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Abstract the data. As a result, memory latency is overlapped with

other useful computation. Unfortunately, determining

We consider a variety of dynamic, hardware-baseg},o o4 jiest point when a load can safely access memory
methods for exploiting load/store parallelism, mcludmgrequires knowledge of its memory dependences

mechanisms that use memory dependence speculationz, ,iing load/store parallelism can be done either
While previous work has also investigated such methoggatically or dynamically, using hardware- or software-
[1_9,4],this has been done primarily for split, diStribuFedbased methods. In this paper, we study a variety of
window processor models. We focus on centralizeg, e hardware-based methods. In particular, we
cont!nuou_s-wmdow processor models (th(_a_ COMMOAhnsider methods that are derived from combinations of
configuration today). We confirm that exploiting loadhye f5)10wing parameters: (1) whether an address-based
store paralielism can greatly improve performancescheduler is used, and (2) whether memory dependence
Moreover, we show that much of this performancgpeculation [7.11,1,15,19.4,28,9,2,33] is used. In an
potential can be captured if addresses of the memoLyy os pased scheduldoad and store addresses are
locations accessed by both loads and stores can be u d tadeterminememory dependences for guiding load
to schedule loads. However, using addresses to SChedH!?ecution. In principle, this is similar to the register-

load FX?CUUIOH may nodt always be_dan option d”eh_tﬁased schedulers modern instruction-level-parallel capa-
complexity, latency, and cost considerations. For thi§is nrocessors use for extracting parallelism in the

reason, we also consider configurations that use Jughqiction stream (instead of using register dependences
memory dependence speculation to guide l0a@e ;56 memory dependences). Witremory depen-
execution. We consider a variety of methods and Sh%nce speculatigra load may execute even when some

that _speculatio_n/s_ynchronization can be _used Bf its dependences are presently unknown. Memory
effectively exploit virtually all load/store parallelism. Wedependence speculation can be useful, since, in contrast

demonstrate that this technique is competitive to 96 register dependences, memory dependences cannot be
better than the one tha; uses addresses f_or _SChed_u“Bgtermined as instructions are inserted into the instruc-
loads. We conclude by discussing why our findings diffef, \ingow (addresses are calculated at run-time and
in part, from those reported for split, distributed wmdownot necessarily in program order). Accordingly, waiting
processor models. to determine all the dependences a load has may unnec-
1 Introduction essarily delay its execution. However, in using memory

dependence speculation care must be taken to balance

de?:;r?(ljnsg r;]fmggldgglste:;Sh?aggglr;;):]CZUSta:g'ggsstgﬁ%e benefits of correct speculation against the penalty
gh-p P id on miss-speculations (a miss-speculation occurs

[:?:';Seri;fn;'nsligﬁ]ss ;??:tnhgeer.u\yl\éhgf fﬁ;\lllg :)ar‘?;[na';\[/)@en a true memory dependence is violated during exe-
9 ysy P b cution). For this purpose, several memory dependence

sible to build, s_everal techniques have been developedfgt eculation methods have been developed. These range
closely approximate them. One of the most success

. . . . trom naively speculating all loads immediately, to using
me_thods today is to build a memory hle_rarchy. Wh'l?nemory dependence prediction to guess memory depen-
quite successful, memory hierarchies provide only a Paences and enforce synchronization among loads and

tial S‘?'““‘“? to the memory problem. A complemen_tgr;gtores [19,4,9]. We study all these alternatives (see Sec-
technique is to tolerate memory latency by explomngPion 2.1 for descriptions)

parallelism in the load/store request stream. While mem-5, vious studies have also investigated similar meth-

ory hierarchies redu_ce the time it takes to respor_1d E)Ods for exploiting load/store parallelism [19,4]. How-
IoaQS, the goal here is t(.) send Ioad_s 0 memory earller,glser these studies assumed distributed, split-window,
far in advance as possible of the instructions that ne%l?/namically scheduled superscalar processor models



(split window. In this work we study memory depen-determinethe true dependences of a load #nen use
dence speculation under a continuous, centralized withis information to schedule its execution. Determining
dow processor modeténtinuous window)(In Section memory dependences requires inspection of the
2.2, we clarify the differences between these two mo@&ddresses loads and stores access. For this purpose we
els.) As we demonstrate, the choice of a split versusnaay use an address-based load/store scheduler. With this
continuous window greatly impacts the effectiveness ahechanism loads go througWwo scheduling phases. In
each method creating different tradeoffs and optionthe first, the base register dependence(s) is used to
There are several reasons why a study assuming a csohedule the load's address calculation. In the second
tinuous window is warranted: While future, high-perforphase, the address is used to determine the load’s mem-
mance processors may be forced to use split, distributedy dependences. This information is used to schedule
windows [7,27,21,13,30,31,24,6,29,8], virtually all mod-the load’s memory access. When an address-based
ern processors use centralized, continuous windowscheduler is used, it makes sense to also have stores pro-
Moreover, traditionally, techniques developed initiallyceed into two phases. In the first, they calculate their
for high-performance processors sooner or later findddresses as soon as their base register becomes avail-
their way into other classes of processors (e.g., many afle. This address is inserted into the address-based
the techniques initially used for mainframes in the 60’scheduler for blocking the execution of dependent loads.
and 70’s found their way into micro-processors during he second step in store execution entails waiting for the
the 80’s and 90’s). We are currently experiencing a pr@&ctual data value. As soon as it becomes available, the
liferation of mobile and embedded processor applicaddress-based scheduler is notified releasing any depen-
tions. As technology progresses, such processors mdgnt loads.
use more aggressive techniques such as memory depereven when an address-based scheduler is in place,
dence speculation. Finally, distribution may come at the&aiting to determine the dependences of loads may offer
price of lower IPC (instructions per cycle) [21].suboptimal performance. With this method, a load that
Depending on the specific application, it may be preferdras calculated its address is forced to wait until it is
ble to use a centralized window with a slower clock ratestablished that no preceding, yet un-executed store
to achieve higher performance. Accordingly, it is imporwrites to the same address (i.e., the load hasme-
tant to determine what the tradeoffs are under continuosslvedmemory dependences). Accordingly, it is possible
window processor model. to unnecessarily delay a load from accessing memory.
The rest of this paper is organized as follows: In Sedrhis is the case if a load that has no true dependences is
tion 2, we provide the background information necessafprced to wait until all preceding stores have calculated
for justifying our experimental results and choices. Wéheir addresses.
discuss methods for exploiting load/store parallelism, To expose the parallelism that is hindered by the use of
including memory dependence speculation. In Sectiamn-time calculated addresses we may use memory
2.1, we review a number of previously proposed memomependence speculation. Underemory dependence
dependence speculation policies, while in Section 2.2 wepeculation we do not delay executing a load until we
clarify the differences between split and continuous wirdetermine that it has no true dependences. Instead, we
dow processor models. In Section 3, we present oguess whether a load has any. As a result, a load may
experimental analysis. In Sections 3.2 through 3.6, weccess memory before a preceding store with which a
focus on a centralized, continuous-window processatependencenayexist. Eventually, when preceding store
model. In Section 3.7, we demonstrate that in contrast smldresses are calculated, we can determine whether the
the continuous window processor, address-based scheésulting execution order was valid. If no true depen-
uling coupled with naive memory dependence specul@ence was violated then speculation was successful and
tion is an insufficient solution for a split-window no further action is necessary. In this case, performance
processor. We also explain why memory dependenceay have improved as the load executed earlier making
speculation behaves differently under these two procestemory appear faster. However, if a true dependence
sor models. We summarize our findings in Section 4. was violated then speculation was erroneous (i.e., a

