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Abstract

Majority of the current day software is written with the assumption of sequential
execution. State-of-the-art microprocessors, therefore, search for independent instruc-
tions in a dynamic instruction window and attempt to execute them simultaneously
(ILP). The multiscalar processors, on the other hand, extract parallelism by dividing
a program into tasks. The Kestrel processor is an implementation of this multiscalar
paradigm.

This thesis details techniques used for the synthesis and static timing analysis in
the context of the Kestrel multiscalar processor. The issues related to the synthesis
of the Kestrel processor are discussed in detail in this thesis.

Various tools and scripts were used to automate the process of synthesis. The
ASIC synthesis of large blocks of the design, described using the Verilog model, served
as an input to the floorplanning tool. Interconnect delays and timing information
modeled on the basis of data extracted from the high-level floorplans were used to
specify design constraints for different submodules. The constraints specified on the
design included input and output delays, input loads, and output drive constraints.
Various compile-time optimization options of flattening and structuring the logic have
been used and studied. Final timing estimates were based on the reports obtained
after static timing analysis using Primetime and Design Analyzer. The delay (SDF),
and parasitic capacitance information (SPEF) extracted from the floorplan was used
to specify the delay and load constraints on the ports.

The target clock cycle time for the Kestrel processor in a 0.5 technology was 12ns.

After several iterations of the synthesis and design process, majority of the design
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(except data memory system) satisfies a clock of 15ns. The data memory system
(DMS) is currently at a clock cycle time of 16ns and is being constantly optimized
to get closer to the target cycle time of 12ns. The area of the processor designed is

estimated at 16cm?.
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Chapter 1

Introduction

1.1 Multiscalar Paradigm

Programs are traditionally written with the assumption that they would be executed
in the same order as the instructions appear in the program. To achieve higher perfor-
mance, modern day processors attempt to execute multiple instructions simultaneously
(instruction level parallelism). Superscalar and VLIW processors belong to this cate-
gory of machines that identify instruction level parallelism and exploit it to improve
performance.

The Multiscalar paradigm offers a new approach to the problem of executing mul-
tiple instructions at a time. The Multiscalar paradigm [3] is a processing paradigm
for extracting large quantities of instruction level parallelism from ordinary high level
language programs.

The Multiscalar approach divides a sequential program into tasks, where a task
could be, a part of a basic block, an entire basic block, multiple basic blocks, or a
loop iteration. A task is assigned to one of the processing elements with the initial
program counter of the task. This enables multiple tasks to be executed in parallel on
various processing elements, resulting in a higher execution rate.

Multiscalar processors can be described as a collection of processing units with
a sequencer assigning tasks to the processing units as shown in Figure 1.1. Key to

the multiscalar paradigm is communication of data and control information among
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Figure 1.1: Schematic Diagram of Multiscalar Processor [3]



the parallel processing units. To maintain the appearance of sequential execution a
loose sequential order is enforced on the processing elements by organizing them as
a unidirectional ring (thus enforcing an order on the tasks executed). Multiscalar
processors perform control as well as data speculation. The tasks are committed from
the queue in same order as they are assigned, thus ensuring sequential semantics.
For memory operations, an Address Resolution Buffer (ARB) is implemented to hold
speculative operations, detect violations and initiate corrective actions.

Multiscalar processors use a combination of hardware and software techniques to

achieve the goal of high ILP.

1.2 Kestrel Implementation

The Kestrel Architecture [4, 6] is an implementation of the multiscalar paradigm de-
scribed in section 1.1. Top level diagram of the Kestrel processor is shown in figure 1.2.
This figure shows the various Verilog modules at different levels of hierarchy in the
design.

The following sections give a brief sketch of the design of various units' (done using
Verilog HDL). The synthesis details of these units would be discussed in subsequent

sections.

1.2.1 Processing Element

The Processing elements (figure 1.2) are single issue, in-order processing cores. The

Kestrel implementation of multiscalar paradigm has four processing elements in a ring

! This description has been taken in part from the Kestrel Design Specification Manual.
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network. Tasks are assigned to each of these PEs, speculatively or non-speculatively.
If the speculated task assigned to any of the PEs turns out to be misspeculated, the
entire work done by that PFE is squashed to ensure correct operation.

Each processing element has its own instruction cache and register file. The in-
struction cache (I$) has been synthesized as a part of the processing element. The
processor state exists in both the distributed register file (DRF) and special purpose
register unit (SPRU). The processing elements access the memory subsystem through

the data memory system (DMS).

1.2.2 Instruction Miss Unit

The instruction miss unit (shown in figure 1.3) handles communication between the
level one (L1) instruction caches and the level two (L2) unified cache. The L1 instruc-
tion misses are sent to the instruction miss unit (IMU) from each PE, and in the IMU,
they are arbitrate for the miss handler with the head getting the highest priority and
others depending on their position in the ring from head to tail.

The instruction miss handler (figure 1.3) consists of a 16 entry line-fill buffer
(LFB) that holds recently requested cache lines to prevent unnecessary compulsory
misses. One line of the LFB consists of 284 bits (256 bits cache data, 27 bits address

tag, and a valid bit).

1.2.3 Bus Interface Unit

The bus interface unit (BIU) behaves like a crossbar between the PEs and the DMS

banks for load, store, cache and TLB requests. This unit accepts inputs from all the
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PEs and has interfaces with all the DMS banks. The BIU arbitrates among the PE
requests, with the priority depending on the proximity of the PE to the head. BIU

also handles TLB requests to the DMS banks.

1.2.4 Special Purpose Register Unit

The special purpose register unit contains 32 registers of different names that store
the centralized processor state. One of the special purpose registers is the Suppress
register that is replicated for each of the processing elements. Other registers appear
once in the design.

This unit also contains the translation lookaside buffer (TLB) logically, as it han-

dles accesses and updates to the TLB.

1.2.5 Data Memory System

The data memory system consists of four interleaved memory banks. These banks
consist of the data cache (L1), ARB, and the TLB. The data memory system manages

all the load and store requests from the PEs.

1.2.6 Data Miss Unit

The data miss unit (DMU) handles communication between the data memory system

and the level two cache.



1.2.7 Sequencer

The sequencer initiates both speculative and non-speculative tasks on the PEs. SEQ
also handles commits and squashes of tasks. Additionally, the sequencer reads and
writes the task header information from and to the task cache (T$). The restart control
logic (RCL), synthesized as a submodule of sequencer, orchestrates the restarting of
the processing elements due to misspeculated data accesses (Both memory and register

misspeculations).

1.2.8 Distributed Register File

The distributed register file (DRF) serves as a local register file for a given processor
and handles register value communication and synchronization between processing

elements.

1.3 Micro-architecture Parameters

Table 1.1 summarizes the key micro architecture parameters used in the design of the

Kestrel processors.

1.4 Synthesis

Synthesis is the process of generating gate-level netlist for a design from its HDL
description. Synthesis includes both reading in the source Verilog code and optimizing
it. Synthesis terminology and the tools used are described in Appendix C.

After designing and verifying the functionality of the processor, it is essential to



Parameter Value

No. of PEs 4

I$ width 256 bits
I$ depth 512 lines
I$ address width 9 bits
BTB width 50 bits
BTB depth 1024 lines
BTB address width 10 bits
BHT width 2 bits
BHT depth 1024 lines
BHT address width 10 bits
Data Cache(D$) width 128 bits
Data Cache(D$) depth 2048 lines
No. of registers in DRF 32

Table 1.1: Micro-architecture specifications of the Kestrel processor

evaluate the feasibility of the design. This was done by performing a detailed timing
and area analysis of the design.

The Verilog model was synthesized on a hierarchical basis. All the submodules were
synthesized with estimated input and output constraints. These units were further
linked together to get the top level processor estimates. The goal of synthesis was
to evaluate the processor in the context of timing. The synthesis was carried out
using compile time synthesis options of structuring and flattening the logic. The
details of synthesis in general and the synthesis of the Kestrel processor in particular
are discussed in detail in this thesis. The work presented here is a group effort and
references have been given at appropriate places.

