
Dynamic Dead-Instruction Detection and
Elimination

J. Adam Butts and Guri Sohi

University of Wisconsin–Madison

{butts,sohi}@cs.wisc.edu

ASPLOS-X
San Jose, California

October 8, 2002

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
2/29

Overview
Non-trivial # of instructions create values that are never used

■ Most useless instances are generated by partially-dead instructions

■ Aggressive compiler optimization increases incidence

Useless instances are predictable
■ Predictor identifies 91% of useless instructions

Exploit by dynamically eliminating resource costs
■ Avoid handling useless instructions

■ May enable more aggressive code motion

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
3/29

Outline
Overview

Useless Instructions
■ Definition

■ Frequency

■ Characterization

Identifying Useless Instructions Dynamically

Eliminating Useless Instructions

Summary

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
4/29

Useless Instructions
Definition: dynamic instruction that generates an unused value

■ One static instruction may generate useful and useless instances

Sources of useless instructions
■ Partially-dead instructions

■ Dead instructions requiring interprocedural analysis to detect

def

use

def

ret

def

use use

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
5/29

Costs of Useless Instructions
Direct costs of useless instructions

■ Register file bandwidth ■ Cache bandwidth

■ Instruction window slots ■ ALU occupancy

Indirect cost : less effective compiler optimization
■ Compiler balances estimated costs and benefits

■ Useless instructions are a cost of optimization

■ Some optimizations may be blocked by perceived cost

Potential for more aggressive optimization

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
6/29

0

5

10

15

%
 U

se
le

ss
 in

st
ru

ct
io

ns

-O0

-O3

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

Role of Compiler Optimization
Optimization increases fraction of useless instructions

■ Absolute number also increases

■ Due primarily to hoisting during instruction scheduling

3 to 16% of non-NOP instructions are useless

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
7/29

0 100 200 300 400 500

Static instructions

0

20

40

60

80

100

%
 U

se
le

ss
 in

st
ru

ct
io

ns
bzip2
crafty
gcc
parser
vortex
vpr

Contribution by Static Instructions

Small # of static instructions generate most useless instances
■ Related to code footprint

■ Contributing instructions exhibit temporal locality

Instruction-based prediction is likely to be effective

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
8/29

0 20 40 60 80 100

% Useful instances

0

20

40

60

80

100

%
 U

se
le

ss
 in

st
ru

ct
io

ns
bzip2
crafty
gcc
parser
vortex
vpr

Contribution by Usefulness

Statically-dead instructions
■ Analysis fails to prove dead ■ Value live on unexercised path

Majority of useless instances from mostly-dead instructions

Must be able to distinguish useful instances

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
9/29

Outline
Overview

Useless Instructions

Identifying Useless Instructions Dynamically
■ Predictor organization

■ Forward control flow signatures

■ Evaluation

Eliminating Useless Instructions

Summary

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
10/29

Useless Instruction Prediction
Goal : identify useless instructions early in pipeline

■ Earlier identification → greater opportunity to exploit

Solution : remember static instructions with useless instances
■ Cache-like predictor indexed with instruction PC

■ Observe rename instruction stream to detect mispredictions

Problem : same static instructions also generate live values
■ Results in frequent mispredictions (16%)

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
11/29

Forward Control Flow

How to differentiate useless and useful instances?

Future control flow uniquely determines usefulness
■ Uses depend solely on path taken after value is generated

Future control flow is available
■ “Deadness” predictions needed in middle of pipeline

■ Control flow predictions are made in early pipeline stage

Not quite perfect
■ Control flow predictions may not be correct

■ Pipeline depth limits lookahead

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
12/29

Control Flow Signatures
Signature encodes predictions for upcoming indirect or

conditional branches
■ If next branch is indirect (e.g., return), encode target address

■ Otherwise, encode available predicted branch directions

■ Type and number of predictions is also encoded

Generating a prediction requires a PC and signature match

0 ••• 1 X X X X1 X X X X X X X

hashed target
address

bit position of
leading 1 indicates
number of branches

Future Signature Formats

Indirect branch Conditional branches

predicted
branch
directions

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
13/29

0

10

20

30

40

50

60

70

80

90

100

110

120

%
 U

se
le

ss
 in

st
ru

ct
io

ns

Mispredictions
Nonpredictions
Correct

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

A
V

G

Predictor Performance
Predictor organization

■ 2K entry, 4-way set assoc.

■ 5-bit future control flow sig.

