Characterizing and Predicting Value Degree of Use

J. Adam Butts and Guri Sohi

University of Wisconsin-Madison {butts,sohi}@cs.wisc.edu

> *MICRO-35 Istanbul, Turkey November 20, 2002*

Overview

Degree of use: number of times a dynamic value is used

- Indicates value's communication characteristics
- Predictable and exploitable
- Choose efficient communication method on a per-value basis

Degree of Use Prediction

- Low hardware cost, relaxed timing constraints
- 92% of values receive correct predictions
- <3% misprediction rate</p>

Outline

Overview

Degree of Use

- Motivation
- Characterization
- Predictability

Developing a Degree of Use Predictor Evaluating Degree of Use Prediction Summary

Value Communication

Observation: Value communication is expensive

- Large, multi-ported register files
- Complicated bypass networks
- Broadcast tag match for instruction wakeup

Why?: Communication structures are overly general

- Must support all possible communication patterns for all values
- Implicit assumption of complex communication patterns
- Optimize for the common case

How to determine the actual needs of a value?

Degree of Use

How many consumers does the

value have?

- Direct indicator of the communication requirements of the value
- Answer: degree of use!

Focus on register degree of use

- All communicating instructions use at least one register
- Values not tracked through memory
 - Loads produce a **new** value
 - Stores produce no value

Applications of Degree of Use Knowledge

Degree of use: Zero

Useless instruction elimination (avoid scheduling, execution)

Degree of use: One

- Collapsing dependent operations (intermediate value not needed)
- Direct consumer wakeup (no tag broadcast)
- Bypassing the register file (no writeback)

Degree of use: Few (< ~3)

Selective instruction duplication (avoid cross-cluster communication)

Key: early knowledge of value's behavior

Characterizing Degree of Use

Degree of use statistics

- Mode (most frequent): 1
- Average: 1.66
- Maximum: ~330 M

FP benchmarks

- Higher average: 1.83
- Fewer 0, more 1, 2

Characteristics conserved

- gcc results similar
- Consequence of program structure and ISA

Predictability of Degree of Use

67% of values from instructions generating one degree of use

What about temporal locality?

Predictability of Degree of Use

93% of values have the same degree of use as the last value from the same instruction

Instruction identity is significant in determining degree of use

Characterizing and Predicting Value Degree of Use J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • MICRO-35, November 2002

Outline

Overview

Degree of Use

Developing a Degree of Use Predictor

- Predictor organization
- Control flow signatures
- Predictor enhancements

Evaluating Degree of Use Prediction

Summary

BTB/ BPred	I-cache	Ren	ame	Queue	Sched.	Register Read	Exec.	Write- back	Retire
---------------	---------	-----	-----	-------	--------	------------------	-------	----------------	--------

Use predictions to optimize value communication

Use predictions to optimize value communication

Index predictor w/ instruction PC
Receive timely predictions

Use predictions to optimize value communication

- Index predictor w/ instruction PC
 Receive timely predictions
- Exploit other pipeline information

signal mispredictions

Use predictions to optimize value communication

- Index predictor w/ instruction PC
 Receive timely predictions
- Exploit other pipeline information

Observe instruction stream for training/misprediction detection

Refer to paper

Basic Predictor

Associate static instructions w/ degree of use of last instance

- Cache-like predictor indexed with low-order instruction PC
- Parameters: capacity, associativity, tag length, maximum degree

Tag entries to reduce aliasing

- Use high order PC bits
- Associative organizations require tagging

Maximum predictable degree of use?

- Application dependent
- Small contribution from high degrees of use
- Group all predictions >= limit (6)

Multiple Degrees of Use

How to differentiate multiple possible degrees of use?