This thesis is organized into several chapters. Chapter 2 describes the steps of the
synthesis process for the Kestrel multiscalar design. Timing reports generated using
Synopsys and Primetime (refer Appendix C) were used to identify critical paths in

the design. This information was further used to optimize the design to satisfy the
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timing requirements. A description of the nature of these changes and some specific
changes have been listed in chapter 3. Chapter 4 presents the results of the synthesis
process. Finally, the conclusions and future directives are given in chapter 5.

Some of the scripts used in the project are given in Appendix B. Description of
the tools, reporting techniques and synthesis terminology used throughout the thesis

are covered in Appendix A and C.
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Chapter 2

Synthesis of the Kestrel Processor

Synthesis is the process of obtaining a gate level netlist for the design and analyzing
it for timing and area requirements. The Verilog code is the primary input to the
synthesis process. The synthesis process also takes as input the design environment,
constraints, design rules, technology libraries, and compile strategy. Synthesis with
the above parameters results in a gate-level netlist describing the design. Timing
reports on the netlist are then debugged and analyzed to determine if the constraints
are met. If not, the constraints and/or the HDL code are modified and synthesized
again.

The next step is to perform a floorplan, that gives the standard delay and the
parasitic capacitance information. This information is then back annotated onto the
design to perform post-layout simulation and timing verification. If the results are not
within the design goals, requisite changes are made and the synthesized again till the
goals are achieved.

For a large design it is therefore necessary to perform many passes of the synthesis
process, fine tuning the parameters based on the timing reports and area reports.

The synthesis of the Kestrel processor also went through several iterations of syn-
thesis and design changes to attain the required cycle time of 12ns. Synopsys and
Cadence design tools had been used for modelling and synthesis of the design.

Figure 2.1 shows the flow of the physical design for the Kestrel Processor. The

description of each of the steps shown in the figure has been presented in the following
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sections.

A
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St:t:]calTlgiﬁsmg < delay information
Y (.sdf and .pdef)

Figure 2.1: Physical design flow of the Kestrel processor

2.1 Check for Synthesizeability

Check for synthesizeability entails verifying that the Verilog code is completely syn-
thesizeable and also partitioned into logical blocks (or modules) for the purpose of

synthesis.

Synthesizeability To make the Verilog synthesizeable the library cells and memory
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cells were mapped to the library(lcb500k) [7] being used. The entire processor
is currently synthesizeable. Only non-synthesizeable units are the L2 cache and

the multiply, divide, and floating point units in the processing elements.

Partitioning The Kestrel design is completely hierarchical and the entire design was
divided into twenty nine submodules. Various parameterizable library modules
for flip-flops, multiplexors and memory units were written in Verilog for the
convenience of the designers. Additional regrouping was done for the purpose
of physical design. The bidirectional busses were made a separate module!, and
glue logic at the top-level was grouped into a submodule. Figure 2.2 shows the

hierarchical structure of the Kestrel design.

Partitioning of the design helped achieve good synthesis results, reduce compile

time and simplify constraints and script files.

2.2 Technology Libraries

Technology libraries are used to implement a gate-level design. These libraries consist
of a set of vendor-specific cells, their names, delays and pin loading. Design rule
constraints are also specified in the technology library.

The Kestrel processor was synthesized using the 0.5y LSI-Logic lcb500k [7] libraries.
The library cells were mapped to the lcb500k libraries for synthesis. Design rule
constraints for maximum fanout and maximum capacitance were also specified in

the synthesis scripts for high fanout signals, as the synthesis was carried out in a

!Details in Chapter 3.
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hierarchical fashion and compilation was not done at the topmost level. This enabled
synthesis tools to insert appropriate buffers as the fanout outside the boundary of the

submodule under consideration was not known to the tool.

2.3 Synthesis Scripts

Apart from the technology libraries and synthesizeable Verilog, synthesis scripts, spec-
ifying the constraints, interface, and compile time options, also serve as an input to
the synthesis process. An outline of the components comprising the synthesis scripts

has been given below.

2.3.1 System Interface

System interface refers to the attributes and constraints that define the interaction of

various modules and the environment surrounding the design submodules.

Wire Load Models Initially the custom wire load models created using the data
from the floorplan were used for synthesis. These wire load models were later
modified on the basis of the net load estimations made using path timing and

net capacitance and loading information [2].

Submodule Interfaces The interface of the various submodules was specified by
defining the drive characteristics for the input ports. Loads obtained from the
extracted capacitance and delay information after floorplan were used to specify

estimated loads on the output ports. Further, fanout loads on the output ports
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were specified to handle the buffering, in case of high fanout outside the sub-
module being synthesized. Buffer tress were automatically generated by Design

Compiler? for signals with high fanout and loads.

It is important to note that the drive strength for heavily loaded driving ports,
such as clock, bus error and reset was left at zero, so that the synthesis tool does not

buffer these nets.

2.3.2 Design Constraints

Design constraints refer to circuit characteristics, such as timing and area, that define
the synthesis goals. The design constraints are used to optimize and implement the

design.

Timing Constraints Timing constraints indicate the required performance of the
design. The Kestrel processor was synthesized for a cycle time of 12ns. The
Kestrel synthesis process assumes a perfect clock with no skew. Further, input
and output delay constraints were specified to achieve the clock cycle require-
ments. These constraints were estimates, that were rectified based on the timing
reports obtained. Point-to-point exceptions were also identified and specified as
false paths. Finally, scripts were written to apply these constraints and synthe-

size.

Area Constraints Design area consists of the area of each component and the net.
Area constraints are specified to limit the area of the entire design. Current

effort of the Kestrel processor is to satisfy the cycle time requirements. Though

2Details of the tools used are given in Appendix C.
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the design of the processor was done with area considerations in mind, no area

constraints were specified in the synthesis of the design.

2.3.3 Compile-time Optimizations

Compile-time optimizations include selecting the compile strategy and then optimiza-

tion of the design.

Compile Strategy

Compile strategy has to be determined prior to constraining or compiling the design.
The selection of a compile strategy depends on the characteristics of the design to be
synthesized. Figure 2.3 shows the strategy to be used depending upon the features

of the design.

YES Use ~50% of designs

Rigid Design ) .
Time Budgeting medium and large designs

Specification?

Memo

, Use Top-Down
CPU, Tirr% or

~25% of designs

Hierarchical "
Size Limited? Compile small designs
%?,igg?e‘ﬂgii ~25% of designs
Write Script- medium and large designs
Recompile without good interblock specifications

Figure 2.3: Compile Strategy Decision flowchart [5]

Kestrel is a large design organized in a hierarchical manner. The compilation
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for Kestrel was done at the submodule level using the estimates for output drive
and input load. The top level integration was done by linking all the submodules.
Synthesis optimization was performed at the lower levels and not the top most level.
This approach was selected because of memory limitations. The compilation of the
entire Kestrel design at the top level would consume a lot of memory and was not

physically feasible.

Design Optimization

The process of optimization consists of resolving multiple instances and using various
optimization cost functions to achieve required results. It is necessary to resolve
multiple instances because many designs reference a sub-design® more than once, and
the environment for each instance might be different.

The Kestrel design has been optimized by iteratively synthesizing the submodules
with different compile time optimizations. Various techniques of resolving multiple

instances are:

e Uniquify copies and renames the design for each instance. This enables op-
timization of every instance in a way based on its environment. This method
was used to resolve multiple instances if the environments around the design

instances differed significantly.

e Ungroup is similar to uniquify but also removes levels of hierarchy. The method
of ungrouping results in a flattened net-list. This approach provides the best

synthesis results, but with more memory and longer synthesis time.

3For example: an adder submodule being referenced more than once in the processor pipeline.
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e Compile-once-don’t-touch attribute preserves the sub-design during opti-
mization. This technique uses less memory, but the objects that have don’t-touch
set cannot be ungrouped. It was used in the Kestrel synthesis at the higher lev-
els of hierarchy, where similar environments surround the design instances. For

instance, All the PEs have a similar interface.