" miss-speculation). In this case corrective action is neces-
Iia';/ellﬁter;gcrf for Exploiting Load/Store sary. Squash invalidationthe hardware-based miss-

To tolerate slower memory devices we may exploit- Strictly speaking, program semantics are maintained so long as

. : . . instructions read the same value as they would in the original pro-

Ioad/store parqllellsm executing loads in an order that is gram implied order. This does not necessarily imply that a depen-
ultimately restricted only by true memory dependehces dent pair of instructions executes in the program implied order. We

One way of exploiting load/store parallelism isfitst avoid making this distinction for clarity.




speculation recovery method used today, works by inve.1 Memory Dependence Speculation Policies

idating and re-executing all instructions following the \yi consider the following five memory dependence

miss-speculated load. speculation policies: (1) naive memory dependence

Memory dependence speculation can be used with agfecyjation, (2) speculation/synchronization, (3) selec-

without an address-based scheduler. Using an addreggg speculation, (4) store barrier, and (5) no speculation.

based scheduler is desirable as it allows us t0 USe fSpatter understand the potential pros and cons of each
much dependence information as possible in decidingyicy it is pest if we first consider the ideal memory
when to execute a load. However, building an addresgapendence speculation policy [19]. In this policy loads
based scheduler for wide-issue and long window procegze gejayed only as long as it is necessary. This requires
sors may be a daunting proposition. Consideratiorﬁerfect, a priori knowledge of all relevant memory
include cost, complexity, and impact on load latenCyjenendence. Loads with no true dependences (within the
Consequently, it is desirable to devise mechanisms thgkirction window) execute without delay, while loads
offer similar benefits without the need for such a scheqp,t have true dependences are allowed to execute only

uler. For this reason, we also consider configura_ltions thaker the store (or the stores) that produces the necessary
do not use address-based scheduling. In this casey&, has executed.

mechanism is required to detect memory dependence\give Memory Dependence SpeculationThis an
violations. This can be done by recording all speculativgveﬂy optimistic form of memory dependence specula-
loads and by having stores check for violations whem)n, yet it is very simple. In this scheme, loads access
they write to memory. The latency through this mechgyemory immediately after address calculation even if
nism can only impact miss-speculation penalty and nofyresolved dependences exist. While this scheme sched-
load or store latency. This is because this process dqfss |0ads aggressively, it may suffer from a high number
not produce any data for further computation. of miss-speculations. As we demonstrate in Section 3.3,

When using memory dependence speculation, Caigs js so when not using an address-based scheduler.
must be taken to balance the performance benefitsMemow Dependence  Speculation/Synchroniza-
gained on correct speculation against the penalty paid §8n: This scheme mimics ideal memory dependence
miss-speculations [19]. The miss-speculation pe”alg’peculation [19,4]. This is done by: (1) predicting
includes the following three components: (1) The worlyether the immediate execution of a load is likely to
thrown away to recover from the miss-speculationj|ate a true data dependence, and if so, (2) predicting
(which in the case of squash invalidation, i.e., invalidat e store (or stores) the load depends upon, and, (3)
ing all instructions after the miss-speculated load, Ma¥nforcing synchronization between the dependent
include unrelated computations). (2) The time, if any, g ctions. Initially, in the absence of any dependence
required to perform the invalidation. Finally, (3) thentormation, naive memory dependence speculation is
opportunity cost associated with not executing SOMgseq. \when a miss-speculation occurs, information
other instructions instead of the mispeculated load ang,, ¢ the corresponding store and load is recorded. The
the instructions that used erroneous data [19]. Ideallyayt time any of the two executes the recorded informa-
loads would execute as early as possible while misgg, s ysed to predict the dependence and to enforce
speculations would be completely avoided. synchronization.

