
Why Multiscalar?

Guri Sohi

Wisconsin Multiscalar Project
University of Wisconsin — Madison

URL: http://www.cs.wisc.edu/~mscalar

Why Multiscalar? Slide
2

Guri Sohi

• The Problem

• Processing basics and wish lists

• Options for high performance

• The multiscalar model

• Performance results

• Concluding remarks

Outl ine



Why Multiscalar? Slide
3

Guri Sohi

The Problem

Software: create static image of
dynamic computation

Hardware: recreate dynamic computation
from static representation and

carry out computation
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• Start with a static representation of a
program

• Sequence through the program to generate
the dynamic stream of operations
• Use single PC to walk through static

representation?

• Execute operations in dynamic stream
• Schedule operations for execution

• Execute operations

• Communicate values

Processing Hardware: Big Picture

PROGRAM

A

B

C
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• Sequencing

• Scheduling

• Operation execution

• Operand communication

Basic Issues
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• How do we sequence, schedule, execute, and communicate
in a more powerful manner?

• Powerful =
• a large variety of applications

• time efficient

• space efficient

• power efficient?

• etc.

The Big Quest ion
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• Sequence through static program and establish a large
instruction window (100s of instructions)

• Maintain a large window

• Sequence through program and initiate at least 10
operations into this window per cycle

• Schedule for execution at least 10 operations per cycle

• Provide lots of storage for inter-operation communications

Target:  10 IPC
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• Sequencing: single (wide) vs. multiple

• Scheduling: central vs. distributed

• Operation execution: not much choice; provide requisite
bandwidth

• Operand communication: central vs. distributed storage

Options
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Sequencing/Schedul ing Opt ions

Static Dynamic Static Dynamic

Single Sequencer Multiple Sequencers
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• Now throw in engineering into the big picture

• What is desirable from the engineering viewpoint?
• Hardware wish list

• Software wish list

Engineer ing Considerat ions
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• Simplify engineering (design, verification, testing)
• Use of simple, regular hardware structures

• clock speeds comparable to single-issue processors

• “Locality” of interconnect

• Easy growth path from one generation to next

• reuse existing processing cores

• No centralized bottlenecks

Hardware Wish List
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• Take current generation processor

• Replicate some parts, share others

• Have next generation processor

• Different units can sequence, schedule, etc. in parallel

BUT, the software problem .......

The “Hardware-Influenced” Solut ion
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• Can’t always break up program into “independent” chunks
(i.e., multiple sequencers) statically
• control dependences

• data dependences (especially ambiguous ones)

• also load balance

• Can’t map program onto rigid hardware model

The Software Problem
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• Simplify engineering
• Don’t force “rigid model”

• Don’t ask for guarantees

• Don’t expect software to track hardware

• Others ......

Software Wish List
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• Take “mostly sequential” static program

• Use speculation to overcome dependence limitations

• When in doubt, speculate

• Break up program into “potentially independent” chunks
dynamically

Hardware/Software Cooperat ion
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• Unraveling the operations to be executed
dynamically

• Use 2-level sequencing
• sequence high level in task-sized steps

• sequence within task

• vectors?

• Use control flow speculation to increase
sequencing power
• overcome “stalls”

Sequencing

PROGRAM

A

B

C
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• Use multiple schedulers to improve
scheduling power

• Use data dependence speculation to
overcome scheduling limitations

- ambiguous dependences

• Use value speculation to overcome
scheduling limitations

- true dependences

• Use memoization to avoid re-doing work

- true dependences

Schedul ing

PROGRAM

A

B

C
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• Values bound to registers and memory

• Values created speculatively

• Storage
• where should values be buffered?

• Synchronization
• operation uses value of latest producer

• Communication
• forwarding created value to (future)

consumers

• Create and exploit localities to reduce/
simplify interconnect!

Operand Communicat ion

PROGRAM

A

B

C
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• Break sequencing process into two steps
• Sequence through static representation in task-sized steps

• Sequence through each task in conventional manner

• Split large instruction window into ordered tasks

• Assign a task to a simple execution engine; exploit ILP by
overlapping execution of multiple tasks

• Use separate PCs to sequence through separate tasks

• Maintain the appearance of a single-PC sequencing
through the static representation

• Use control and data dependence speculation

Mult iscalar Paradigm
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• A portion of the static representation resulting in a
contiguous portion of the dynamic instruction stream

- part of a basic block

- basic block

- multiple basic blocks

- loop iteration

- entire loop

- procedure call, etc.

What is a Task?
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Mult iscalar Big Picture:  Basics

predict predict

PROC
UNIT
    1

PROC
UNIT
    2

PROC
UNIT
    3

A
B C

PROGRAM

A

B

C
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REG

P.U. P.U. P.U.
REG REG REG

P.U.

PIPE
LINE

PIPE
LINE

PIPE
LINE

PIPE
LINE

SEQUENCER

MEMORY DISAMBIGUATION
        CACHE HIERARCHY

Mult iscalar Big Picture:  Hardware
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• Each core works out of its ‘‘local’’ register file

• Multiple register files act like separate ‘‘renamed’’ files

• Each register file contains register state at a particular time
in the (speculative) execution of a program

Register Values
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• Storage

• Synchronization

• Communication

• Versions

Memory Values
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--

--

Head

Tail

Program

Order

AddrInstr Data

store

load 100

? ?

store 200 ?