Uniquify and Compile-once-don’t-touch options have been used at higher levels of
the hierarchy because they require less memory. Ungroup, on the other hand, has
been used at lower levels of the hierarchy (like the stages of the processor pipeline) to
flatten the logic. The techniques used for the Kestrel processor are shown in Figure
24.

After resolving multiple references, logic-level optimization and gate level mapping
of the design was performed using the Design Analyzer compile commands. The
flattening and structuring options control the logic level optimization and compile
command options control the gate level mapping. Figure 2.5 shows the commands
used at different levels of the design hierarchy. The map effort was maintained at
medium in majority of the cases.

The options for logic level optimization are:

e Structuring is an optimization technique that identifies sub-functions that can
be factored and turns them into intermediate variables to reduce design equa-

tions.

Structuring results in a reduction in area but not necessarily a fast circuit. Struc-
tured logic can further be optimized using boolean optimizations and timing

driven optimization. Timing driven structuring does structuring only where the
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timing constraints are not critical.

e Flattening is an optimization technique that attempts to convert the design
into a two-level sum-of-products representation. Flattened logic is generally fast
because it is just two levels of combinational logic, but requires a large amount

of CPU time and area.

Flattening results in a faster circuit with larger area, whereas, structuring gives a
slower circuit with lesser area. These techniques are thus a compromise between
area and speed where a reduction in delay (increase in speed) results in an

increase in area as shown in Figure 2.6.

Flattening should therefore be used in more critical paths and structuring where

area becomes a more critical issue over time.

e Boundary Optimization is a feature that enables optimization across bound-
aries. This option was used for synthesis at all levels where compilation was

done for the Kestrel processor.

2.4 Synthesis

This block takes as input the technology libraries, synthesizeable Verilog, and the
synthesis scripts. The outputs of the synthesis process are the netlist and the Synopsys

database files (.db*), that were used for floorplan and static timing analysis.

4A format in which the Design Compiler saves the synthesized design.
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Delay

Figure 2.6: Design Space curve

2.5 Floorplan

The Cadence floorplan manager was used to place and route the Kestrel design [2].
The netlist obtained from synthesis was used to route the design. The final floorplan
of the processor is shown in Figure 2.7. The small blocks in the floorplan that are
not labelled are the bidirectional bus units and the glue logic.

The standard delay information and parasitic capacitances were extracted from

the floorplan and used for static timing analysis.

2.6 Static Timing Analysis

The final step in the process of synthesis is analysis of timing and design problems.
Preliminary analysis was to check the design for the presence of any unmapped com-
ponents or unresolved references. Having verified that there were no such errors, gate

level netlist obtained after synthesis was used to extract timing reports. Other than
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PE PE
DMS DMS

DRF |pemy = DRF
C
L]

DMS DMS
PE PE

[ ]

Task _Cache Task Pred

Figure 2.7: Floorplan of the Kestrel processor [2]

Design Analyzer, Primetime was used for the purpose of reporting. Appendix C lists
the commands used for static analysis in the tools. These reports were studied to
determine if the design met the specified constraints.

Critical paths were identified and design optimizations made to meet the timing
specifications. The results of static timing analysis were used to redefine/refine the
timing constraints and compile time optimizations.

Thus the process of design, constraints specification and synthesis was performed
iteratively until the desired results were obtained. The following chapter discusses in
detail the key design changes made for the purpose of synthesis. The results of timing

analysis are given in the subsequent chapters.
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Chapter 3

Design Optimizations for Synthesis

The synthesis process required the Verilog model to be organized according to the
physical hierarchy. Also, timing reports generated after synthesis highlighted several
critical paths that did not meet the cycle time constraints. This therefore led to several
design optimizations in the Verilog model.

This chapter covers the key optimizations made to the various modules of the
Kestrel processor. The implications of these changes on synthesis and functionality of
the units has also been discussed. The changes have been organized into groups based

on the unit or module they effect.

3.1 Top-Level

This sections includes the changes that effect all or most of the submodules in the

design.

3.1.1 Bidirectional Busses

This is an example of difference in logical and physical hierarchy. In the Verilog
design, the inputs and outputs of the bidirectional busses were in different modules.
The presence of these three-state drivers resulted in a large number of false paths that
could not be physically specified. This problem was noticed in the BIU, that had a

bidirectional bus coming in/going out corresponding to each of the DMS banks and
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PEs.

All the bidirectional busses could logically be represented as a pair of busses, one
read and one write with a write enable. The Verilog model was therefore changed,
to add one input port (read bus) and two output ports (write enable and write bus),
in place of the bidirectional busses. The bidirectional busses were a different module

implemented separately for functional verification and physical synthesis.

A

Read Port
Write Rort

Write ¢énaple !
i

VT VT VT Vf

Figure 3.1: Model of bidirectional bus [2]

Figure 3.1 represents the logical representation of the bidirectional busses, where
each pair of data busses were actually considered as one bus for physical synthesis

purposes.

3.1.2 Ring Order

The processing elements and the distributed register file are organized as a directed
ring in the multiscalar processor. The convention for the direction of this ring was
changed from 0-1-2-3 to 3-2-1-0. Though this change did not effect the synthesis results

directly, it brought about several changes in the design of the Kestrel implementation.
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After reset, the first task was initially assigned to PE#O0 according to the old
convention, whereas it was changed to PE#3 in the new convention. Major change was
in places where the order of the PEs mattered. The arbitration logic was implemented
as the head PE getting the highest priority and the other PEs according to their
distance from the head. With the change in the ring order the logic had to be changed.

It is important to note that these changes did not bring about differences in the
static timing analysis, but called for the re-synthesis of the modules as the Verilog had

changed.

3.1.3 Incrementers

The Verilog implementation of Kestrel consisted of several incrementers implemented
as a behavioral model. Synthesis tools generated ripple carry adders to represent these
incrementers. These incrementers were very slow and were on the critical path of the
design.

Carry look ahead adders of different widths were therefore designed to replace all

the incrementers in the design.

3.1.4 Disable write enable to data output Path in SRAMS

The data being read on the output port does not depend on the write signal. Fur-
thermore, the design specifies that only one cache access is performed in a clock cycle.
But, the synthesis tool would report the path from the write enable signal to the data
output as critical.

Such a path should not exist in the design, therefore it was disabled for timing
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purposes.

This problem could have been solved by doing case analysis for various combina-
tions of read and write accesses or disabling the write enable to data output path in
the SRAMS. The second option was chosen as the number cases to be considered were

too high.

3.2 Instruction Miss Unit

The instruction miss unit (block diagram shown in Figure 3.2) consists of a line-fill
buffer that has sixteen most recently accessed cache lines. The line-fill buffer is thus
a fully associative cache that has 128-bit wide cache lines. In case of an i-cache miss

the sixteen entries are searched for a match before going to the L2 cache.

load header request sequence number ) .
—»q » imu miss to L2$
Sequence number generator
load header address request to L2$
e »
Address
» Linefill buffer
» >
ig insn
to PE
i-cache miss
»
) ) Detect non-cacheable request;
i-cache miss PC Combine requests to same cache line;
> arbitrate among the requests
Flush

data bus from the L2$

Figure 3.2: Block diagram of the instruction miss unit
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The buffer logic is implemented as a collection of 16-to-1 muxes, each 128 bit wide.
Initially these muxes were implemented totally in logic and the synthesis tool could
not optimize it properly. To solve this problem a library module for a 16-to-1 mux
was designed and mapped to technology cells to speed the synthesis process and get

better results.

3.3 Processing Element

This section covers the key modifications made to the design of the processing element

to meet the specified timing constraints.

3.3.1 Memory Instructions in the Execute Stage

The load and store memory requests arbitrate for the bus in the execute stage of the
pipeline. The result of this request is available in two cycles (MEM?2 stage), if there
is a hit in the ARB (address resolution buffer) or the data cache.

