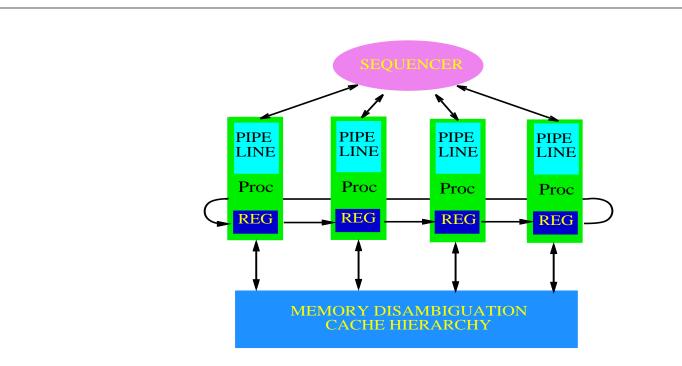
The Wisconsin Multiscalar Project

Jim Smith and Guri Sohi

University of Wisconsin-Madison

Objectives


- Develop new microarchitectural paradigm for next decade
 - exploit next-decade semiconductor technology
 - execute conventional serial (non-numeric) programs in parallel
 - exploit parallelism in new ways: heavy data and control flow speculation
 - provide scalable ILP growth path

=> Multiscalar Processors

Assess viability of multiscalar paradigm

Multiscalar Paradigm

- Partition program into sequential tasks
- Initiate tasks according to predicted order
- Use *multiple* PCs to sequence through program
- Hardware support for data speculation

Approach

- Develop hardware design and software
 - provide accurate cost/performance evaluation
- Multilevel simulation (for hardware design)
 - High level performance model
 - Verilog behavioral models for selected units
 - Verilog structural model for multiscalar-specific
 - Spice level for selected circuits
- Software (Wisconsin and Minnesota)
 - integrate front end (SUIF) to back end (GCC)
 - develop multiscalar-specific compilation methods and optimizations

Impact

- New paradigm for next-decade processor implementations
 - hardware designs for multiscalar processors
 - compilers to exploit potential
 - accurate simulation results to validate paradigm
- Transfer of research results to microprocessor industry
 - maintain and develop industrial contacts
 - annual research forum