■ Confidence mechanism

■ 4.6 KB, relaxed timing

Improved accuracy
■ 7% misprediction rate

High coverage
■ 91% of useless instructions

are identified correctly

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
14/29

Outline
Overview

Useless Instructions

Identifying Useless Instructions Dynamically

Eliminating Useless Instructions
■ Mechanism of elimination: example

■ Evaluation

Summary

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
15/29

dead PUT

r6:

r5:

V instruction ROB

4:

instruction PUT

7:

Predicted Useless TableVerification table Reorder Buffer

8:

21:

6:

Add VT (verification table) to track prediction status

Add PUT (predicted useless table) to enable recovery

Augment ROB with pointers into PUT

ldq r5, 8(sp)

0 —

ldq r5, 8(sp) —

— —

0 — —

Eliminating Useless Instructions

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
16/29

addl r1, r5, r6

Eliminating Useless Instructions

When an instruction is predicted to be useless :
■ A free PUT entry is allocated for the instruction

V instruction ROB

4:

instruction PUT

7:

Predicted Useless Table Reorder Buffer

8:

21:ldq r5, 8(sp)

addl r1, r5, r6

ldq r5, 8(sp) —6:

1 71 7

dead PUT

r6:

r5:

Verification table

0 —

— —

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
17/29

1

Eliminating Useless Instructions

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

7:

Predicted Useless Table Reorder Buffer

8:

21:ldq r5, 8(sp)

addl r1, r5, r6

ldq r5, 8(sp) —6:

When an instruction is predicted to be useless :
■ A free PUT entry is allocated for the instruction

■ The VT is updated with a pointer to the PUT entry

dead PUT

r6:

r5:

Verification table

0 —

4

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
18/29

ldq r5, 8(sp) —6:

Eliminating Useless Instructions

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 47:

Predicted Useless Table Reorder Buffer

8:

21:ldq r5, 8(sp)

addl r1, r5, r6

When an instruction is predicted to be useless :
■ A free PUT entry is allocated for the instruction

■ The VT is updated with a pointer to the PUT entry

■ A dummy entry is placed in the ROB with a pointer to the PUT entry

dead PUT

r6:

r5:

Verification table

0 —

1 4

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
19/29

xor r4, r6 , r7

Subsequent instructions are handled normally except:
■ A use of a predicted useless register causes the corresponding

PUT entry to be placed into the instruction window for scheduling

■ Exceptions cause entire PUT to be flushed into the window

Eliminating Useless Instructions

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 47:

Predicted Useless Table Reorder Buffer

8:

21:ldq r5, 8(sp)

addl r1, r5, r6

6:

—xor r4, r6, r7

dead PUT

r6:

r5:

Verification table

0 —

1 4

Schedule

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
20/29

Eliminating Useless Instructions

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:
stq r2, 0(r8)

Predicted Useless Table Reorder Buffer

8:

21:

...

ldq r5, 8(sp)

addl r1, r5, r6

stq r2, 0(r8)

bis r0, r3, r6

6:

When an overwrite of the register is observed:
■ The PUT pointer is copied into the ROB entry of the verifying insn

dead PUT

r6:

r5:

Verification table

0 —

1 4

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
21/29

Eliminating Useless Instructions

When an overwrite of the register is observed:
■ The PUT pointer is copied into the ROB entry of the verifying insn

■ The VT is updated normally

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:
stq r2, 0(r8)

Predicted Useless Table Reorder Buffer

8:

21:

...

ldq r5, 8(sp)

addl r1, r5, r6

stq r2, 0(r8)

bis r0, r3, r6

6:

dead PUT

r6:

r5:

Verification table

0 —

0 —

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
22/29

Eliminating Useless Instructions

=

&
rdy

release

V instruction ROB

1 addl r1, r5, r6 74:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:
stq r2, 0(r8)

Predicted Useless Table Reorder Buffer

8:

21:

...

ldq r5, 8(sp)

addl r1, r5, r6

stq r2, 0(r8)

bis r0, r3, r6

6:

Retiring a predicted useless instruction:
■ The overwriting instruction must be ready to retire

■ All intervening instructions must be ready to retire

dead PUT

r6:

r5:

Verification table

0 —

0 —

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
23/29

Eliminating Useless Instructions

V instruction ROB

0 — —4:

instruction PUT

—

bis r0,r3,r6 4

7:
stq r2, 0(r8)

Predicted Useless Table Reorder Buffer

8:

21:

...

ldq r5, 8(sp)

addl r1, r5, r6

stq r2, 0(r8)

bis r0, r3, r6

6:

Retiring a predicted useless instruction:
■ The overwriting instruction must be ready to retire

■ All intervening instructions must be ready to retire

■ The ROB and PUT entries are reclaimed

dead PUT

r6:

r5:

Verification table

0 —

0 —

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
24/29

Evaluation
Execution-driven simulation

■ 4-wide fetch, issue, retire

■ 256-entry ROB, 64-entry scheduling window

■ 12 KB YAGS branch predictor, RAS, cascaded indirect predictor

■ 64 KB 2-way set associative L1 caches, unified 2MB 4-way L2

Useless instruction elimination parameters
■ ROB threshold: 224 entries

• When ROB occupancy exceeds threshold, abort prediction

• Prevents prediction verification from stalling retirement

■ Predicted useless table: 32 entries

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
25/29

0

5

10

%
 R

ed
uc

ti
on

Executions
Register reads
Register writes
L1 D-cache reads

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr AVG

Results: Resource Utilization

~5% reduction in utilization of many critical resources
■ Several benchmarks see >10% reductions