In the next section, we review previously proposed” ggjective Memory Dependence Speculatioihis is
memory dependence speculation policies. Howevey gimpiification of memory dependence speculation.
before we do so, we note that two other possibilities eXigfore \we carry out only the first part of the ideal 3-part
for reducing the penalty of miss-speculation [19]: (1}peration described previously. In this scheme, the loads
minimizing the amount of work lost on miss-speculation, 5t are likely to cause miss-speculation are not specu-
or (2) reducing the time required to redo this lost worlgeq |nstead, they wait until all their ambiguous depen-
[19]. Instruction reuse falls into the same category [254aces are resolved [19,4,14,33]. Due to the lack of
A technique to reduce the amount of work lost on mis%‘xplicit synchronization, this prediction policy may
speculation iselective invalidationWith this technique, unnecessarily delay loads and, for this reason, negatively
only the instructions that used erroneous data are invailriﬁpact performance. In practice, and as we demonstrate
dated and re-executed on misspeculation [16]. AS Wg gection 3.5, selective data dependence speculation

demonstrate in Section 3.4, under these assur_nptio(gpées not perform close to ideal memory dependence
memory dependence miss-speculations are V'rt“algbeculation.

non-existent, hence there is no problem with miss-Specu-giore Barrier: This scheme predicts whether a store

lations and no need for a selective invalidation mech%—as true dependences that would normally get mispecu-
nism. lated [9,2]. If it doesall loads following the store in



guestion are made to wait for the store’s address. TH@ad/store parallelism. For clarity we useAB naming
policy can be successful in both eliminating miss-specscheme for the various configurations, wherdenotes
lations and in delaying loads with dependences only agether an address-based scheduler is used Band
long as it is necessary. However, it may unnecessarifienotes what memory dependence speculation policy is
delay other unrelated loads. Compared to the two prevised. We us@as for configurations that use an address
ous methods, the store barrier policy may require smallbased scheduler amds for those that don’t. We use,
predictors (only entries for stores are required). NAV, SEL, STORE, SYNC for no speculation, naive, selec-

No Speculation:Finally, we can choose to avoid specdive, store barrier and speculation/synchronization
ulating memory dependences altogether. This is the simespectively. Finally, we useRACLE for a speculation
plest and most pessimistic scheme, as loads wait until allethod that has perfect, in advance knowledge of all
their memory dependences are resolved. memory dependences (see Section 3.2 for a detailed
2.2 Split vs. Continuous Window Processors description). For example, we will us@s/seL for con-

figurations that do not use address-based scheduling but

In this section, we clarify the differences betweerlljtilize selective memory dependence speculation.

split-wind_ow and cor_1tinuous-\_/vindow processor ’_“Ode's- The rest of this section is organized as follows: We
antraltlzsd_, tchonnr_]u((j)us—\_/vmdow Al w(;stru,t:/ltlons start in Section 3.2, by determining how much there is to
are inserted in the window in program order. Moreovey, gained from exploiting load/store parallelism. In Sec-

in deciding which instructions to execute, program ord?‘on 3.3, we demonstrate that naive memory dependence

priority is used. That is, older instructions are given pre Speculation NAS/NAV) can be used to attain some of

erence. Fin_ally, the instructions curr(_ently in the WindOVYhese performance benefits without using an address-
fo”*.‘ a_contmuous_ pa_rt of the dy”"?‘m'C e>§ecut|c_)n trace. jyased scheduler. In Section 3.4, we consider using an
_D|str|b_uted,_spllt—wmdow. In this conflgurat|o_n e address-based scheduler and its interaction with memory
window is split into a number of smaller sub-wmdowsdependence speculations(— configurations). In Sec-
Instructions are not necessarily inserted in the window i[Ii’Ion 3.5, we consider using selectives§/SEL) and store
phrogramd ordder. Moreover, t_rlleflnstructlons_ currently IrI‘bfarrier (iAs/STORB speculation to improve performance
the window do not necessarily form a continuous part Qi g address-scheduler is present. Finally, in Section
the execution trace. .6, we do the same for speculation/synchronization

The previous studies on memory dependence SpecufﬁAs/stc). We conclude by explaining why our find-

tion have primarily assu_med split V\_/lndow models. Ir]ngs are different from those reported for split-window
[19], a model of the Multiscalar architecture [7,27] wa Avironments

used, while, in [4], a model of the Alpha 21264 proces-
sor [13,14] was used. While quite dissimilar, both mog3-1 Methodology
els use distributed instruction schedulers that may notin our experiments we used the SPEC'95 programs
use program order priority in scheduling store and loaghich we compiled for the MIPS-I architecture [12],
address calculations. Moreover, in the Alpha processasing the 2.7.2 version of the GNU gcc compiler (flags: -
model, stores wait for both data and the base regist®2 -funroll-loops -finline-functions). We translated
before issuing. As a result, a load will not be preventeBORTRAN codes to C using AT&T’s f2c compiler. To
from accessing memory prematurely even if the stowgtain reasonable simulation times we: (1) modified the
could calculate its address early enoughder the Mul- standardtrain or test inputs, and (2) usedampling
tiscalar execution model, the window is split over sever§B2,23,3]. Table 1 reports the dynamic instruction count,
units. Each sub-window is assigned a continuous portidghe fraction of loads and stores and the sampling ratios
of the dynamic execution trace; however, fetching prger program. A description of the modified inputs can
ceeds independently across units. As a result, not onlylie found in [18]. The observation size used is 50,000
program order priority not used in scheduling decisiongstructions. The sampling ratios are reported under the
(across units), but also a load may be fetched before'@R” columns as “timing:functional” ratios. These ratios
preceding in program order store. This work differs imesulted in roughly 100M instructions being simulated in
that: (1) we consider a continuous instruction windowiming mode. During the functional portion of the simu-
and (2) we also study address-based load/store schedation, the following structures were simulated: I-cache,
ing — assuming that stores can post their addressesxsache, and branch predictidn.early experiments we
soon as possible. found that sampling affects absolute performance only
. . slightly (less than 1.5% for all programs except
3 Experimental Analysis 102.swim where the change was about 3%). In the rest of
In this section, we study various methods of extractinghe evaluation, we will refer to the benchmarks by using



the first numbers of their name shown in Table 1. Fetch Up to 8 instructions can be fetched per cycle. Up to 4 fetch
Unit requests can be active at any time. Combining of up to 4 non-
Program [ IC Loads | Stores| SR confinuous blocks.

