
Exploit ing Idle Floating-Point
Resources for Integer Execution

Subramanya Sastry, Subbarao Palacharla, James E. Smith

University of Wisconsin, Madison

Exploiting Idle FP Resources for Integer Execution 2Subramanya
Sastry

• Partitioned integer and floating-point resources on
current superscalar processors.

• Simplifies implementation.

• BUT....

Motivat ion

Idle floating-point resour ces while e xecuting integ er code

Superscalar Microarchitecture

DECODE
FETCH &I-CACHE

INTEGER

FP

REGS

ALU
FP

ALU
FP

Floating-point subsystem

Branch outcomes

Branch outcomes

CACHE

DATA

REGS
INT INSTR

BUFFER

FP INSTR
BUFFER

Memory address

Integer

ALU

Integer

ALU

Load/
Store

Load/store data

Load/store data

datapath
Communication

Integer subsystem

Exploiting Idle FP Resources for Integer Execution 4Subramanya
Sastry

• Compiler algorithms to exploit idle fp resources.

- FP unit augmented to support integer operations.

- Algorithms are simple, easy to implement,
 fast in practice.

• Results (on a 4-way issue superscalar machine):

- 3%-23% perf. improvement on SpecINT95 programs.

- FP programs do not experience slowdowns.

- Occasional perf. improvements on FP programs.

Contribut ions

Exploiting Idle FP Resources for Integer Execution 5Subramanya
Sastry

• Motivation

• Hardware changes

• Preliminaries
• Register Dependence Graph
• Partitioning Heuristics

• Basic Partitioning Scheme
• Algorithm
• Results

• Advanced Partitioning Scheme
• Copy instructions and Code duplication
• Algorithm Overview
• Results

Outl ine

Exploiting Idle FP Resources for Integer Execution 6Subramanya
Sastry

Minimal hardware changes

• No extra buses, registers, register file ports required.

• Extra functional units for simple integer operations.

- Assumes integer operation latency is not affected.

- Integer multiply and divides not supported.

• Extend ISA to encode integer operations using fp regs.

• Changes in the spirit of Intel MMX, Sun VIS extensions.

Hardware Changes

Exploiting Idle FP Resources for Integer Execution 7Subramanya
Sastry

For integer programs, provides:

- Additional issue and execution bandwidth.

- Bigger instruction window.

- Larger register file.

Advantages

Exploiting Idle FP Resources for Integer Execution 8Subramanya
Sastry

• Terminology :

- Integer subsystem denoted as INT subsystem.

- Floating-point subsystem denoted as FPa subsystem.

• Identify integer code that can execute in FPa subsystem.

- Divide code into FPa and INT partitions.

• Inter-partition communication:

- Through existing loads/stores.

- Through copy instructions.

- Avoid communication through code duplication.

Constraint: Only INT subsystem can execute loads/stores.

Code part i t ioning

Exploiting Idle FP Resources for Integer Execution 9Subramanya
Sastry

• Graph representing pseudo-register dependences.

- Computed by solving reaching-defns dataflow problem.

• Load/store instructions split into two nodes

- Address nodes(assigned to INT).

- Value nodes(could be assigned to FPa).

Register Dependence Graph(RD G)

Exploiting Idle FP Resources for Integer Execution 10Subramanya
Sastry

G = RDG of a program

LS(G) = Set of load/store address nodes

LdSt slice = Instructions computing memory addresses

 =

Branch slice & store-value slice are similarly defined.

BackwardSlice G v,()
v LS G()∈

∪

RD G continued. . .

I1:
$L5:

move $16, $0

 andi $2, $2, 0x1
 beq $2, $0, $L4
 move $4, $16
 jal delete_equiv_reg
 lw $3, reg_tick
 sll $2, $16, 2
 addu $2, $2, $3
 lw $4, 0($2)

 addu $4, $4, 1

$L4:
 addu $16, $16, 1
 slt $2, $16, 66

I17:
I16:
I15:

I14:
I13:
I12:
I11:
I10:
I9:
I8:
I7:
I6:
I5:
I4:
I3:
I2:

 sra $2, $2, $16

 bne $2, $0, $L5

 bltz $4, $L4

 sw $4, 0($2)

 lw $2, reg_mask

Branch Computation

Store-value Computation

LOADS

STORE

10

1312

6

7

14v 14a

9

8a

8v

17

16

4

5

3

1
2a

2v15

11a

11v

LdSt Slice

Branches

Exploiting Idle FP Resources for Integer Execution 12Subramanya
Sastry

• Only INT subsystem can execute loads/stores
=> LS(G) is assigned to INT.

• Memory addressing/access on critical path.

- Minimize communication overheads on these paths.

- For integer programs, short addressing paths.

- Entire LdSt slice assigned to INT partition.