In the initial Kestrel design, a request was sent to the DMS only if the instruction
was not stalling and didn’t raise an exception. The stall and exception are known
much later in the cycle, as stall in-turn depends on the earlier request being serviced.

Consider the scenario of three back to back memory instructions (shown in Figure
3.3 & 3.4). The first memory instruction would stall in the MEM2 stage until it
receives a hit from the DMS, thus stalling the instructions in MEM1 and EX stages.

To break this critical path, the request was sent from the execute stage irrespective
of stalls or exception. If the instruction in the execute stage won arbitration but

stalled or raised an exception, it sent a “hosed” signal to the DMS indicating that the
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instruction would not make it to the MEM?2 stage in two cycles.

3.3.2 TLB Instructions

TLB requests are sent to the DMS in the MEM]1 stage of the pipeline. The stall logic
for these instructions was changed to stall them in the MEMI stage until the pipe
ahead of them was empty. This had been done because, in case of a load followed by
a TLB instruction, there would be a reply from the memory unit and a TLB request
in the same cycle. This turned out to be a critical path and had to be broken.

Also, the architecture specifies that all the instructions commit in the WB stage,
while TLB instructions were being committed in the MEM]1 stage. If the pipe ahead
of the TLB instruction was made empty, it was equivalent to committing in the write
back stage.

This change introduced some extra ports and additional conditions to the stall

logic.

3.3.3 Address Selection for Memory Instructions

Address calculation for memory instructions is performed in the execute stage of the
pipeline. Earlier the address bus going to the BIU got its value from the result selection
unit, that primarily consisted of a set of multiplexors to select the final result based
on the instruction type.

In case of a load store instruction, always the ALU output is selected and the
implementation created false dependencies with the overflow and negative output of

the ALU. This dependency was removed by assigning the value of the ALU result
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straight to the address bus.

3.3.4 Start, Head and Tail Signal

The Start signal comes to the PE from the sequencer. In the floorplan for the Kestrel
processor, the sequencer is very far from the PEs and more than %rd of the cycle
is consumed by the interconnect delays. This signal comes to the PE once at the
beginning of every task and is not critical. This was therefore latched at the input to
solve timing problems.

Similarly head and tail signals also come from the sequencer. These signals were

also latched at the level of the DRF, SPR, BIU and PF integration.

3.3.5 Instruction from the IMU

In the earlier implementation the path from i-cache miss to the next i-cache miss via
the IMU was latched only at the input to the IMU as shown in Figure 3.5. This
led to obvious timing violations as the interconnect delay between these units is %Td
of the clock cycle, thus leaving only 4ns for cache lookup and logic in the IMU. The
instruction from the IMU was therefore latched at the input to the fetch stage (shown
in Figure 3.6) of the processing element.

The introduction of latches in the PE led to changes in the logic of IMU as well

and a need to verify its functionality.
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Figure 3.5: Old configuration of the instruction miss logic
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Figure 3.6: Improved configuration of the instruction miss logic



34

3.3.6 Load Header (LDHD) Instruction

The design specification indicated that the virtual address of a LDHD instruction
should go through the translation process in the IMU, but this was not implemented
in the Verilog model. Thus the address being sent to the IMU was virtual address and
not the physical.

This problem was solved by introducing a PLB (Primary Lookaside Buffer) in the
ID stage of the pipeline. It was chosen to implement the translation logic in the PE
instead of the IMU because the PLBMU already had the capacity to handle multiple
PLB miss requests from different PEs.

This change involved addition of new logic to the pipeline and additional ports to

the PLB miss unit.

3.3.7 Forward Signal from the Execute Stage

The forward signal from the execute stage indicates to the DRF that the value pro-
duced needs to be forwarded. The forwarding of the data is done only if the execute
stage is valid and not stalling. The stall logic depends on the arbitration logic for
memory instructions. Therefore,the logic designed had a dependence on the arbitra-
tion won signal from the BIU.

Memory instructions in the execute stage never forward data as they perform
address calculation. The Verilog was modified to remove this false path that was

being reported as critical by Design Analyzer.
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3.3.8 Memory Request from MEMI1 Stage

In the initial design, memory requests were sent only from the execute and MEM2
stage of the pipeline. If a request was cancelled in the MEM1 stage, it was resent only
when it reached the MEM2 stage. The design was changed to send requests from the
MEM]1 stage as well. This change was done for improving the IPC and not synthesis

results.

3.3.9 Special Adder for 5th and 6th Bits of Address

The 5th and 6th bits of the address specify the memory bank in case of a load store
instruction. The calculation of these bits was on the critical path of arbitration for
the bus. The adder used in the design was a carry look ahead adder with the carry
rippling after every 4-bits.

A special adder with no ripples to calculate the 5th and 6th bits was therefore

designed to reduce the combinational logic time.

3.3.10 Stall Logic

A memory instruction stalls in the EX stage until it wins bus arbitration. It takes %s
of the cycle to determine whether the instruction is going to stall. The fetch stage
would also stall in case of a stall in the EX stage, if there is no invalid instruction
between the two. The determination of the next program counter for instruction fetch
thus depends on the stall signal. The stall logic was therefore on the critical path.
The stall from the EX was changed not to include that stall because of arbitration.

Additional ports were added to IF and ID stage of the pipeline to indicate there was
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a memory instruction in the EX stage and the arbitration signal was sent straight to

these stages. This added additional logic but removed the interconnect delay. The

schematic diagram of both the configurations is shown in Figure 3.7 & Figure 3.8.

IF . ID . EX .
| | |
| | |
| | |
NeXIPC: g stall ! ex stal
| | | BIU
| | |
Arbitration won
Figure 3.7: Old configuration of the stall logic
ex_stall
. ) + additional logic
additional logic
< | ' ex_stall |
next_pc ﬁ id_stall | - arbitration_won | BIU

Arbitration won

Figure 3.8: Improved configuration of the stall logic

3.3.11

TLB Exception

The implementation of Kestrel had some false paths originating from the TLB excep-

tions. The Verilog was modified to eliminate these paths by removing false depen-

dences. A brief description of the main changes made is outlined below.



37

BTB is not modified by a memory instruction. In the earlier implementation, the
modification of the BTB was dependent of the fact that there should be no
exception in the pipeline. As memory instructions do not modify the BTB, the
dependence on TLB exception (only caused by memory instructions) could be

removed.

PE need not send a “hosed” signal' to DMS in case of a TLB exception. This is not
needed as the TLB exception is generated by the DMS itself, and the unit takes

care of it.

TLB request sent by the PE need not depend on TLB exception, this is taken
care of by the DMS. The TLB exception refers to the exception caused by the
instruction in the MEM]1 stage. As, the pipeline ahead of the TLB instruction
is always empty when the request is sent there is no instruction ahead of it that

can cause an exception.

3.4 Latches at the Input and Output of DMU

The DMU is the miss unit that services the data cache misses. In the static timing
analysis of the top-level integration of the processor, there were several paths through
the DMU violating the timing constraints.

This unit is a non-critical unit and therefore latches were added at the input and
output of every signal of the DMU. The critical paths observed after this change are

discussed in the results section. This change effects the functionality of the unit,

ndicates that the instruction will not be in the MEM2 stage in the next cycle.



38

but the DMU can easily be redesigned to function properly with additional stages of

pipeline.

3.5 Data Memory System

The DMS is the most critical unit in the Kestrel processor. Several modifications to
the design have been made in this unit based on the static timing analysis results®. A

few of these changes are outline below.

3.5.1 Reorganization of Verilog

The synthesis tool does not do a good job of synthesis, in case of large blocks of random
logic. This behavior was observed in the data memory system. The solution to this
problem was to divide the logic into smaller units and specify strict constraints on
these submodules. Better synthesis results (w.r.t. timing) were obtained when such

restructuring of the logic was done.

