
A Programmable Co-processor for Profiling

Craig Zilles and Guri Sohi

University of Wisconsin - Madison

International Symposium on
High Performance Computer Architecture

January 2001

2

Overview

r

ation

n

r

ions

 SRAM)
P

I

P

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

ofiling is increasingly important

• necessitates efficient collection of profile inform

telligent Instruction Sampling

• directed sampling
• on-line summarizing

ogrammable Profiling Co-processor

• flexible – can implement many profiling applicat
• primitives in hardware , policies in software
• small and simple ; ~1/2 million transistors (10KB

3

Outline
A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

• Motivation
O Profiling Overview
O Future Trends
O Support for Future Trends

• Intelligent Instruction Sampling
• Profiling Co-processor Overview
• Results
• Related Work
• Conclusion

4

Feedback Directed Optimization (FDO)

e vior

e re

O K WRAPPING, H OT-
O LOCATION, T RACE
C ATION, S ELECTIVE
A P RE- EXECUTION..
P

M

F

C
C
S
V

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

rformance is dictated by a program’s dynamic beha

• e.g. branch- and memory-behavior

odern hardware reacts to dynamic behavior

• dynamic branch prediction
• out-of-order execution

edback-directed optimizations complement hardwa

• Larger scope
• Non-speculative

DE LAYOUT, S UPERBLOCKSCHEDULING, I NLINING, S HRIN
LD OPTIMIZATIONS , I F-C ONVERSION, R EGISTER AL
HEDULING, A DVANCED LOADS, P RE- FETCHING, MEMOIZ
LUE PREDICTION, S PECIALIZATION , B RANCH ALIGNMENT,

Significantly improve performance

5

Example Profiling System

r e

re

i [SOSP ‘97]

e

gy

ERRUPT
P

D

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

ofileMe [Micro ‘97]: sample instructions in hardwar

• instruction tagged at fetch
• pipeline collects information
• interrupt at retirement; processed data in softwa

gital Continuous Profiling Infrastructure (DCPI)

• attributes execution time to static instructions
• low overhead (1-3%) through low sampling rat
• requires long runs

O good for compile-profile-recompile methodolo

FETCH DECODE EXECUTE RETIRE

TAG INTCOLLECT
(PC, events, values, addresses, times)

6

Future Trends

y

de
M

D

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

ore complicated optimizations

• value profiles, dependence profiles, etc.

namic Optimization

• perform FDO online
O can’t rely on software vendors; support legacy co

• collect data quickly
• minimize overhead

7

Future Trends

ore samples

y

de
M

D

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

ore complicated optimizations

• value profiles, dependence profiles, etc. → m

namic Optimization

• perform FDO online
O can’t rely on software vendors, support legacy co

• collect data quickly → less time
• minimize overhead

Conflicting desires

SAMPLES ↑
TIME↓

SAMPLING RATE↑=

OVERHEAD ↓ = SAMPLING RATE ↓

8

Supporting Profiling Future Trends

o

o

mples

CO-PROCESSOR

local storage

INTERRUPT
G

S

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

al: Improve Sampling

• collect the right samples
• reduce the cost of collecting those samples

lution: Additional Hardware

• general enough to support many profiles

• hardware filters to guide instruction sampling
• post-processing co-processor summarizes sa

FETCH DECODE EXECUTE RETIRE

TAG COLLECTFILTER

(PC, events, values, addresses, times)

9

Outline
A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

• Motivation
• Intelligent Instruction Sampling

O Example: Value Profiling
O Algorithms

• Profiling Co-processor Overview
• Results
• Related Work
• Conclusion

10

Example Application: Load Value Profiling

.

.

.

.

.

P

RIANCE:
: 75%
: 25%

iction

instructions
riances
A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

.
A LOAD → 34
B LOAD → 12

....

....
A LOAD → 11

....
C LOAD → 16
A LOAD → 34

....
A LOAD → 34

....

ROGRAMEXECUTION
LOAD A

34
11
34
34

INVA
34
11

Enables

• Specialization
• Memoization
• Selective Value Pred

Most interested in

• frequently executed
• values with high inva

11

Directed Sampling

e?

o

n

by PC

dware

P
sample?
L

I

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

Which are the right instructions to sampl

ads

• filter which selects by opcode group

structions not yet characterized

• mark characterized static instructions in a table
• do not profile marked instructions
• à la Convergent Profiling [Micro ‘97], but in har

Opcode

C

Opcode Filter

PC Filter
AND

Hash

12

Reducing Per-sample Overhead

nterrupts

u

d

= 75%
+ 1

e at a time
S

I

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

Overhead: Processing performed during profile i

mmarize Samples with Co-processor

• Constraint: Limited Local Storage

Only care about most frequent values

entify frequent values by

• statistically likely to select frequent values
• re-select if measured invariance is low

