
Abstract

We consider a variety of dynamic, hardware-based
methods for exploiting load/store parallelism, including
mechanisms that use memory dependence speculation.
While previous work has also investigated such methods
[19,4], this has been done primarily for split, distributed
window processor models. We focus on centralized,
continuous-window processor models (the common
configuration today).  We confirm that exploiting load/
store parallelism can greatly improve performance.
Moreover, we show that much of this performance
potential can be captured if addresses of the memory
locations accessed by both loads and stores can be used
to schedule loads. However, using addresses to schedule
load execution may not always be an option due to
complexity, latency, and cost considerations. For this
reason, we also consider configurations that use just
memory dependence speculation to guide load
execution. We consider a variety of methods and show
that speculation/synchronization can be used to
effectively exploit virtually all load/store parallelism. We
demonstrate that this technique is competitive to or
better than the one that uses addresses for scheduling
loads. We conclude by discussing why our findings differ,
in part, from those reported for split, distributed window
processor models.

1  Introduction
Building memory systems capable of sustaining the

demands of modern high-performance processors
remains a continuous challenge. While ideally fast and
large memory systems are either too expensive or impos-
sible to build, several techniques have been developed to
closely approximate them. One of the most successful
methods today is to build a memory hierarchy. While
quite successful, memory hierarchies provide only a par-
tial solution to the memory problem. A complementary
technique is to tolerate memory latency by exploiting
parallelism in the load/store request stream. While mem-
ory hierarchies reduce the time it takes to respond to
loads, the goal here is to send loads to memory earlier, as
far in advance as possible of the instructions that need

the data. As a result, memory latency is overlapped with
other useful computation. Unfortunately, determining
the earliest point when a load can safely access memory
requires knowledge of its memory dependences.

Exploiting load/store parallelism can be done either
statically or dynamically, using hardware- or software-
based methods. In this paper, we study a variety of
dynamic, hardware-based methods. In particular, we
consider methods that are derived from combinations of
the following parameters: (1) whether an address-based
scheduler is used, and (2) whether memory dependence
speculation [7,11,1,15,19,4,28,9,2,33] is used. In an
address-based scheduler, load and store addresses are
used to determine memory dependences for guiding load
execution. In principle, this is similar to the register-
based schedulers modern instruction-level-parallel capa-
ble processors use for extracting parallelism in the
instruction stream (instead of using register dependences
we use memory dependences). With memory depen-
dence speculation, a load may execute even when some
of its dependences are presently unknown. Memory
dependence speculation can be useful, since, in contrast
to register dependences, memory dependences cannot be
determined as instructions are inserted into the instruc-
tion window (addresses are calculated at run-time and
not necessarily in program order). Accordingly, waiting
to determine all the dependences a load has may unnec-
essarily delay its execution. However, in using memory
dependence speculation care must be taken to balance
the benefits of correct speculation against the penalty
paid on miss-speculations (a miss-speculation occurs
when a true memory dependence is violated during exe-
cution). For this purpose, several memory dependence
speculation methods have been developed. These range
from naively speculating all loads immediately, to using
memory dependence prediction to guess memory depen-
dences and enforce synchronization among loads and
stores [19,4,9]. We study all these alternatives (see Sec-
tion 2.1 for descriptions).

Previous studies have also investigated similar meth-
ods for exploiting load/store parallelism [19,4]. How-
ever, these studies assumed distributed, split-window,
dynamically scheduled superscalar processor models
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(split window). In this work we study memory depen-
dence speculation under a continuous, centralized win-
dow processor model (continuous window). (In Section
2.2, we clarify the differences between these two mod-
els.) As we demonstrate, the choice of a split versus a
continuous window greatly impacts the effectiveness of
each method creating different tradeoffs and options.
There are several reasons why a study assuming a con-
tinuous window is warranted: While future, high-perfor-
mance processors may be forced to use split, distributed
windows [7,27,21,13,30,31,24,6,29,8], virtually all mod-
ern processors use centralized, continuous windows.
Moreover, traditionally, techniques developed initially
for high-performance processors sooner or later find
their way into other classes of processors (e.g., many of
the techniques initially used for mainframes in the 60’s
and 70’s found their way into micro-processors during
the 80’s and 90’s). We are currently experiencing a pro-
liferation of mobile and embedded processor applica-
tions. As technology progresses, such processors may
use more aggressive techniques such as memory depen-
dence speculation. Finally, distribution may come at the
price of lower IPC  (instructions per cycle) [21].
Depending on the specific application, it may be prefera-
ble to use a centralized window with a slower clock rate
to achieve higher performance. Accordingly, it is impor-
tant to determine what the tradeoffs are under continuous
window processor model.

The rest of this paper is organized as follows: In Sec-
tion 2, we provide the background information necessary
for justifying our experimental  results and choices. We
discuss methods for exploiting load/store parallelism,
including memory dependence speculation. In Section
2.1, we review a number of previously proposed memory
dependence speculation policies, while in Section 2.2 we
clarify the differences between split and continuous win-
dow processor models. In Section 3, we present our
experimental analysis. In Sections 3.2 through 3.6, we
focus on a centralized, continuous-window processor
model. In Section 3.7, we demonstrate that in contrast to
the continuous window processor, address-based sched-
uling coupled with naive memory dependence specula-
tion is an insufficient solution for a split-window
processor. We also explain why memory dependence
speculation behaves differently under these two proces-
sor models. We summarize our findings in Section 4.