3.5.2 Table Macros

It was noticed that synthesis tools are not efficient at optimizing the logic represented
as table macros. For example, in the DMS the signal “write_store_5” is part of a
table macro. The table consists of many unrelated signals, as a result, many of the
inputs to the “write_store_5” logic are don’t-cares. In one case “direct_grant”, a very
critical signal, ends up in the prime implicants for “write_store_5”, which in reality

has nothing to do with this signal.

2These changes made by Eric Rotenberg and Craig Zilles have been included here for completeness.
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The solution to this problem was to manually implement the logic for “write_store_5".

3.5.3 TLB Probe Instruction

The virtual address selection mux in the DMS selects between the virtual address
for a TLBP instruction and other memory instructions. The control signal for this
multiplexor was originally the “TLBP_in” signal that created a dependence between
the TLB exception for a memory request and “IT'LBP_in”. This path was broken by

changing the control signal of the multiplexor.
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Chapter 4

Synthesis Results

The static timing analysis of the processor was performed using the Primetime and
Design Analyzer timing tools. This chapter discusses in detail the timing results and
highlights the critical paths observed in various units and at the top-level of the design.
The synthesis of the processor was not optimized for area, but the area estimates
available are also be presented here.

The Design attributes specified for the synthesis of the Kestrel processor are:

Design Attribute Value
temperature_max 25°C
voltage max 3.3V
wire_load_model max B0.5X0.5

wire_load _model_library_max 1cb500kv

4.1 Area Estimates

The area estimates for the units synthesized are listed in the Table 4.1. The area is
represented in terms of mm?. The synthesis tools give the area in terms of LSI [7]
cell equivalents, and the conversion from LSI cells to die area is between 20,000 and
25,000 cells per mm? [2]. The total area of the design calculated using the data in
Table 4.1 was about 16.36cm?. The area calculated includes the overhead for global

routing(15%) and excludes the overlapping modules. The area for the L2 cache was
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Design module Approximate area in mm?
DMS 206.76

DMU 3.66

IMU 26.72

PLBMU 7.14

BIU 2.13

SPR 1.55

PE 83.69

GLUE LOGIC 0.28

SEQ 219.66

Table 4.1: Area estimates for Kestrel [2]

not estimated as it was never synthesized. The synthesis process assumes the L2 cache

as a black box.

4.2 Timing Analysis

Timing analysis is primarily used to ensure that the specific timing requirements in a
design are satisfied. Static timing analysis tools check the timing of all possible paths
in a design against the design requirements. Delays of each gate and interconnect are
calculated, and critical paths traced using the minimum and maximum arrival times
to the points of interest (Usually primary input and output ports).

The Primetime and Design Analyzer timing tools (refer to Appendix C) were
used for the purpose of static timing analysis of the Kestrel processor. This section
presents the results obtained, in terms of slacks (difference between the required path
delays and the actual path delays) observed and the critical paths identified. These
details are given for the each of the submodules and the top-level integrated processor
synthesis. An example of the timing report is given in Appendix C.

It is important to note that the synthesis and timing analysis were done for a clock
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cycle time of 12ns.

4.2.1 IMU

The instruction miss unit violates the clock cycle timing requirements by 1.08ns.
The distribution of the slacks for the endpoints are shown in Figure 4.1. The x-
axis represents the slacks in nanoseconds and the y-axis represents the number of

endpoints.
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Figure 4.1: Endpoint slacks for the IMU

The critical path for the IMU is the logic involved in determining “PE_data_valid_out”.
This signal tells the PE that the miss request has been serviced and the instruction is
available.

It can be inferred from Figure 4.1 that very few endpoints violate the cycle time

requirement. The number shown in the Figure appears to be significant because every
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bit of a bus is interpreted as a different endpoint though they represent the same path
(in most cases). The timing results thus report the same path (with different bits of

a bus) as critical.

4.2.2 BIU

This unit primarily consists of arbitration logic that cannot be flattened. The module
violates the clock cycle requirement by 1.73ns. The violation is roughly 26 % over the
specified clock cycle time. The endpoint slack distribution for the BIU is shown in

Figure 4.2.
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Figure 4.2: Endpoint slacks of the bus interface unit

The critical path is to the endpoint “DMS3_cntl_out” (control bus to the DMS).
This path becomes the critical path because the request coming from the PE takes

about 6ns. The arbitration for the bus is done after the request is received by the
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BIU.

Another critical path observed in this unit was from the address for the memory
request to the “arbitration_won” (going to the PE indicating that it won arbitration
for the bus). The adder in the execute stage of the pipeline was optimized to reduce
the time taken for the calculation of the address bits used in arbitration. In-spite of

the change made, this path shows up as one of the critical paths in the timing analysis.

4.2.3 SPR

The special purpose register is a small unit that keeps the state of the processor.
The synthesis results showed that this unit meets the timing specifications. The slack

distribution for the SPR is shown in Figure 4.3.
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Figure 4.3: Endpoint slacks of the special purpose register unit

The most critical path meets the timing with a positive slack of 0.71ns.
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4.2.4 DMS

The data memory system violates the timing constraints by 4.16ns. Efforts are un-
derway to improve the timing on this unit. The slack distribution for the memory

system is shown in Figure 4.4.
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Figure 4.4: Endpoint slacks of the data memory system

4.2.5 SEQ

The sequencer is also violates the clock cycle requirement by less than 3ns. The slack

for this unit is negative 2.63ns. The distribution of the slacks is shown in Figure 4.5.
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Figure 4.5: Endpoint slacks of the sequencer
4.2.6 DRF

The synthesis results indicate that the DRF meets the clock cycle requirements. The
slack distribution for this unit is shown in Figure 4.6.

The most critical path meets the timing with a positive slack of 0.50ns.

4.2.7 PE

The processing element consists of 6 stages of pipeline. Each of the stages has been
optimized individually and integrated at the top-level. The top-level PE_INTEG has
further been compiled to optimize the netlist.

The timing analysis shows that the processing cores violate the timing specifica-
tions by 2.7ns. The slack distribution for the unit is shown in Figure 4.7.

The adder in the execute stage comes in the critical path of the unit. The results
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Figure 4.6: Endpoint slacks of the distributed register file
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Figure 4.7: Endpoint slacks of the processing element
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of the adder could cause exceptions (like overflow exception), which in turn effect the
stall logic. The stall logic in case of memory instructions was decoupled, but the stall
in other cases was implemented as a daisy chain. This created a dependence between
the “next_pc” (next program counter determined in the fetch stage of the pipeline)
and the adder output.

The load store path was also identified as critical by the timing analysis tool. This
path became critical because of the amount of logic as well as the interconnect delays
associated with it. The path traced by a load/store request is shown in Figure 4.8.

2ns 3ns
P P

PE : BIU DMS
|

Address memory_request  arbitration ~ 'eduestto D'\fIS ~ request is latched
Calculation ! "~ logic | " here

Figure 4.8: Path traced by the memory requests

4.2.8 DRF, SPR, BIU, and PFE Integration

The four processing cores, corresponding register files, BIU, and SPR were combined
at the top-level and timing analysis was done at this level of integration. This unit
was violating the cycle time requirement of 12ns by 2.7ns. The slack distribution for
the entire unit is plotted in Figure 4.9

The critical path at this level of the design was the forward logic that goes from the

PE to the DRF. The path starts from the adder that takes majority of the cycle for
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Figure 4.9: Endpoint slacks of the DRF_SPR_BIU_PE_INTEG

calculating the result. The stall in the execute stage determines whether to forward
or not, which in turn depends on the exception output of the adder.
Further optimizations are being done on this unit and other underlying submodules

to achieve the target cycle time of 12ns.

4.2.9 Top-Level Integration

The top level-integration of all the units was used for the timing analysis of the pro-
cessor. The slack distribution at this level is shown in Figure 4.10.

The current cycle time for the integrated processor is about 18.7ns,that is a nega-
tive slack of 6.7ns. Efforts are underway to reduce this slack by identifying the critical
paths and making design optimizations to reduce the cycle time.

