 2 to make up for the difference.

The third set of bars, labeled MMM Dynamic, represents a dynamic MMM system, which can

take advantage of the idle cores to execute additional VCPUs. In this case, the per-thread latency

of those VCPUs still increases, though since more VCPUs are executing and consuming cache

resources, the speedup of VM 2 is 33–80%.

Per-thread latency is only part of the picture, however, since the dynamic MMM configuration

is using those otherwise-idle cores to execute more VCPUs. Figure 7.8 shows the overall system

throughput, again normalized to the always-DMR baseline, and again broken into throughput

181

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

VM 1: No DMR

VM 2: No DMR

VM 1: MMM Dynamic

VM 2: DMR

VM 1: MMM Static

VM 2: DMR

VM 1: DMR Base

VM 2: DMR

Figure 7.8 Mixed-Mode Performance Comparison: Overall Throughput

from each guest VM. The throughput of the static MMM is the same as Figure 7.7. However, for

scalable applications, such as these commercial workloads, improvements in throughput can be

significant using a dynamic MMM, where VM 1 now independently executes 16 VCPUs. VM

1 observes speedups of 2.5–3.7 due to the combined effect of per-VCPU latency reduction, and

additional throughput from more VCPUs. Speedup of VM 1 over the static MMM configuration

are 1.8–1.9. The throughput of the machine overall increases by 1.7–2.3X.

For comparison, the fourth set of bars represents the performance of a system which does

not perform DMR at all. Instead of gang scheduling the guest VMs (at a 3ms timeslice), both

8-VCPU VMs are concurrently run on separate cores. This configuration achieves speedups of

2.7–4.4 for both VMs, due to the improved latency, improved throughput, and no overhead from

182

Apache OLTP pgoltp pmake pgbench Zeus

P
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Dynamic Serial PAB

DMR VM

MMM Dynamic

DMR VM

Static Serial PAB

DMR VM

MMM Static

DMR VM

Figure 7.9 Performance Impact of PAB Latency

gang scheduling. However, this configuration does not offer any protection and peace of mind for

the customers of VM 2.

7.3.4.1 Effect of PAB Latency

Figure 7.9 shows the impact of a 2-cycle PAB lookup in serial before accessing the L2 cache.

The figure shows impact of serial PAB lookups for both static and dynamic MMM configurations.

Performance is normalized to the static mixed-mode configuration show in Figure 7.8.

Since only store write-throughs are stalled by this serial lookup, the performance impact arises

primarily through increase pressure on the instruction window and other structures. Indeed, serial

183

lookups decrease performance of the non-DMR VM by 0–3%. The DMR VM does not incur the

penalty of the PAB. Its performance does not change.

Note that because performance is calculated independently for each VM, and Figure 7.9, uses

Static MMM as the baseline, both VMs of Static MMM are shown to have normalized performance

of 0.5. In Figure 7.7, the performance of the VMs in Static MMM is unequal because performance

is normalized to a different baseline.

7.4 Related Work

Many circuit- and microarchitectural-level techniques for tolerating various hardware faults have

been discussed in Sections 2.2 and 5.6. Of primary interest to this chapter is a number of recent

microarchitectural DMR proposals, which join together two cores to reliably execute one VCPU

[Gomaa et al., 2003; LaFrieda et al., 2007; Mukherjee et al., 2002; Reinhardt and Mukherjee,

2000; Rotenberg, 1999; Smolens, 2008; Smolens et al., 2006; Weaver and Austin, 2001; Zhou,

2006]. Two of these proposals suggest (without investigate those claims further) that DMR can

easily be turned on and off in these systems [Mukherjee et al., 2002; Walcott et al., 2007]. This

chapter demonstrates, however, that running some applications of one system in DMR mode and

some in non-DMR mode is not as straightforward as it might first appear.

That said, there is nothing inherent in any of these DMR proposals that is incompatible with

the modifications for mixed-mode execution proposed in this chapter. Yet each of these systems

(including Reunion, which was chosen as the basis for mixed-mode) has drawbacks with respect

to the goals of this dissertation.

In particular, Reinhardt and Mukherjee [2000]; Rotenberg [1999] focus on SMT processors,

not multicores. Gomaa et al. [2003]; Mukherjee et al. [2002]; Weaver and Austin [2001]; Zhou

[2006] statically couple redundant cores with a queue to communicate identical load values from

the master thread to the slave thread. Weaver and Austin [2001] also communicate the input

184

register values of each instruction. A queue for load values prevents one of the issues that arises for

Reunion, that of input incoherence. It also eliminates the need for both cores to access the cache,

reducing duplication. However, no duplication means that all private caches, LSQ bypassing logic,

and the load value queue itself must be hardened against faults. Static coupling also reduces the

ability of an overcommitted MMM from flexibly scheduling VCPUs to cores.

The proposal of LaFrieda et al. [2007] allows dynamic coupling of redundant cores, but does

not work with a directory coherence protocol, and requires significant coherence protocol changes

to work with multithreaded applications.

In addition, none of the above proposals (except Reunion) have been previously evaluated

with multithreaded commercial applications.

Walcott et al. [2007] observe that the continuous use of redundant multithreading (RMT),

within a single SMT core, can lead to significant IPC overheads. They report overheads of 43%

for one benchmark. To combat this overhead, they propose to toggle RMT one and off for a given

application to achieve the desired level of vulnerability from faults. They address how to decide

when RMT is and is not necessary, given the Architectural Vulnerability Factor (AVF) of the

processor and application, but do not address the other issues relating to mixed-mode execution.

Aggarwal [2008] also addresses the need to offer differentiated service to certain applications.

This proposal starts with the assumption of replicated execution through a software VMM rather

than through microarchitectural mechanisms. To reduce software overheads, the VMM compares

the outputs of redundant copies only before I/O, and thus cannot easily support multithreaded

applications which can experience non-determinism within each redundant execution. The mi-

croarchitectural support used in this chapter performs replication and comparison on each thread

before it communicates with any other threads, preventing the non-determinism problem.

Overshadow is a software VMM-based memory encryption technique that can protect appli-

cation data from a security-compromised OS Chen et al. [2008]. Similar techniques could be used

185

to provide additional levels of protection among different applications, or different guest virtual

machines. Overshadow may be able to detect certain cases when an application’s data is modified

due to hardware faults that may occur when another application is executing through data integrity

checks. However, it cannot prevent the corruption from occurring in the first place.

Configurable Isolation Aggarwal et al. [2007] is a technique to reconfigure around permanent

hardware faults while losing the use of only a small fraction of the available core, cache, and

network resources. In addition, they partition physical memory between different color domains,

and use redundant hardware to maintain isolation between partitions.

7.5 Chapter Summary

As the underlying hardware becomes less reliable, system designers will seek to include higher-

level redundancy techniques such as Dual-Modular Redundancy (DMR) in their multicore designs

[Gomaa et al., 2003; LaFrieda et al., 2007; Mukherjee et al., 2002; Smolens et al., 2006; Zhou,

2006]. DMR can provide excellent coverage from a variety of transient, intermittent, and per-

manent sources, yet it comes with latency overheads of 35–50% for each thread, and throughput

overheads of 3–4 times.

The work in this chapter builds on the observation that some applications even today require

DMR, and more will in the future. Yet not all software requires DMR all the time. To address this

diversity in needs, even among application running on the same machine, this chapter proposes

and designs a Mixed-Mode Multicore (MMM). An MMM enables applications that need extra

reliability to run in DMR mode, while applications that do not need DMR observe significant

improvements in performance.

