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Overview
Degree of use: number of times a d ynamic v alue is used

■ Indicates value’s comm unication c haracteristics

■ Predictable and exploitable

■ Choose efficient communication method on a per-value  basis

Degree of Use Prediction
■ Low hardware cost, relaxed timing constraints

■ 92% of values receive correct predictions

■ <3% misprediction rate
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Outline
Overview

Degree of Use
■ Motivation

■ Characterization

■ Predictability

Developing a Degree of Use Predictor

Evaluating Degree of Use Prediction

Summar y
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Value Comm unication
Obser vation : Value comm unication is e xpensive

■ Large, multi-ported register files

■ Complicated bypass networks

■ Broadcast tag match for instruction wakeup

Why?: Comm unication structures are overl y general
■ Must support all  possible communication patterns for all  values

■ Implicit assumption of complex communication patterns

■ Optimize for the common case

How to determine the actual needs of a v alue?
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Degree of Use
How man y consumer s does the

value ha ve?
■ Direct indicator of the communication

requirements of the value

■ Answer: degree of use !

Focus on register degree of use
■ All  communicating instructions use at

least one register

■ Values not tracked through memory

• Loads produce a new value

• Stores produce no  value
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Applications of Degree of Use Kno wledg e
Degree of use: Zero

■ Useless instruction elimination (avoid scheduling, execution)

Degree of use: One
■ Collapsing dependent operations (intermediate value not needed)

■ Direct consumer wakeup (no tag broadcast)

■ Bypassing the register file (no writeback)

Degree of use: Few (< ~3)
■ Selective instruction duplication (avoid cross-cluster communication)

Key: earl y kno wledg e of v alue’s beha vior
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Degree of use statistics
■ Mode (most frequent): 1

■ Average: 1.66

■ Maximum: ~330 M

FP benc hmarks
■ Higher average: 1.83

■ Fewer 0, more 1, 2

Characteristics conser ved
■ gcc results similar

■ Consequence of program
structure and ISA

Characterizing Degree of Use
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Predictability of Degree of Use

67% of values from instructions generating one degree of use

What about temporal locality ?
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Predictability of Degree of Use

93% of values have the same degree of use as the last  value from
the same instruction

Instruction identity is significant in determining degree of use
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Outline
Overview

Degree of Use

Developing a Degree of Use Predictor
■ Predictor organization

■ Control flow signatures

■ Predictor enhancements

Evaluating Degree of Use Prediction

Summar y
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Degree of Use Prediction

BTB/
BPred Rename Queue Exec.

Write-
back RetireI-cache

Use predictions to optimiz e value comm unication

Register
Sched. Read
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Degree of Use Prediction

BTB/
BPred Rename Queue Exec.

Write-
back RetireI-cache

predictions

Register
Sched. Read

Degree of use
predictor

PCs

Use predictions to optimiz e value comm unication
■ Index predictor w/ instruction PC ■ Receive timely predictions
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Degree of Use Prediction

BTB/
BPred Rename Queue Exec.

Write-
back RetireI-cache

predictions

Register
Sched. Read

Degree of use
predictor

PCs

contr ol flo w

Use predictions to optimiz e value comm unication
■ Index predictor w/ instruction PC ■ Receive timely predictions

■ Exploit other pipeline information
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retirement stream

Degree of Use Prediction

BTB/
BPred Rename Queue Exec.

Write-
back RetireI-cache

Degree
training

table

predictions

signal mispredictions

Register
Sched. Read

train predictor

Degree of use
predictor

PCs

contr ol flo w

Use predictions to optimiz e value comm unication
■ Index predictor w/ instruction PC ■ Receive timely predictions

■ Exploit other pipeline information

Obser ve instruction stream for training/misprediction detection
■ Refer to paper
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Basic Predictor
Associate static instructions  w/ degree of use of last instance

■ Cache-like predictor indexed with low-order instruction PC

■ Parameters: capacity, associativity, tag length, maximum degree

Tag entries to reduce aliasing
■ Use high order PC bits

■ Associative organizations require tagging

Maxim um predictab le degree of use?
■ Application dependent

■ Small contribution from high degrees of use

■ Group all predictions >= limit (6)



Characterizing and Predicting Value Degree of Use
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • MICRO-35, November 2002

Slide
16/28

Multiple Degrees of Use
How to diff erentiate m ultiple possib le degrees of use?