The critical path being observed initiates in the PE and goes through the DMS.
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Figure 4.10: Endpoint slacks of INTEG_FINAL

The multiplexor that selects the physical address for tag match in DMS, has its control
signal dependent on the more critical “TLB_op”, thus making this path critical. The
cycle time could further be improved by removing this dependency.

The results presented above can thus be improved by iteratively making changes
to the design and optimizing the more critical paths for timing. The following chapter
suggests measures that should have been taken in the process of design to meet the

timing requirements, and highlights how the problems faced could be eliminated.
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Chapter 5

Conclusions

5.1 Overview of the Work Done

This thesis includes a detailed description of the process used for the synthesis of
the Kestrel processor. The Synopsys and Cadence tools were used for the purpose of
synthesis and analysis. Several techniques and compile time optimizations have been
discussed and applied to the Kestrel processor. The processor has been synthesized
for a clock cycle time of 12ns. The following sections outline the current status, the
problems faced in trying to achieve the specified goal, and suggestions for further
improvement.

The Kestrel processor uses 0.5 ASIC technology. The area estimates for the pro-
cessor were obtained from the floorplanning and synthesis tools. Timing analysis done
indicate that the implementation is feasible and can be optimized with considerable

effort to meet the constraints.

5.2 Current Status

The target cycle time for the Kestrel multiscalar processor is 12ns. Current limitation
is the DMS unit, that has a negative slack of 4.2ns. All the other units meet the
constraints with a negative slack of a few nanoseconds. The top level integration has

a negative slack of about 6.7ns. This slack refers to the intermodule paths, that do
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not show up when individual modules are timed. Efforts are underway to identify
these paths and reduce the slack on these paths.

The floating point unit in the processor has not been designed and synthesized. The
addition of this unit might result in an increase of the cycle time by a few nanoseconds.

The final area estimate for the processor has been made as 16.36cm?. This area
does not include the floating point execution units and the L2 cache. It is important
to note that the ASIC standard cell designs (used for Kestrel) are typically slower
and larger than the same circuits designed with full custom circuits. Current area
estimates scaled to projected technologies indicate that the Kestrel die would use only

5% of the area in a 0.07u technology [2].

5.3 Pitfalls & Future Directives

This section points out the problems faced during synthesis and possible solutions
to those problems. Some future directives to improve the synthesis results are also
presented here.

In the ideal project flow, the output of synthesis should direct the design, whereas
in Kestrel the design was done without any input from the synthesis process. The
design was later modified to suit the timing requirements. Many of the problems
could be solved by a better structuring of the Verilog code. Synthesis tool is incapable
of optimally synthesizing large blocks of random logic. Logical regrouping of such
logic by the designers into smaller sub-blocks at the outset would have saved the time
spent in redesigning and re-organizing the logic in later stages of the project.

The major problem in synthesis was caused by the glue logic at the top level
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of the design hierarchy. The glue logic had to be regrouped into one submodule.
This regrouping was done for synthesis purposes. The synthesis would have been
much simpler and easier to constrain if there was no such floating logic between the
submodules.

Adherence to good naming conventions would have helped save a lot of initial
synthesis and debugging time. If the instances of modules were given more meaningful
names, it would have been easier to identify the paths indicated by the timing reports.

Module interfaces in the synthesis scripts were not updated every-time there was
a change in the design. This incompatibility between the synthesis scripts and the
Verilog description caused a lot of wastage of time. Tools to automatically reflect such
changes should be implemented in early stages of the project.

The constraints specified for the inputs and outputs of different modules, were
estimated delays obtained from the floorplan. A more accurate timing analysis could
be performed if the SDF (standard delay format) and capacitance information could
be back annotated on the design. The SDF file available is of a different version and
attempts are being made to convert to the acceptable format.

The synthesis of the Kestrel processor assumes a perfect clock with no skew. It
would be nice to introduce skew for more realistic results.

The current implementation of the Kestrel synthesis uses custom wire load model.
Various other wire load models must be tried and an optimal model for the design

should be determined.
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Appendix A

Synthesis Terminology

This appendix summarizes the terminology used in synthesis [8] and its basic concepts.

Synthesize

The process that generates a gate-level netlist from the HDL source code. Synthesis
includes both reading the HDL code and optimizing the code.

Optimize

The step in the synthesis process that attempts to implement a combination of library
cells to meet the functional, speed, and area requirements of a design.

Compile

The command that executes the optimization step. After reading the design and
specifying constraints, the design is compiled.

Forward Annotation

Passing timing constraints to the place and route (layout) tool.

Backward Annotation

Process of passing physical design information from the physical design environment

to the synthesis environment.
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Technology Libraries
The technology libraries contain a vendor-specific set of leaf cells. The cells are defined
by their functions, timing, wiring and wiring size. A target library is a technology
library that Design Compiler maps to during optimization.
Symbol Libraries
The symbol library contains definitions of the graphic symbols that represent cells in
the design schematics.
Design

Designs are circuit descriptions that perform logical functions. Logic-level designs
are represented as sets of boolean equations, gate-level designs, such as net-lists are

represented as interconnect cells. Designs can be hierarchical or flat.

Hierarchical Design

Hierarchical designs contain one or more designs. Designs within a hierarchical design
are called cells or subdesigns. Each subdesign can further contain a hierarchy of

designs in it.

Flat Design

Flat design does not consist of any subdesigns. It is completely represented using leaf

cells.
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Design Rules
Design rules are technology requirements that cannot be violated. They are rules set
up by the ASIC vendors to ensure that the product meets vendor specifications and
works as intended.
Design Constraints
Design constraints are design goals represented as measurable circuit characteristics,
such as timing and area.

Cells

A cell is an instantiation of a design or subdesign within another design. Each time a
cell is used in a design, it becomes a design instance. A design can contain multiple
instances of the same cell.

References

A reference is a pointer to a cell or subdesign in its parent design. Cells used multiple

times in a design point to the same reference.

Nets

Nets (networks) are the wires that connect ports to pins and pins to each other.

Ports

Ports are the inputs and outputs of a design.
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Pins
Pins are the input and output of the cells within a design (such as gates and flip-flops).
The ports of a subdesign are pins within its parent design.
Routing

Routing is the network of connections between logic gates.

Layout

A complete layout is a geometric representation of a chip, overlaid with the geometry

of a physical design.

Place and Route

Placing netlist gates at physical coordinates on the chip layout (with no overlaps) and

then physically connecting (route) the gates.

Chip

Physical implementation of a design, usually built for silicon. Also known as a die.
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Appendix B

Scripts

This appendix shows a listing sample of the scripts used for synthesis and reporting
purposes. Synthesis scripts are from Design Analyzer, whereas timing and area reports
have been obtained using the Primetime tool. A sample timing report obtained using

Primetime is also shown in the end.

B.1 Synopsys Scripts

[ Kk skok ok sk sk ok ok ok ok ok ok ok ok ok sk ok Kok ok ok ok ok sk o ok ok ok sk ok ok sk sk sk ok ok ok sk ok sk sk ok ok ok ok /
/* PE_INTEG synthesis script */
/* command line is dc_shell -f PE_INTEG.script */

/* create the WORK directory */

sh mkdir WORK

sh mkdir db

define_design_1ib WORK -path "./WORK"

