
Why Multiscalar?

Guri Sohi

Wisconsin Multiscalar Project
University of Wisconsin — Madison

URL: http://www.cs.wisc.edu/~mscalar

Why Multiscalar? Slide
2

Guri Sohi

• The Problem

• Processing basics and wish lists

• Options for high performance

• The multiscalar model

• Performance results

• Concluding remarks

Outl ine

Why Multiscalar? Slide
3

Guri Sohi

The Problem

Software: create static image of
dynamic computation

Hardware: recreate dynamic computation
from static representation and

carry out computation

Why Multiscalar? Slide
4

Guri Sohi

• Start with a static representation of a
program

• Sequence through the program to generate
the dynamic stream of operations
• Use single PC to walk through static

representation?

• Execute operations in dynamic stream
• Schedule operations for execution

• Execute operations

• Communicate values

Processing Hardware: Big Picture

PROGRAM

A

B

C

Why Multiscalar? Slide
5

Guri Sohi

• Sequencing

• Scheduling

• Operation execution

• Operand communication

Basic Issues

Why Multiscalar? Slide
6

Guri Sohi

• How do we sequence, schedule, execute, and communicate
in a more powerful manner?

• Powerful =
• a large variety of applications

• time efficient

• space efficient

• power efficient?

• etc.

The Big Quest ion

Why Multiscalar? Slide
7

Guri Sohi

• Sequence through static program and establish a large
instruction window (100s of instructions)

• Maintain a large window

• Sequence through program and initiate at least 10
operations into this window per cycle

• Schedule for execution at least 10 operations per cycle

• Provide lots of storage for inter-operation communications

Target: 10 IPC

Why Multiscalar? Slide
8

Guri Sohi

• Sequencing: single (wide) vs. multiple

• Scheduling: central vs. distributed

• Operation execution: not much choice; provide requisite
bandwidth

• Operand communication: central vs. distributed storage

Options

Why Multiscalar? Slide
9

Guri Sohi

Sequencing/Schedul ing Opt ions

Static Dynamic Static Dynamic

Single Sequencer Multiple Sequencers

Why Multiscalar? Slide
10

Guri Sohi

• Now throw in engineering into the big picture

• What is desirable from the engineering viewpoint?
• Hardware wish list

• Software wish list

Engineer ing Considerat ions

Why Multiscalar? Slide
11

Guri Sohi

• Simplify engineering (design, verification, testing)
• Use of simple, regular hardware structures

• clock speeds comparable to single-issue processors

• “Locality” of interconnect

• Easy growth path from one generation to next

• reuse existing processing cores

• No centralized bottlenecks

Hardware Wish List

Why Multiscalar? Slide
12

Guri Sohi

• Take current generation processor

• Replicate some parts, share others

• Have next generation processor

• Different units can sequence, schedule, etc. in parallel

BUT, the software problem

The “Hardware-Influenced” Solut ion

Why Multiscalar? Slide
13

Guri Sohi

• Can’t always break up program into “independent” chunks
(i.e., multiple sequencers) statically
• control dependences

• data dependences (especially ambiguous ones)

• also load balance

• Can’t map program onto rigid hardware model

The Software Problem

Why Multiscalar? Slide
14

Guri Sohi

• Simplify engineering
• Don’t force “rigid model”

• Don’t ask for guarantees

• Don’t expect software to track hardware

• Others

Software Wish List

Why Multiscalar? Slide
15

Guri Sohi

• Take “mostly sequential” static program

• Use speculation to overcome dependence limitations

• When in doubt, speculate

• Break up program into “potentially independent” chunks
dynamically

Hardware/Software Cooperat ion

Why Multiscalar? Slide
16

Guri Sohi

• Unraveling the operations to be executed
dynamically

• Use 2-level sequencing
• sequence high level in task-sized steps

• sequence within task

• vectors?

• Use control flow speculation to increase
sequencing power
• overcome “stalls”

Sequencing

PROGRAM

A

B

C

Why Multiscalar? Slide
17

Guri Sohi

• Use multiple schedulers to improve
scheduling power

• Use data dependence speculation to
overcome scheduling limitations

- ambiguous dependences

• Use value speculation to overcome
scheduling limitations

- true dependences

• Use memoization to avoid re-doing work

- true dependences

Schedul ing

PROGRAM

A

B

C

Why Multiscalar? Slide
18

Guri Sohi

• Values bound to registers and memory

• Values created speculatively

• Storage
• where should values be buffered?

• Synchronization
• operation uses value of latest producer

• Communication
• forwarding created value to (future)

consumers

• Create and exploit localities to reduce/
simplify interconnect!