Though conceptually simple, two key challenges arise in designing an MMM. First, care must

be taken both during execution, and during a mode switch in order to protect the rest of the sys-

tem from faults occurring to non-DMR applications. As part of the solution to this problem, this

186

chapter proposes a hardware structure called the Protection Assistance Buffer (PAB) to re-validate

the permissions of stores before they write into the L2 cache. The PAB has no impact on perfor-

mance if it can be accessed in parallel with the L2 cache, and imposes a 1–5% performance loss

if accessed serially. But once continued system integrity is provided, an MMM which statically

maps VCPUs to a pair of cores can idle one of the cores when scheduling a non-DMR application.

For a system where one application requires DMR and one doesn’t, this static MMM can improve

overall system performance by 25–45% compared to a system that executes both application with

DMR.

The second key challenge is that providing a simple interface to software complicates the

scheduling of virtual processors (VCPUs) to cores: As software dictates which VCPUs need to

execute redundantly, the number of cores required to execute all of the VCPUs changes, creating

rapidly changing dynamic heterogeneity with respect to the software’s requirements. To address

this second problem, this chapter proposes to use the multicore virtualization techniques from

Chapter 4 to enable an overcommitted system and flexibility assign VCPUs to cores. In doing so,

the cores left idle by a non-DMR application can be used to improve throughput. This dynamically

scheduled MMM can improve the overall performance of a two-application system by 1.9-2.1

times.

If reliability trends continue for the next decade or longer, multicore processors without DMR

will become less and less reliable, and therefore useful for a smaller fraction of applications.

Eventually, manufacturing experts may choose to push technology to a point where essentially all

software needs to run with DMR. In the meantime, however, Mixed-Mode Multicore processors

can help ease this transition by letting the user run more applications in DMR mode with every

processor generation, instead of having to switching all at once from running with no applications

in DMR to incurring a 3–4X throughput loss for all applications.

187

1. Drain pipeline

2. Store all state to caches

Basic Switch Out

Leave Perf. Mode (New VCPU) or

Stay in Current Mode (New VCPU)

1. Load previously saved state

Basic Switch In

Enter Perf. Mode (New VCPU) or

Stay in Current Mode (New VCPU)

Vocal Mute

1. Wait for outstanding sync requests

2. Flush pipelines & sync

3. Store all state & sync

4. Wait Flush & write-back L2 cache

5. Sync & continue

Leave Reliable Mode (New VCPU)

Vocal & Mute

1. Load previously saved state

2. Sync & resume execution

Enter Reliable Mode (New VCPU)

Vocal Mute

1. Wait for outstanding sync requests

2. Flush pipelines & sync

3. Store privileged state & sync

4. Wait Flush & write-back L2 cache

5. Sync & continue

Leave Reliable Mode (Same VCPU)

Vocal Mute

1. Store all state Load previous priv state

2. Synchronize

3. Wait Ld & compare vocal’s priv state

4. Wait Load vocal’s user state

5. Sync & resume execution

Enter Reliable Mode (Same VCPU)

Table 7.1 State Transitions for Entering and Leaving Reliable Mode

188

SIs per 1k Fetch Stalled by SI

Workload No DMR No DMR Reunion

Apache 2 33% 46%

OLTP 1.1 20% 30%

pgoltp 0.7 13% 20%

pmake 0.6 10% 16%

pgbench 0.5 15% 17%

Zeus 2.4 42% 49%

Table 7.2 Impact of Serializing Instructions (SIs). Table shows SIs per 1k instructions, percent

of cycles where fetch is stalled due to an SI in the window, and an estimate for the additional SI

performance impact to Reunion over the baseline.

Workload No DMR Reunion Mute Coher. Ideal Mute Mem

Apache 17% 24% 22% 26%

OLTP 15% 27% 30% 27%

pgoltp 20% 35% 32% 35%

pmake 43% 57% 59% 53%

pgbench 24% 38% 33% 40%

Zeus 21% 25% 24% 26%

Table 7.3 Fraction of Cycles Instruction Window or LSQ are Full

189

Basic Virt DMR DMR Exit

Workload In Out Enter State & Sync Cache Flush

Base Apache 918 1337 n/a

DMR OLTP 898 1152 n/a

pgoltp 830 1167 n/a

pmake 798 882 n/a

pgbench 868 1148 n/a

Zeus 851 1295 n/a

Static Apache 686 1055 1892 1221 8202

MMM OLTP 666 1065 1861 1026 8195

pgoltp 656 1062 1856 1054 8194

pmake 622 991 1852 744 8172

pgbench 663 1051 1887 1046 8195

Zeus 676 1058 1945 1029 8177

Dynamic Apache 744 1141 1650 1080 8185

MMM OLTP 736 1124 1648 934 8198

pgoltp 689 1118 1588 856 8182

pmake 637 1055 1611 716 8164

pgbench 701 1097 1628 900 8176

Zeus 717 1128 1682 1006 8190

Table 7.4 Mixed-Mode Switching Overheads

Workload User Cycles OS Cycles

Apache 59k 98k

OLTP 218k 52k

pgoltp 210k 35k

pmake 312k 47k

pgbench 554k 126k

Zeus 65k 220k

Table 7.5 Average Cycles Before Switching Modes for Single-OS

190

Chapter 8

Conclusions

The continued exponential growth in the number of transistors on a chip presents several chal-

lenges to computer architects, who’s job it is to determine how to use these transistors effec-

tively. In order to simplify the problem for hardware designers, most computer manufacturers

have switched to building multicore processors, where one processing core is designed and then

replicated several times across the chip. Multicore chips, however, greatly complicate the task of

software running on the chip.

One complicating issue, identified by others, is the desire to design different cores with dif-

ferent engineering trade-offs, resulting in static heterogeneity (or asymmetry) [Gschwind et al.,

2005; Kumar et al., 2003, 2004; Li et al., 2007]. However, this dissertation identified another

issue increasing the complexity of multicore processors: that of dynamic heterogeneity. Dynamic

heterogeneity can occur, even among physically homogeneous cores, from reliability, power, or

thermal conditions, or even different cache and TLB contents, for example. This heterogeneity

can change very rapidly, creating uncertainty regarding which cores are available or most appro-

priate for running a given computation at a particular time. Current multicore processors, and

most designs for future multicore systems, simply pass this uncertainty up to the software. Yet

software’s need for extracting concurrency in the first place is a big enough challenge in the mul-

ticore era. Continuing to require software to explicitly manage the use of all cores in order to

191

express that concurrency to the hardware is an additional burden which is both undesirable and

unattainable.

This dissertation began a push toward hardware taking a more active role in the management

of its own resources. It did so by proposing hardware techniques to virtualize the cores of a

multicore processor. This multicore virtualization allows hardware to transparently remap the

virtual processors (VCPUs) exposed even to a single operating system (OS) to any subset of

physical cores. This dissertation demonstrated that by using these techniques, a processor can

manage its dynamically changing reliability conditions, the varying scheduling requirements of a

consolidated server, and the rapidly changing reliability requirements of the software. Moreover,

by using the proposed virtualization techniques, only the last of these three objectives requires

any changes to the system software.

8.1 Contributions and Key Results

This dissertation made several contributions for both researchers and designers of future multicore

processors:

• Dynamic heterogeneity was identified as an emerging challenge, as well as an opportunity,

for future multicore processors. Several examples of dynamic heterogeneity were described

at a high level in Chapter 1, while Chapters 5-7 each presented and analyzed an example of

dynamic heterogeneity in detail.