66200store

load 200

Traditional Memory Interface: Load Store Queue

• Memory Dependence Speculation

• Multiple Versions

Arranged by
PROGRAM ORDER

Searched using
ADDRESS
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--
--

Addr

0 0 0 0

SL SL SL SLDataDataDataData

0 0 0 00

Program Order

PU 0 PU 1 PU 2 PU 3

200 55 1 66 1

100 1

0

0 0

0

store 200 55 store 200 66
load 200

store ? ?

load 100

121

One ARB line

Memory System I: Address Resolution Buffer

• Arranged by ADDRESS; Searched using PROGRAM ORDER

• Each line buffers multiple versions

• Committed versions are written back immediately
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--
--

Program Order

PU 0 PU 2 PU 3PU 1

Addr NextStateData

Cache 0 Cache 1

Cache 2 Cache 3

store ? ?

load 100

100 121 L -

store 200 55
load 200

store 200 66

200 55 S 3

200 66 S -

0

One SVC line

CS200 44

Memory System II: Speculative Versioning Cache

• Maintains a linked list of versions; PU #s used as pointers

• Each line buffers only one version

• Committed versions written back only when necessary
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• Data dependence speculation is the default
• predict no dependences

• Improving accuracy of data dependence prediction

- akin to branch prediction for control dependences

• Track history of dependence mis-speculations
• small number of static dependence pairs

• exhibit temporal locality

• Use history for future data dependence speculation/
synchronization decisions

Schedul ing Memory Operat ions
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• Process stream of tokens

• Create entry in list for new token

• Use information in list to process token

Example:  Problem
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for (indx = 0; indx < BUFSIZE; indx++) {
    /* get the symbol for which to search */
    symbol = SYMVAL(buffer[indx]);

    /* do a linear search fo rthe symbol in the list */
    for (list = listhd; list; list = LNEXT(list) {
        /* if symbol already present, process entry */
        if (symbol == LELE(list)) {
            process(list);
            break;
        }
     }

     /* if symbol not found, add it to the tail */
    if (! list) {
        addlist(symbol);
    }
}

Example:  C Code
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• Each task is a complete list search

• Searches are usually independent and parallel
• Multiscalar can assume they are always independent

• Branches that separate tasks are predictable

• Branches within a task unlikely to be 100% predictable
• Superscalar/VLIW unlikely to be able to overlap

processing of different tokens

Example
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Going from one
generation to
another could
leave binary
untouched!

Example:  Executable

F

Fo
rw

ar
d 

Bi
ts

Stop
Always

St
op

 B
its

OUTER:

INNER:

SKIPCALL:

OUTERFALLOUT:

bne         $17,      $0,     SKIPINNER

j               INNERFALLOUT

INNERFALLOUT:

F

F

move       $17,     $21

move      $4,       $23

Branch, Branch

OUTER
OUTERFALLOUT

Targ Spec

Targ1

Targ2

Create mask $4,$8,$17,$20,$23

release   $8,       $17

beq          $17,   $0,   SKIPINNER

ld              $8,     LELE($17)
bne          $8,     $23,  SKIPCALL
move       $4,     $17

ld             $17,    NEXTLIST($17)

bne         $17,    $0,    INNER

addu        $20,        $20,        16

ld              $23,    SYMVAL−16($20)

jal             process

jal           addlist

bne          $20,       $16,     OUTER

release  $4

SKIPINNER:
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• Multiscalar-specific information (task successors, create
masks, forward bits, stop bits) is available in a binary

• Recover information at run time
• ‘‘Low’’ performance but run ordinary binaries

• Binary to binary translation
• Better performance by including some optimizations

• Compiler
• Best performance, but needs recompilation

Regardless, binary from one multiscalar generation to
another can remain the same

Binary Compat ib i l i ty  Opt ions
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Performance: SPECint95
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Performance: SPECfp95
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Attributes Multiprocessor Multiscalar

Speculative task initiation No/Difficult Yes

Multiple flows of control Yes Yes

Task determination Static Static (possibly dynamic)

Software guarantee of inter-task
control independence

Required? Not required

Software knowledge of inter-task
data dependences

Required? Not required

Inter-task sync. Explicit Implicit/Explicit

Inter-task communication Through memory
Through messages

Through registers and
memory

Register space Distinct for PEs Common for PEs

Memory space Common
Distinct

Common for PEs

Compar ison with Mult iprocessors
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• Programs can be (statically) parallelized easily

• Hardware replication not desirable
• interconnect not an issue (copper?)

• centralized designs easier to design/validate

• centralized designs easier to test

Why Not Mult iscalar?
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• Future microarchitectures will be decentralized (operation
execution, operand communication, scheduling,
sequencing)

• Multiscalar model enables distributed execution of a
sequential (or parallel) program

• Beginning of a new generation of microarchitectures

- much works remains to be done

Concluding Remarks
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• Stanford HYDRA

• CMU STAMPede

• Minnesota Superthreaded

• Waikato WARP engine

• Washington SMT

• MIT M-machine

• MIT RAW

• Michigan HPS

• CMU Superflow

• Illinois IMPACT

Related Projects
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