SPECInt'95 Branch | 64K-entry combined predictor [17]. Selector uses 2-bit
099.go 133.8 20.9% 7.3% N/A Predic- | counters. 1st predictor: 2bit counter based. 2nd predictor:
124.m88ksim 196.3 18.8% 9.6% 1:1 for Gselectwith 5-hit global history. 4 branches can be resolved

] per cycle. 64-entry call stack. 2K BTB.

0, 0, .
126.9cc 316.9 24.3% 17.5% 12 Up to 4 predictions per cycle.

0, 0, iy
129.(?0mpress 1538 21.7% 13.5% 13 Instruc- | 64K, 2-way set associative, 8 banks, block interleaved, 256
130.li 206.5 29.6% 17.69 1] tion sets per bank, 32 bytes per block, 2 cycles hit, 10 cycle miss
132.ijpeg 129.6 17.7% 8.7% N/A Cache | to unified, 50 cycle miss to main memory.
134 perl 176.8 25 6% 16.6% 11 Lockup free, 2 primary misses per bank, 1 secondary miss

P . . - - per primary.

147 .vortex 376.9 26.3% 27.3% 1:2 LRU replacement.

SPECfp’95 000 128-entry reorder buffer, up to 8 operations per cycle, 128-
101.tomcatv 329.1 31.9% 8.8% 1:9 core entry combined load/store queue, with 4 input and 4 output
102.swim 188.8| 27.0% 6.6% 1:2 ports. , N

5 5 — It takes a combined 4 cycles for an instruction to be fetched
103.su2cor 279.9 33.8% 10.1% 13 and placed into the reorder huffer.
104.hydro2d 1,128.9 29.7% 8.2% 1:1 32 integer, 32 floating point, HI, LO and FSR.
107.mgrid 95.0 46.6% 3.0% N/Al 8 copies of all functional units. All are fully-pipelined. 4 mem-
ts.
110.applu 1689 314% 704 13 | lorty por Sl — —
unc- nteger: 1 cycle latency except for multiplication 4 cycles, divi-
0, 0, .
125.turb-3d 1,666.6 21.3% 14.6 1:10 tional sion 12 cycles,
141.apsi 125.9 31.4% 13.4% N/A Unit Floating point: 2 cycles for addition/subtraction and compari-
145 .fpppp 214.2 48.8% 17.5% 1:4 Laten- son (single and double precision or SP/DP). 4 cycles SP mul-
146 waveb 2008 30.2% 13.0% 14 cies tiplication, 5 cycles DP multiplication, 12 cycles SP division,
i i . . " 15 cycles DP division.
Table 1. Benchmark Execution Characteristics. Instruction siore 128-entry. Does not combine store requests to L1 data
counts (“IC” columns) are in millions. Buffer cache. Combines store requests for load forwarding.
We employ execution-driven timing simulation using g 22 | 32K 2-way setassociative, 4 banks, 256 sets per bank, 32
o . fth It | ; | Allb Caches | bytes per block, 2 cycle hit, 10 cycle miss to unified L2, 50
modified version of the Mu tISC_a ar simulator [3]. ut cycle miss to main memory. Lockup-free, 8 primary miss per
system code references are included. System calls fare bank, 8 secondary misses per primary. LRU replacement.
handled by trappln_g to t_he OS_ of _the simulation hoSCynified | am-byte, 2-way set associative, 4 banks, 128-byte block, 8
Moreover, event-driven simulation is used for both thge.2 cycle + # 4 word transfer * 1 cycle hit, 50 cycles miss to main
out-of-order (OOO) core and the memory system. TheCache | memory. Lockup-free, 4 primary miss per bank, 3 secondary
default configuration used in our continuous windov per primary.
processor experiments is detailed in Table 2. Main Infinite, 34 cycle + #4 word transfer * 2 cycles access.
. Mem
3.2 Performance Potential of Load/Store
Parallelism Table 2. Default configuration for continuous window experi-
ments.

An initial consideration is whether exploiting load/ ) o .
store parallelism can yield significant enough performémory dependence. (We will explain in more detail

mance improvements to justify the additional costdVhy this is an approximation of ideal memory depen-
These costs include mechanisms to detect or predﬁ_’:‘?nce speculation in Section 3.4.1.) Execu_tlon unQer _the
memory dependences, mechanisms that use dependefﬂféé model proceeds as follows: After an instruction is

information to schedule load execution, and mechanisnfglched, it is decoded and placed into the instruction
to detect memory dependence violations if memory)"”do"" where its register dependences and register data
dependence speculation is used. availability are determined. If the instruction is a store,

In this section, we show the importance of exploiting" €ntry is also allocated in a store buffer to support
load-store parallelism by comparing two processor modi€mory renaming and speculative ~execution. Al
els: NAS/NO and NAS/ORACLE . The first does not instructions except loads can execute (i.e., issue) as soon
exploit load/store parallelism. The second implements &5 their register inputs become available. Staris for
approximation of ideal memory dependence speculatiof©th data and address calculation operands before issu-
It has an oracle disambiguation mechanism and execufBd- Loads wait in addition for all preceding stores to

loads as soon as possible without ever violating a tr/&SUe- Consequently, loads may execute out-of-order
only with respect to other loads and non-store instruc-
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[ ] INT: 36.56% FP: 78.95% ALL: 57.26% W INT: 54.93% FpP: 154.41% ALL: 97.93%