A: 34
A: 11
A: 34
A: 34

A: 34 (HIT :3, MISS:1)

Hit
Hit + Miss

3
3

=

track only one valu

13

Reducing Per-sample Overhead (2)

o

a

cted
C

S

W

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

nstraint: Limited Local Storage

• local storage << program size

mple instructions in groups

• most frequent → least frequent
O most important
O easiest to profile

e don’t know a priori which are most frequent

• replacement decisions based on # samples colle

14

Characterization Prediction

racterized?

o

t

h

ples

e

low
any values
 re-selects)
N

T

P

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

How do we know when an instruction has been cha

 way to know for sure

• because of phase changes

Predict convergence with a simple tes

e ends of the continuum

• can be characterized with “small” number of sam
• capture many instructions

riodically re-sample to detect phase changes

high
invariance continuum

single value mfew values
(hits >> miss) (many

15

Outline
A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

• Motivation
• Intelligent Instruction Sampling
• Profiling Co-processor Overview
• Results
• Related Work
• Conclusion

16

Generic Hardware

i

h

s

F

T

U

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

lter/Summarize methodology is widely applicable

• problem instruction profiling
• edge/path profiling
• memory dependence profiling
• cache conflict profiling
• stall profiling

ese algorithms require

• similar storage structures and operations
• different algorithms and policies

e Programmable/Configurable hardware

• summarizing/replacement done in software

17

Programmable Profiling Co-processor

o

t

ntly

r

B SRAM)
G

S

P

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

al: High throughput with few resources

• tailor co-processor specifically for profiling

ructure processor for profiling

• sample stream processed by implicit loop
• microcoded to exploit available parallelism efficie

ovide profiling primitives in hardware

• instruction field extraction
• associative array for table lookups and matching

estimated size: one-half million transistors (~10K

18

Evaluation Methodology

i

o

terrupt

cessor
T

C

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

ming simulator-based evaluation

• profiling co-processor timing simulator
• simplescalar-based
• value profiling co-processor microcode
• interrupt handlers that assemble complete profile

mpared

• Naive
O random sampling, buffers samples to amortize in

• Intelligent
O directed sampling, summarizes samples in co-pro

19

Results

e r)

to design

rgence

tion sooner

onvergence

r overhead

arks
S

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

nsitivity analysis of co-processor hardware (in pape

• storage: less storage reduces collection rate
• clock frequency: largely insensitive → easy

Much faster conve

• start optimiza

Self-tuning

• stops upon c

Better accuracy fo

• for all benchm

time

er
ro

r Naive
Intelligent

time

ov
er

he
ad

overhead

er
ro

r

20

Related Work

a

o

r

 Micro 2000
H

C

P

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

rdware Summarizing of Profile Data:

• Profile Buffer: Conte, et al., Micro 1994
• Hot Spot Detector: Merten, et al., ISCA 1999

-processor Observation of Retirement Stream:

• I-COP: Chou, et al., ISCA 2000

ofiling Architecture:

• Relational Profiling Architecture: Heil and Smith,

21

Conclusion

u

l m

f chniques
F

A

E

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

ture microprocessors will

• monitor application behavior
• react accordingly

gorithms and policies for a self-tuning profiling syste

• directed sampling
• on-line summarizing

ficient, flexible hardware implementation of these te

• programmable profiling co-processor

	A Programmable Co-processor for Profiling
	Craig Zilles and Guri Sohi
	University of Wisconsin - Madison
	International Symposium on
	High Performance Computer Architecture
	January 2001

	Overview
	Profiling is increasingly important
	• necessitates efficient collection of profile information

	Intelligent Instruction Sampling
	• directed sampling
	• on-line summarizing

	Programmable Profiling Co-processor
	• flexible – can implement many profiling applications
	• primitives in hardware, policies in software
	• small and simple; ~1/2 million transistors (10KB SRAM)

	Outline
	• Motivation
	O Profiling Overview
	O Future Trends
	O Support for Future Trends

	• Intelligent Instruction Sampling
	• Profiling Co-processor Overview
	• Results
	• Related Work
	• Conclusion

	Feedback Directed Optimization (FDO)
	Performance is dictated by a program’s dynamic behavior
	• e.g. branch- and memory-behavior

	Modern hardware reacts to dynamic behavior
	• dynamic branch prediction
	• out-of-order execution

	Feedback-directed optimizations complement hardware
	• Larger scope
	• Non-speculative
	Code Layout, Superblock Scheduling, Inlining, Shrink Wrapping, Hot- Cold Optimizations, If-Conver...

