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Introduction

� Use Prediction to overcome Dependences

� A variety of program information can be predicted

(branches, addresses, data values, dependences)

Branch prediction receives most attention

Also important to predict Data Values

� Is it possible? Large range of values not 0/1

Values exhibit “locality” (Lipasti AsplosVII)

� This talk: Data Value Predictability

Framework for studying value prediction

Simulation results, idealized study
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Motivation
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� Value space is very sparse. Predictable?
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Value Sequences & Prediction Models

� Informal Classification of Value Sequences:

Constant (C) 5 5 5 5 5 5 5 ...

Stride (S) 1 2 3 4 5 6 7 8 ...

Non-Stride (NS) 28 -13 -99 107 23 456 ...

� Important sequences are formed by composing

stride and non-stride sequences:

Repeated Stride (RS) 1 2 3 1 2 3 1 2 3 ...

Repeated Non-Stride (RNS) 1 -13 9 17 1 -13 9 17 ...

� Two types of prediction models:

Computational predictors make a prediction

by performing a computation on previous values

Context based predictors learn the value(s)

that follow a particular context and predict one of

the values when the same context repeats
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Computational Predictors

PC History

Value

Table

f(V) prediction

� Last Value Predictors if previous value is v
then prediction is v

� Stride Predictors if v ����� and v ����� are the

two most recent values, then the predictor

computes v ����� + (v ����� - v ����� )
� Replacement hysteresis

Saturating counters, 2-delta
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Context Based Predictors

PC History

Value

Table

Prediction
Tables

1 per PC

prediction

� Finite Context Method Predictors (fcm)
predict the next value based on a finite number

of preceding values
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Context Based Predictors,cntd.

� An order k fcm predictor uses k preceding values
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� The combination of more than one prediction

model is known as blending
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Analysis of Predictors

0  0  3  4  5  2  3  4  5  2  3  4

Steady State 
Repeats Same Mistake

1  2  3  4  1  2  3  4  1  2  3  4
Repeated Stride (period = 4)

0  0  0  0  0  0  3  4  1  2  3  4

Steady State 
No Misspredictions

Learn Time =
period + order =6

Learn 
Time = 2

STRIDE 
Prediction

CONTEXT BASED 
Prediction (order = 2)

PREDICTOR

   VALUE
SEQUENCE

Learning Degree = 75%

Learning Degree = 100%
What was learned:
       1    −> 2
       1:2 −> 3
       2:3 −> 4
       3:4 −> 1
       4:1 −> 2

Context Value that
follows context

� Computation learns faster

� Context learns better
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Simulation Methodology

� Idealized Performance Study

� Three value predictors are considered
� Last Value, (Lipasti ASPLOS VII)
� Stride 2-delta, (Eickemeyer IBM R&D, 7/93)
� Fcm order 1, 2 and 3

� Fcm predictor uses full concatenation

of history values and blending

� Predictors accessed based on PC only

� No table aliasing

� Trace driven simulation SPECINT95
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Predictability
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� Last Value � Stride � FCM

� Few previous values sufficient to predict well

� Fcm improves accuracy with increasing order –

however diminishing returns
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Predictability, cntd
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� Computational prediction varies significantly

among instruction types of the same benchmark
� Fcm performance varies less – ability to

capture any repeating sequence
� Stride does very well for add/subtract – predictor

matches operation of predicted instruction.

Generalize such an approach?
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Correlation of Predicted Sets
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� A small number, close to 18%, of values are not

predicted correctly by any predictor

� A significant fraction, over 20%, of correct

predictions is only captured by fcm

� A large portion, around 40%, of correct predictions

is captured by all predictors
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Context Based vs Stride
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� About 10% of the static instructions account

for about 90% of the total improvement

� A hybrid fcm-stride predictor with choosing

may be a good approach.

� Different types of instructions have similar

behavior
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Value Characteristics
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� A large number, � 50%, of static instructions

generate only one value

� The majority, � 50%, of dynamic instructions

correspond to static instructions that generate

fewer than 64 values
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Sensitivity to Input Data and Flags

� Input Data

File Predictions (mil) Correct (%)

jump.i 106 76.5

emit-rtl.i 114 76.0

gcc.i 137 77.1

recog.i 192 78.6

stmt.i 372 77.8

� Small variation across the different input files -

unbounded tables not affected by different data set

� Input Flags

Flags Predictions (mil) Correct (%)

none 31 78.6

-O1 76 75.3

-O2 121 76.9

ref flags 137 77.1

� Small variation across the different compilation

flags
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Sensitivity on the Order
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� Inreasing order translates to better accuracy –

returns diminish with increasing order (large

granularity of values)
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Conclusions

� Data values are highly predictable

� Context based prediction outperforms

previously proposed computational predictors

� Context based prediction needs to be used for

high prediction accuracy - alone or in hybrid

� Few static instructions that generate relatively

few values are responsible for the majority of

improvement of Fcm over Stride prediction

� Instructions in general do not generate many

unique values
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Current and Future Work

� Fundamental questions

– How predictable are data values?

– Why are instructions predictable?

– What is the behavior of predictability in

programs?

– How can predictability be exploited?

� Predictor Implementation Issues

– Value predictor organizations

– Choice of context

– Efficient hash functions

– Confidence mechanisms

– Timing issues

– Bandwidth considerations

� Software

The Predictability of Data Values 18