2  Methods for Exploiting Load/Store 
Parallelism

To tolerate slower memory devices we may exploit
load/store parallelism executing loads in an order that is
ultimately restricted only by true memory dependences1.
One way of exploiting load/store parallelism is to first

determine the true dependences of a load and then use
this information to schedule its execution. Determining
memory dependences requires inspection of the
addresses loads and stores access. For this purpose we
may use an address-based load/store scheduler. With this
mechanism loads go through two scheduling phases. In
the first, the base register dependence(s) is used to
schedule the load’s address calculation. In the second
phase, the address is used to determine the load’s mem-
ory dependences. This information is used to schedule
the load’s memory access. When an address-based
scheduler is used, it makes sense to also have stores pro-
ceed into two phases. In the first, they calculate their
addresses as soon as their base register becomes avail-
able. This address is inserted into the address-based
scheduler for blocking the execution of dependent loads.
The second step in store execution entails waiting for the
actual data value. As soon as it becomes available, the
address-based scheduler is notified releasing any depen-
dent loads.

Even when an address-based scheduler is in place,
waiting to determine the dependences of loads may offer
suboptimal performance. With this method, a load that
has calculated its address is forced to wait until it is
established that no preceding, yet un-executed store
writes to the same address (i.e., the load has no unre-
solved memory dependences). Accordingly, it is possible
to unnecessarily delay a load from accessing memory.
This is the case if a load that has no true dependences is
forced to wait until all preceding stores have calculated
their addresses. 

To expose the parallelism that is hindered by the use of
run-time calculated addresses we may use memory
dependence speculation. Under memory dependence
speculation, we do not delay executing a load until we
determine that it has no true dependences. Instead, we
guess whether a load has any. As a result, a load may
access memory before a preceding store with which a
dependence may exist. Eventually, when preceding store
addresses are calculated, we can determine whether the
resulting execution order was valid. If no true depen-
dence was violated then speculation was successful and
no further action is necessary. In this case, performance
may have improved as the load executed earlier making
memory appear faster. However, if a true dependence
was violated then speculation was erroneous (i.e., a
miss-speculation). In this case corrective action is neces-
sary. Squash invalidation, the hardware-based miss-

1. Strictly speaking, program semantics are maintained so long as
instructions read the same value as they would in the original pro-
gram implied order. This does not necessarily imply that a depen-
dent pair of instructions executes in the program implied order. We
avoid making this distinction for clarity.



speculation recovery method used today, works by inval-
idating and re-executing all instructions following the
miss-speculated load. 

Memory dependence speculation can be used with and
without an address-based scheduler. Using an address-
based scheduler is desirable as it allows us to use as
much dependence information as possible in deciding
when to execute a load. However, building an address-
based scheduler for wide-issue and long window proces-
sors may be a daunting proposition. Considerations
include cost, complexity, and impact on load latency.
Consequently, it is desirable to devise mechanisms that
offer similar benefits without the need for such a sched-
uler. For this reason, we also consider configurations that
do not use address-based scheduling. In this case, a
mechanism is required to detect memory dependence
violations. This can be done by recording all speculative
loads and by having stores check for violations when
they write to memory. The latency through this mecha-
nism can only impact miss-speculation penalty and not
load or store latency. This is because this process does
not produce any data for further computation.

When using memory dependence speculation, care
must be taken to balance the performance benefits
gained on correct speculation against the penalty paid on
miss-speculations [19]. The miss-speculation penalty
includes the following three components: (1) The work
thrown away to recover from the miss-speculation
(which in the case of squash invalidation, i.e., invalidat-
ing all instructions after the miss-speculated load, may
include unrelated computations). (2) The time, if any,
required to perform the invalidation. Finally, (3) the
opportunity cost associated with not executing some
other instructions instead of the mispeculated load and
the instructions that used erroneous data [19]. Ideally,
loads would execute as early as possible while miss-
speculations would be completely avoided. 

In the next section, we review previously proposed
memory dependence speculation policies. However,
before we do so, we note that two other possibilities exist
for reducing the penalty of miss-speculation [19]: (1)
minimizing the amount of work lost on miss-speculation
or (2) reducing the time required to redo this lost work
[19]. Instruction reuse falls into the same category [25].
A technique to reduce the amount of work lost on miss-
speculation is selective invalidation. With this technique,
only the instructions that used erroneous data are invali-
dated and re-executed on misspeculation [16]. As we
demonstrate in Section 3.4, under these assumptions
memory dependence miss-speculations are virtually
non-existent, hence there is no problem with miss-specu-
lations and no need for a selective invalidation mecha-
nism.

2.1  Memory Dependence Speculation Policies
We consider the following five memory dependence

speculation policies: (1) naive memory dependence
speculation, (2) speculation/synchronization, (3) selec-
tive speculation, (4) store barrier, and (5) no speculation.
To better understand the potential pros and cons of each
policy it is best if we first consider the ideal memory
dependence speculation policy [19]. In this policy loads
are delayed only as long as it is necessary. This requires
perfect, a priori knowledge of all relevant memory
dependence. Loads with no true dependences (within the
instruction window) execute without delay, while loads
that have true dependences are allowed to execute only
after the store (or the stores) that produces the necessary
data has executed.

Naive Memory Dependence Speculation: This an
overly optimistic form of memory dependence specula-
tion, yet it is very simple. In this scheme, loads access
memory immediately after address calculation even if
unresolved dependences exist. While this scheme sched-
ules loads aggressively, it may suffer from a high number
of miss-speculations. As we demonstrate in Section 3.3,
this is so when not using an address-based scheduler.

