
An Evaluation ofAn Evaluation of

the Multiscalar Paradigmthe Multiscalar Paradigm

Scott E. Breach

Andreas I. Moshovos

T.N. Vijaykumar

Gurindar S. Sohi

breach@cs.wisc.edu

moshovos@cs.wisc.edu

vijay@cs.wisc.edu

sohi@cs.wisc.edu

Computer Sciences Department

University of Wisconsin-Madison

Scott E. BreachScott E. Breach



Sequential Programs + ILPSequential Programs + ILP

● Multiscalar - Novel Alternative

✔ Decentralized Scheduling

✔ Scaleable Issue

✔ Out-Of-Order

✔ Range of Instruction Window >>100

● Superscalar - State of the Art

✔ Centralized Scheduling

✔ 4-way Issue

✔ Out-Of-Order

✔ Range of Instruction Window <100



Promising Future ParadigmPromising Future Paradigm

● Comparing...

☞Superscalar 16-way

☞Multiscalar 8-unit 2-way

● SPEC95 INT

✚25-50% Improvement

● SPEC95 FP

✚50-200% Improvement



Talk OutlineTalk Outline

● Building a Window for ILP

● Methodology/Configuration

● Performance Comparison

☞ Superscalar/Multiscalar

☞ SPEC95 INT/FP

☞ Insight/Analysis

● Future Directions



Building Superscalar WindowBuilding Superscalar Window

● Single Window

✔ Large # Instructions

✔ Concentrated Wide Issue

● Centralized Scheduling

Harder to Clock Fast

A

C

D

Point

of

Search

W
in

d
o

w

E



Building Multiscalar WindowBuilding Multiscalar Window

● Multiple Windows (or Tasks)

✔ Small # Instructions

✔ Distributed Narrow Issue

● Decentralized Scheduling

Easier to Clock Fast

A

C

Point

of

Search

F

H

W
in

d
o

w
W

in
d

o
w

Point

of

Search



Engineering WindowEngineering Window

● Superscalar Window Challenge

✘ Clock Speed

✘ Design Time

✘ Validation

● Multiscalar Window Advantage

☞Think Large, Build Small

✔Clock Speed

☞Replicate/Reuse

✔Design Time

✔Validation



Multiscalar Big PictureMultiscalar Big Picture

Proc
Unit

RegFile

Proc
Unit

RegFile

Proc
Unit

RegFile

Memory Disamb + Sync

Task1 Task2

Sequencer

Head Tail

Task3



Talk OutlineTalk Outline

● Building a Window for ILP

● Methodology/Configuration

● Performance Comparison

☞ Superscalar/Multiscalar

☞ SPEC95 INT/FP

☞ Insight/Analysis

● Future Directions



MethodologyMethodology

● Compiler

✔ Modified GCC 2.7.2

✔ Highest Level of Optimization

● Hardware Simulator

✔ Instruction-Driven

✔ Cycle-Level



Configuration - SchedulingConfiguration - Scheduling

● Superscalar

✔128 In-Flight Instructions

✔Out-Of-Order, 16-way Issue

● Multiscalar

✔16 In-Flight Instructions Per Unit

✔Out-Of-Order, 8-unit 2-way Issue



Configuration - Func UnitsConfiguration - Func Units

● Functional Units

✔Type+Number

◆16 Add/Sub/Logic/Addr

◆8 Mult/Div

◆8 Load/Store

◆8 Float

◆8 Branch

✔Resources

◆Superscalar - Concentrated

◆Multiscalar - Evenly Distributed



Configuration - MemoryConfiguration - Memory
● Inst Memory

✔32K 1st Level, 1 Cycle, Non-Blocking

✔ Infinite 2nd Level, 12 Cycle

✔16/32 Words Per Cycle

✔Upto 16 Outstanding Misses

● Data Memory

✔32K 1st Level, 2 Cycle, Non-Blocking

✔ Infinite 2nd Level, 12 Cycle

✔8 Words Per Cycle

✔Upto 64 Outstanding Misses



Talk OutlineTalk Outline

● Building a Window for ILP

● Methodology/Configuration

● Performance Comparison

☞ Superscalar/Multiscalar

☞ SPEC95 INT/FP

☞ Insight/Analysis

● Future Directions



Speedup - SPEC95 INTSpeedup - SPEC95 INT

go

m88ksim

gcc

compress

li

ijpeg

perl

vortex

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Speedup - 16 Issue

go

m88ksim

gcc

compress

li

ijpeg

perl

vortex

S
P

E
C

9
5
 I
N

T
 B

e
n

c
h

m
a

rk

mscalar8x2

sscalar16



Speedup - SPEC95 FPSpeedup - SPEC95 FP

tomcatv

swim

su2cor

hydro2d

mgrid

applu

turb3d

apsi

fpppp

wave5

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Speedup - 16 Issue

tomcatv

swim

su2cor

hydro2d

mgrid

applu

turb3d

apsi

fpppp

wave5

S
P

E
C

9
5
 F

P
 B

e
n

c
h

m
a

rk

mscalar8x2

sscalar16



Performance SummaryPerformance Summary

● SPEC95 INT

✚ 25-50% Improvement

☞ Clock Advantage Seems Quite Important

● SPEC95 FP

✚ 50-200% Improvement

☞ Clock Advantage Seems Less Important

Nature of Experiment

✘ Superscalar: Idealistic 16-Issue Design

✔ Multiscalar: Realistic 16-Issue Design



Compiler Window FactorsCompiler Window Factors

● If Tasks Too Small

✘ Register Dependences

◆Wait Overhead

◆Aggravate Critical Paths

● If Tasks Too Big

✘ Memory Dependences

◆Squash Overhead

◆Buffer Overflow



Hardware Window FactorsHardware Window Factors

● Communication Delay

● Load Imbalance

● Pipeline Fill/Drain

● Misspeculation Penalty



Bottom Line on Window...Bottom Line on Window...

● If Same as Superscalar - SPEC95 INT

☞Difficult to Sustain Same Raw IPC

☞With Clock Advantage Better Speedup

● If Better than Superscalar - SPEC95 FP

☞Possible to Sustain Better Raw IPC

☞With Clock Advantage Even Better Speedup



Talk OutlineTalk Outline

● Building a Window for ILP

● Methodology/Configuration

● Performance Comparison

☞ Superscalar/Multiscalar

☞ SPEC95 INT/FP

☞ Insight/Analysis

● Future Directions



Performance IssuesPerformance Issues

● Compiler Uses Heuristics

☞Avg Task Size =16.0 Inst SPEC95 INT

☞Avg Task Size = 68.9 Inst SPEC95 FP

● Hardware Alloc/Dealloc Policy

☞Strictly Sequential

☞Load Imbalance = As Much As 25%

● Highly Dependent Code



Future DirectionsFuture Directions
● Compiler - Augment Heuristics with Profiling

✚ More Flexible Tasks

✚ More Aggressive Scheduling

● Hardware - Remove Strict Alloc/Dealloc Policy

✚ Decouple

◆Spec/Arch State Update

◆Resource Alloc/Dealloc

● Hardware - Ease Effect of Dependences

✚ Data Value Speculation

Results Appear Promising...



Multiscalar InformationMultiscalar Information

http://www.cs.wisc.edu/~mscalar/

Scott E. Breach

Andreas I. Moshovos

T.N. Vijaykumar

Gurindar S. Sohi

breach@cs.wisc.edu

moshovos@cs.wisc.edu

vijay@cs.wisc.edu

sohi@cs.wisc.edu