Figure 1:Performance (as IPC) with and without exploiting load/store parallelism. Notation used is “instruction
window size”,”load/store execution model”. Speedups of NAS/ORACLE speculation over NAS/NO speculation are
given on top of each bar.
tions. The second configuration includes an oracle dislependence exists, we include this load in our false
ambiguation mechanism that identifies load-stordependence ratio (this is done only for loads on the cor-
dependences as soon as instructions are entered intor control path). We defirfalse dependence resolution
instruction window. In this configuration, loads may exelatencyto be the time, in cycles, a load that could other-
cute as soon as their register and memory dependenegse access memory is stalled, waiting for all its ambig-
(RAW) are satisfied. Since an oracle disambiguator isous memory dependences to get resolved (i.e., all
used, a load may execute out-of-order with respect fweceding stores have executed). We can observe that the
stores and does not need to wait for all preceding storesecution of many loads and in some cases of most
to calculate their addresses or to write their data. loads, is delayed due to false dependences and often for
Figure 1 reports IPCs for the two aforementioned commany cycles.
figurations. We consider configurations with 64-entry

and 128-entry instruction windows. (The 64-window FD RL FD RL
configuration is derived from Table 2, by reducing issup %% | 264% | 137 | 101 | 612% | 363
width to 4, load/store ports to 2, and all functional units 124 59.9% 14.8 102 91.0% 54
to 2.) For all programs, exploiting load/store parallelism 126 39.0% 47.3 103 79.6% 91.2
has the potential for significant performance improvg- ;o9 70.3% 185 104 85.206 97

me_nts. Furthermqre, we can observe that _when I_Od S130 42.2% 391 107 45.4% 266
walit for all preceding store (“NAS/NO” bars), increasing
the window size from 64 to 128, results in very small
improvements. However, when the oracle disambiguatpr 134 | 598% | 391 | 125 | 77.0% | 556

132 70.3% 229 110 45.4% 26.6

is used, performance increases sharply. This observatfonl47 67.2% 54.5 141 77.5% 8.7
suggests that the ability to extract load/store parallelism 145 88.7% 51.4
becomes increasingly important relative to performance 146 33.6% 9.7

as the instruction window increases. _ :
When loads are forced to wait for all preceding store-Eable 3. Fraction of loads with false dependences (FD col-

to execute, it is false dependences that limit perfo}"-mns) and average false dependence resolution latency in

mance. The fraction of loads that are delayed as tr%Cles (RL columns) for the 128-entry instruction window pro-

result of false dependences, along with the average fa%eessor'

dependence resolution latency, are given in Table 3. V&3 Performance with Naive Memory

report false dependences as a fraction over all committBependence Speculation

loads. We account for false dependences once per exexg \ve have seen, extracting load/store parallelism can
cuted load and at the time the load has calculated {sqi¢ in significant performance improvements. In this
address and co_uld otherwise access memory. If the loétgction, we consider using naive memory dependence
is forced to wait because a preceding store has yet 0. jation for extracting these performance improve-

access memory, we check to see if a true dependenge. s For this purpose, we assume the same processor
with a preceding yet un-executed store exists. If no true
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[]128,NAS/ORACL
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Figure 2:Performance with naive memory dependence speculation and no address-scheduler.

model assumed in the previous section, but we alloaddress-based scheduler is used to compare the
loads to speculatively access memory as soon as thattdresses of loads and stores and to guide load execu-
address operands become available (NAS/NAV). Alion. In their pioneering work, Patt, Melvin, Hwu and
speculative load accesses are recorded in a separ@bebanow have also considered some of the tradeoffs
structure, so that preceding stores can detect whetheingolved in using address-based scheduling in dynami-
true memory dependence was violated by a speculativedglly-scheduled high-performance micro-architectures
issued load. Note that the latency through this detecti¢a2].
mechanism impacts only how quickly miss-speculations We start by considering two modelss/NO and As/
are detected. For this reason, slower mechanisms mayNxe/. In both models, stores and loads are allowed to post
tolerable. Also, note that a similar load issue model wakeir addresses for disambiguation purposes as soon as
used by Chrysos and Emer in their study of memoryossible. That is, store® not waitfor their data before
dependence speculation [4]. calculating an address (they only wait for base register
Figure 2, part (a) reports performance (as IPC) for th#ata). Furthermore, loads are allowed to inspect preced-
128-entry processor model when, from left to right, ning store addresses before accessing memory. If a true
speculation is usedNAs/NO), when oracle dependencedependence is found, a load always waits. When no
information is availableNAS/ORACLE), and when naive speculation is usedag§/N0O), loads wait until all their
speculation is usedvAs/NAV). We can observe that for ambiguous dependences are resolved. When naive mem-
all programs,NAS/NAV results in higher performance ory dependence speculation is used/NAV), a miss-
compared taNAS/NO. However, the performance differ- speculation is signaled only when: (1) a load has read a
ence betweemAS/NAV and NAS/ORACLE is significant, value from memory, (2) the value has been propagated to
supporting our claim that the net penalty of miss-specwther instructions, and (3) the value is different than the
lation can become significant. As supported also by thene written by the preceding store that signals the miss-
measurements of column NAV of Table 4, memor;speculatioﬁ. As we noted earlier, unde@is/NAV miss-
dependence miss-speculations are at fault. There wpeculations are virtually non-existent. There are three
report memory dependence miss-speculation frequencgasons why this is so. (1) Loads that would otherwise
We measure miss-speculation frequency as a percentageess memory get delayed because they can detect a
over all committed loads. true dependence. (2) Loads with unresolved, yet true
In this context, the various memory dependence spegependences are still allowed to access memory. How-
ulation methods we reviewed in Section 2.1 could bever, before they have a chance of propagating the mem-
used to reduce the net performance penalty of miss-specy supplied value the correct value is provided by the
ulation. However, before we consider this possibilitcorresponding store. (3) Loads are delayed because pre-
(which we do in Sections 3.5 and 3.6), we first investiceding stores consume resources to have their addresses
gate using an address-based scheduler to extract loadiculated and posted for disambiguation purposes.
store parallelism and its interaction with memory depen- Figure 3 compares the performancessiNav andAs/
dence speculation. NO. Part (a) reports the relative performancenaiNAv