Memory Dependence Speculation/Synchroniza-
tion: This scheme mimics ideal memory dependence
speculation [19,4]. This is done by: (1) predicting
whether the immediate execution of a load is likely to
violate a true data dependence, and if so, (2) predicting
the store (or stores) the load depends upon, and, (3)
enforcing synchronization between the dependent
instructions. Initially, in the absence of any dependence
information, naive memory dependence speculation is
used. When a miss-speculation occurs, information
about the corresponding store and load is recorded. The
next time any of the two executes the recorded informa-
tion is used to predict the dependence and to enforce
synchronization.  

Selective Memory Dependence Speculation: This is
a simplification of memory dependence speculation.
Here we carry out only the first part of the ideal 3-part
operation described previously. In this scheme, the loads
that are likely to cause miss-speculation are not specu-
lated. Instead, they wait until all their ambiguous depen-
dences are resolved [19,4,14,33]. Due to the lack of
explicit synchronization, this prediction policy may
unnecessarily delay loads and, for this reason, negatively
impact performance. In practice, and as we demonstrate
in Section 3.5, selective data dependence speculation
does not perform close to ideal memory dependence
speculation.

Store Barrier: This scheme predicts whether a store
has true dependences that would normally get mispecu-
lated [9,2]. If it does, all loads following the store in



question are made to wait for the store’s address. This
policy can be successful in both eliminating miss-specu-
lations and in delaying loads with dependences only as
long as it is necessary. However, it may unnecessarily
delay other unrelated loads. Compared to the two previ-
ous methods, the store barrier policy may require smaller
predictors (only entries for stores are required).

No Speculation: Finally, we can choose to avoid spec-
ulating memory dependences altogether. This is the sim-
plest and most pessimistic scheme, as loads wait until all
their memory dependences are resolved.

2.2  Split vs. Continuous Window Processors
In this section, we clarify the differences between

split-window and continuous-window processor models.
Centralized, continuous-window: All instructions

are inserted in the window in program order. Moreover,
in deciding which instructions to execute, program order
priority is used. That is, older instructions are given pref-
erence. Finally, the instructions currently in the window
form a continuous part of the dynamic execution trace.

Distributed, split-window : In this configuration the
window is split into a number of smaller sub-windows.
Instructions are not necessarily inserted in the window in
program order. Moreover, the instructions currently in
the window do not necessarily form a continuous part of
the execution trace. 

The previous studies on memory dependence specula-
tion have primarily assumed split window models. In
[19], a model of the Multiscalar architecture [7,27] was
used, while, in [4], a model of the Alpha 21264 proces-
sor [13,14] was used. While quite dissimilar, both mod-
els use distributed instruction schedulers that may not
use program order priority in scheduling store and load
address calculations. Moreover, in the Alpha processor
model, stores wait for both data and the base register
before issuing. As a result, a load will not be prevented
from accessing memory prematurely even if the store
could calculate its address early enough. Under the Mul-
tiscalar execution model, the window is split over several
units. Each sub-window is assigned a continuous portion
of the dynamic execution trace; however, fetching pro-
ceeds independently across units. As a result, not only is
program order priority not used in scheduling decisions
(across units), but also a load may be fetched before a
preceding in program order store. This work differs in
that: (1) we consider a continuous instruction window,
and (2) we also study address-based load/store schedul-
ing — assuming that stores can post their addresses as
soon as possible.

3  Experimental Analysis
In this section, we study various methods of extracting

load/store parallelism. For clarity we use an A/B naming
scheme for the various configurations, where A denotes
whether an address-based scheduler is used and B

denotes what memory dependence speculation policy is
used. We use AS for configurations that use an address
based scheduler and NAS for those that don’t. We use NO,
NAV, SEL, STORE, SYNC for no speculation, naive, selec-
tive, store barrier and speculation/synchronization
respectively. Finally, we use ORACLE  for a speculation
method that has perfect, in advance knowledge of all
memory dependences (see Section 3.2 for a detailed
description). For example, we will use NAS/SEL for con-
figurations that do not use address-based scheduling but
utilize selective memory dependence speculation.

The rest of this section is organized as follows: We
start in Section 3.2, by determining how much there is to
be gained from exploiting load/store parallelism. In Sec-
tion 3.3, we demonstrate that naive memory dependence
speculation (NAS/NAV) can be used to attain some of
these performance benefits without using an address-
based scheduler. In Section 3.4, we consider using an
address-based scheduler and its interaction with memory
dependence speculation (AS/--- configurations). In Sec-
tion 3.5, we consider using selective (NAS/SEL) and store
barrier (NAS/STORE) speculation to improve performance
when no address-scheduler is present. Finally, in Section
3.6, we do the same for speculation/synchronization
(NAS/SYNC). We conclude by explaining why our find-
ings are different from those reported for split-window
environments. 

3.1  Methodology
In our experiments we used the SPEC’95 programs

which we compiled for the MIPS-I architecture [12],
using the 2.7.2 version of the GNU gcc compiler (flags: -
O2 -funroll-loops -finline-functions). We translated
FORTRAN codes to C using AT&T’s f2c compiler. To
attain reasonable simulation times we: (1) modified the
standard train or test inputs, and (2) used sampling
[32,23,3]. Table 1 reports the dynamic instruction count,
the fraction of loads and stores and the sampling ratios
per program.  A description of the modified inputs can
be found in [18]. The observation size used is 50,000
instructions. The sampling ratios are reported under the
“SR” columns as “timing:functional” ratios. These ratios
resulted in roughly 100M instructions being simulated in
timing mode. During the functional portion of the simu-
lation, the following structures were simulated: I-cache,
D-cache, and branch prediction. In early experiments we
found that sampling affects absolute performance only
slightly (less than 1.5% for all programs except
102.swim where the change was about 3%). In the rest of
the evaluation, we will refer to the benchmarks by using



the first numbers of their name shown in Table 1.

