
Complexity-Effective Superscalar
Processors

Subbarao Palacharla, Norm Jouppi,† Jim Smith

24th International Symposium on Computer Architecture

Tuesday, June 3rd, 1997

University of Wisconsin-Madison

†DEC Western Research Lab



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
2

Motivation

• Wide, homogeneous superscalar will not scale well
O Longer wires increase delay
O Smaller feature sizes accentuate wire delays

➞ Potentially slow clock

• Performance ∝ (IPC × Clock speed)

• Study microarchs that maximize (IPC × Clock speed)

Complexity-Effective Superscalar Microarchitectures



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
3

Motivation (cont’d.)

• Simple to measur e IPC
O trace-driven simulation counting cycles

• Har d to measure complexity
O full implementation to be accurate

• Need simple models f or
O quantifying complexity
O identifying complexity trends

Quantifying Complexity of Superscalar Processors



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
4

Outline

• Motiv ation
• Measur ing complexity

O Our approach
O Two case studies: wakeup and bypass logic
O Overall delay results

• Complexity-ef fective microarchitectures
O Dependence-based microarchitecture
O Other clustered microarchitectures

• Conclusions



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
5

Our approach

• Concentr ate on key pipeline structures
O delay is a function: issue width, window size
O primarily dispatch and issue-related
O broadcast operations over long wires

• De velop simple delay models



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
6

Baseline superscalar model

FE
TC

H

RE
N

A
M

E

W
A

KE
U

P
SE

LE
C

T

RE
G

 F
IL

E

D
-C

A
C

H
E

BY
PA

SS +

+



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
7

Key structures

STRUCTURE DELAY

Fetch logic f(IW)
Rename logic f(IW)

Window wakeup logic f(IW,WINSIZE)
Window select logic f(WINSIZE)

Bypass logic f(IW)
Register file f(IW)

Cache ~f(IW)

FE
TC

H

RE
N

A
M

E

W
A

KE
U

P
SE

LE
C

T

RE
G

 F
IL

E

D
-C

A
C

H
E

BY
PA

SS +

+

IW - Issue Width

WINSIZE - Window Size



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
8

Methodology

• Repr esentative CMOS circuit
O ISSCC proceedings
O DEC engineers

• Optimize cir cuit
O transistor sizing
O reducing fan-in
O transistor reordering to speed critical path

• Expr ess delay as function of IW and WINSIZE
• Spice sim ulate for 0.8µm, 0.35µm, 0.18µm techs
• V erify model predictions match simulations



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
9

Outline

• Motiv ation
• Measuring complexity

O Our approach
O Two case studies: wakeup and bypass logic
O Overall delay results

• Complexity-ef fective microarchitectures
O Dependence-based microarchitecture
O Other clustered microarchitectures

• Conclusions



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
10

Window wakeup logic

• Br oadcast result tags to waiting instructions
• Compar e result tags against source operand tags

= =OR = = OR

opd tagR rdyRopd tagLrdyL

opd tagR rdyRopd tagLrdyL

tagIW tag1

WINSIZE insts



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
11

Window wakeup logic (cont’d.)

• At least linear in windo w size
• Issue width has gr eater impact

8 16 24 32 40 48 56 64
WINDOW SIZE

0

50

100

150

200

250

300

350

W
A

KE
U

P 
D

EL
A

Y 
(P

S)

2-WAY
4-WAY

8-WAY

0.18µm



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
12

Window wakeup logic (cont’d.)

• W ire delays do not scale as well as logic delays

0.8µm 0.35µm 0.18µm
0

500

1000

1500

W
A

KE
U

P 
D

EL
A

Y 
(P

S)
LOGIC DELAY

WIRE DELAY

64-entry window, 8-way



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
13

Bypass logic

• Result wir e length increases linearly with issue width
• Delay incr eases quadratically with wire length
➞ Bypass delay ∝ IW2

REGFILE

FU2

FU3

FU0

FU1

MUX

RESULT
WIRES



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
14

Overall delay results

• Bypass delays do not scale with f eature size
• Bypass delays: m ajor problem in future designs
• W indow logic is the next most critical

0

500

1000

1500

2000

2500

3000

3500

RENAME

WINDOW
BYPASS

D
EL

A
Y 

(P
S)

0.8µm 0.35µm 0.18µm

64-entry window, 8-way



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
15

Outline

• Motiv ation
• Measur ing complexity
• Complexity-Ef fective microarchitectures

O Dependence-based microarchitecture
O Other clustered microarchitectures



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
16

Dependence-based microarchitecture

• Replace windo w with FIFOs
O Dependent instructions steered to each FIFO
O Window logic monitors FIFO heads only

• Cluster ed to reduce bypass delay (similar to 21264)
O extra cycle for bypassing across clusters