• Multicore virtualization techniques were proposed to allow hardware to manage the use of

its resources without requiring any modifications to existing application or system software

(Chapter 4). An overcommitted system was identified as one where the number of cores

available to perform work is less than the number of VCPUs exposed the operating system

(OS). The challenges of executing in such an environment were examined, and solved in

192

part with a proposal for hardware spin detection. The proposed Spin Detection Buffer (SDB)

was show to be capable of detecting all known spins in all workloads examined in this

dissertation, yet operate with a runtime overhead of less than 1.5%.

• Intermittent faults, a class of hardware faults which occur in bursts from several cycles to

several seconds or more, were identified as a source of dynamic heterogeneity and an emerg-

ing challenge for future multicores (Chapter 5). An analysis of three existing techniques to

adapt to the effects of these faults found the techniques deficient in several areas. To remedy

these drawbacks, a fourth technique using multicore virtualization was proposed. The pro-

posed technique was the only one to achieve high marks on all of the performance metrics,

gracefully handle multiple concurrent failures, and involve only moderate complexity. By

using this proposed technique, the chip can present a view of continuous, fully-functional,

reliable operation to the system software, insulating software from the details of rapidly

changing hardware reliability conditions.

• Scheduling consolidated server workloads on a multicore processor was investigated in

Chapter 6. This chapter found that the current status-quo of gang scheduling, or co-scheduling,

all VCPUs from a single guest virtual machine (VM) leads to conflicting objectives with

respect to the system’s goals. The proposed multicore virtualization techniques, on the

other hand, allow gang scheduling to be avoided. Instead, cores are dynamically partitioned

among guest VMs, specializing the predictive structures of each core. This dynamic het-

erogeneity, intentionally created from physically homogeneous cores, allows the guest VM

within each partition to operate with higher throughput, lower transaction latency, and more

isolation compared to gang scheduling. Furthermore, these partitions can be easily and

quickly adjusted to handle not only bursts in demand, but also any changing capabilities of

the underlying hardware.

193

• The need for simultaneously executing both applications which require high reliability and

those that require high performance was addressed in Chapter 7. The performance costs

of Dual Modular Redundancy (DMR), one technique for maintaining very high reliabil-

ity, were examined, and shown to be a 35-48% reduction in per-thread IPC, and a 2.5–4X

redunction in overall system throughput. While a significant, and growing, fraction of ap-

plications are willing to incur such overheads for high reliability and the peace of mind that

comes with it, that price is too high for many other applications. A Mixed-Mode Multicore

(MMM) design was proposed to allow both classes of applications to simultaneously run on

the same machine. Though conceptually simple, two issues were discovered when design-

ing an MMM. First, to protect the rest of the system from faults occurring to non-DMR ap-

plications, an MMM must prevent non-reliable applications from improperly writing mem-

ory, as well as properly handle transitions between DMR and non-DMR modes. Second, to

allow high-performance applications to fully utilize all available cores, techniques such as

the multicore virtualization proposed in this dissertation must be used. The resulting MMM

was shown to improve overall system throughput by approximately 2X, compared to a tra-

ditional DMR system, when one high-reliability and one high-performance application are

concurrently executing.

8.2 Additional Uses for Multicore Virtualization

The multicore virtualization techniques proposed in this work have been used in two other projects

performed in collaboration with the work in this dissertation. In addition, these multicore virtual-

ization techniques appear directly applicable to several other recent research proposals.

194

8.2.1 Computation Spreading and Over-provisioned Multicore Systems

Future processors will have a growing transistor budget, but are already approaching the limits

of cost-effective cooling. To tolerate this divergence of trends, an Over-provisioned Multicore

System (OPMS) was proposed, where the number of physical cores exceeds the number that can

be actively computing due to power and thermal limitations [Chakraborty, 2008; Chakraborty

et al., 2007]. Though such a system may appear counter-intuitive, the observation is made that

inactive cores can remain useful by retaining predictive state in close proximity to the pipeline, by

allowing thermal hot-spots to dissipate, or simply existing as spares. The challenge of an OPMS

is to efficiently use the growing number of cores, despite not being able to simultaneously activate

them.

One proposed solution is to perform Computation Spreading (CSP) across the full set of

cores [Chakraborty et al., 2006]. CSP identifies similar computation fragments from different

threads, and executes them on a single core, while identifying dissimilar fragments from within

each thread, and spreads their execution across multiple cores. CSP actively creates dynamic

heterogeneity by tailoring each core’s predictive structures to a certain type of computation.

The mechanism enabling CSP to be performed with unmodified software is the multicore

virtualization proposed in this dissertation. CSP first requires the basic multicore virtualization

techniques in order to move VCPUs around the chip in an effort to improve their locality. But

CSP, even on an OPMS, also requires support for overcommitting. The reason for this disparate

nomenclature is the following: An OPMS may have more cores than it exposes VCPUs to the

OS. But power and thermal limitations restrict the number of cores that are available at any given

time, and CSP further restricts which cores are currently appropriate for a given set of VCPUs.

Whenever the number of appropriate cores is less than the number of VCPUs wishing to execute

195

on those cores, that subset of cores becomes overcommitted, regardless of the remaining number

of cores in the system.

8.2.2 Support for Other Research

In addition to CSP and OPMS, multicore virtualization, with support for overcommitting, appears

directly applicable to other research as well. Speculative multithreading and other techniques

(e.g., [Ípek et al., 2007; Sohi et al., 1995; Zilles and Sohi, 2002]) dynamically couple multiple

cores together to run a single VCPU more quickly. These techniques can allow the same chip to

be effective for single or multithreaded applications, and can help mitigate the effects of Amdahl’s

Law for semi-parallel applications [Hill and Marty, 2008].

By increasing the number of cores used to execute a single VCPU, the number of VCPUs that

can execute concurrently becomes limited, i.e., an overcommitted system is created. This scenario

is exactly like the one examined in Chapter 7 when using DMR on a Mixed-Mode Multicore.

What makes using multicore virtualization especially appealing for semi-parallel applications,

however, is that the proposed Spin Detection Buffer (SDB) can automatically infer parallel and

serial regions of the code when VCPUs are either spinning on a lock or running the OS idle

loop. When a VCPU stops performing useful work, the SDB notifies the Virtualization Controller,

which could then join idle cores together to more quickly execute the remaining VCPUs which are

performing useful work. If the latency of joining and separating cores is low enough, this action

could be initiated even, for example, when the threads on several VCPUs have already reached a

barrier, but are waiting on one or more slower threads.

An overcommitted system can also potentially arise with the Internet Suspend/Resume (ISR)

project [Satyanarayanan et al., 2007]. The idea with ISR is to separate the state of a personal

computer from the hardware, allowing a user to physically move from one computer to another,

and start up a system VM containing the state of their session exactly as it was on the previous

196

computer, including an already booted OS and running applications. This feat is accomplished

by virtualizing the hardware, and using the network for storage. Of interest is that the number of

cores on the computers can be different, yet for most OSs, there is no way to change the number

of cores it is using without a reboot. If moving from a machine with fewer core to one with more,

the additional cores will be unused. If moving from a machine with more to one with fewer, the

VM will not load, and must force the OS to reboot.

Allowing an overcommitted system solves this problem with ISR. The OS can be configured

with the maximum number of cores that the user expects to see, yet can run with little overhead

on a machine with any number of fewer cores.

8.3 Cost and Benefits of Hardware Virtualization

The multicore virtualization proposed in this dissertation is hardware-centric. It holds as one

of its major design goals the ability to virtualize completely unmodified operating systems. Yet

with the proliferation of para-virtualized system VMs, such as Xen [Barham et al., 2003], or IBM

and Sun’s hypervisors [Armstrong et al., 2005; Charlesworth, 1998], operating system developers

are becoming accustomed to the idea of the OS being modified to better support virtualization.