We employ execution-driven timing simulation using a
modified version of the Multiscalar simulator [3]. All but
system code references are included. System calls are
handled by trapping to the OS of the simulation host.
Moreover, event-driven simulation is used for both the
out-of-order (OOO) core and the memory system. The
default configuration used in our continuous window
processor experiments is detailed in Table 2.

3.2  Performance Potential of Load/Store 
Parallelism

An initial consideration is whether exploiting load/
store parallelism can yield significant enough perfor-
mance improvements to justify the additional costs.
These costs include mechanisms to detect or predict
memory dependences, mechanisms that use dependence
information to schedule load execution, and mechanisms
to detect memory dependence violations if memory
dependence speculation is used. 

In this section, we show the importance of exploiting
load-store parallelism by comparing two processor mod-
els: NAS/NO and NAS/ORACLE . The first does not
exploit load/store parallelism. The second implements an
approximation of ideal memory dependence speculation.
It has an oracle disambiguation mechanism and executes
loads as soon as possible without ever violating a true

memory dependence. (We will explain in more detail
why this is an approximation of ideal memory depen-
dence speculation in Section 3.4.1.) Execution under the
first model proceeds as follows: After an instruction is
fetched, it is decoded and placed into the instruction
window where its register dependences and register data
availability are determined. If the instruction is a store,
an entry is also allocated in a store buffer to support
memory renaming and speculative execution. All
instructions except loads can execute (i.e., issue) as soon
as their register inputs become available. Stores wait for
both data and address calculation operands before issu-
ing. Loads wait in addition for all preceding stores to
issue. Consequently, loads may execute out-of-order
only with respect to other loads and non-store instruc-

Program IC Loads Stores SR

SPECint’95

099.go 133.8 20.9% 7.3% N/A

124.m88ksim 196.3 18.8% 9.6% 1:1

126.gcc 316.9 24.3% 17.5% 1:2

129.compress 153.8 21.7% 13.5% 1:2

130.li 206.5 29.6% 17.6% 1:1

132.ijpeg 129.6 17.7% 8.7% N/A

134.perl 176.8 25.6% 16.6% 1:1

147.vortex 376.9 26.3% 27.3% 1:2

SPECfp’95

101.tomcatv 329.1 31.9% 8.8% 1:2

102.swim 188.8 27.0% 6.6% 1:2

103.su2cor 279.9 33.8% 10.1% 1:3

104.hydro2d 1,128.9 29.7% 8.2% 1:10

107.mgrid 95.0 46.6% 3.0% N/A

110.applu 168.9 31.4% 7.9% 1:1

125.turb3d 1,666.6 21.3% 14.6% 1:10

141.apsi 125.9 31.4% 13.4% N/A

145.fpppp 214.2 48.8% 17.5% 1:2

146.wave5 290.8 30.2% 13.0% 1:2

Table 1. Benchmark Execution Characteristics. Instruction
counts (“IC” columns) are in millions.

Fetch 
Unit

Up to 8 instructions can be fetched per cycle.  Up to 4 fetch 
requests can be active at any time.  Combining of up to 4 non-
continuous blocks.

Branch 
Predic-
tor

64K-entry combined predictor [17].   Selector uses 2-bit 
counters. 1st predictor: 2bit counter based. 2nd predictor: 
Gselect with 5-bit global history. 4 branches can be resolved 
per cycle. 64-entry call stack. 2K BTB. 
Up to 4 predictions per cycle.

Instruc-
tion 
Cache

64K, 2-way set associative, 8 banks, block interleaved, 256 
sets per bank,  32 bytes per block,  2 cycles hit, 10 cycle miss 
to unified, 50 cycle miss to main memory. 
Lockup free, 2 primary misses per bank, 1 secondary miss 
per primary.  
LRU replacement.

OOO 
core

128-entry reorder buffer, up to 8 operations per cycle, 128-
entry combined load/store queue, with 4 input and 4 output 
ports.
It takes a combined 4 cycles for an instruction to be fetched 
and placed into the reorder buffer.
32 integer, 32 floating point, HI, LO and FSR.
8 copies of all functional units.  All are fully-pipelined.  4 mem-
ory ports.

Func-
tional 
Unit 
Laten-
cies

Integer: 1 cycle latency except for multiplication 4 cycles, divi-
sion 12 cycles,.
Floating point: 2 cycles for addition/subtraction and compari-
son (single and double precision or SP/DP).  4 cycles SP mul-
tiplication, 5 cycles DP multiplication, 12 cycles SP division, 
15 cycles DP division.

Store 
Buffer

128-entry.  Does not combine store requests to L1 data 
cache.  Combines store requests for load forwarding.

Date 
Caches

32K, 2-way set associative, 4 banks, 256 sets per bank, 32 
bytes per block, 2 cycle hit, 10 cycle miss to unified L2, 50 
cycle miss to main memory. Lockup-free, 8 primary miss per 
bank, 8 secondary misses per primary. LRU replacement.

Unified 
L2 
Cache

4M-byte, 2-way set associative, 4 banks, 128-byte block, 8 
cycle + # 4 word transfer * 1 cycle hit, 50 cycles miss to main 
memory.  Lockup-free, 4 primary miss per bank, 3 secondary 
per primary.

Main
Mem

Infinite, 34 cycle + #4 word transfer * 2 cycles access.