3.4 Using Address-Based Scheduling overAs/NO, while part (b) reports absolute performance

In this section, we consider using address—bas?d

IPC
O R, N WM~ OOO

Harmonic Mean over NAS/NO:

. . . . These conditions do not violate the semantics of sequential pro-
dependence information to exploit load/store parallel- grams. However, they may violate the semantics of explicitly paral-

ism. In particular we consider an organization where an lel programs. A discussion of the latter issue is beyond the scope of
this paper.



The results of this section are that using address-based
scheduling exposes some of the load/store parallelism.

38%
41%
43%

16% — .
%gfﬁ) . - (@) Moreover, using naive memory dependence speculation
10% 1 can further improve performance. Interestingly, in this
g% 1 _ | case, memory dependence miss-speculations are virtu-
g% w W ﬂﬂ;ﬂ ally non-existent. For this reason, we do not consider any
0% I o A el lem of the other memory dependence speculation schemes.
-2% Diep, Nelson and Shen have also shown thatsémav
OVODONINANIVHOSIANQ L NYH O P,
SYIYIIIIIIITILLIIIVY policy can improve performance over no speculation [5].
[ocyctes [ 1lcycte [ 2cycLes This was done for a model of the PowerPC 620 architec-
Harmonic Mean AS/NAV over AS/NO: ture. Here we take into account the impact of address-
L] INT: 6.71% FP: 6.74% ALL: 6.72% based scheduling on load latency and assume larger
I INT: 4.66% FP: 5.35% ALL: 5.04% instr:Jction windo;vs. Mgreover, we clompare ittxvi:jh the t
[ INT: 6.10% FP: 6.08% ALL: 6.09% oracle memory dependence specu ation method (nex
6 Section).
5 () 3.4.1 Comparing with Oracle Memory Dependence
g' M Speculation
2 ] Having shown that address-based scheduling can
1 WHWHH - expose some of the load/store parallelism, we now com-
0 pare the performance so obtained to that of the oracle

OVOOOONVNYAN YSVDOHITAQLYHL O : . :
SNV VI DD Y SO S SO N WY scheme of Section 3.NAS/ORACLE). While including

ANNNNNNNY Y ) -
an address-based scheduler does help in exploiting some

Figure 3:(a) Relative performance of naive memonof the load/store parallelism, a load may still be delayed
dependence speculationAS(NAV) as a function of even when naive memory dependence speculation is
address-based scheduler latency (0, 1, and 2 cyclessed AS/NAV). The reason is that preceding stores con-
Performance variation is reported with respect to the&ume resources to calculate and post their addresses for
same processor model that does not use memasgheduling purposes. Such resources are issue band-
dependence speculatiors(NO). Base performance (IPC width, address calculation adders, and load/store sched-
for AYNO) is shown in part (b). uler ports. The same applies to loads that should wait for
(IPC) for the base configuratiomg/No). We measure preceding stores. If perfect knowledge of dependences
how performance varies in terms of the time it takes fovas available in advance, stores would consume
loads and stores to go through the address-based schiggources only when both their data and address calcula-
uler. We vary this delay from 0 to up to 2 cycles. In th&on operands become available. Moreover, the complex-
calculation of the relative performance in part (a), wély of an address-based scheduler may be daunting for
should note that the base configuration is different forider issue machines. For these reasons, we next com-
each bar. pare the absolute performance of the processor models

For most programs, naive memory dependence spedbat use an address-based scheduler to that of the proces-
lation is still a win. Performance differences are not a30r model that utilizes oracle dependence information to
drastic as they were when the address scheduler waghiedule load execution.
unavailable, yet they are still significant. More impor- Figure 4 reports relative performance compared to the
tantly, the performance difference betwegsiNo and configuration that useso speculation but utilizes an
ASINAV increases as the latency through the load/stopgldress-based scheduler with O-cycle lateftieg IPC of
scheduler also increases. For 147.vortex and 145.fppphis configuration was reported in Figure 3, part fs),
As/NAV performs worse thans/NO. Miss-speculations NO O-CYCLE configuration). From left to right, the four
are not the cause for this degradation. Rather, it kars report performance with: (1) oracle disambiguation
increased resource contention caused by loads wighid no address-based schedulexs(ORACLE, Section
ambiguous dependences that get to access memory spbé), (2) through (4) naive memory dependence specula-
ulatively only to receive a new value from a precedingon and address-based schedules/Nav) with a
store. These loads consume memory resources that col@lgncy of 0, 1 and 2 cycles respectively (which we eval-
otherwise be used more productively. This phenomendated earlier in this section). With few exceptions, the 0-
supports our earlier claim that there is an opportunitgycle AS/INAV and theNAs/ORACLE perform equally well.
cost associated with erroneous speculation (Section 2)Once address-based scheduling increases load latency by
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B INT: 6.64% FP: 6.51% ALL: 6.57% L] INT: -2.75% FP: 3.63% ALL: 0.79%
[] INT: 4.81% FP: 6.26% ALL: 5.61% B NT: -9.68% FP: 1.13% ALL: -3.68%

Figure 4:Comparing oracle disambiguation and address-based scheduling plus naive memory dependence
speculation. Base configuration uses a 0-cycle address-based scheduler and no speggtatpn (

1 or more cycles, performance degrades making this anstore barrierNAS/STORE memory dependence specu-
under-performing solution. lation as alternatives to address-based scheduling. We