RE
G

FI
LE

0

BY
PA

SS +

+

RE
G

FI
LE

1

BY
PA

SS +

+

FIFOs

ST
EE

RI
N

G
LO

G
IC

IN
ST

RU
C

TI
O

N
S

FIFOs



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
17

Example of steering - 4-way machine

14

0 1 3

4 2

5

7

8

9

10

11

6

12

13

0
1

2

457

8

1213
14

3

2

6

1011
579

789
11

0,1,3 issue

2,4,6 issue

5,10 issue

7,11,12 issue

C
YC

LE
 0

C
YC

LE
 1

C
YC

LE
 2

C
YC

LE
 3

4,5,6,7

8,9,10,11

12,13,14

DYNAMIC DEPENDENCE GRAPH



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
18

Performance results - IPCs

• W orst IPC degradation: 12% m88ksim, 9% compress
due to slow (2-cycle) inter-cluster bypasses

• But, based on windo w delay, clock can be 25% faster
Performance ∝ (IPC × Clock speed) !

compress gcc go li m88ksim perl vortex
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
64-ENTRY WINDOW
2 X 4 FIFOs, 8 DEEP

In
st

ru
c

tio
ns

 P
e

r C
yc

le



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
19

Performance results - Normalized Instructions Per Sec.

• P erforms better for all benchmarks
• Net perf ormance improvements: 10% to 22%

Average performance improvement: 16%

compress gcc go li m88ksim perl vortex
0.00

0.25

0.50

0.75

1.00

1.25

1.50
64-ENTRY WINDOW 2 X 4 FIFOs, 8 DEEP
In

st
ru

c
tio

ns
 P

e
r S

e
c

N
o

rm
a

liz
e

d



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
20

Other clustered microarchitectures

CLUSTER 0

CLUSTER N

IN
ST

RU
C

TI
O

N
 S

TR
EA

M

CLUSTER 0

CLUSTER NST
EE

RI
N

G
LO

G
IC

IN
ST

RU
C

TI
O

N
 S

TR
EA

M

WINDOW WINDOW

WINDOW

Single window Mutliple windows
Execution steering Dispatch steering

Extra cycle for inter-cluster bypasses



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
21

Performance results - IPCs

• Execution steer ing achieves high IPCs
but steering is in critical issue path

• Random steer ing consistently performs worst
17% to 26% IPC degradation

compress gcc m88ksim perl0

1

2

3

4

1-CLUS.1-WIN

2-CLUS.FIFOs.DISP_STEER

2-CLUS.1-WIN.EXEC_STEER

2-CLUS.2-WIN.RDM_STEER

In
st

ru
c

tio
ns

 P
e

r C
yc

le



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
22

Performance results - Normalized Instructions Per Sec

• Dependence-based micr oarch performs best
• Random steer ing performs worse even w/ fast clock

compress gcc m88ksim perl0.00

0.25

0.50

0.75

1.00

1.25

1.50
1-CLUS.1-WIN

2-CLUS.FIFOs.DISP_STEER

2-CLUS.1-WIN.EXEC_STEER

2-CLUS.2-WIN.RDM_STEER

N
o

rm
a

liz
e

d
In

st
ru

c
tio

ns
 P

e
r S

e
c



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
23

Conclusions

• Cycle time is a cr ucial performance factor
• Detailed modeling essential

• Bypasses ar e critical performance issue
clustering can help considerably

• Then, windo w logic is critical
dependence-based processors can reduce
window complexity

clustering + dependence-based == wide issue + fast clock



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Backup

How good are your circuits?

• Based on design published b y microprocessor vendors
ISSCC proceedings, DEC engineers
Studied alternatives for some structures

• Man y circuit tricks can be used to optimize the circuits
relative delay times should be accurate enough
more interested in relationships, trends

Hard problem: study only a first effort in the direction



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Backup

What about other structures?

• Fr ont end stages
O Pipeline at the cost of

increased mispredict penalty
3% IPC degradation per front-end stage
more bypass paths

• Caches
Size L1 to fit in a cycle
Pipeline

• Register s
Pipeline
Tullsen et. al. report only 2% degradation in IPC



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Backup

Using buffers to reduce wire delays

• Y es, buffers can reduce delay
but delay is still at least linear
buffers add delay and consume power

• W ires with multiple drivers need bidirectional buffers
not easy to switch direction fast enough

• Quadr atic increase in delay can still result
O e.g. window wakeup logic delay

increases at least linearly with issue width
increases at least linearly with window size

• The pr oblem only resurfaces at a smaller feature size



 Complexity-Effective Superscalar Processors
© 1997 Subbarao Palacharla UW-Madison

Slide
27

Steering logic complexity

• Can be done in par allel with rename
• Might need an extr a pipestage

3% IPC degradation per front-end stage
• Cache steer ing information?