Table 2. Default configuration for continuous window experi-
ments.



tions. The second configuration includes an oracle dis-
ambiguation mechanism that identifies load-store
dependences as soon as instructions are entered into the
instruction window. In this configuration, loads may exe-
cute as soon as their register and memory dependences
(RAW) are satisfied. Since an oracle disambiguator is
used, a load may execute out-of-order with respect to
stores and does not need to wait for all preceding stores
to calculate their addresses or to write their data.

Figure 1 reports IPCs for the two aforementioned con-
figurations. We consider configurations with 64-entry
and 128-entry instruction windows. (The 64-window
configuration is derived from Table 2, by reducing issue
width to 4, load/store ports to 2, and all functional units
to 2.) For all programs, exploiting load/store parallelism
has the potential for significant performance improve-
ments. Furthermore, we can observe that when loads
wait for all preceding store (“NAS/NO” bars), increasing
the window size from 64 to 128, results in very small
improvements. However, when the oracle disambiguator
is used, performance increases sharply. This observation
suggests that the ability to extract load/store parallelism
becomes increasingly important relative to performance
as the instruction window increases.

When loads are forced to wait for all preceding stores
to execute, it is false dependences that limit perfor-
mance. The fraction of loads that are delayed as the
result of false dependences, along with the average false
dependence resolution latency, are given in Table 3. We
report false dependences as a fraction over all committed
loads. We account for false dependences once per exe-
cuted load and at the time the load has calculated its
address and could otherwise access memory. If the load
is forced to wait because a preceding store has yet to
access memory, we check to see if a true dependence
with a preceding yet un-executed store exists. If no true

dependence exists, we include this load in our false
dependence ratio (this is done only for loads on the cor-
rect control path). We define false dependence resolution
latency to be the time, in cycles, a load that could other-
wise access memory is stalled, waiting for all its ambig-
uous memory dependences to get resolved (i.e., all
preceding stores have executed). We can observe that the
execution of many loads and in some cases of most
loads, is delayed due to false dependences and often for
many cycles.

3.3  Performance with Naive Memory 
Dependence Speculation

As we have seen, extracting load/store parallelism can
result in significant performance improvements. In this
section, we consider using naive memory dependence
speculation for extracting these performance improve-
ments. For this purpose, we assume the same processor

Figure 1:Performance (as IPC) with and without exploiting load/store parallelism. Notation used is “instruction
window size”,”load/store execution model”. Speedups of NAS/ORACLE speculation over NAS/NO speculation are
given on top of each bar.
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FD RL FD RL

099 26.4% 13.7 101 61.2% 36.3

124 59.9% 14.8 102 91.0% 5.4

126 39.0% 47.3 103 79.6% 91.2

129 70.3% 18.5 104 85.2% 9.7

130 44.2% 39.1 107 45.4% 26.6

132 70.3% 22.9 110 45.4% 26.6

134 59.8% 39.1 125 77.0% 55.6

147 67.2% 54.5 141 77.5% 78.7

145 88.7% 51.4

146 83.6% 9.7

Table 3. Fraction of loads with false dependences (FD col-
umns) and average false dependence resolution latency in
cycles (RL columns) for the 128-entry instruction window pro-
cessor. 



model assumed in the previous section, but we allow
loads to speculatively access memory as soon as their
address operands become available (NAS/NAV). All
speculative load accesses are recorded in a separate
structure, so that preceding stores can detect whether a
true memory dependence was violated by a speculatively
issued load. Note that the latency through this detection
mechanism impacts only how quickly miss-speculations
are detected. For this reason, slower mechanisms may be
tolerable. Also, note that a similar load issue model was
used by Chrysos and Emer in their study of memory
dependence speculation [4].

Figure 2, part (a) reports performance (as IPC) for the
128-entry processor model when, from left to right, no
speculation is used (NAS/NO), when oracle dependence
information is available (NAS/ORACLE), and when naive
speculation is used (NAS/NAV). We can observe that for
all programs, NAS/NAV results in higher performance
compared to NAS/NO. However, the performance differ-
ence between NAS/NAV and NAS/ORACLE is significant,
supporting our claim that the net penalty of miss-specu-
lation can become significant. As supported also by the
measurements of column NAV of Table 4, memory
dependence miss-speculations are at fault. There we
report memory dependence miss-speculation frequency.
We measure miss-speculation frequency as a percentage
over all committed loads.  

In this context, the various memory dependence spec-
ulation methods we reviewed in Section 2.1 could be
used to reduce the net performance penalty of miss-spec-
ulation. However, before we consider this possibility
(which we do in Sections 3.5 and 3.6), we first investi-
gate using an address-based scheduler to extract load/
store parallelism and its interaction with memory depen-
dence speculation.

3.4  Using Address-Based Scheduling
In this section, we consider using address-based

dependence information to exploit load/store parallel-
ism. In particular we consider an organization where an

address-based scheduler is used to compare the
addresses of loads and stores and to guide load execu-
tion. In their pioneering work, Patt, Melvin, Hwu and
Shebanow have also considered some of the tradeoffs
involved in using address-based scheduling in dynami-
cally-scheduled high-performance micro-architectures
[22].

