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Overview
Non-trivial # of instructions create values that are never used

■ Most useless instances are generated by partially-dead instructions

■ Aggressive compiler optimization increases incidence

Useless instances are predictable
■ Predictor identifies 91% of useless instructions

Exploit by dynamically eliminating  resource costs
■ Avoid handling useless instructions

■ May enable more aggressive code motion
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Outline
Overview

Useless Instructions
■ Definition

■ Frequency

■ Characterization

Identifying Useless Instructions Dynamically

Eliminating Useless Instructions

Summary
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Useless Instructions
Definition: dynamic instruction  that generates an unused value

■ One static instruction may generate useful and useless instances

Sources of useless instructions
■ Partially-dead instructions

■ Dead instructions requiring interprocedural analysis to detect

def

use

def

ret

def

use use
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Costs of Useless Instructions
Direct costs  of useless instructions

■ Register file bandwidth ■ Cache bandwidth

■ Instruction window slots ■ ALU occupancy

Indirect cost : less effective compiler optimization
■ Compiler balances estimated costs and benefits

■ Useless instructions are a cost  of optimization

■ Some optimizations may be blocked by perceived cost

Potential for more aggressive optimization
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Role of Compiler Optimization
Optimization increases  fraction of useless instructions

■ Absolute number also increases

■ Due primarily to hoisting during instruction scheduling

3 to 16% of non-NOP instructions are useless
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Contribution by Static Instructions

Small # of static instructions  generate most useless instances
■ Related to code footprint

■ Contributing instructions exhibit temporal locality

Instruction-based prediction is likely to be effective
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Contribution by Usefulness

Statically-dead instructions
■ Analysis fails to prove dead ■ Value live on unexercised path

Majority of useless instances from mostly-dead instructions

Must be able to distinguish useful instances
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Outline
Overview

Useless Instructions

Identifying Useless Instructions Dynamically
■ Predictor organization

■ Forward control flow signatures

■ Evaluation

Eliminating Useless Instructions

Summary
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Useless Instruction Prediction
Goal : identify useless instructions early  in pipeline

■ Earlier identification → greater opportunity to exploit

Solution : remember static instructions  with useless instances
■ Cache-like predictor indexed with instruction PC

■ Observe rename instruction stream to detect mispredictions

Problem : same static instructions also generate live values
■ Results in frequent mispredictions (16%)
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Forward Control Flow

How to differentiate useless and useful instances?

Future  control flow uniquely determines usefulness
■ Uses depend solely on path taken after  value is generated

Future control flow is available
■ “Deadness” predictions needed in middle  of pipeline

■ Control flow predictions are made in early  pipeline stage

Not quite perfect
■ Control flow predictions may not be correct

■ Pipeline depth limits lookahead
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Control Flow Signatures
Signature encodes predictions for upcoming indirect  or

conditional  branches
■ If next branch is indirect (e.g., return), encode target address

■ Otherwise, encode available predicted branch directions

■ Type and number of predictions is also encoded

Generating a prediction requires a PC and signature match

0 ••• 1 X X X X1 X X X X X X X

hashed target
address

bit position of
leading 1 indicates
number of branches

Future Signature Formats

Indirect branch Conditional branches

predicted
branch
directions
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Predictor Performance
Predictor organization

■ 2K entry, 4-way set assoc.

■ 5-bit future control flow sig.

■ Confidence mechanism

■ 4.6 KB, relaxed timing

Improved accuracy
■ 7% misprediction rate

High coverage
■ 91% of useless instructions

are identified correctly
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Outline
Overview

Useless Instructions

Identifying Useless Instructions Dynamically

Eliminating Useless Instructions
■ Mechanism of elimination: example

■ Evaluation

Summary
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dead PUT

r6:

r5:

V instruction ROB

4:

instruction PUT

7:

Predicted Useless TableVerification table Reorder Buffer

8:

21:

6:

Add VT (verification table) to track prediction status

Add PUT (predicted useless table) to enable recovery

Augment  ROB with pointers into PUT

ldq  r5, 8(sp)

0 —

ldq  r5, 8(sp) —

— —

0 — —

Eliminating Useless Instructions
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addl r1, r5, r6

Eliminating Useless Instructions

When an instruction is predicted to be useless :
■ A free PUT entry is allocated for the instruction

V instruction ROB

4:

instruction PUT

7:

Predicted Useless Table Reorder Buffer

8:

21:ldq  r5, 8(sp)

addl r1, r5, r6

ldq  r5, 8(sp) —6:

1 71 7

dead PUT

r6:

r5:

Verification table

0 —

— —
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1

Eliminating Useless Instructions

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

7:

Predicted Useless Table Reorder Buffer

8:

21:ldq  r5, 8(sp)

addl r1, r5, r6

ldq  r5, 8(sp) —6:

When an instruction is predicted to be useless :
■ A free PUT entry is allocated for the instruction

■ The VT is updated with a pointer to the PUT entry

dead PUT

r6:

r5:

Verification table

0 —

4
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ldq  r5, 8(sp) —6:

Eliminating Useless Instructions

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 47:

Predicted Useless Table Reorder Buffer

8:

21:ldq  r5, 8(sp)

addl r1, r5, r6

When an instruction is predicted to be useless :
■ A free PUT entry is allocated for the instruction

■ The VT is updated with a pointer to the PUT entry

■ A dummy entry is placed in the ROB with a pointer to the PUT entry

dead PUT

r6:

r5:

Verification table

0 —

1 4
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xor  r4, r6 , r7

Subsequent instructions are handled normally except:
■ A use of a predicted useless register causes the corresponding

PUT entry to be placed into the instruction window for scheduling

■ Exceptions cause entire PUT to be flushed into the window

Eliminating Useless Instructions

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 47:

Predicted Useless Table Reorder Buffer

8:

21:ldq  r5, 8(sp)

addl r1, r5, r6

6:

—xor r4, r6, r7

dead PUT

r6:

r5:

Verification table

0 —

1 4

Schedule
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Eliminating Useless Instructions

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:
stq r2, 0(r8)

Predicted Useless Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

6:

When an overwrite of the register is observed:
■ The PUT pointer is copied into the ROB entry of the verifying insn

dead PUT

r6:

r5:

Verification table

0 —

1 4
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Eliminating Useless Instructions

When an overwrite of the register is observed:
■ The PUT pointer is copied into the ROB entry of the verifying insn

■ The VT is updated normally

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:
stq r2, 0(r8)

Predicted Useless Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

6:

dead PUT

r6:

r5:

Verification table

0 —

0 —
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Eliminating Useless Instructions

=

&
rdy

release

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:
stq r2, 0(r8)

Predicted Useless Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

6:

Retiring a predicted useless instruction:
■ The overwriting instruction must be ready to retire

■ All intervening instructions must be ready to retire

dead PUT

r6:

r5:

Verification table

0 —

0 —
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Eliminating Useless Instructions

V instruction ROB

0 — —4:

instruction PUT

—

bis r0,r3,r6 4

7:
stq r2, 0(r8)

Predicted Useless Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

6:

Retiring a predicted useless instruction:
■ The overwriting instruction must be ready to retire

■ All intervening instructions must be ready to retire

■ The ROB and PUT entries are reclaimed

dead PUT

r6:

r5:

Verification table

0 —

0 —
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Evaluation
Execution-driven simulation

■ 4-wide fetch, issue, retire

■ 256-entry ROB, 64-entry scheduling window

■ 12 KB YAGS branch predictor, RAS, cascaded indirect predictor

■ 64 KB 2-way set associative L1 caches, unified 2MB 4-way L2

Useless instruction elimination parameters
■ ROB threshold: 224 entries

• When ROB occupancy exceeds threshold, abort prediction

• Prevents prediction verification from stalling retirement

■ Predicted useless table: 32 entries



Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
25/29

0

5

10

%
 R

ed
uc

ti
on

Executions
Register reads
Register writes
L1 D-cache reads

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr AVG

Results: Resource Utilization

~5% reduction  in utilization of many critical resources
■ Several benchmarks see >10% reductions

Relative reductions depend on instruction mix
■ ALU operations vs. loads ■ 0-, 1-, and 2-input instructions
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Results: Performance
Indirect performance impact

■ Useless instructions are
cheap

■ Performance improvement
under resource contention

• Limited resources

• Many useless instructions

• SMT processors?

80% of ideal performance
■ NOT mis-speculations

■ Retirement holdup

■ Instructions not eliminated

• Unidentified (predictor)

• Unverifiable (ROB size)
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Outline
Overview

Useless Instructions

Identifying Useless Instructions Dynamically

Eliminating Useless Instructions

Summary
■ Related work

■ Conclusions
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Related Work
Partial dead-code elimination  (Knoop, Rüthing, and Steffen)

■ Compiler algorithm to push down partially-dead instructions

■ Does not address interprocedural sources

■ At odds with benefits of hoisting

Exploiting dead value information  (Martin, Roth, Fischer)
■ Compiler identifies useless saves and restores around procedures

■ Does not address partially-dead code
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Conclusions
Programs exhibit non-negligible fraction of useless instructions

■ Partially-dead instructions from code-motion are dominant source

Useless instances of instructions can be accurately predicted
■ 91% of useless instructions identified with 7% misprediction rate

■ Future control flow used to distinguish useless and useful instances

Useless instruction elimination
■ Reduces resource utilization by an average of 5%

■ Results in performance improvement under contention

Optimizing compilers can ignore cost of useless instructions
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Handling Loads
Mispredicted useless loads may be delayed

■ Handle as any OoO processor

Loads may have side effects
■ Memory-mapped I/O, page faults, illegal addresses

■ Must execute these loads

Solutions
■ ISA change to mark such loads

■ Generate address and probe TLB to verify cacheable page
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Aborted Predictions
What if verifying instruction is not observable  within ROB?

■ Must detect or ROB will fill and machine will stall indefinitely

■ Schedule instruction as for a misprediction (abort prediction)

■ Stall from full ROB results in performance penalty

Avoid full stall by implementing ROB threshold
■ If unverified instruction is head of ROB, and

■ ROB occupancy exceeds threshold, then

■ Abort prediction early
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Higher ROB threshold
■ More instructions eliminated

■ Performance peaks earlier
due to diminishing returns
plus larger retirement holdup

Larger PUT size
■ More instructions eliminated

■ More hardware overhead

■ Scaling required with number
of instructions in flight

Parameter Sensitivity
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Useless Instruction Breakdown
79% of useless instructions

successfully eliminated

Causes of non-elimination
■ Non-predictions  (coverage)

■ Aborted predictions (ROB full)

■ False mispredictions

■ PUT full
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