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• Partitioned integer and floating-point resources on
current superscalar processors.

• Simplifies implementation.

• BUT....

Motivat ion

Idle floating-point resour ces while e xecuting integ er code
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• Compiler algorithms to exploit idle fp resources.

- FP unit augmented to support integer operations.

- Algorithms are simple, easy to implement,
   fast in practice.

• Results (on a 4-way issue superscalar machine):

- 3%-23% perf. improvement on SpecINT95 programs.

- FP programs do not experience slowdowns.

- Occasional perf. improvements on FP programs.

Contribut ions
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• Motivation

• Hardware changes

• Preliminaries
• Register Dependence Graph
• Partitioning Heuristics

• Basic Partitioning Scheme
• Algorithm
• Results

• Advanced Partitioning Scheme
• Copy instructions and Code duplication
• Algorithm Overview
• Results

Outl ine
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Minimal  hardware changes

• No extra buses, registers, register file ports required.

• Extra functional units for simple integer operations.

- Assumes integer operation latency is not affected.

- Integer multiply and divides not supported.

• Extend ISA to encode integer operations using fp regs.

• Changes in the spirit of Intel MMX, Sun VIS extensions.

Hardware Changes
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For integer programs, provides:

- Additional issue and execution bandwidth.

- Bigger instruction window.

- Larger register file.

Advantages
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• Terminology :

- Integer subsystem denoted as INT subsystem.

- Floating-point subsystem denoted as FPa subsystem.

• Identify integer code that can execute in FPa subsystem.

- Divide code into FPa and INT partitions.

• Inter-partition communication:

- Through existing loads/stores.

- Through copy instructions.

- Avoid communication through code duplication.

Constraint: Only INT subsystem can execute loads/stores.

Code part i t ioning
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• Graph representing pseudo-register dependences.

- Computed by solving reaching-defns dataflow problem.

• Load/store instructions split into two nodes

- Address nodes(assigned to INT).

- Value nodes(could be assigned to FPa).

Register Dependence Graph(RD G)



Exploiting Idle FP Resources for Integer Execution 10Subramanya
Sastry

G              = RDG of a program

LS(G)       = Set of load/store address nodes

LdSt slice = Instructions computing memory addresses

                 =

Branch slice & store-value slice are similarly defined.

BackwardSlice G v,( )
v LS G( )∈

∪

RD G continued. . .



I1:
$L5:

move     $16, $0

   andi     $2, $2, 0x1
   beq      $2, $0, $L4
   move     $4, $16
   jal      delete_equiv_reg
   lw       $3, reg_tick
   sll      $2, $16, 2
   addu     $2, $2, $3
   lw       $4, 0($2)

   addu     $4, $4, 1

$L4:
   addu     $16, $16, 1
   slt      $2, $16, 66
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   sra      $2, $2, $16

   bne      $2, $0, $L5

   bltz     $4, $L4

   sw       $4, 0($2)

   lw       $2, reg_mask
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• Only INT subsystem can execute loads/stores
=> LS(G) is assigned to INT.

• Memory addressing/access on critical path.

- Minimize communication overheads on these paths.

- For integer programs, short addressing paths.

- Entire LdSt slice assigned to INT partition.

• Branch and store-value slices can be assigned to FPa.

Part i t ioning Heuris t ics
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LdSt slice close to 50% of dynamic instruction count.

- Use greedy strategy to maximize size of FPa partition.

Goal: Maximize size of the FPa partition.

Minimize instruction & communication overheads.

Part i t ioning Heuris t ics  (contd. . . )
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• Motivation

• Hardware changes

• Preliminaries
• Register Dependence Graph
• Partitioning Heuristics

• Basic Partitioning Scheme
• Algorithm
• Results

• Advanced Partitioning Scheme
• Copy instructions and Code duplication
• Algorithm Overview
• Results

Roadmap . . .
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Restriction:

- No extra communication instructions.
=> Existing loads/stores used for communication.

Partitioning condition:

- Consider undirected graph Gu corresponding to G.

- v F(Gu)  => v  is not reachable from any node in I(Gu).