We start by considering two models: AS/NO and AS/
NAV. In both models, stores and loads are allowed to post
their addresses for disambiguation purposes as soon as
possible. That is, stores do not wait for their data before
calculating an address (they only wait for base register
data). Furthermore, loads are allowed to inspect preced-
ing store addresses before accessing memory. If a true
dependence is found, a load always waits. When no
speculation is used (AS/NO), loads wait until all their
ambiguous dependences are resolved. When naive mem-
ory dependence speculation is used (AS/NAV), a miss-
speculation is signaled only when: (1) a load has read a
value from memory, (2) the value has been propagated to
other instructions, and (3) the value is different than the
one written by the preceding store that signals the miss-
speculation2. As we noted earlier, under AS/NAV miss-
speculations are virtually non-existent. There are three
reasons why this is so. (1) Loads that would otherwise
access memory get delayed because they can detect a
true dependence. (2) Loads with unresolved, yet true
dependences are still allowed to access memory. How-
ever, before they have a chance of propagating the mem-
ory supplied value the correct value is provided by the
corresponding store. (3) Loads are delayed because pre-
ceding stores consume resources to have their addresses
calculated and posted for disambiguation purposes. 

Figure 3 compares the performance of AS/NAV and AS/
NO. Part (a) reports the relative performance of AS/NAV

over AS/NO, while part (b) reports absolute performance

Figure 2:Performance with naive memory dependence speculation and no address-scheduler.
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2. These conditions do not violate the semantics of sequential pro-
grams. However, they may violate the semantics of explicitly paral-
lel programs. A discussion of the latter issue is beyond the scope of 
this paper.



(IPC) for the base configuration (AS/NO). We measure
how performance varies in terms of the time it takes for
loads and stores to go through the address-based sched-
uler. We vary this delay from 0 to up to 2 cycles. In the
calculation of the relative performance in part (a), we
should note that the base configuration is different for
each bar. 

For most programs, naive memory dependence specu-
lation is still a win. Performance differences are not as
drastic as they were when the address scheduler was
unavailable, yet they are still significant. More impor-
tantly, the performance difference between AS/NO and
AS/NAV increases as the latency through the load/store
scheduler also increases. For 147.vortex and 145.fpppp,
AS/NAV performs worse than AS/NO. Miss-speculations
are not the cause for this degradation. Rather, it is
increased resource contention caused by loads with
ambiguous dependences that get to access memory spec-
ulatively only to receive a new value from a preceding
store. These loads consume memory resources that could
otherwise be used more productively. This phenomenon
supports our earlier claim that there is an opportunity
cost associated with erroneous speculation (Section 2). 

The results of this section are that using address-based
scheduling exposes some of the load/store parallelism.
Moreover, using naive memory dependence speculation
can further improve performance. Interestingly, in this
case, memory dependence miss-speculations are virtu-
ally non-existent. For this reason, we do not consider any
of the other memory dependence speculation schemes.
Diep, Nelson and Shen have also shown that an AS/NAV

policy can improve performance over no speculation [5].
This was done for a model of the PowerPC 620 architec-
ture. Here we take into account the impact of address-
based scheduling on load latency and assume larger
instruction windows. Moreover, we compare it with the
oracle memory dependence speculation method (next
Section).

3.4.1  Comparing with Oracle Memory Dependence 
Speculation

Having shown that address-based scheduling can
expose some of the load/store parallelism, we now com-
pare the performance so obtained to that of the oracle
scheme of Section 3.2 (NAS/ORACLE). While including
an address-based scheduler does help in exploiting some
of the load/store parallelism, a load may still be delayed
even when naive memory dependence speculation is
used (AS/NAV). The reason is that preceding stores con-
sume resources to calculate and post their addresses for
scheduling purposes. Such resources are issue band-
width, address calculation adders, and load/store sched-
uler ports. The same applies to loads that should wait for
preceding stores. If perfect knowledge of dependences
was available in advance, stores would consume
resources only when both their data and address calcula-
tion operands become available. Moreover, the complex-
ity of an address-based scheduler may be daunting for
wider issue machines. For these reasons, we next com-
pare the absolute performance of the processor models
that use an address-based scheduler to that of the proces-
sor model that utilizes oracle dependence information to
schedule load execution. 

Figure 4 reports relative performance compared to the
configuration that uses no speculation but utilizes an
address-based scheduler with 0-cycle latency (the IPC of
this configuration was reported in Figure 3, part (b), AS/
NO 0-CYCLE configuration). From left to right, the four
bars report performance with: (1) oracle disambiguation
and no address-based scheduler (NAS/ORACLE, Section
3.2), (2) through (4) naive memory dependence specula-
tion and address-based scheduler (AS/NAV) with a
latency of 0, 1 and 2 cycles respectively (which we eval-
uated earlier in this section). With few exceptions, the 0-
cycle AS/NAV and the NAS/ORACLE perform equally well.
Once address-based scheduling increases load latency by

Figure 3:(a) Relative performance of naive memory
dependence speculation (AS/NAV) as a function of
address-based scheduler latency (0, 1, and 2 cycles).
Performance variation is reported with respect to the
same processor model that does not use memory
dependence speculation (AS/NO). Base performance (IPC
for AS/NO) is shown in part (b).
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1 or more cycles, performance degrades making this an
under-performing solution. 

In some cases, the 0-cycle AS/NAV configuration per-
forms slightly better than NAS/ORACLE. This result is an
artifact of our euphemistic use of the term “oracle”. In
our oracle model, a store is allowed to issue only after
both its data and address operands become available.
Consequently, dependent loads always observe the
latency associated with store address calculation, which
in this case is 1 cycle to fetch register operands and 1
cycle to do the addition. Under these conditions, depen-
dent loads can get their value at least 3 cycles after the
moment the store was issued. In contrast, when the
address-based scheduler is in place, a store may calcu-
late its address long before its data is available. As a
result, dependent loads can access the store’s value as
soon as it becomes available. In an actual implementa-
tion, it may be possible to overlap store address calcula-
tion and store data reception without using an address-
based scheduler by allowing loads to issue when the
store reaches the memory stage (e.g., [10, 28]).