One useful modification to the traditional interface (already provided by IBM [Armstrong et al.,

2005]) would be to notify the virtualization layer when a VCPU is spinning, idle, or otherwise not

performing useful work. If such an enhancement is possible for a particular scenario, it is likely

to be simpler, and potentially more accurate, than using the heuristic-based Spin Detection Buffer

(SDB).

The other components of multicore virtualization, however, appear more useful in a broader

range of scenarios — useful enough, in fact, that AMD and Intel have both adopted mechanisms

similar to those proposed for manipulating VCPU state [Advanced Micro Devices, 2005; Uhlig

et al., 2005]. These companies have no public plans, however, to place control over VCPU state

197

manipulation in the hands of a hardware-based Virtualization Controller. And it is this controller

that allows the virtualization to become useful while remaining transparent to the system software.

The controller is also the only piece that needs to change to support both adapting to intermit-

tent faults, and dynamic partitioning of consolidated servers. Should a future multicore already

contain the basic virtualization mechanisms, either as proposed or with some software support,

adding control logic to enable these additional applications seems like a winning proposition. On

the other hand, the benefits of implementing the entire multicore virtualization proposal for either

intermittent faults or consolidated servers individually may not outweigh the cost, given other

lower performance, but simpler alternatives.

Adding mixed-mode operation to a system that already implements microarchitectural DMR

is straightforward if the primary goal is to improve single-thread latency, and possibly save power.

Yet simpler alternatives may arise, which will not require implementing the full multicore virtu-

alization techniques for the sole purpose of improving throughput for high-performance applica-

tions. If hardware reliability concerns actually do rise to the level where a significant number of

users want DMR for their desktop applications, then providing a simplified mixed-mode operation

would likely prove beneficial for a company.

8.4 Revisiting the Thesis Statement

Chapter 1 presents the following thesis statement:

Future multicore processors should support software-transparent virtualization of on-

chip cores due to the emerging challenges and opportunities of dynamic heterogene-

ity.

A basic assumption of this thesis is that dynamic heterogeneity will exist in future multicore

processors, and present opportunities as well as challenges. This assumption is supported by

198

Chapters 5–7, as well as Chakraborty et al. [2006] and Chakraborty et al. [2007], which each

present an example of an opportunities or challenge (or both) of dynamic heterogeneity.

Given this assumption, the above thesis makes two claims: not only is virtualization of on-chip

cores needed, but this virtualization needs to be software transparent.

The need for software transparency arises for practical, but also somewhat ideological, rea-

sons. Many of the issues have been discussed at various places in this dissertation (e.g., Sections

1.1.1, 5.3.4, and 7.2.5), and come back to the same problem: the desire to maintain a clean hard-

ware/software interface that does not change significantly, or create new obligations for the system

software, with every new generation of hardware. Without alternatives, such as those proposed

in this dissertation, the task of acquiring and then using detailed information about the current

configuration and capabilities of each core will place a significant burden on system software, at

the very least, threatening to break backward compatibility.

The need for hardware virtualization is more quantitative, and is supported by data in this

dissertation. In particular, Chapters 5 and 7 each demonstrated an example of rapidly changing

dynamic heterogeneity. Given that the capabilities and configurations of cores may change within

thousands or millions of cycles, the need for hardware support is clear: current system software

is not up to the task (see Section 5.4), and improved system software is still hampered by the

cost of trapping into the operating system to perform and implement a decision about how to

efficiently use each core [Nellans et al., 2005]. The result is that the latency of adapting to dynamic

heterogeneity can easily surpass any opportunity to do so.

8.5 Future Directions

The thesis of this dissertation can thus be justified given its engineering and ideological context.

That being said, compromises must often be made to a proposal in order to realize its practical

199

benefits. The challenge in this case is to strike the proper balance between hardware cost and

complexity, software burden, and perceived improvement.

For example, this dissertation has shown that certain kinds of hardware resource management

can be undertaken with unmodified system and application software, yet this approach cannot be

expected to scale to hundreds or more cores. The reason is because modern OSs treat multicore

chips the same as they did uniprocessors: by time sharing each VCPU with multiple application

threads, OS threads, resource management tasks, and other functions. Consequently, two major

problems arise. First, system software hides concurrency from the hardware, such as indepen-

dence between the system and user code that typically executes on a single core, or the existence

of other runnable user threads that are not currently scheduled. Second, it hinders opportunities

for efficiency by scheduling multiple, unrelated, tasks onto the same VCPU.

As shown in this dissertations, some resource management tasks are best suited to hardware,

such as fine-grain mapping of computation to cores. Yet some tasks remain best suited for system

software, such as setting policies and helping to expose all available concurrency. In defining the

interface between hardware and software for future multicores, researchers should work to define

appropriate levels of abstraction, creating an interface that can exchange information in both di-

rections for efficient resource management, and can remain stable across several generations of

diverse chips.

What the proper balance should be for a particular multicore systems of the future is dependent

on a number of factors, and will be the subject of much future research. Two claims, however, can

be made with near certainty: 1) future multicore processors will be much more complex than they

are today, due in part to dynamic heterogeneity, and 2) both hardware and software will need to

take on more responsibility for managing this complexity.

200

Bibliography

Advanced Micro Devices. AMD64 Architecture Programmer’s Manual Volume 2: System Pro-

gramming, Dec 2005.

Aggarwal, Nidhi. PhD thesis, University of Wisconsin-Madison, 2008.

Aggarwal, Nidhi, Parthasarathy Ranganathan, Norman P. Jouppi, and James E. Smith. Config-

urable isolation: building high availability systems with commodity multi-core processors. In

Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA),

pages 470–481, 2007.

Ailamaki, Anastassia, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMSs on a modern

processor: Where does time go? In Proceedings of the 25th Annual Very Large Databases

(VLDB), pages 266–277, 1999.

Alameldeen, Alaa R. and David A. Wood. Variability in architectural simulations of multi-

threaded workloads. In Proceedings of the 9th International Symposium on High-Performance

Computer Architecture (HPCA), 2003.

Anderson, Thomas E., Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Sched-

uler activations: effective kernel support for the user-level management of parallelism. ACM

Transactions on Computer Systems, 10(1):53–79, 1992.

Armstrong, W, R Arndt, D Boutcher, R Kovacs, D Larson, K Lucke, N Nayar, and R Swanberg.

Advanced virtualization capabilities of POWER5 systems. IBM Journal and Research and

Development, 49(4/5), 2005.

Arpaci-Dusseau, Remzi H. and Andrea C. Arpaci-Dusseau. Fail-stutter fault tolerance. In Pro-

ceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS), 2001.

Austin, Todd, David Blaauw, Trevor Mudge, and Krisztián Flautner. Making typical silicon matter

with razor. IEEE Computer, 37(3):57–65, 2004.

201

Austin, Todd M. DIVA: A reliable substrate for deep submicron microarchitecture design. In Pro-

ceedings of the 32th Annual International Symposium on Microarchitecture (MICRO), 1999.

Balakrishnan, Saisanthosh, Ravi Rajwar, Mike Upton, and Konrad Lai. The impact of perfor-

mance asymmetry in emerging multicore architectures. In Proceedings of the 32nd Annual

International Symposium on Computer Architecture (ISCA), 2005.

Barford, Paul and Mark Crovella. Generating representative web workloads for network and

server performance evaluation. In Proceedings of the 1998 International Conference on Mea-

surement and Modeling of Computer Systems, 1998.

Barham, Paul, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,

Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In Proceedings of the 19th

Annual Symposium on Operating Systems Principles (SOSP), 2003.