Relative reductions depend on instruction mix
■ ALU operations vs. loads ■ 0-, 1-, and 2-input instructions

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
26/29

0.98

1.00

1.02

1.04

1.06

1.08

1.10

Normalized IPC

Baseline
Constrained

bz
ip

2
cr

af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er
pe

rl
tw

ol
f

vo
rt

ex vp
r

H
-M

ea
n

Results: Performance
Indirect performance impact

■ Useless instructions are
cheap

■ Performance improvement
under resource contention

• Limited resources

• Many useless instructions

• SMT processors?

80% of ideal performance
■ NOT mis-speculations

■ Retirement holdup

■ Instructions not eliminated

• Unidentified (predictor)

• Unverifiable (ROB size)

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
27/29

Outline
Overview

Useless Instructions

Identifying Useless Instructions Dynamically

Eliminating Useless Instructions

Summary
■ Related work

■ Conclusions

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
28/29

Related Work
Partial dead-code elimination (Knoop, Rüthing, and Steffen)

■ Compiler algorithm to push down partially-dead instructions

■ Does not address interprocedural sources

■ At odds with benefits of hoisting

Exploiting dead value information (Martin, Roth, Fischer)
■ Compiler identifies useless saves and restores around procedures

■ Does not address partially-dead code

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
29/29

Conclusions
Programs exhibit non-negligible fraction of useless instructions

■ Partially-dead instructions from code-motion are dominant source

Useless instances of instructions can be accurately predicted
■ 91% of useless instructions identified with 7% misprediction rate

■ Future control flow used to distinguish useless and useful instances

Useless instruction elimination
■ Reduces resource utilization by an average of 5%

■ Results in performance improvement under contention

Optimizing compilers can ignore cost of useless instructions

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
30/29

Handling Loads
Mispredicted useless loads may be delayed

■ Handle as any OoO processor

Loads may have side effects
■ Memory-mapped I/O, page faults, illegal addresses

■ Must execute these loads

Solutions
■ ISA change to mark such loads

■ Generate address and probe TLB to verify cacheable page

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
31/29

Aborted Predictions
What if verifying instruction is not observable within ROB?

■ Must detect or ROB will fill and machine will stall indefinitely

■ Schedule instruction as for a misprediction (abort prediction)

■ Stall from full ROB results in performance penalty

Avoid full stall by implementing ROB threshold
■ If unverified instruction is head of ROB, and

■ ROB occupancy exceeds threshold, then

■ Abort prediction early

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
32/29

0 32 64 96 128 160 192 224

ROB threshold

0

10

20

30

40

50

60

70

80

90

100

%
 N

or
m

al
iz

ed
 e

lim
in

at
ed

 in
st

ru
ct

io
ns

0 4 8 12 16 20 24 28 32 36 40

PUT entries

0

10

20

30

40

50

60

70

80

90

100

%
 N

or
m

al
iz

ed
 e

lim
in

at
ed

 in
st

ru
ct

io
ns

Higher ROB threshold
■ More instructions eliminated

■ Performance peaks earlier
due to diminishing returns
plus larger retirement holdup

Larger PUT size
■ More instructions eliminated

■ More hardware overhead

■ Scaling required with number
of instructions in flight

Parameter Sensitivity

Dynamic Dead-Instruction Detection and Elimination
J. Adam Butts and Guri Sohi, University of Wisconsin–Madison • ASPLOS-X, October 2002

Slide
33/29

50

60

70

80

90

100

%
 U

se
le

ss
 in

st
ru

ct
io

ns

Not predicted

PUT full

ROB full

False use

Eliminated

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

A
V

G

Useless Instruction Breakdown
79% of useless instructions

successfully eliminated

Causes of non-elimination
■ Non-predictions (coverage)

■ Aborted predictions (ROB full)

■ False mispredictions

■ PUT full

	Overview
	Outline
	Useless Instructions
	Costs of Useless Instructions
	Role of Compiler Optimization
	Contribution by Static Instructions
	Contribution by Usefulness
	Outline
	Useless Instruction Prediction
	Forward Control Flow
	Control Flow Signatures
	Predictor Performance
	Outline
	Eliminating Useless Instructions
	Eliminating Useless Instructions
	Eliminating Useless Instructions
	Eliminating Useless Instructions
	Eliminating Useless Instructions
	Eliminating Useless Instructions
	Eliminating Useless Instructions
	Eliminating Useless Instructions
	Eliminating Useless Instructions
	Evaluation
	Results: Resource Utilization
	Results: Performance
	Outline
	Related Work
	Conclusions
	Handling Loads
	Aborted Predictions
	Parameter Sensitivity
	Useless Instruction Breakdown