Future contr ol flo w uniquel y determines degree of use
■ All uses occur after value is generated

■ Observed uses depend solely on which path is taken

Predicted future contr ol flo w is availab le
■ Degree of use predictions needed in mid dle  of pipeline

■ Control flow predictions are made in early pipeline stage

Use a forwar d contr ol-flo w signature

■ Proposed as part of dead-instruction predictor [ASPLOS-X]
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Forwar d Contr ol Flo w Signatures
Signature encodes predictions f or upcoming indirect  or

conditional  branc hes
■ If next branch is indirect (e.g., return), encode target address

■ Otherwise, encode available predicted branch directions

■ Type and number  of predictions is also encoded

Generating a prediction requires a PC and signature matc h

0 ••• 1 X X X X1 X X X X X X X

hashed tar get
address

bit position of
leading 1 indicates
number of branc hes

Signature Formats

Indirect branc h Conditional branc hes

predicted
branc h
directions
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Predictor Micr oarchitecture

01100101

Associates predictions with instruction identity
■ Index with low-order PC bits, tag entries with higher-order bits

Suppor t multiple predictions  per static instruction
■ Use a set-associative predictor organization

■ Use control flow signature as part of tag

k:

j:

Predictor T able
tag sig pred

z 01100001 2

x 3

tag sig pred

z 1

y 01000001 0

z k

0 1 1 0 0 1 0 1Signature

hit

PC

11101101
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Enhancements to Basic Predictor
Confidence bits

■ 2-bit saturating counter per entry: ↑ on correct pred., ↓ on mispred.

■ Hysteresis helps

Signature prefix matc hing
■ Require match only to length of stored signature

■ Assumes stored signature is “necessary and sufficient detail”

Alternative replacement algorithms
■ True LRU costs many bits

■ Not-MRU, random replacement

Default to maxim um-predictab le degree of use
■ No explicit storage for this case: increases effective capacity

■ Diminishing returns ■ Needs of applications
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Outline
Overview

Degree of Use

Developing a Degree of Use Predictor

Evaluating Degree of Use Prediction
■ Methodology

■ Parameter sensitivity

■ Performance of enhancements

Summar y



Characterizing and Predicting Value Degree of Use
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • MICRO-35, November 2002

Slide
21/28

Methodology
Execution-driven sim ulation

■ 4-wide fetch, issue, retire

■ 256-entry ROB, 64-entry scheduling window

■ 12 KB YAGS branch predictor, RAS, cascaded indirect predictor

■ 64 KB 2-way set-associative L1 caches, unified 2MB 4-way L2

Coverage
■ Percentage of all values predicted

■ Higher coverage = less lost opportunity

Accurac y
■ Percentage of covered  values correctly predicted

■ Higher accuracy = fewer mis-predictions
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Predictor P arameter Sensitivity

Coverage is a str ong function
of capacity and or ganization

■ Similar to other caches

■ Accuracy nearly independent

Increasing tag bits  reduces
destructive aliasing

■ 6 bits OK for these programs

■ Signature helps
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Contr ol flo w signature  increases accurac y
■ Little benefit beyond 6 signature bits (== 4 branches)

■ 98% of instructions have fewer than four branch directions available

Predictor P arameter Sensitivity
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Prediction frequenc y reflects
degree of use distrib ution

Accurac y depends on degree
■ Accuracy diminishes with

increasing predicted degree

■ Degree of use 1 predictions

• Most accurate

• Most mispredictions  also
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Performance of Predictor Enhancements

Confidence bits , prefix matc hing : big wins

Alternative replacement  (even random): reasonab le cost

Implicit prediction : gain and cost are application-dependent
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Outline
Overview

Degree of Use

Developing a Degree of Use Predictor

Evaluating Degree of Use Prediction

Summar y
■ Related work

■ Conclusions
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Related Work
Register traffic anal ysis  (Franklin, Sohi)

■ Initial examination of degree of use

■ MIPS ISA, SPEC95 benchmarks

■ Similar results

■ Data used motivate many optimizations by other researchers

Anal ytical-statistical modeling  (Eeckhout and Bossc here)
■ Proposed power-law model for degree of use distribution

■ Applied to microarchitectural modeling
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Conc lusions
Degree of use describes  value comm unication

■ Provides intuitive, direct knowledge of communication requirements

■ Most values communicated to a small number of consumers

Accurate degree of use prediction is possib le
■ 92% of values receive predictions with <3% misprediction rate

■ Low overhead (8.5 KB), non-critical timing

Many potential applications
■ Efficiency using mechanisms matched to actual communication

■ Focus of our ongoing work

A degree of use predictor can be a ke y component of a
comm unication-optimiz ed architecture