Bernick, David, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine, Jim Klecka, and Jim

Smullen. Nonstop advanced architecture. In Proceedings of the 2005 International Conference

on Dependable Systems and Networks (DSN), 2005.

Blough, Douglas M., Gregory F. Sullivan, and Gerald M. Masson. Intermittent fault diagnosis in

multiprocessor systems. IEEE Transactions on Computers, 41(11):1430–1441, 1992.

Blough, Douglas M., Fadi J. Kurdahi, and Seong Yong Ohm. High-level synthesis of recoverable

VLSI microarchitectures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

7(4):401–410, 1999.

Borden, Terry L., John P. Hennessy, and James W. Rymarczyk. Multiple operating systems on

one processor complex. IBM Systems Journal, 28(1):104–123, 1989.

Borkar, Shekhar. Microarchitecture and design challenges for gigascale integration: Keynote.

In Proceedings of the 37th Annual International Symposium on Microarchitecture (MICRO),

2004.

Borkar, Shekhar, Tanay Karnik, Jim Tschanz, Ali Keshavarzi, and Vivek De. Parameter variations

and impact on circuits and microarchitecture. In Proceedings of the 40th Annual Conference

on Design Automation, 2003.

Bossen, Douglas. CMOS soft errors and server design. In Workshop on Radiation Induced Soft

Errors, Proceedings of the IEEE International Reliability Physics Symposium, 2002. As quoted

by Mukherjee et al. [2005].

202

Bower, Fred A., Daniel J. Sorin, and Sule Ozev. A mechanism for online diagnosis of hard

faults in microprocessors. In Proceedings of the 38th Annual International Symposium on

Microarchitecture (MICRO), 2005.

Bowman, K.A., S.G. Duvall, and J.D. Meindl. Impact of die-to-die and within-die parameter fluc-

tuations on the maximum clock frequency distribution for gigascale integration. IEEE Journal

of Solid-State Circuits, 37(2):183–190, Feb 2002.

Brooks, David and Margaret Martonosi. Dynamic thermal management for high-performance

microprocessors. In Proceedings of the 7th International Symposium on High-Performance

Computer Architecture (HPCA), 2001.

Bugnion, Edouard, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco: running com-

modity operating systems on scalable multiprocessors. ACM Transactions on Computer Sys-

tems, 15(4):412–447, 1997.

Chakraborty, Koushik. Over-provisioned Multicore Systems. PhD thesis, University of Wisconsin-

Madison, Aug 2008.

Chakraborty, Koushik, Philip M. Wells, and Gurindar S. Sohi. Computation spreading: Em-

ploying hardware migration to specialize CMP cores on-the-fly. In Proceedings of the 12th

International conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2006.

Chakraborty, Koushik, Philip M. Wells, and Gurindar S. Sohi. A case for an over-provisioned

multicore system: Energy efficient processing of multithreaded programs. Technical Report

CS-TR-2007-1607, University of Wisconsin-Madison, Aug 2007.

Chang, Jichuan. Cooperative Caching for Chip Multiprocessors. PhD thesis, University of

Wisconsin-Madison, Aug 2007.

Chang, Jichuan and Gurindar S. Sohi. Cooperative cache partitioning for chip multiprocessors.

In Proceedings of the 21st Annual International Conference on Supercomputing (ICS), 2007.

Charlesworth, Alan. Starfire: Extending the smp envelope. IEEE Micro, 18(1):39–49, 1998.

Chen, Xiaoxin, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Waldspurger,

Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Overshadow: a virtualization-based ap-

proach to retrofitting protection in commodity operating systems. In Proceedings of the 13th

International conference on Architectural Support for Programming Languages and Operating

203

Systems (ASPLOS), pages 2–13, 2008.

Compaq Computer Corp. Alpha 21264/EV6 Microprocessor Hardware Reference Manual. Com-

paq Computer Corp., 2000.

Constantinescu, Cristian. Intermittent faults in VLSI circuits. In Proceedings of the IEEE Work-

shop on Silicon Errors in Logic - System Effects (SELSE), 2007.

Constantinescu, Cristian. Trends and challenges in VLSI circuit reliability. IEEE Micro, 23(4):

14–19, 2003.

Contant, Olivier, Stéphane Lafortune, and Demosthenis Teneketzis. Diagnosis of intermittent

faults. Discrete Event Dynamic Systems, 14(2):171–202, 2004.

Conway, Pat and Bill Hughes. The AMD Opteron Northbridge architecture. IEEE Micro, 27(2):

10–21, 2007.

Deen, G, M Hammer, J Bethencourt, I Eiron, J Thomas, and J Kaufman. Running Quake II on a

grid. IBM Journal and Research and Development, 45(1), 2006.

Dorsey, J., S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza, S. Meyers,

E. Fang, and R. Kumar. An integrated quad-core Opteron processor. In Proceedings of the

2007 International Solid-State Circuits Conference, pages 102–103, Feb. 2007.

Driesen, Karel and Urs Hölzle. The cascaded predictor: economical and adaptive branch target

prediction. In Proceedings of the 31st Annual International Symposium on Microarchitecture

(MICRO), pages 249–258, 1998.

Eden, A. N. and T. Mudge. The YAGS branch prediction scheme. In Proceedings of the 31st

Annual International Symposium on Microarchitecture (MICRO), pages 69–77, 1998.

Eisele, M., J. Berthold, D. Schmitt-Landsiedel, and R. Mahnkopf. The impact of intra-die device

parameter variations on path delays and on the design for yield of low voltage digital circuits.

In Proceedings of the 1996 International Symposium on Low Power Electronics and Design,

pages 237–242, 1996.

Ernst, Dan, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad

Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, and Trevor Mudge. Razor: A low-

power pipeline based on circuit-level timing speculation. In Proceedings of the 36th Annual

International Symposium on Microarchitecture (MICRO), 2003.

204

Ernst, Dan, Shidhartha Das, Seokwoo Lee, David Blaauw, Todd Austin, Trevor Mudge, Nam Sung

Kim, and Krisztian Flautner. Razor: Circuit-level correction of timing errors for low-power

operation. IEEE Micro, 24(6):10–20, 2004.

Figueiredo, Reneto, Peter A. Dinda, and Jose Fortes. Resource virtualization renaissance. IEEE

Computer, 38(5):28–31, 2005.

Forrester Research, Inc. The total economic impact of Sun Microsystems’ enterprise consolidation

solutions, Jul 2004. http://www.sun.com/datacenter/consolidation/docs/

tei h.pdf. Viewed 7/23/2008.

Gomaa, Mohamed, Chad Scarbrough, T. N. Vijaykumar, and Irith Pomeranz. Transient-fault

recovery for chip multiprocessors. In Proceedings of the 30th Annual International Symposium

on Computer Architecture (ISCA), 2003.

Govil, Kinshuk, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. Cellular Disco: Re-

source management using virtual clusters on shared-memory multiprocessors. In Proceedings

of the 16th Annual Symposium on Operating Systems Principles (SOSP), 1999.

Govil, Kinshuk, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. Cellular Disco: Re-

source management using virtual clusters on shared-memory multiprocessors. ACM Transac-

tions on Computer Systems, 18(3):229–262, Aug 2000.

Gschwind, Michael, Peter Hofstee, Brian Flachs, Marty Hopkins, Yukio Watanabe, and Takeshi

Yamazaki. A novel SIMD architecture for the Cell heterogeneous chip-multiprocessor. In

Proceedings of the 17th Hot Chips, 2005.

Gunther, S H, F Binns, D M Carmean, and J C Hall. Managing the impact of increasing micro-

processor power consumption. Intel Technology Journal, Q1, 2001.