• Branch and store-value slices can be assigned to FPa.

Part i t ioning Heuris t ics

Exploiting Idle FP Resources for Integer Execution 13Subramanya
Sastry

LdSt slice close to 50% of dynamic instruction count.

- Use greedy strategy to maximize size of FPa partition.

Goal: Maximize size of the FPa partition.

Minimize instruction & communication overheads.

Part i t ioning Heuris t ics (contd. . .)

Exploiting Idle FP Resources for Integer Execution 14Subramanya
Sastry

• Motivation

• Hardware changes

• Preliminaries
• Register Dependence Graph
• Partitioning Heuristics

• Basic Partitioning Scheme
• Algorithm
• Results

• Advanced Partitioning Scheme
• Copy instructions and Code duplication
• Algorithm Overview
• Results

Roadmap . . .

Exploiting Idle FP Resources for Integer Execution 15Subramanya
Sastry

Restriction:

- No extra communication instructions.
=> Existing loads/stores used for communication.

Partitioning condition:

- Consider undirected graph Gu corresponding to G.

- v F(Gu) => v is not reachable from any node in I(Gu).

Algorithm:

1. Find connected components of Gu.

2. Components containing addr. nodes are assigned to INT.

3. Other components (containing only branch and store value
 computation) are assigned to FPa.

∈

Basic Part i t ioning Scheme

I1:

 andi $2, $2, 0x1
 beq $2, $0, $L4
 move $4, $16
 jal delete_equiv_reg
 lw $3, reg_tick
 sll $2, $16, 2
 addu $2, $2, $3

 addu $16, $16, 1
 slt $2, $16, 66

I17:
I16:
I15:

$L4:
I14:
I13:
I12:
I11:
I10:
I9:
I8:
I7:
I6:
I5:
I4:
I3:
I2:

$L5:

 bltz,c $f0, $L4
 addu,c $f0, $f0, 1
 sw $f0, 0($2)

 bne $2, $0, $L5

 lw $f0, 0($2)

move $16, $0

 sra $2, $2, $16
 lw $2, reg_mask

FP PARTITIONa

5

17

2a

2v

10

1312

15

16

3
6

7

14a

9

4

1

8a

8v

11a

14v

11v

INT PARTITION

Exploiting Idle FP Resources for Integer Execution 17Subramanya
Sastry

Compiler:
• gcc-2.7.1 modified to do code partitioning.
• Generates code for an extended SimpleScalar ISA.
• Integer multiply & divide not supported in fp subsystem.

Benchmarks:
• SPECint95 programs.

Simulation Environment:
• Timing simulator based on the SimpleScalar toolset.
• Models both a conventional and an augmented arch.

Evaluation Metric:
• All benchmarks run to completion.
• Speedups based on cycles to completion.

Evaluat ion Methodology

Exploiting Idle FP Resources for Integer Execution 18Subramanya
Sastry

 Size of F Pa part i t ion

0

5

10

15

20

25

30

perl go gcc li compress ijpeg m88ksim

%
 in

st
rs

 in
 F

P_
a

5.7

8.9

14.7
16.2

10.9 10.8

29.5

Exploiting Idle FP Resources for Integer Execution 19Subramanya
Sastry

Performance Improvements on a 4-way issue (2 int + 2 fp) machine

Performance improvements

0

4

8

12

16

20

perl go gcc li compress ijpeg m88ksim

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t(

in
 %

)

1.6

3.7
4.3

5.0

7.0

5.2

20.8

Exploiting Idle FP Resources for Integer Execution 20Subramanya
Sastry

Limitations of the earlier scheme:

• Partitioning conditions force some branch and store-value
computation to INT.

• Calling convention limitations:
Int arguments & Int return values must be in int registers.
=> Argument/return-value slices assigned to INT.

Solutions:
- Introduce instructions to copy values.
- Duplicate code.
- Have to evaluate benefit of these extra instructions since

they introduce overhead in the program.

Advanced Part i t ioning Scheme

Branch Computation

I1:
$L5:

move $16, $0

 andi $2, $2, 0x1
 beq $2, $0, $L4
 move $4, $16
 jal delete_equiv_reg
 lw $3, reg_tick
 sll $2, $16, 2
 addu $2, $2, $3
 lw $4, 0($2)

 addu $4, $4, 1

$L4:
 addu $16, $16, 1
 slt $2, $16, 66

I17:
I16:
I15:

I14:
I13:
I12:
I11:
I10:
I9:
I8:
I7:
I6:
I5:
I4:
I3:
I2:

 sra $2, $2, $16

 bne $2, $0, $L5

 bltz $4, $L4

 sw $4, 0($2)

 lw $2, reg_mask

10

13

6

7

14a

9

8a

8v

17

16

4

5

3

1
2a

2v15

11a

11v

LdSt Slice

Branches

12

14v

10

13

15

6

7

14v 14a

9

1

8a

8v
1c

16
Copies

15c

11a

11v

2a

2v

17

5

4

3

12

LdSt Slice

move $16, $0

 addu $2, $2, $3
 sll $2, $16, 2
 lw $3, reg_tick
 jal delete_equiv_reg
 move $4, $16

 addu $16, $16, 1I15:
$L4:

I14:
I13:
I12:
I11:
I10:
I9:
I8:
I7:
I6:
I5:
I4:
I3:
I2:

I1:

$L5:

 slt,c $f4, $f2, 66
 bne,c $f4, $0, $L5

 addu,c $f0, $f0, 1
 bltz,c $f0, $L4

 beq,c $f4, $0, $L4
 andi,c $f4, $f4, 0x1
 sra,c $f4, $f4, $f2

 lw $f0, 0($2)

 sw $f0, 0($2)

I17:
I16:

I1c:

I15c: cp_to_fp $16, $f2

cp_to_fp $16, $f2

 lw $f4, reg_mask

LdSt Slice

10

15

6

7

14a

9

1

8a

8v

Duplicates

14v

11a

2a

11v

2v

1312

17

5

4

16

3

1d

15d

I1:

 move $4, $16
 jal delete_equiv_reg
 lw $3, reg_tick
 sll $2, $16, 2
 addu $2, $2, $3

 addu $16, $16, 1I15:
$L4:

I10:
I9:

I7:
I8:

I6:

$L5:

move $16, $0

 addu,c $f0, $f0, 1
 bltz,c $f0, $L4

 beq,c $f4, $0, $L4
 andi,c $f4, $f4, 0x1
 sra,c $f4, $f4, $f2

 slt,c $f4, $f2, 66

move,c $f2, $0

 addu,c $f2, $f2, 1I15d:

I1d:

I16:
I17:

I13:
I12:

I5:
I4:
I3:

 sw $f0, 0($2)I14:

 lw $f0, 0($2)I11:

I2:

 bne,c $f4, $0, $L5

 lw $f4, reg_mask

Exploiting Idle FP Resources for Integer Execution 24Subramanya
Sastry

Duplication:
+ No communication between register files.

– Requires copy/duplication of parents.
=> Effect might fan out along backward slice.

Copying:

– Requires communication between register files.
+ Does not affect parents.

Implications:
- Optimal decisions cannot be made using only local info.
- Heuristics used to pick between the two.

Copying vs Duplicat ion

Exploiting Idle FP Resources for Integer Execution 25Subramanya
Sastry

Let Gu be the undirected RDG.

1. Assign LdSt slice to INT.

2. Assign connected components in Gu containing only
 branch and store-value computation to FPa.

3. Make copying/duplication decisions for all nodes in Gu.

4. For other connected components of Gu, determine where to
 introduce copies/duplicates.

5. Insert copies/duplicates.

Algori thm Overview

Step 4 of the algorithm

*

u

v

Expanded

INT Boundary

Partition

INT

Final

INT Boundary

Initial
INT Boundary

LdSt Slice

u

Step 4 of the algorithm

*

Partition

INT

Final

INT Boundary

Initial
INT Boundary

LdSt Slice

Expanded
INT Boundary

uu

Step 4 of the algorithm

Initial
INT Boundary

*

LdSt Slice

Expanded
INT Boundary

Partition

INT

Final
INT Boundary

Exploiting Idle FP Resources for Integer Execution 29Subramanya
Sastry

0

5

10

15

20

25

30

35

40

45

perl go gcc li compress ijpeg m88ksim

%
 in

str
s i

n
FP

_a

5.7

8.3 8.9

15.4 14.7

21.4

16.216.2

10.9

25.3

10.8

32.1

29.5

41.6
Basic scheme

Advanced scheme

Size of F Pa part i t ion

Exploiting Idle FP Resources for Integer Execution 30Subramanya
Sastry

Performance improvements on a 4-way issue (2 int + 2 fp) machine

 Performance Improvements

0

4

8

12

16

20

24

perl go gcc li compress ijpeg m88ksim

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t(i

n
%

)

1.6
2.5

3.7

5.0
4.3

5.9
5.0

6.6 7.0

10.9

5.2

11.1

20.8

23.1Basic scheme

Advanced scheme

Exploiting Idle FP Resources for Integer Execution 31Subramanya
Sastry

• Can exploit idle fp resources for integer execution.

• Minimal hardware changes to support integer execution in
the floating-point subsystem.

• Code partitioning done by the compiler.

• Copy instructions and code duplication are useful in getting
good FPa partitions.

• 9%-41% of dynamic instructions execute in FPa.

• 3%-23% performance improvements on a 4-way issue m/c.

Conclusions