/* read in kestrel libraries in uncompiled form */
include libread.script

include WE_disable.script

read -format db {"./db/meml.db"}
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read -format db {"./db/mem2.db"}

read -format db {"./db/fetch.db"}

read -format db {"./db/execute.db"}
read -format db {"./db/instdecode.db"}

read -format db {"./db/wb.db"}

analyze -format verilog -1ib WORK {"PE/INTEGRATION/pe_integ.v"}
analyze -format verilog -1ib WORK {"PE/MISCEL/data_ctl.v"}
elaborate pe_integ —arch "verilog" -1lib WORK -update

elaborate data_ctl —-arch "verilog" -1lib WORK -update

set_dont_touch "meml.db:meml"
set_dont_touch "mem2.db:mem2"
set_dont_touch "fetch.db:fetch"
set_dont_touch "execute.db:execute"
set_dont_touch "instdecode.db:instdecode"

set_dont_touch "wb.db:wb"

create_schematic -size infinite -gen_database

current_design pe_integ

[* —mmmmmmmm e SET CLOCK ——----—-—=——=——=—————————— x/

create_clock -period 12 -waveform {0 6} find(port,'clk")

uniquify

/¥ =mmmmmmmm e SET ATTRIBUTES -------—-=--=-=====-- */

set_input_delay 9 -max -clock "clk" find(port,"arbitrate_in")
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set_input_delay 3 -max -clock "clk" find(port,'"resend_w_h_in")

set_input_delay 3 -max -clock "clk" find(port,"resend_in")

set_input_delay 3 -max -clock "clk" find(port,"priority_resend_in")

set_output_delay 6
set_output_delay 8
set_output_delay 8
6

set_output_delay

-max -clock "clk" find(port,'"data_addr_out")
-max -clock "clk" find(port,"data_addr_out[5]")
-max -clock "clk" find(port,"data_addr_out[6]")

-max -clock "clk" find(port,'"data_cntl_out")

set_output_delay 10 -max -clock "clk" find(port,'"data_cntl_out[5]")

set_output_delay 10 -max -clock "clk" find(port,"data_cntl_out[6]")

/* ——-— INPUTS ---- %/

set_driving_cell -cell BUFA -library 1lcb500kv
find(port, "arbitrate_in");

set_driving_cell -cell BUFA -library 1lcb500kv
find(port, "priority_resend_in");
set_driving_cell -cell BUFA -library 1lcb500kv
find(port, "flush_cache_in");
set_driving_cell -cell BUFA -library 1lcb500kv
find(port, "resend_in");

set_driving_cell -cell BUFA -library 1lcb500kv

find(port, "resend_w_h_in");

set_max_fanout 1 find(port, "head_1_in");

set_max_fanout 1 find(port, "start_1_in");

-pin

-pin

-pin

-pin

-pin

set_max_fanout 1 find(port, "restart_PE_1_in");

/* —-——— QOUTPUTS ---- */

set_load 0.43 find(port,"data_addr_out")

IIZII

IIZII

IIZII

IIZII

IIZII

-no_design_rule

-no_design_rule

-no_design_rule

-no_design_rule

-no_design_rule
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set_load 0.43 find(port,"data_cntl_out")

current_design pe_integ

set_flatten false

set_flatten -effort medium

set_flatten -minimize single_output

set_flatten -phase false

set_structure true -timing true

set_ungroup current_design true

set_local_link_library {1lcb500kv.db}

set_wire_load "B0.5X0.5" -library "lcb500kv" -mode "enclosed"

compile -map_effort medium

ungroup -flatten -all
write -format db -hierarchy -output "./db/pe_integ.db" \

{"pe_integ.db:pe_integ"}

check_design > ./pe_integ_report
report_area > ./reports/pe_integ.area
report_timing -path full -delay max -nworst 100 -max_paths 100 > \

./reports/pe_integ.timing

exit



/****************************************************************/

/* INTEG_FINAL synthesis script */

/* command line is dc_shell -f INTEG_FINAL.script */

/* create the WORK directory */

sh mkdir WORK

sh mkdir db

define_design_lib WORK -path "./WORK"

/* read in kestrel libraries in uncompiled form */

include libread.script

include WE_disable.script

read
read
read
read
read
read
read
read
read

read

-format
-format
-format
-format
-format
-format
-format
-format
-format

-format

db
db
db
db
db
db
db
db
db
db

analyze -format

elaborate integ_

.
.
.
{.
{.
.
{.
{.
{.
{.

/db/drf_spr_biu_pe_integ.db"}
/db/PLBMU_new.db"}
/db/sequencer .db"}
/db/DMSUL2.db"}
/db/imu_integl.db"}
/db/integ_final_glue.db"}
/db/bidir_1tol_64_bus.db"}
/db/bidir_5tol_8_bus.db"}
/db/bidir_4tol_54_bus.db"}
/db/bidir_4tol_128_bus.db"}

verilog -1ib WORK {"TOP/integ_final.v"}

final -arch "verilog" -1ib WORK -update

set_dont_touch "bidir_1tol_64_bus.db:bidir_1tol_64_bus"
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set_dont_touch "bidir_5tol_8_bus.db:bidir_b5tol_8_bus"
set_dont_touch "bidir_4tol_54_bus.db:bidir_4tol_54_bus"
set_dont_touch "bidir_4tol_128_bus.db:bidir_4tol_128_bus"
set_dont_touch "drf_spr_biu_pe_integ.db:drf_spr_biu_pe_integ"
set_dont_touch "PLBMU_new.db:PLBMU_new"

set_dont_touch "sequencer.db:sequencer"

set_dont_touch "DMSUL2.db:DMSUL2"

set_dont_touch "imu_integl.db:imu_integl"

set_dont_touch "integ_final_glue.db:integ_final_glue"
create_schematic -size infinite -gen_database

/* Set the current_design */
current_design integ_final

link

write -format db -hierarchy -output "./db/integ_final.db" \
{"integ_final.db:integ_final"}

exit

B.2 Primetime Scripts

e e PE_INTEG ----—-—=—========———————m—mmo e */

# pt_shell example script for timing analysis.
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# read this script in using "source" scriptname

# or else start up using "pt_shell -f thisfile"

# page the output

set sh_enable_page_mode true

# now relink the design

set link_path"* mergener/synopsys/LCB500K_LIB/1cb500kv.db"

# read in the db for the design

read_db /p/multiscalar/padmaja/synopsys/db/pe_integ.db

link_design pe_integ

create_clock -period 12 [get_ports clk]

source /p/multiscalar/mergener/synopsys/scripts/WE_disable.script
report_design

report_reference

# this check to see if all ports are constrained, It will fail if

# any port in the design is not constrained. That is OK and expected.

check_timing

# this will start to do the timing analysis.

report_timing

check_timing



report_timing -delay max -path_type full -max_path 2

quit

[ m—mmmmmm DRF SPR BIU PE INTEG -------—--——-————————-
# pt_shell example script for timing analysis.
# read this script in using "source" scriptname

# or else start up using "pt_shell -f thisfile"

# page the output

set sh_enable_page_mode true

# now relink the design

set link_path"* mergener/synopsys/LCB500K_LIB/1cb500kv.db"

# read in the db for the design

read_db /p/multiscalar/padmaja/synopsys/db/bidir_1tol_64_bus.db
read_db /p/multiscalar/padmaja/synopsys/db/bidir_4tol_128_bus.db
read_db /p/multiscalar/padmaja/synopsys/db/bidir_4tol_54_bus.db
read_db /p/multiscalar/padmaja/synopsys/db/bidir_5tol_8_bus.db

read_db /p/multiscalar/padmaja/synopsys/db/drf_spr_biu_pe_integ.db

link_design bidir_1tol_64_bus
link_design bidir_4tol_128_bus
link_design bidir_5tol_8_bus

link_design bidir_4tol_54_bus

link_design drf_spr_biu_pe_integ
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create_clock -period 12 [get_ports clk]

report_design

report_reference > REPORTS/ref_drf_spr_biu

# this check to see if all ports are constrained, It will fail if

# any port in the design is not constrained. That is 0K and expected.

check timing

# this will start to do the timing analysis.
report_timing -delay max -path_type full -max_path 2

quit

[Rmmm e INTEG_FINAL ---------————————————————— */
# pt_shell example script for timing analysis.
# read this script in using "source" scriptname

# or else start up using "pt_shell -f thisfile"

# page the output

set sh_enable_page_mode true

# now relink the design

set link_path"* mergener/synopsys/LCB500K_LIB/1cb500kv.db"

# read in the db for the design
read_db /p/multiscalar/padmaja/synopsys/db/bidir_1tol_64_bus.db
read_db /p/multiscalar/padmaja/synopsys/db/bidir_4to1_128_bus.db

read_db /p/multiscalar/padmaja/synopsys/db/bidir_4tol_54_bus.db
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read_db /p/multiscalar/padmaja/synopsys/db/bidir_5tol_8_bus.db

read_db /p/multiscalar/padmaja/synopsys/db/integ_final.db

link_design bidir_1tol_64_bus
link_design bidir_4tol_128_bus
link_design bidir_5tol_8_bus

link_design bidir_4tol_54_bus

link_design integ_final
create_clock -period 12 [get_ports gclk]

report_design

report_reference > REPORTS/ref_integ_final

check_timing

report_timing -delay max -path_type full -max_path 2

quit

B.3 Timing Report

Given below is a typical timing report generated using the Primetime tool. The
Startpoint and Endpoint represent the starting and ending of the path. The timing
constraints specified on the Kestrel design are all w.r.t. the clock edge.