In some cases, the 0-cydls/NAV configuration per- start from a configuration that has no address-based
forms slightly better thanAS/ORACLE. This result is an scheduler and introduce predictors that provide hints for
artifact of our euphemistic use of the term “oracle”. Inoad scheduling to the existing register-based scheduler.
our oracle model, a store is allowed to issue only aftén both memory dependence speculation schemes we
both its data and address operands become availahlesed a 4K, 2-way set associative memory dependence
Consequently, dependent loads always observe tpesdictor. For selective speculation the predictor guesses
latency associated with store address calculation, whigthether a load has a dependence. If so, this load is not
in this case is 1 cycle to fetch register operands andspeculated. That is we wait until all preceding stores
cycle to do the addition. Under these conditions, depehave calculated their address and received their data. For
dent loads can get their value at least 3 cycles after th®re barrier, the predictor guesses whether a store has a
moment the store was issued. In contrast, when tliependence. If so, all subsequent loads are delayed until
address-based scheduler is in place, a store may calthis store calculates its address and receives its data.
late its address long before its data is available. AsBoth predictors use 2-bit saturating counter-based confi-
result, dependent loads can access the store’s valuedasce automatons. It takes 3 miss-speculations on a spe-
soon as it becomes available. In an actual implementeific load or store before the existence of a dependence is
tion, it may be possible to overlap store address calculpredicted. All counters are reset every 1 million cycles to
tion and store data reception without using an addresallow adapting back [4].
based scheduler by allowing loads to issue when theFigure 5 shows how performance varied aves/NAV
store reaches the memory stage (e.g., [10, 28]). (Figure 2). We uselAS/NAV as our base configuration

In this section, we demonstrated that naive speculati@mce bothNAS/SEL and NAS/STORE attempt to improve
coupled with address-based scheduling/§av) offers accuracy over it. While successful in some cases, both
performance similar to that possible with the oracléechniques fall short of providing performance close to
method (AS/ORACLE) that utilizes perfecta priori  oracle NAS/ORACLE). Even worse, in some cases perfor-
knowledge of all memory dependences. However, waance drops below that possible with naive memory
have also demonstrated that if address-based scheduldependence speculation. As we explained in Section 2.1,
increases load latency even by as little as 1 cycle, perfaither technique may both improve or hurt performance.
mance gradually degrades. For these reasons, we ngx Speculation/Synchronization

consider configurations that do not use address-basedI thi . id . lation/ h
scheduling, but utilize more accurate memory depen- n this section, we consider using specufation/synchro-

dence speculation techniques to approximate ideal meIKH—Z"’\tIOn (\'A_S/SYNC) for appr(_mmatlng\lAs/o_RA(_:LE. .
ory dependence speculation. Speculation/synchronization works by initially using

i ) ] naive memory dependence speculation for all loads.
3.5 Selective Speculation and Store Barrier Once a miss-speculation is detected, information about
Speculation the dependent loads and stores is stored in a memory
In this section, we consider using selectiveg/seL) dependence prediction table (MDPT) [19]. The next time



50% Figure 6, part (a) reports performance results relative

40% _ to naive memory dependence speculatio’s(NAvY,
ggff - 1 Section 3.3). As it can be semAs/SYNC offers most of
10%‘; F WH’: the performance improvements that are possible with
0% NG ar i [ r NAS/ORACLE. We also provide the miss-speculation rates
-102/0 i | with NAS/SYNC in Table 4 (reported is the number of
:58(2 B miss-speculations over all committed loads). Miss-spec-
-40% - ulations are virtually non-existent. This observation sug-

gests that for the most part the performance differences
compared toNAS/ORACLE are the result of either (1) false
[ NAS/ORACLE [ nas/seL B NASISTORE  gependences, or (2) of failing to identify the appropriate
Harmonic Mean over NAS/NAV: store instance with which a load had to synchronize
[]INT: 20.91% FP: 20.38% ALL: 20.61% with.
(] INT: 3.49% FP: -2.22% ALL: 0.23%

B T 7.86% FP:-3.16% ALL: 1.44% 50% -

Figure 5:Using Selective Memory Dependence40% I
Speculation NAFSEL or the Store Barrier methotlAS  30%
STORG to approximate ideal speculation. Base 5qy,
configuration uses naive memory dependence

. 10%
speculation and has no address-based scheduies ( ﬁ]
o0 LI

NAV, Section 3.3). > 5 SNV D
the same instructions are encountered the MDPT is used SYIIIIIT 999
to predict the dependence and to enforce synchroniza- [J NAs/orRAcLE M nas/syne
tion. The speculation/synchronization mechanism we Harmonic Mean OVER NAS/NAV:

used comprises a 4K, 2-way set associative MDPT in [] INT: 20.91% FP: 20.38% ALL: 20.61%
which separate entries are allocated for stores and loads. B Nt 19.71% FP: 19.09% ALL: 19.37%
Dependences are represented using synonyms, i.e., a
level of indirection [20,4]. No confidence mechanism is
associated with each MDPT entry; once an entry is allo-
cated, synchronization is always enforced. However, we NAV SYNC NAV SYNC
flush the MDPT every one million CyCles to red-uce- th? 099 2.5% 0.0301% 101 1.0% 0.0001%
_frequency of false dependepces [4]. Synchrom;atlon S22 0% 0.0030% | 102 0.9% 0.0017%
incorporated into the register-scheduler, which w

assume to follow the RUU model [26]. This is done as 126 13% 0.0028% | 103 2.4% 00741%
follows: an additiond register identifier is introduced | 129 | 7.8% | 00034% | 104 | 55% | 0.0740%
per RUU entry. This identifier is used to introduce specy- 130 3.2% 0.0035% | 107 0.1% 0.0019%
lative dependences for the purposes of speculation/syn432 0.8% 0.0090% | 110 1.4% 0.0039%
chronization. Stores that have dependences predicted [ISgss | 2 995 00029% | 125 | 0.7% 0.0009%
that register |dent|f_|er to mark themselves as produc 1147 3.2% 0.0286% | 121 > 1% 0.0148%
of the MDPT supplied synonym. Loads that have depeh

dences predicted, use that register identifier to mark i 1.4% 0.0096%
themselves as consumers of the MDPT supplied syn- 146 | 2.0% | 0.0034%

onym. Synchronization is a_chieved b)(: (1) mqking load$aple 4. Memory dependence miss-speculation rate with our
wait for the closest preceding store (if there is any) th@peculation/synchronization mechanism (“SYNC” columns)
is marked as the producer of the same synonym, and & with naive speculation (“NAV” columns).

