Microprocessors -- 10 Years Back, 10 Years Ahead

Guri Sohi

University of Wisconsin - Madison
URL: http://www.cs.wisc.edu/~sohi

Outline

- The enabler: semiconductor technology
- The past 10 years
- The next 10 years
- Wither silicon computing?

The Enabler: Semiconductor Advances

- Shrinkage in feature size
- more transistors
- faster transistors
- Increasing die size
- more transistors

SIA Roadmap

Year	1997	1999	2000	2005	2008	2011	2014
Tech. (nm)	250	180	130	100	70	50	35
Memory(bits)	64 M	256 M	1 G	4 G	16 G	64 G	256 G
Logic	3.7 M	6.2 M	18 M	39 M	84 M	180 M	390 M

Source: Semiconductor Industry Association (SIA)

Role of Computer Architect

- Use available technology to perform processing tasks
- Match processing tasks to hardware blocks constructed from available technology
- Do so in a manner that is easy to design/verify
- Get desired level of performance

Microprocessor Generations

Generation 1 (1970s)

Generation 4 (2000s)

Generation 2 (1980s)

Generation 3 (1990s)

Microprocessors -- 10 Years Back

- 30X increase in available transistors
- how to use them?
- Little change in software programming model (still write programs in sequential languages
- Failed promise of automatic parallelization
- Great investment in existing software

Resort to low-level, instruction level parallelism (ILP)

Instruction Level Parallelism

- Determine small number (10-40) instructions to be executed
- control dependences (branches) hinder determination
- Determine dependence relationships and create dependence graph
- Use dependence graph to execute instructions in parallel
- Can be done statically (VLIW/EPIC) or dynamically (out-oforder (OOO) superscalar

Key: determining which instructions to execute Use speculation: control speculation

Speculation and Computer Architecture

Speculation: ".. to assume a business risk in hope of gain"
-- Webster

- Speculation in computer architecture is used to try to overcome constraining conditions

Speculation and Computer Architecture

- Speculate outcome of event rather than waiting for outcome to be known
- mis-speculation if wrong
- mis-speculation can have penalty
- Develop techniques to speculate better

Model for Out-of-Order Processors

Performance-Inhibiting Constraints

- Brought on by dependences
- Control dependences: inhibit creation of instruction window
- use control speculation
- Ambiguous data dependences: inhibit parallelism recognition
- use data dependence speculation
- True data dependences: inhibit parallelism
- use value speculation

Technology Trends

- Wires used to pass values
- Wires getting relatively slower
- Short wires for fast clock
- Short wires implies localized communication

Alpha 21264

Microprocessors -- the Next 10 Years

- Factor of 30 increase in semiconductor resources
- how to use it?
- New constraints
- power consumption
- wire delays
- design/verification complexity
- New applications?

Future Processor Architectures

- Engineering considerations will imply computing chips with replicated processing cores
- a.k.a "multiprocessor" or "multiprocessor-like" or "multithreaded"
- How to assign work to multiple processing cores?
- independent programs (or threads)
- parts of a single program

Parallel processing of single program

-Will the promise of explicit/automatic parallelism come true?

- Will new (parallel) programming languages take over the world?

Don't count on it!!!

Speculative Parallelization

- Sequential languages aren't going away
- Use speculation to overcome inhibitors to "automatic" parallelization
- Divide program into "speculatively parallel" portions, or "speculative threads"

Speculative Threads

- Subject of extensive research today
- different thread types being discovered/investigated
- Several research examples (e.g., Wisconsin Multiscalar, Stanford Hydra)
- Two recent commercial examples
- Sun Multithreaded Architecture for Java Computing (MAJC) -circa 1999
- NEC Merlot -- circa 2000

Generic circa 2010 microprocessor

- 4-8 general-purpose processing engines on chip
- used to execute independent programs
- explicitly parallel programs (when possible)
- speculatively parallel threads
- helper threads
- Special-purpose processing units (e.g., DSP functionality)
- Elaborate memory hierarchy
- Elaborate inter-chip communication facilities

Circa 2010 microprocessor

- Will run "sequential" program
- Will do so 50-60 times faster than today

Wither Silicon Computing?

- Silicon technology roadmap only clear until about 2015
- sufficient time for advances?
- Semiconductor technology approaching physical limits
- can architecture take over after technology scaling?
- multiple dice systems?
- Role of computing is same
- computing now means for facilitating communication