In this section, we demonstrated that naive speculation
coupled with address-based scheduling (AS/NAV) offers
performance similar to that possible with the oracle
method (NAS/ORACLE) that utilizes perfect, a priori
knowledge of all memory dependences. However, we
have also demonstrated that if address-based scheduling
increases load latency even by as little as 1 cycle, perfor-
mance gradually degrades. For these reasons, we next
consider configurations that do not use address-based
scheduling, but utilize more accurate memory depen-
dence speculation techniques to approximate ideal mem-
ory dependence speculation.

3.5  Selective Speculation and Store Barrier 
Speculation

In this section, we consider using selective (NAS/SEL)

or store barrier (NAS/STORE) memory dependence specu-
lation as alternatives to address-based scheduling. We
start from a configuration that has no address-based
scheduler and introduce predictors that provide hints for
load scheduling to the existing register-based scheduler.
In both memory dependence speculation schemes we
used a 4K, 2-way set associative memory dependence
predictor. For selective speculation the predictor guesses
whether a load has a dependence. If so, this load is not
speculated. That is we wait until all preceding stores
have calculated their address and received their data. For
store barrier, the predictor guesses whether a store has a
dependence. If so, all subsequent loads are delayed until
this store calculates its address and receives its data.
Both predictors use 2-bit saturating counter-based confi-
dence automatons. It takes 3 miss-speculations on a spe-
cific load or store before the existence of a dependence is
predicted. All counters are reset every 1 million cycles to
allow adapting back [4].

Figure 5 shows how performance varied over NAS/NAV

(Figure 2). We use NAS/NAV as our base configuration
since both NAS/SEL and NAS/STORE attempt to improve
accuracy over it. While successful in some cases, both
techniques fall short of providing performance close to
oracle (NAS/ORACLE). Even worse, in some cases perfor-
mance drops below that possible with naive memory
dependence speculation. As we explained in Section 2.1,
either technique may both improve or hurt performance.

3.6  Speculation/Synchronization
In this section, we consider using speculation/synchro-

nization (NAS/SYNC) for approximating NAS/ORACLE.
Speculation/synchronization works by initially using

naive memory dependence speculation for all loads.
Once a miss-speculation is detected, information about
the dependent loads and stores is stored in a memory
dependence prediction table (MDPT) [19]. The next time

Figure 4:Comparing oracle disambiguation and address-based scheduling plus naive memory dependence
speculation. Base configuration uses a 0-cycle address-based scheduler and no speculation (AS/NO).
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the same instructions are encountered the MDPT is used
to predict the dependence and to enforce synchroniza-
tion. The speculation/synchronization mechanism we
used comprises a 4K, 2-way set associative MDPT in
which separate entries are allocated for stores and loads.
Dependences are represented using synonyms, i.e., a
level of indirection [20,4]. No confidence mechanism is
associated with each MDPT entry; once an entry is allo-
cated, synchronization is always enforced. However, we
flush the MDPT every one million cycles to reduce the
frequency of false dependences [4]. Synchronization is
incorporated into the register-scheduler, which we
assume to follow the RUU model [26]. This is done as
follows: an additional3 register identifier is introduced
per RUU entry. This identifier is used to introduce specu-
lative dependences for the purposes of speculation/syn-
chronization. Stores that have dependences predicted use
that register identifier to mark themselves as producers
of the MDPT supplied synonym. Loads that have depen-
dences predicted, use that register identifier to mark
themselves as consumers of the MDPT supplied syn-
onym. Synchronization is achieved by: (1) making loads
wait for the closest preceding store (if there is any) that
is marked as the producer of the same synonym, and (2)
having stores broadcast their synonym once they issue,
releasing any waiting loads. A waiting load is free to
issue one cycle after the store it speculatively depends
upon issues. 

Figure 6, part (a) reports performance results relative
to naive memory dependence speculation (NAS/NAV,
Section 3.3). As it can be seen NAS/SYNC offers most of
the performance improvements that are possible with
NAS/ORACLE. We also provide the miss-speculation rates
with NAS/SYNC in Table 4 (reported is the number of
miss-speculations over all committed loads). Miss-spec-
ulations are virtually non-existent. This observation sug-
gests that for the most part the performance differences
compared to NAS/ORACLE are the result of either (1) false
dependences, or (2) of failing to identify the appropriate
store instance with which a load had to synchronize
with.    

The results of this section suggest that the speculation/
synchronization method can offer performance that is
very close to that possible with a method that utilizes
ideal dependence information. Moreover, this configura-
tion is an attractive alternative to address-based schedul-
ing as it completely alleviates the need for an address-
based scheduler.

Figure 5:Using Selective Memory Dependence
Speculation (NAS/SEL) or the Store Barrier method (NAS/
STORE) to approximate ideal speculation. Base
configuration uses naive memory dependence
speculation and has no address-based scheduler (NAS/
NAV, Section 3.3).

3. It’s not really necessary to use an additional register specifier. 
Stores may use their unused destination register field, while loads 
may use their unused second source register field. 
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Figure 6:Performance of an implementation of 
speculation/synchronization. Base is NAS/NAV.