Operand Communicat ion

PROGRAM

A

B

C

Why Multiscalar? Slide
19

Guri Sohi

• Break sequencing process into two steps
• Sequence through static representation in task-sized steps

• Sequence through each task in conventional manner

• Split large instruction window into ordered tasks

• Assign a task to a simple execution engine; exploit ILP by
overlapping execution of multiple tasks

• Use separate PCs to sequence through separate tasks

• Maintain the appearance of a single-PC sequencing
through the static representation

• Use control and data dependence speculation

Mult iscalar Paradigm

Why Multiscalar? Slide
20

Guri Sohi

• A portion of the static representation resulting in a
contiguous portion of the dynamic instruction stream

- part of a basic block

- basic block

- multiple basic blocks

- loop iteration

- entire loop

- procedure call, etc.

What is a Task?

Why Multiscalar? Slide
21

Guri Sohi

Mult iscalar Big Picture: Basics

predict predict

PROC
UNIT
 1

PROC
UNIT
 2

PROC
UNIT
 3

A
B C

PROGRAM

A

B

C

Why Multiscalar? Slide
22

Guri Sohi

REG

P.U. P.U. P.U.
REG REG REG

P.U.

PIPE
LINE

PIPE
LINE

PIPE
LINE

PIPE
LINE

SEQUENCER

MEMORY DISAMBIGUATION
 CACHE HIERARCHY

Mult iscalar Big Picture: Hardware

Why Multiscalar? Slide
23

Guri Sohi

• Each core works out of its ‘‘local’’ register file

• Multiple register files act like separate ‘‘renamed’’ files

• Each register file contains register state at a particular time
in the (speculative) execution of a program

Register Values

Why Multiscalar? Slide
24

Guri Sohi

• Storage

• Synchronization

• Communication

• Versions

Memory Values

Why Multiscalar? Slide
25

Guri Sohi

--

--

Head

Tail

Program

Order

AddrInstr Data

store

load 100

? ?

store 200 ?

66200store

load 200

Traditional Memory Interface: Load Store Queue

• Memory Dependence Speculation

• Multiple Versions

Arranged by
PROGRAM ORDER

Searched using
ADDRESS

Why Multiscalar? Slide
26

Guri Sohi

--
--

Addr

0 0 0 0

SL SL SL SLDataDataDataData

0 0 0 00

Program Order

PU 0 PU 1 PU 2 PU 3

200 55 1 66 1

100 1

0

0 0

0

store 200 55 store 200 66
load 200

store ? ?

load 100

121

One ARB line

Memory System I: Address Resolution Buffer

• Arranged by ADDRESS; Searched using PROGRAM ORDER

• Each line buffers multiple versions

• Committed versions are written back immediately

Why Multiscalar? Slide
27

Guri Sohi

--
--

Program Order

PU 0 PU 2 PU 3PU 1

Addr NextStateData

Cache 0 Cache 1

Cache 2 Cache 3

store ? ?

load 100

100 121 L -

store 200 55
load 200

store 200 66

200 55 S 3

200 66 S -

0

One SVC line

CS200 44

Memory System II: Speculative Versioning Cache

• Maintains a linked list of versions; PU #s used as pointers

• Each line buffers only one version

• Committed versions written back only when necessary

Why Multiscalar? Slide
28

Guri Sohi

• Data dependence speculation is the default
• predict no dependences

• Improving accuracy of data dependence prediction

- akin to branch prediction for control dependences

• Track history of dependence mis-speculations
• small number of static dependence pairs

• exhibit temporal locality

• Use history for future data dependence speculation/
synchronization decisions

Schedul ing Memory Operat ions

Why Multiscalar? Slide
29

Guri Sohi

• Process stream of tokens

• Create entry in list for new token

• Use information in list to process token

Example: Problem

Why Multiscalar? Slide
30

Guri Sohi

for (indx = 0; indx < BUFSIZE; indx++) {
 /* get the symbol for which to search */
 symbol = SYMVAL(buffer[indx]);

 /* do a linear search fo rthe symbol in the list */
 for (list = listhd; list; list = LNEXT(list) {
 /* if symbol already present, process entry */
 if (symbol == LELE(list)) {
 process(list);
 break;
 }
 }

 /* if symbol not found, add it to the tail */
 if (! list) {
 addlist(symbol);
 }
}

Example: C Code

Why Multiscalar? Slide
31

Guri Sohi

• Each task is a complete list search

• Searches are usually independent and parallel
• Multiscalar can assume they are always independent

• Branches that separate tasks are predictable

• Branches within a task unlikely to be 100% predictable
• Superscalar/VLIW unlikely to be able to overlap

processing of different tokens

Example

Why Multiscalar? Slide
32

Guri Sohi

Going from one
generation to
another could
leave binary
untouched!