An output external delay of 10ns has been specified on the output port data_cntl_out

therefore, the data required time is 2ns, whereas, the logic takes 3.85ns, violating the
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constraints by 1.85ms.

Startpoint: mem2_r5/valid5_r12/r1/data_regl0]
(rising edge-triggered flip-flop clocked by clk)
Endpoint: data_cntl_out[5]
(output port clocked by clk)
Path Group: clk

Path Type: max

Point Incr Path

clock clk (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

mem2_r5/valid5_r12/ri/data_reg[0]/CP (FD1SQA) 0.00 0.00 r
mem2_r5/valid5_r12/r1/data_reg[0]/Q (FD1SQA) 0.46 0.46 r
mem2_r5/valid5_r12/U4/Z (BUFB) 0.60 1.06 r
mem2_r5/U47/Z (N1L) 0.49 1.55 f
mem2_r5/U77/Z (NR2A) 0.22 1.77 r
mem2_r5/U88/Z (ND3A) 0.23 2.00 f
mem?2_r5/U97/Z (NR2A) 0.20 2.20 r
mem2_r5/U103/Z (ND3A) 0.19 2.39 f
mem2_r5/U106/Z (AQ3A) 0.26 2.65 r
mem2_r5/cb_cntl_bus_5_out[6] (mem2) 0.00 2.65 r
data_ctl_r7/U20/Z (N1B) 0.16 2.81 f
data_ctl_r7/U17/Z (N1B) 0.09 2.90 r
data_ctl_r7/U19/Z (N1C) 0.07 2.97 f
data_ctl_r7/U14/Z (ND3B) 0.10 3.08 r
data_ctl_r7/U11/Z (N1B) 0.11 3.19 £
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data_ctl_r7/r4/U14/Z (N1D) 0.09 3.28 r
data_ctl_r7/r4/U13/Z (N1B) 0.07 3.35 f
data_ctl_r7/r4/U20/Z (ND2B) 0.08 3.43 r
data_ctl_r7/r4/U27/Z (ND3B) 0.14 3.57 f
U17/Z (N1iB) 0.11 3.68 r
U6/Z (N1C) 0.17 3.85 f
data_cntl_out[5] (out) 0.00 3.85 f
data arrival time 3.85
clock clk (rise edge) 12.00 12.00
clock network delay (ideal) 0.00 12.00
output external delay -10.00 2.00
data required time 2.00
data required time 2.00
data arrival time -3.85

slack (VIOLATED) -1.85
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Appendix C

Tools and Reporting Techniques

This appendix gives a brief overview of the synthesis tools used and the commands for
timing analysis of the design. The primary synthesis tool used was Design Compiler
and Primetime was used for static timing analysis. Synopsys Floorplan Manager was

used for the floorplanning of the design.

C.1 Design Compiler

Design Compiler is the core of the Synopsys synthesis product family. It provides
constraint driven sequential optimization, and synthesizes the HDL description into
a technology dependent gate level design. Design Compiler optimizes logic design for
speed, area, and routability.

Design Analyzer is the graphical interface of Design Compiler, where as the Unix

shell interface is called dc_shell.

C.1.1 How does Design Compiler Optimize a Design [1]?

Design Compiler works at two levels: the logic level and the gate level. Optimization
occurs at both the levels of logic. Figure C.1 summarizes the process of optimization
in Design Compiler.

The HDL description is first read in and converted to a logic level description.

The Design Compiler applies logic level optimization (flattening and structuring) and
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Figure C.1: Optimization process in the Design Compiler

Netlist

maps the resulting structure to gates. Alternatively, if the primary input is a netlist,
Design Compiler extracts logic equations from it, and optimization is then applied
and mapped back to gates.

In a hierarchical design, different levels of the hierarchy can be read from different
sources. Design analyzer also accepts a design expressed as a combination of gate-level
and logic-level constructs.

The Design Compiler moves the design between the logic-level and gate-level rep-
resentations to take advantage of different optimization techniques. The optimization
cycle continues till the satisfactory implementation is achieved or no further improve-
ments are possible with the current design.

The logic-level and gate-level optimizations can be controlled using the commands

set_structure, set_flatten or set map_effort.
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C.2 Primetime

Primetime is a Synopsys tool used to generate timing and area reports. This tool can
be used to plot the capacitance information, delay information and path based slacks,
among other things. Some of the reporting commands used in the Kestrel project are

given in the following section.

C.3 Floorplan Manager

Floorplan Manageris a tool in the Design compiler family. This tool provides means to
produce predictable results at the physical level from the logical implementation. The
information from the design (constraints) can be forward annotated onto the design

using this tool.

C.4 Reporting Commands

Various reporting and optimization commands of Design Analyzer (Design Compiler)

and Primetime used in the Kestrel project are outline below.

C.4.1 Design Analyzer

read Reads designs into dc_shell.

analyze Analyzes HDL files and stores the intermediate format for the HDL descrip-

tion in the specified library.

elaborate Builds a design from the intermediate format of a Verilog module.
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include Executes a script of dc_shell commands.

create_schematic Generates a schematic for the current design.

current_design Sets the working design in dc_shell.

uniquify Removes multiply-instantiated hierarchy in the current_design by creating

a unique design for each cell instance.

create_clock Creates a clock object and defines its waveform in the current design.

set_input_delay Sets input delay on pins or input ports relative to a clock signal.

set_output_delay Sets output delay on pins or output ports relative to a clock signal.

set_wire_load Sets the wire loading model for the current_design or for the specified

cluster or ports.

set_false_path Marks paths between specified points false.

set_local _link library local link library attribute is set to the specified file. The

local link library files are not loaded or checked until the link library is used.

set_driving_cell Sets attributes on input or inout ports of the current_design, speci-

fying that a library cell or pin will drive the ports.

set_load Sets the load attribute to a specified value on specified ports and nets.

set_flatten Sets or removes the flatten attribute on specified designs or on the cur-

rent_design, to enable or disable the flattening optimization step during compile.
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set_structure Sets various structure attributes on a design or on a list of designs, to

determine whether and how the designs are structured during compile.

set_ungroup Sets the ungroup attribute on specified designs, cells, or references,

indicating that they are to be ungrouped during compile

report_timing Displays timing information about a design.

report_area Displays area information and statistics for the design of the current_instance,

if set; or for the current_design otherwise.

report_reference Displays information about references in the current_instance, if

set; or in the current_design otherwise.

C.4.2 Primetime

link_path Specifies a list of libraries, design files, and library files used during linking.
The link_design command looks at those files and tries to resolve references in

the order of specified files.

read_db Reads one or more design or library db files.

link _design Performs a name-based resolution of design references for the specified

design_name or the current design.

source Reads a file and evaluates it as a script.

create_clock Creates a clock object.

report_design Lists information about the attributes on the current_design.
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report_reference Displays information about all references in the current instance

or current design.

set_case_analysis Specifies that a port or pin is at a constant logic value 1 or 0, or

is considered with a rising or falling transition.
check_timing Shows possible timing problems for design

report_timing Reports timing paths.
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