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ofiling is increasingly important

• necessitates efficient  collection of profile inform

telligent Instruction Sampling

• directed sampling
• on-line summarizing

ogrammable Profiling Co-processor

• flexible  – can implement many profiling applicat
• primitives in hardware , policies in software
• small and simple ; ~1/2 million transistors (10KB
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• Motivation
O Profiling Overview
O Future Trends
O Support for Future Trends

• Intelligent Instruction Sampling
• Profiling Co-processor Overview
• Results
• Related Work
• Conclusion
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Feedback Directed Optimization (FDO)
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rformance is dictated by a program’s dynamic beha

• e.g. branch- and memory-behavior

odern hardware reacts to dynamic behavior

• dynamic branch prediction
• out-of-order execution

edback-directed optimizations complement hardwa

• Larger scope
• Non-speculative

DE LAYOUT, S UPERBLOCKSCHEDULING, I NLINING, S HRIN
LD OPTIMIZATIONS , I F-C ONVERSION, R EGISTER AL
HEDULING, A DVANCED LOADS, P RE- FETCHING, MEMOIZ
LUE PREDICTION, S PECIALIZATION , B RANCH ALIGNMENT,

Significantly improve performance
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Example Profiling System
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ofileMe [Micro ‘97]: sample instructions in hardwar

• instruction tagged at fetch
• pipeline collects information
• interrupt at retirement; processed data in softwa

gital Continuous Profiling Infrastructure (DCPI)

• attributes execution time to static instructions
• low overhead (1-3%) through low sampling rat
• requires long runs

O good for compile-profile-recompile  methodolo

FETCH DECODE EXECUTE RETIRE

TAG INTCOLLECT
(PC, events, values, addresses, times)
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Future Trends
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ore complicated optimizations

• value profiles, dependence profiles, etc.

namic Optimization

• perform FDO online
O can’t rely on software vendors; support legacy co

• collect data quickly
• minimize overhead
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Future Trends
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ore complicated optimizations

• value profiles, dependence profiles, etc. → m

namic Optimization

• perform FDO online
O can’t rely on software vendors, support legacy co

• collect data quickly → less time
• minimize overhead

Conflicting desires

# SAMPLES ↑
TIME↓

SAMPLING RATE↑=

OVERHEAD ↓ = SAMPLING RATE ↓
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Supporting Profiling Future Trends
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al: Improve Sampling

• collect the right  samples
• reduce the cost  of collecting those samples

lution: Additional Hardware

• general enough to support many profiles

• hardware filters  to guide instruction sampling
• post-processing co-processor  summarizes sa

FETCH DECODE EXECUTE RETIRE

TAG COLLECTFILTER

(PC, events, values, addresses, times)
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• Motivation
• Intelligent Instruction Sampling

O Example: Value Profiling
O Algorithms

• Profiling Co-processor Overview
• Results
• Related Work
• Conclusion
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Example Application: Load Value Profiling
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. ....
A LOAD → 34
B LOAD → 12

....

....
A LOAD → 11

....
C LOAD → 16
A LOAD → 34

....
A LOAD → 34

....

ROGRAMEXECUTION
LOAD A

34
11
34
34

INVA
34
11

Enables

• Specialization
• Memoization
• Selective Value Pred

Most interested in

• frequently executed
• values with high inva



11

Directed Sampling
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Which are the right instructions to sampl

ads

• filter which selects by opcode group

structions not yet characterized

• mark characterized static instructions in a table 
• do not profile marked instructions
• à la Convergent Profiling [Micro ‘97], but in har

Opcode

C

Opcode Filter

PC Filter
AND

Hash
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Reducing Per-sample Overhead
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Overhead: Processing performed during profile i

mmarize Samples with Co-processor

• Constraint:  Limited Local Storage

Only care about most frequent values

entify frequent values by

• statistically likely to select frequent values
• re-select if measured invariance is low

A: 34
A: 11
A: 34
A: 34

A: 34 ( HIT :3, MISS:1)

Hit
Hit + Miss

3
3 

=

track only one valu
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Reducing Per-sample Overhead (2)
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nstraint:  Limited Local Storage

• local storage << program size

mple instructions in groups

• most frequent → least frequent
O most important
O easiest to profile

e don’t know a priori  which are most frequent

• replacement decisions based on # samples colle
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Characterization Prediction
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How do we know when an instruction has been cha

 way to know for sure

• because of phase changes

Predict convergence with a simple tes

e ends of the continuum

• can be characterized with “small” number of sam
• capture many instructions

riodically re-sample to detect phase changes

high
invariance continuum

single value mfew values
(hits >> miss) (many
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• Motivation
• Intelligent Instruction Sampling
• Profiling Co-processor Overview
• Results
• Related Work
• Conclusion
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Generic Hardware
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lter/Summarize methodology is widely applicable

• problem instruction profiling
• edge/path profiling
• memory dependence profiling
• cache conflict profiling
• stall profiling

ese algorithms require

• similar storage structures and operations
• different algorithms and policies

e Programmable/Configurable hardware

• summarizing/replacement done in software
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Programmable Profiling Co-processor
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al: High throughput with few resources

• tailor co-processor specifically for profiling

ructure processor for profiling

• sample stream processed by implicit loop
• microcoded to exploit available parallelism efficie

ovide profiling primitives in hardware

• instruction field extraction
• associative array for table lookups and matching

estimated size: one-half million transistors (~10K
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Evaluation Methodology
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ming simulator-based evaluation

• profiling co-processor timing simulator
• simplescalar-based
• value profiling co-processor microcode
• interrupt handlers that assemble complete profile

mpared

• Naive
O random sampling, buffers samples to amortize in

• Intelligent
O directed sampling, summarizes samples in co-pro



19

Results
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nsitivity analysis of co-processor hardware (in pape

• storage: less storage reduces collection rate
• clock frequency: largely insensitive → easy 

Much faster conve

• start optimiza

Self-tuning

• stops upon c

Better accuracy fo

• for all benchm
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Related Work
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rdware Summarizing of Profile Data:

• Profile Buffer: Conte, et al., Micro 1994
• Hot Spot Detector: Merten, et al., ISCA 1999

-processor Observation of Retirement Stream:

• I-COP: Chou, et al., ISCA 2000

ofiling Architecture:

• Relational Profiling Architecture: Heil and Smith,



21

Conclusion

u

l m

f chniques
F

A

E

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

ture microprocessors will

• monitor application behavior
• react accordingly

gorithms and policies for a self-tuning profiling syste

• directed sampling
• on-line summarizing

ficient, flexible hardware implementation of these te

• programmable profiling co-processor
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