Hamilton, Samuel Norman and Alex Orailoglu. Transient and intermittent fault recovery without

rollback. In Proceedings of the 13th International Symposium on Defect and Fault-Tolerance

in VLSI Systems, 1998.

Held, Jim, Jerry Bautista, and Sean Koehl. From a few cores to many: A tera-scale comput-

ing research overview, 2006. ftp://download.intel.com/research/platform/

terascale/terascale overview paper.pdf. Viewed 6/30/2008.

Hill, Eric L., Mikko H. Lipasti, and Kewal K. Saluja. An accurate flip-flop selection technique

for reducing logic ser. In Proceedings of the 2007 International Conference on Dependable

205

Systems and Networks (DSN), 2008.

Hill, Mark D. and Michael R. Marty. Amdahl’s law in the multicore era. IEEE Computer, 41(7):

33–38, Jul 2008.

Hohmuth, Michael and Hermann Hartig. Pragmatic nonblocking synchronization for real-time

systems. In Proceedings of the General Track USENIX Annual Technical Conference, 2001.

IBM. SPAR saves a “six-figure sum” using a virtualized environment for SAP ERP with

IBM System p, Mar 2008. http://www.ibm.com/common/ssi/fcgi-bin/

ssialias?infotype=pm&subtype=ab&appname=SNDE SP SP CHEN&htmlfid=

SPC03020CHEN&attachment=SPC03020CHEN.PDF. Viewed 7/23/2008.

Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel Corpora-

tion, May 2007.

Ípek, Engin, Meyrem Kirman, Nevin Kirman, and José F. Martı́nez. Core fusion: accommodating

software diversity in chip multiprocessors. In Proceedings of the 34th Annual International

Symposium on Computer Architecture (ISCA), 2007.

Ismaeel, Asad A. and Rakesh Bhatnagar. Test for detection & location of intermittent faults in

combinational circuits. IEEE Transactions on Reliability, 46(2):269–274, Jun 1997.

Jann, Joefon, Luke M. Browning, and R. Sarma Burugula. Dynamic reconfiguration: Basic build-

ing blocks for autonomic computing on IBM pSeries servers. IBM Systems Journal, 42(1):

29–37, 2003.

Joseph, Russ. Exploring core salvage techniques for multi-core architectures. In Proceedings of

the Workshop on High Performance Computing Reliability Issues, 2006.

Joseph, Russ, David Brooks, and Margaret Martonosi. Control techniques to eliminate voltage

emergencies in high performance processors. In Proceedings of the 9th International Sympo-

sium on High-Performance Computer Architecture (HPCA), 2003.

Jourdan, Stephan J., John Alan Miller, and Namratha Jaisimha. Return address stack including

speculative return address buffer with back pointers. U.S. Patent 6,898,699, May 2005.

Kalbarczyk, Zbigniew T., Ravishankar K. Iyer, Saurabh Bagchi, and Keith Whisnant. Chameleon:

A software infrastructure for adaptive fault tolerance. IEEE Transactions on Parallel and Dis-

tributed Systems, 10(6):560–579, 1999.

206

Kalla, Ron, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 chip: a dual-core multithreaded

processor. IEEE Micro, 24(2):40–47, 2004.

Kehl, Ted. Hardware self-tuning and circuit performance monitoring. In Proceedings of the 1993

International Conference on Computer Design, 1993.

Kim, Seongbeom, Dhruba Chandra, and Yan Solihin. Fair cache sharing and partitioning in a

chip multiprocessor architecture. In Proceedings of the 13th Annual International Conference

on Parallel Architectures and Compilation Techniques (PACT), 2004.

Kumar, Rakesh, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and Dean M.

Tullsen. Single-ISA heterogeneous multi-core architectures: The potential for processor power

reduction. In Proceedings of the 36th Annual International Symposium on Microarchitecture

(MICRO), 2003.

Kumar, Rakesh, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, and Keith I.

Farkas. Single-ISA heterogeneous multi-core architectures for multithreaded workload perfor-

mance. In Proceedings of the 31st Annual International Symposium on Computer Architecture

(ISCA), 2004.

Kyo, Shorin, Takuya Koga, Lieske Hanno, Shouhei Nomoto, and Shin’ichiro Okazaki. A low-cost

mixed-mode parallel processor architecture for embedded systems. In Proceedings of the 21st

Annual International Conference on Supercomputing (ICS), pages 253–262, 2007.

LaFrieda, Christopher, Engin Ípek, José F. Martı́nez, and Rajit Manohar. Utilizing dynamically

coupled cores to form a resilient chip multiprocessor. In Proceedings of the 2007 International

Conference on Dependable Systems and Networks (DSN), 2007.

Lamport, Leslie, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

Laudon, James. Performance/watt: the new server focus. ACM SIGARCH Computer Architecture

News, 33(4):5–13, 2005.

Lepak, Kevin M. and Mikko H. Lipasti. Temporally silent stores. In Proceedings of the 10th

International conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 30–41, October 2002.

Li, Man-Lap, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S. Adve,

and Yuanyuan Zhou. Understanding the propagation of hard errors to software and implications

207

for resilient system design. In Proceedings of the 13th International conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), pages 265–276, 2008.

Li, Tao, Lizy Kurian John, Anand Sivasubramaniam, N. Vijaykrishnan, and Juan Rubio. Under-

standing and improving operating system effects in control flow prediction. In Proceedings of

the 10th International conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 68–80, 2002.

Li, Tong, Alvin R. Lebeck, and Daniel J. Sorin. Spin detection hardware for improved manage-

ment of multithreaded systems. IEEE Transactions on Parallel and Distributed Systems, 17(6):

508–521, 2006.

Li, Tong, Dan Baumberger, David A. Koufaty, and Scott Hahn. Efficient operating system

scheduling for performance-asymmetric multi-core architectures. In Proceedings of the 2007

ACM/IEEE Conference on Supercomputing, pages 1–11, 2007.

Liang, Xiaoyao and David Brooks. Mitigating the impact of process variations on processor

register files and execution units. In Proceedings of the 39th Annual International Symposium

on Microarchitecture (MICRO), 2006.

Litt, Timothe. Method and apparatus for CPU failure recovery in symmetric multi-processing

systems. U.S. Patent 5,815,651, Sep 1998.

Magnusson, Peter, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hållberg, Jo-

han Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A full system

simulation platform. IEEE Computer, 35(2):50–58, Feb 2002.

Marty, Michael R. and Mark D. Hill. Virtual hierarchies. IEEE Micro, 28(1):99–109, 2008.

Marty, Michael R. and Mark D. Hill. Virtual hierarchies to support server consolidation. In

Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA),

pages 46–56, 2007.

Mauer, Carl J., Mark D. Hill, and David A. Wood. Full-system timing-first simulation. In Pro-

ceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling

of Computer Systems, pages 108–116, 2002.

McEvoy, Dennis. The architecture of tandem’s nonstop system. In Proceedings of the ACM 1981

Conference, 1981.

208

Mitra, S., M. Zhang, N. Seifert amd T. M. Mak, and K. Kim. Soft error resilient system design

through error correction. In Proceedings of the Very Large Scale Integration, January 2006a.

Mitra, S., M. Zhang, N. Seifert, B. Gill, S. Waqas, and K. Kim. Combinational logic soft error

correction. In Proceedings of the 2006 International Test Conference (ITC), November 2006b.

Mitra, Subhasish, Norbert Seifert, Ming Zhang, Quan Shi, and Kee Sup Kim. Robust system

design with built-in soft-error resilience. IEEE Computer, 38(2):43–52, 2005.