Example: Executable

F

Fo
rw

ar
d

Bi
ts

Stop
Always

St
op

 B
its

OUTER:

INNER:

SKIPCALL:

OUTERFALLOUT:

bne $17, $0, SKIPINNER

j INNERFALLOUT

INNERFALLOUT:

F

F

move $17, $21

move $4, $23

Branch, Branch

OUTER
OUTERFALLOUT

Targ Spec

Targ1

Targ2

Create mask $4,$8,$17,$20,$23

release $8, $17

beq $17, $0, SKIPINNER

ld $8, LELE($17)
bne $8, $23, SKIPCALL
move $4, $17

ld $17, NEXTLIST($17)

bne $17, $0, INNER

addu $20, $20, 16

ld $23, SYMVAL−16($20)

jal process

jal addlist

bne $20, $16, OUTER

release $4

SKIPINNER:

Why Multiscalar? Slide
33

Guri Sohi

• Multiscalar-specific information (task successors, create
masks, forward bits, stop bits) is available in a binary

• Recover information at run time
• ‘‘Low’’ performance but run ordinary binaries

• Binary to binary translation
• Better performance by including some optimizations

• Compiler
• Best performance, but needs recompilation

Regardless, binary from one multiscalar generation to
another can remain the same

Binary Compat ib i l i ty Opt ions

Why Multiscalar? Slide
34

Guri Sohi

Performance: SPECint95

0

1

2

3

4

5

6

0.95 0.87 0.94 0.96 0.92
m88ksim gcc compress ijpeg perl

S
p

ee
d

u
p

4/2/1
8/2/1

4/2/4
8/2/4

4/4/1 4/4/8

Why Multiscalar? Slide
35

Guri Sohi

Performance: SPECfp95

0

1

2

3

4

5

6

7

8
S

p
ee

d
u

p

1.00 0.98 1.00 1.00
swim hydro2d mgrid applu

0.98 0.97 0.99
turb3d apsi fpppp

4/2/1
8/2/1

4/2/4
8/2/4

Why Multiscalar? Slide
36

Guri Sohi

Attributes Multiprocessor Multiscalar

Speculative task initiation No/Difficult Yes

Multiple flows of control Yes Yes

Task determination Static Static (possibly dynamic)

Software guarantee of inter-task
control independence

Required? Not required

Software knowledge of inter-task
data dependences

Required? Not required

Inter-task sync. Explicit Implicit/Explicit

Inter-task communication Through memory
Through messages

Through registers and
memory

Register space Distinct for PEs Common for PEs

Memory space Common
Distinct

Common for PEs

Compar ison with Mult iprocessors

Why Multiscalar? Slide
37

Guri Sohi

• Programs can be (statically) parallelized easily

• Hardware replication not desirable
• interconnect not an issue (copper?)

• centralized designs easier to design/validate

• centralized designs easier to test

Why Not Mult iscalar?

Why Multiscalar? Slide
38

Guri Sohi

• Future microarchitectures will be decentralized (operation
execution, operand communication, scheduling,
sequencing)

• Multiscalar model enables distributed execution of a
sequential (or parallel) program

• Beginning of a new generation of microarchitectures

- much works remains to be done

Concluding Remarks

Why Multiscalar? Slide
39

Guri Sohi

• Stanford HYDRA

• CMU STAMPede

• Minnesota Superthreaded

• Waikato WARP engine

• Washington SMT

• MIT M-machine

• MIT RAW

• Michigan HPS

• CMU Superflow

• Illinois IMPACT

Related Projects

Why Multiscalar? Slide
40

Guri Sohi

Thanks to:

Faculty: Jim Smith, Chuck Kime

Former/Current Students/visitors: Manoj Franklin, Scott Breach,
T. N. Vijaykumar, Dionisios Pnevmatikatos, Andreas Moshovos,
Todd Austin, Eric Rotenberg, Quinn Jacobson, Jeremy Williamson,
Paul Thayer, Selim Bilgin, Matt Kupperman, Subramanya Sastry,
Amir Roth, Sridhar Gopal, Matt Mergener, Craig Zilles, Atsushi
Okamura, Anand Kamannavar, Padmaja Nandula.

for helping to conceive, develop, realize, and refine the
multiscalar vision

Thanks to: DARPA, NSF, Intel for funding the efforts

Acknowledgments