NAV SYNC NAV SYNC

099 2.5% 0.0301% 101 1.0% 0.0001%

124 1.0% 0.0030% 102 0.9% 0.0017%

126 1.3% 0.0028% 103 2.4% 0.0741%

129 7.8% 0.0034% 104 5.5% 0.0740%

130 3.2% 0.0035% 107 0.1% 0.0019%

132 0.8% 0.0090% 110 1.4% 0.0039%

134 2.9% 0.0029% 125 0.7% 0.0009%

147 3.2% 0.0286% 141 2.1% 0.0148%

145 1.4% 0.0096%

146 2.0% 0.0034%

Table 4. Memory dependence miss-speculation rate with our
speculation/synchronization mechanism (“SYNC” columns)
and with naive speculation (“NAV” columns). 
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3.7  Interaction of Window Type and Memory 
Dependence Speculation - Discussion

We have shown that memory dependence miss-specu-
lations can be virtually eliminated in a continuous win-
dow with an address-based scheduler. Moreover, we
have seen that performance with a 0-cycle latency
address-based scheduler coupled with naive memory
dependence speculation (AS/NAV) closely approximates
the oracle configuration (NAS/ORACLE). This result sug-
gests that there is no need for more advanced memory
dependence speculation techniques if building a 0-cycle
address-based scheduler is possible. However, previous
work has shown that this is not true for a split window
processor model [18]. In particular, it has been shown
that even if a 0-cycle address-based scheduler can be
built, it cannot eliminate a large number of miss-specula-
tions when naive memory dependence speculation is
used. In this section, we explain why an address-based
scheduler avoids virtually all miss-speculations for the
continuous window processor, but fails to do so for the
split window processor. 

For our purposes, we will use the example of Figure 7.
Part (a) shows a loop with a recurrence between the “load
a[i - 1]” of iteration i and the “store a[i]” of iteration i - 1.
(While this code is prone to static disambiguation, our
goal here is not to demonstrate the power memory
dependence speculation.) Part (b) shows how two itera-
tions of this loop may be executed under the continuous
window execution model. Under this model, instructions
are fetched in order and the window is filled up gradu-
ally. Consequently, by the time the dependent load (load
a[i]) has a chance to calculate its address, all preceding
relevant addresses, including that of  store a[i], have also
been calculated. Under these conditions, and provided
that the load is allowed to inspect the addresses of pre-
ceding stores, it finds that it should wait and not specula-
tively access memory. As we demonstrated in Section
3.4, memory dependence miss-speculations are virtually
non-existent in this environment. 

Let us now consider a split window model. Under this
different set of assumptions, instructions are not neces-
sarily fetched in program order. Moreover, enforcing
program order priority in the scheduler may not be possi-
ble. Under this model, the two iterations of the loop may
be assigned to different units (sub-windows), as shown
in part (b) of Figure 7. Accordingly, the load may calcu-
late its address long before the store has had a chance to
do so. For this reason, even if the load could inspect pre-
ceding store addresses instantaneously, it would not be
possible to avoid the miss-speculation. 

4  Summary
We have studied various methods for exploiting load/

store parallelism under a continuous window processor
model. Our findings were:
1. Exploiting load/store parallelism can greatly improve

performance over not doing so. For an 128-entry
window processor performance improved by about
55% (integer) and 154% (floating-point) on the aver-
age.

2.Using address-based scheduling captures most of this
performance potential even when no memory depen-
dence speculation is used. Naive memory depen-
dence speculation (AS/NAV) can offer speedups of
4.6% (integer) and 5.3% (floating point) over no
speculation (AS/NO) for a 0-cycle address-based
scheduler configuration. However, as the latency
through the address-based scheduler increases, per-
formance degrades making this an under performing
option. In this case, we may consider using memory
dependence speculation without an address-based
scheduler.

3.When no address-based scheduler is used, naive mem-
ory dependence speculation (NAS/NAV) can offer
some of potential performance of exploiting load/
store parallelism. In particular, compared to no spec-
ulation (NAS/NO) speedups of 29% (integer) and
113% (floating-point) were possible. However, net
miss-speculation penalty is high, justifying using
more advanced memory dependence speculation pol-
icies.

4. Selective (NAS/SEL) and store barrier (NAS/STORE)
speculation are not robust techniques. While they can
at times improve performance over naive memory
dependence speculation (NAS/NAV), they often hurt
performance. Overall, no significant performance
improvements were observed over naive memory
dependence speculation.

5.Memory dependence speculation/synchronization
(NAS/SYNC) can significantly improve performance
over naive memory dependence speculation (NAS/

Figure 7:Executing a loop (a) under: (b) a continuous-
window execution model, and (c) a split-window
execution model.

for (i = 0; i < N; i++)
a[i] = a[i - 1] + foo ();

(a)

st a[i]

ld a[i]

st a[i+1]

ld a[i-1]

st a[i]

ld a[i]

st a[i+1]

ld a[i-1]
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unit 1 unit 2



NAV). Moreover, it offers performance very close to
that obtained when perfect, in-advance knowledge of
all memory dependences was available. In particular,
with speculation/synchronization performance
improved by 19.7% (integer) and 19.1% (floating-
point) on average. With a method that utilized perfect
memory dependence information the corresponding
speedups would have been 20.9% (integer) and
20.4% (floating-point) over naive speculation. The
potential advantage of this design is that it leverages
the existing register dependence scheduler to also
implement load/store scheduling.

This study deepens our understanding of memory
dependence speculation and of a variety of methods for
exploiting load/store parallelism. We have identified
cases when it is advantageous to use memory depen-
dence speculation under a continuous window processor
environment. Moreover, we have identified conditions
under which advanced memory dependence speculation
policies may be utilized. We have shown that specula-
tion/synchronization may be used not only as a perfor-
mance enhancing technique but also to simplify the
design of aggressive, dynamically scheduled processors
with continuous windows.
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