Mukherjee, Shubhendu S., Michael Kontz, and Steven K. Reinhardt. Detailed design and evalua-

tion of redundant multithreading alternatives. In Proceedings of the 29th Annual International

Symposium on Computer Architecture (ISCA), 2002.

Mukherjee, Shubhendu S., Joel Emer, and Steven K. Reinhardt. The soft error problem: An archi-

tectural perspective. In Proceedings of the 11th International Symposium on High-Performance

Computer Architecture (HPCA), 2005.

Mullender, Sape J., Ian M. Leslie, and Derek McAuley. Operating-system support for distributed

multimedia. In Proceedings of the USENIX Summer 1994 Technical Conference, pages 14–14,

1994.

Najm, Farid N. and Noel Menezes. Statistical timing analysis based on a timing yield model. In

Proceedings of the 41th Annual Conference on Design Automation, pages 460–465, 2004.

Nakano, J., P. Montesinos, K. Gharachorloo, and J. Torrellas. ReViveI/O: Efficient handling of

I/O in highly-available rollback-recovery servers. In Proceedings of the 12th International

Symposium on High-Performance Computer Architecture (HPCA), 2006.

Nanya, Takashi and Hendrik A. Goosen. The byzantine hardware fault model. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 8(11):1226–1231, Nov 1989.

Nellans, David, Rajeev Balasubramonian, and Erik Brunvand. A case for increased operating

system support in chip multi-processors. In Proceedings of the 2nd IBM Watson Conference on

Interaction between Architecture, Circuits, and Compilers (p=ac2), 2005.

Normand, Eugene. Single event upset at ground level. IEEE Transactions on Nuclear Science, 43

(6):2742–2750, Dec 1996.

Open Source Development Labs. Database test suite. http://osdldbt.sourceforge.

net/. Viewed 7/28/2008.

209

Ousterhout, John K. Scheduling techniques for concurrent systems. In Distributed Computing

Systems, 1982.

Popek, Gerald J. and Robert P. Goldberg. Formal requirements for virtualizable third generation

architectures. Communications of the ACM, 17(7):412–421, 1974.

PostgreSQL Global Development Group. PostgreSQL. http://www.postgresql.org/.

Viewed 7/28/2008.

Powell, Michael D. and T. N. Vijaykumar. Exploiting resonant behavior to reduce inductive noise.

In Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA),

2004.

Powell, Michael D., Mohamed Gomaa, and T. N. Vijaykumar. Heat-and-run: leveraging SMT

and CMP to manage power density through the operating system. In Proceedings of the 11th

International conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2004.

Rafique, Nauman, Won-Taek Lim, and Mithuna Thottethodi. Architectural support for operat-

ing system-driven cmp cache management. In Proceedings of the 15th Annual International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages 2–12, 2006.

Rajwar, Ravi and James R. Goodman. Speculative lock elision: Enabling highly concurrent mul-

tithreaded execution. In Proceedings of the 34th Annual International Symposium on Microar-

chitecture (MICRO), pages 294–305, December 2001.

Ramanathan, R. M. Intel multi-core processors: Making the move to quad-core and beyond.

Technology@Intel Magazine, 4(9):2–4, Dec 2006.

Reinhardt, Steven K. and Shubhendu S. Mukherjee. Transient fault detection via simultaneous

multithreading. In Proceedings of the 27th Annual International Symposium on Computer

Architecture (ISCA), 2000.

Reis, George A., Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I. August. Swift:

Software implemented fault tolerance. In Proceedings of the International Symposium on Code

generation and Optimization (CGO), 2005a.

Reis, George A., Jonathan Chang, Neil Vachharajani, Ram Rangan, David I. August, and Shub-

hendu S. Mukherjee. Design and evaluation of hybrid fault-detection systems. In Proceedings

of the 32nd Annual International Symposium on Computer Architecture (ISCA), 2005b.

210

Rosenburg, B. Low-synchronization translation lookaside buffer consistency in large-scale

shared-memory multiprocessors. In Proceedings of the 12th Annual Symposium on Operat-

ing Systems Principles (SOSP), 1989.

Rotenberg, Eric. AR-SMT: A microarchitectural approach to fault tolerance in microproces-

sors. In Proceedings of the 29th Annual International Symposium on Fault-Tolerant Computing,

1999.

Sankaralingam, Karthikeyan, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk Huh,

Doug Burger, Stephen W. Keckler, and Charles R. Moore. Exploiting ilp, tlp, and dlp with the

polymorphous trips architecture. In Proceedings of the 30th Annual International Symposium

on Computer Architecture (ISCA), pages 422–433, 2003.

Satyanarayanan, Mahadev, Benjamin Gilbert, Matt Toups, Niraj Tolia, Ajay Surie, David R.

O’Hallaron, Adam Wolbach, Jan Harkes, Adrian Perrig, David J. Farber, Michael A. Kozuch,

Casey J. Helfrich, Partho Nath, and H. Andres Lagar-Cavilla. Pervasive personal computing in

an internet suspend/resume system. IEEE Internet Computing, 11(2):16–25, 2007.

Schlichting, Richard D. and Fred B. Schneider. Fail-stop processors: an approach to designing

fault-tolerant computing systems. ACM Transactions on Computer Systems, 1(3):222–238,

1983.

Semiconductor Industry Association. International technology roadmap for semiconductors: Ex-

ecutive summary, 2005.

Sherwood, Timothy, Suleyman Sair, and Brad Calder. Phase tracking and prediction. In Proceed-

ings of the 30th Annual International Symposium on Computer Architecture (ISCA), 2003.

Shivakumar, Premkishore, Michael Kistler, Stephen W. Keckler, Doug Burger, and Lorenzo

Alvisi. Modeling the effect of technology trends on the soft error rate of combinational logic.

In Proceedings of the 2002 International Conference on Dependable Systems and Networks

(DSN), 2002.

Shyam, Smitha, Kypros Constantinides, Sujay Phadke, Valeria Bertacco, and Todd Austin. Ul-

tra low-cost defect protection for microprocessor pipelines. In Proceedings of the 12th In-

ternational conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2006.

Skadron, Kevin, Pritpal S. Ahuja, Margaret Martonosi, and Douglas W. Clark. Improving predic-

tion for procedure returns with return-address-stack repair mechanisms. In Proceedings of the

211

31st Annual International Symposium on Microarchitecture (MICRO), pages 259–271, 1998.

Skadron, Kevin, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik Sankaranarayanan,

and David Tarjan. Temperature-aware microarchitecture. In Proceedings of the 30th Annual

International Symposium on Computer Architecture (ISCA), 2003.

Slegel, Timothy J., Robert M. Averill III, Mark A. Check, Bruce C. Giamei, Barry W. Krumm,

Christopher A. Krygowski, Wen H. Li, John S. Liptay, John D. MacDougall, Thomas J.

McPherson, Jennifer A. Navarro, Eric M. Schwarz, Kevin Shum, and Charles F. Webb. IBM’s

S/390 G5 microprocessor design. IEEE Micro, 19(2):12–23, 1999.

Smith, James and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes.

Morgan Kaufmann, 2005.

Smolens, Jared C. Fingerprinting: Hash-Based Error Detection in Microprocessors. PhD thesis,

Carnegie Mellon University, 2008.

Smolens, Jared C., Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe, and Andreas G.

Nowatzyk. Fingerprinting: bounding soft-error detection latency and bandwidth. In Proceed-

ings of the 11th International conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2004.

Smolens, Jared C., Brian T. Gold, Babak Falsafi, and James C. Hoe. Reunion: Complexity-

effective multicore redundancy. In Proceedings of the 39th Annual International Symposium

on Microarchitecture (MICRO), 2006.