Future control flow uniquely determines degree of use

- All uses occur after value is generated
- Observed uses depend solely on which path is taken

Predicted future control flow is available

- Degree of use predictions needed in middle of pipeline
- Control flow predictions are made in early pipeline stage

Use a forward control-flow signature

Proposed as part of dead-instruction predictor [ASPLOS-X]

Forward Control Flow Signatures

Signature encodes predictions for upcoming indirect or conditional branches

- If next branch is indirect (e.g., return), encode target address
- Otherwise, encode available predicted branch directions
- Type and number of predictions is also encoded

Generating a prediction requires a PC and signature match

Predictor Microarchitecture

Associates predictions with instruction identity

Index with low-order PC bits, tag entries with higher-order bits

Support multiple predictions per static instruction

- Use a set-associative predictor organization
- Use control flow signature as part of tag

Predictor Table

Characterizing and Predicting Value Degree of Use J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • MICRO-35, November 2002

Enhancements to Basic Predictor

Confidence bits

- 2-bit saturating counter per entry: \uparrow on correct pred., \downarrow on mispred.
- Hysteresis helps

Signature prefix matching

- Require match only to length of stored signature
- Assumes stored signature is "necessary and sufficient detail"

Alternative replacement algorithms

- True LRU costs many bits
- Not-MRU, random replacement

Default to maximum-predictable degree of use

- No explicit storage for this case: increases effective capacity
- Diminishing returnsNeeds of applications

Outline

Overview

Degree of Use

Developing a Degree of Use Predictor

Evaluating Degree of Use Prediction

- Methodology
- Parameter sensitivity
- Performance of enhancements

Summary

Methodology

Execution-driven simulation

- 4-wide fetch, issue, retire
- 256-entry ROB, 64-entry scheduling window
- 12 KB YAGS branch predictor, RAS, cascaded indirect predictor
- 64 KB 2-way set-associative L1 caches, unified 2MB 4-way L2

Coverage

- Percentage of all values predicted
- Higher coverage = less lost opportunity

Accuracy

- Percentage of covered values correctly predicted
- Higher accuracy = fewer mis-predictions

Predictor Parameter Sensitivity

Coverage is a strong function of capacity and organization

- Similar to other caches
- Accuracy nearly independent

Increasing tag bits reduces destructive aliasing

- 6 bits OK for these programs
- Signature helps

Characterizing and Predicting Value Degree of Use J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • MICRO-35, November 2002

Predictor Parameter Sensitivity

Control flow signature increases accuracy

- Little benefit beyond 6 signature bits (== 4 branches)
- 98% of instructions have fewer than four branch directions available

Characterizing and Predicting Value Degree of Use J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • MICRO-35, November 2002

Predictor Performance by Degree

Prediction frequency reflects degree of use distribution

Accuracy depends on degree

- Accuracy diminishes with increasing predicted degree
- Degree of use 1 predictions
 - Most accurate
 - Most mispredictions also

Performance of Predictor Enhancements

Confidence bits, prefix matching: big wins Alternative replacement (even random): reasonable cost Implicit prediction: gain and cost are application-dependent

Characterizing and Predicting Value Degree of Use J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • MICRO-35, November 2002

Outline

Overview

Degree of Use

Developing a Degree of Use Predictor

Evaluating Degree of Use Prediction

Summary

- Related work
- Conclusions

Related Work

Register traffic analysis (Franklin, Sohi)

- Initial examination of degree of use
- MIPS ISA, SPEC95 benchmarks
- Similar results
- Data used motivate many optimizations by other researchers

Analytical-statistical modeling (Eeckhout and Bosschere)

- Proposed power-law model for degree of use distribution
- Applied to microarchitectural modeling

Conclusions

Degree of use describes value communication

- Provides intuitive, direct knowledge of communication requirements
- Most values communicated to a small number of consumers

Accurate degree of use prediction is possible

- 92% of values receive predictions with <3% misprediction rate
- Low overhead (8.5 KB), non-critical timing

Many potential applications

- Efficiency using mechanisms matched to actual communication
- Focus of our ongoing work

A degree of use predictor can be a key component of a communication-optimized architecture