	Significantly improve performance

	Example Profiling System
	ProfileMe [Micro ‘97]: sample instructions in hardware
	• instruction tagged at fetch
	• pipeline collects information
	• interrupt at retirement; processed data in software

	Digital Continuous Profiling Infrastructure (DCPI) [SOSP ‘97]
	• attributes execution time to static instructions
	• low overhead (1-3%) through low sampling rate
	• requires long runs
	O good for compile-profile-recompile methodology

	Future Trends
	More complicated optimizations
	• value profiles, dependence profiles, etc.

	Dynamic Optimization
	• perform FDO online
	O can’t rely on software vendors; support legacy code

	• collect data quickly
	• minimize overhead

	Future Trends
	More complicated optimizations
	• value profiles, dependence profiles, etc. Æ more samples

	Dynamic Optimization
	• perform FDO online
	O can’t rely on software vendors, support legacy code

	• collect data quickly Æ less time
	• minimize overhead

	Conflicting desires

	Supporting Profiling Future Trends
	Goal: Improve Sampling
	• collect the right samples
	• reduce the cost of collecting those samples

	Solution: Additional Hardware
	• general enough to support many profiles
	• hardware filters to guide instruction sampling
	• post-processing co-processor summarizes samples

	Outline
	• Motivation
	• Intelligent Instruction Sampling
	O Example: Value Profiling
	O Algorithms

	• Profiling Co-processor Overview
	• Results
	• Related Work
	• Conclusion

	Example Application: Load Value Profiling

	a load Æ 34
	b load Æ 12

	a load Æ 11

	c load Æ 16
	a load Æ 34

	a load Æ 34

	Directed Sampling
	Which are the right instructions to sample?
	Loads
	• filter which selects by opcode group

	Instructions not yet characterized
	• mark characterized static instructions in a table by PC
	• do not profile marked instructions
	• à la Convergent Profiling [Micro ‘97], but in hardware

	Reducing Per-sample Overhead
	Overhead: Processing performed during profile interrupts
	Summarize Samples with Co-processor
	• Constraint: Limited Local Storage

	Only care about most frequent values
	A: 34
	A: 11
	A: 34
	A: 34
	Identify frequent values by
	• statistically likely to select frequent values
	• re-select if measured invariance is low

	Reducing Per-sample Overhead (2)
	Constraint: Limited Local Storage
	• local storage << program size

	Sample instructions in groups
	• most frequent Æ least frequent
	O most important
	O easiest to profile

	We don’t know a priori which are most frequent
	• replacement decisions based on # samples collected

	Characterization Prediction
	How do we know when an instruction has been characterized?
	No way to know for sure
	• because of phase changes

	Predict convergence with a simple test
	The ends of the continuum
	• can be characterized with “small” number of samples
	• capture many instructions

	Periodically re-sample to detect phase changes

	Outline
	• Motivation
	• Intelligent Instruction Sampling
	• Profiling Co-processor Overview
	• Results
	• Related Work
	• Conclusion

	Generic Hardware
	Filter/Summarize methodology is widely applicable
	• problem instruction profiling
	• edge/path profiling
	• memory dependence profiling
	• cache conflict profiling
	• stall profiling

	These algorithms require
	• similar storage structures and operations
	• different algorithms and policies

	Use Programmable/Configurable hardware
	• summarizing/replacement done in software

	Programmable Profiling Co-processor
	Goal: High throughput with few resources
	• tailor co-processor specifically for profiling

	Structure processor for profiling
	• sample stream processed by implicit loop
	• microcoded to exploit available parallelism efficiently

	Provide profiling primitives in hardware
	• instruction field extraction
	• associative array for table lookups and matching

	estimated size: one-half million transistors (~10KB SRAM)

	Evaluation Methodology
	Timing simulator-based evaluation
	• profiling co-processor timing simulator
	• simplescalar-based
	• value profiling co-processor microcode
	• interrupt handlers that assemble complete profile

	Compared
	• Naive
	O random sampling, buffers samples to amortize interrupt

	• Intelligent
	O directed sampling, summarizes samples in co-processor

	Results
	Much faster convergence
	• start optimization sooner

	Self-tuning
	• stops upon convergence

	Better accuracy for overhead
	• for all benchmarks

	Sensitivity analysis of co-processor hardware (in paper)
	• storage: less storage reduces collection rate
	• clock frequency: largely insensitive Æ easy to design

	Related Work
	Hardware Summarizing of Profile Data:
	• Profile Buffer: Conte, et al., Micro 1994
	• Hot Spot Detector: Merten, et al., ISCA 1999

	Co-processor Observation of Retirement Stream:
	• I-COP: Chou, et al., ISCA 2000

	Profiling Architecture:
	• Relational Profiling Architecture: Heil and Smith, Micro 2000

	Conclusion
	Future microprocessors will
	• monitor application behavior
	• react accordingly

	Algorithms and policies for a self-tuning profiling system
	• directed sampling
	• on-line summarizing

	Efficient, flexible hardware implementation of these techniques
	• programmable profiling co-processor