Smolens, Jared C., Brian T. Gold, James C. Hoe, Babak Falsafi, and Ken Mai. Detecting emerging

wearout faults. In Proceedings of the IEEE Workshop on Silicon Errors in Logic - System Effects

(SELSE), 2007.

Sohi, Gurindar S., Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings

of the 22nd Annual International Symposium on Computer Architecture (ISCA), pages 414–425,

1995.

Sorin, Daniel J., Milo M. K. Martin, Mark D. Hill, and David A. Wood. Safetynet: improving the

availability of shared memory multiprocessors with global checkpoint/recovery. In Proceedings

of the 29th Annual International Symposium on Computer Architecture (ISCA), 2002.

Suh, G. E., L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache memory. Journal

of Supercomputing, 28(1):7–26, 2004.

212

Sun Microsystems. Sun enterprise 10000 server: Dynamic system domains, 1999. http://

www.sun.com/servers/white-papers/domains.html. Viewed 6/09/2008.

Sun Microsystems, Inc. Open solaris cpu.c: cpu offline(), 2008. http://cvs.

opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/

os/cpu.c. Viewed 6/09/2008.

Sun Microsystems, Inc. Sun fire high-end and midrange systems dynamic reconfiguration user’s

guide. http://docs.sun.com/app/docs/doc/819-1501. Viewed 12/19/2007.

Sun Microsystems, Inc. Open solaris cpu.c: sbdp cpu poweroff(), 2006. http:

//cvs.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/

sun4u/serengeti/io/sbdp cpu.c. Viewed 6/09/2008.

Sun Microsystems, Inc. UltraSPARC III Cu User’s Manual, 2003.

Torrellas, Josep, Andrew Tucker, and Anoop Gupta. Evaluating the performance of cache-affinity

scheduling in shared-memory multiprocessors. Journal of Parallel and Distrubuted Computing,

24(2):139–151, 1995.

Tschanz, James W., Siva G. Narendra, Yibin Ye, Bradley A. Bloechel, Shekhar Borkar, and Vivek

De. Dynamic sleep transistor and body bias for active leakage power control of microproces-

sors. IEEE Journal of Solid-State Circuits, 38(11), 2003.

Uhlig, Rich, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, Andrew V.

Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung, and Larry Smith. Intel virtualization

technology. IEEE Computer, 38(5), 2005.

Uhlig, Volkmar, Joshua LeVasseur, Espen Skoglund, and Uwe Dannowski. Towards scalable

multiprocessor virtual machines. In Proceedings of the 3rd Virtual Machine Research and

Technology Symposium, 2004.

U.S. Environmental Protection Agency. Report to congress on server and data center en-

ergy efficiency, Aug 2007. http://www.energystar.gov/index.cfm?c=prod

development.server efficiency study. Viewed 7/28/2008.

VMware. ESX Server - best practices using VMware virtual SMP. www.vmware.com/pdf/

vsm best practices.pdf. Viewed 5/03/2006.

VMware. VMware ESX Server 3 ready time observations, 2006a. www.vmware.com/pdf/

esx3 ready time.pdf. Viewed 7/23/2008.

213

VMware. Reducing server total cost of ownershipwith VMware virtualization software, 2006b.

http://www.vmware.com/pdf/TCO.pdf. Viewed 7/23/2008.

VMware. Statistics canada harvests $1.3 million in savings, 2006c. http://www.vmware.

com/pdf/statistics canada.pdf. Viewed 7/23/2008.

Walcott, Kristen R., Greg Humphreys, and Sudhanva Gurumurthi. Dynamic prediction of archi-

tectural vulnerability from microarchitectural state. In Proceedings of the 34th Annual Interna-

tional Symposium on Computer Architecture (ISCA), pages 516–527, 2007.

Waldspurger, Carl A. Memory resource management in VMware ESX Server. In Proceedings of

the 5th Symposium on Operating Systems Design and Implementation (OSDI), 2002.

Weaver, Chris and Todd M. Austin. A fault tolerant approach to microprocessor design. In Pro-

ceedings of the 2001 International Conference on Dependable Systems and Networks (DSN),

2001.

Wells, Philip M. and Gurindar S. Sohi. Serializing instructions in system-intensive workloads:

Amdahl’s law strikes again. In Proceedings of the 14th International Symposium on High-

Performance Computer Architecture (HPCA), 2008.

Wells, Philip M., Koushik Chakraborty, and Gurindar S. Sohi. Hardware support for spin man-

agement in overcommitted virtual machines. In Proceedings of the 15th Annual International

Conference on Parallel Architectures and Compilation Techniques (PACT), 2006.

Wells, Philip M., Koushik Chakraborty, and Gurindar S. Sohi. Adapting to intermittent faults in

future multicore systems (poster). In Proceedings of the 16th Annual International Conference

on Parallel Architectures and Compilation Techniques (PACT), 2007a.

Wells, Philip M., Koushik Chakraborty, and Gurindar S. Sohi. On hiding multicore complexity

from system software (position paper). In Proceedings of the Workshop on Operating System

support for Heterogenous Multicore Architectures (OSHMA), 2007b.

Wells, Philip M., Koushik Chakraborty, and Gurindar S. Sohi. Adapting to intermittent faults

in multicore systems. In Proceedings of the 13th International conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), pages 255–264, 2008.

Wenisch, Thomas F. Personal communication, Feb 2008.

Wenisch, Thomas F. and Roland E. Wunderlich. SimFlex: Fast, accurate and flexible simulation

of computer systems (tutorial). In Proceedings of the 38th Annual International Symposium on

214

Microarchitecture (MICRO), 2005.

Wenisch, Thomas F., Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim, Anastassia Aila-

maki, and Babak Falsafi. Temporal streaming of shared memory. In Proceedings of the 32nd

Annual International Symposium on Computer Architecture (ISCA), 2005.

Whitaker, Andrew, Marianne Shaw, and Steven D. Gribble. Scale and performance in the De-

nali isolation kernel. In Proceedings of the 5th Symposium on Operating Systems Design and

Implementation (OSDI), 2002.

Wisniewski, Robert W., Leonidas Kontothanassis, and Michael L. Scott. Scalable spin locks for

multiprogrammed systems. Technical Report TR454, University of Rochester, Rochester, NY,

USA, 1993.

Wonyoung, Kim, Gupta Meeta, Wei Gu-Yeon, and Brooks David. System level analysis of fast,

per-core dvfs using on-chip switching regulators. In Proceedings of the 14th International

Symposium on High-Performance Computer Architecture (HPCA), February 2008.

Yeh, Y. C. Triple-triple redundant 777 primary flight computer. In Proceedings of the 1996 IEEE

Aerospace Applications Conference, pages 293–307, Feb 1996.

Zahorjan, J., E. D. Lazowska, and D. L. Eager. The effect of scheduling discipline on spin over-

head in shared memory parallel systems. IEEE Transactions on Parallel and Distributed Sys-

tems, 2(2):180–198, 1991.

Zhang, Ming, Subhasish Mitra, T. M. Mak, Norbert Seifert, Nicholas J. Wang, Quan Shi, Kee Sup

Kim, Naresh R. Shanbhag, and Sanjay J. Patel. Sequential element design with built-in soft

error resilience. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(12):

1368–1378, Dec 2006.

Zhou, Huiyang. A case for fault tolerance and performance enhancement using chip multi-

processors. IEEE Computer Architecture Letters, 5(1):6, 2006.

Zilles, Craig and Gurindar Sohi. Master/slave speculative parallelization. In Proceedings of the

35th Annual International Symposium on Microarchitecture (MICRO), pages 85–96, 2002.