Algorithm:

1. Find connected components of Gu.

2. Components containing addr. nodes are assigned to INT.

3. Other components (containing only branch and store value
 computation) are assigned to FPa.

∈

Basic Part i t ioning Scheme



I1:

   andi     $2, $2, 0x1
   beq      $2, $0, $L4
   move     $4, $16
   jal      delete_equiv_reg
   lw       $3, reg_tick
   sll      $2, $16, 2
   addu     $2, $2, $3

   addu     $16, $16, 1
   slt      $2, $16, 66
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$L5:

   bltz,c   $f0, $L4
   addu,c   $f0, $f0, 1
   sw       $f0, 0($2)

   bne      $2, $0, $L5

   lw       $f0, 0($2)

move     $16, $0

   sra      $2, $2, $16
   lw       $2, reg_mask
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Compiler:
• gcc-2.7.1 modified to do code partitioning.
• Generates code for an extended SimpleScalar ISA.
• Integer multiply & divide not supported in fp subsystem.

Benchmarks:
•  SPECint95 programs.

Simulation Environment:
• Timing simulator based on the SimpleScalar toolset.
• Models both a conventional and an augmented arch.

Evaluation Metric:
• All benchmarks run to completion.
• Speedups based on cycles to completion.

Evaluat ion Methodology



Exploiting Idle FP Resources for Integer Execution 18Subramanya
Sastry

 Size of F Pa part i t ion
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Performance Improvements on a 4-way issue (2 int + 2 fp) machine

Performance  improvements
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Limitations of the earlier scheme:

• Partitioning conditions force some branch and store-value
computation to INT.

• Calling convention limitations:
Int arguments & Int return values must be in int registers.
=> Argument/return-value slices assigned to INT.

Solutions:
- Introduce instructions to copy values.
- Duplicate code.
- Have to evaluate benefit of these extra instructions since

they introduce overhead in the program.

Advanced Part i t ioning Scheme



Branch  Computation

I1:
$L5:

move     $16, $0

   andi     $2, $2, 0x1
   beq      $2, $0, $L4
   move     $4, $16
   jal      delete_equiv_reg
   lw       $3, reg_tick
   sll      $2, $16, 2
   addu     $2, $2, $3
   lw       $4, 0($2)

   addu     $4, $4, 1

$L4:
   addu     $16, $16, 1
   slt      $2, $16, 66
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   lw       $2, reg_mask
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move     $16, $0

   addu     $2, $2, $3
   sll      $2, $16, 2
   lw       $3, reg_tick
   jal      delete_equiv_reg
   move     $4, $16

   addu     $16, $16, 1I15:
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   slt,c    $f4, $f2, 66
   bne,c    $f4, $0, $L5

   addu,c   $f0, $f0, 1
   bltz,c   $f0, $L4
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   move     $4, $16
   jal      delete_equiv_reg
   lw       $3, reg_tick
   sll      $2, $16, 2
   addu     $2, $2, $3

   addu     $16, $16, 1I15:
$L4:

I10:
I9:

I7:
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$L5:

move     $16, $0

   addu,c   $f0, $f0, 1
   bltz,c   $f0, $L4

   beq,c    $f4, $0, $L4
   andi,c   $f4, $f4, 0x1
   sra,c    $f4, $f4, $f2

   slt,c    $f4, $f2, 66

move,c   $f2, $0
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Duplication:
+ No communication between register files.

– Requires copy/duplication of parents.
=> Effect might fan out along backward slice.

Copying:

– Requires communication between register files.
+ Does not affect parents.

Implications:
- Optimal decisions cannot be made using only local info.
- Heuristics used to pick between the two.

Copying vs Duplicat ion
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Let Gu be the undirected RDG.

1. Assign LdSt slice to INT.

2. Assign connected components in Gu containing only
 branch and store-value computation to FPa.

3. Make copying/duplication decisions for all nodes in Gu.

4. For other connected components of Gu, determine where to
 introduce copies/duplicates.

5. Insert copies/duplicates.

Algori thm Overview
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Performance improvements on a 4-way issue (2 int + 2 fp)  machine

 Performance Improvements
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• Can exploit idle fp resources for integer execution.

• Minimal hardware changes to support integer execution in
the floating-point subsystem.

• Code partitioning done by the compiler.

• Copy instructions and code duplication are useful in getting
good FPa partitions.

•  9%-41% of dynamic instructions execute in FPa.

•  3%-23% performance improvements on a 4-way issue m/c.

Conclusions