having stores broadcast their synonym once they issue . . .
releasing any waiting loads. A waiting load is free to The results of this section suggest that the speculation/

issue one cycle after the store it speculatively depena)bmchromzatlon method_ can _offer performance ”?"?“ IS
upon issues very close to that possible with a method that utilizes

ideal dependence information. Moreover, this configura-
. , . tion is an attractive alternative to address-based schedul-
3. It's not really necessary to use an additional register specifier. . . | | llevi h df dd
Stores may use their unused destination register field, while loaddN9 as it completely alleviates the need for an address-
may use their unused second source register field. based scheduler.

Figure 6:Performance of an implementation of
speculation/synchronization. BaseNisINAV,




3.7 Interaction of Window Type and Memory

Dependence Speculation - Discussion for (i =0; < N; i++)
P P _ A~ al]=afi-1]+00(;
We have shown that memory dependence miss-specu- Id a[i-1]
lations can be virtually eliminated in a continuous win- @)
dow with an address-based scheduler. Moreover, we stafi A A 1
have seen that performance with a O-cycle latencyg Id afi-1] Id al]
address-based scheduler coupled with naive memory Id afi] : :
. . st afi] st afi+1]
dependence speculations(NAV) closely approximates .
the oracle configuratiorNgS/ORACLE). This result sug- 3@]/ I~ I~
e

gests that there is no need for more advanced memory ¥ unit 1 unit 2
dependence speculation techniques if building a 0-Cycly) centralized, Continuous ~ (c) Distributed, Split
address-based scheduler is possible. However, previous ) )
work has shown that this is not true for a split window Igure 7:Execut|_ng a loop (&) under: (b) a coptln_uous-
processor model [18]. In particular, it has been show}{"doW execution model, and (c) a split-window
that even if a O-cycle address-based scheduler can grecution model.
built, it cannot eliminate a large number of miss-specul&fore parallelism under a continuous window processor
tions when naive memory dependence speculation 0del. Our findings were:
used. In this section, we explain why an address-baséd Exploiting load/store parallelism can greatly improve
scheduler avoids virtually all miss-speculations for the Performance over not doing so. For an 128-entry
continuous window processor, but fails to do so for the Window processor performance improved by about
split window processor. 55% (integer) and 154% (floating-point) on the aver-
For our purposes, we will use the example of Figure 7. ad€.
Part (a) shows a loop with a recurrence betweenldhé 2.Using address-based scheduling captures most of this
ai - 1]” of iterationi and the &tore a[i]” of iterationi - 1. performance potential even when no memory depen-
(While this code is prone to static disambiguation, our dence speculation is used. Naive memory depen-
goal here is not to demonstrate the power memory dence speculationa¢/NAv) can offer speedups of
dependence speculation.) Part (b) shows how two itera- 4-6% (integer) and 5.3% (floating point) over no
tions of this loop may be executed under the continuous SPeculation £s/No) for a O-cycle address-based
window execution model. Under this model, instructions Scheduler configuration. However, as the latency
are fetched in order and the window is filled up gradu- through the address-based scheduler increases, per-
ally. Consequently, by the time the dependent |dwed ( formance degrades making this an under performing
afil) has a chance to calculate its address, all preceding OPtion. In this case, we may consider using memory
relevant addresses, including that sibre ai], have also dependence speculation without an address-based
been calculated. Under these conditions, and provided Scheduler.
that the load is allowed to inspect the addresses of pr@When no address-based scheduler is used, naive mem-
ceding stores, it finds that it should wait and not specula- Oy dependence speculatiomAg/NAv) can offer
tively access memory. As we demonstrated in Section Some of potential performance of exploiting load/
3.4, memory dependence miss-speculations are virtually Store parallelism. In particular, compared to no spec-
non-existent in this environment. ulation (vAs/NO) speedups of 29% (integer) and
Let us now consider a split window model. Under this 113% (floating-point) were possible. However, net
different set of assumptions, instructions are not neces- Miss-speculation penalty is high, justifying using
sarily fetched in program order. Moreover, enforcing More advanced memory dependence speculation pol-
program order priority in the scheduler may not be possi- [CI€S.
ble. Under this model, the two iterations of the loop ma¢- Selective AS/SEL) and store barrierN@S/STORE
be assigned to different units (sub-windows), as shown SPeculation are not robust techniques. While they can
in part (b) of Figure 7. Accordingly, the load may calcu- at times improve performance over naive memory
late its address long before the store has had a chance todépendence speculatioNAS/NAV), they often hurt
do so. For this reason, even if the load could inspect pre- Performance. Overall, no significant performance
ceding store addresses instantaneously, it would not be improvements were observed over naive memory

possible to avoid the miss-speculation. dependence speculation.
5.Memory dependence speculation/synchronization
4 Summary (NAS/SYNC) can significantly improve performance

We have studied various methods for exploiting load/ over naive memory dependence speculativas(



NAV). Moreover, it offers performance very close to

that obtained when perfect, in-advance knowledge fl]

all memory dependences was available. In particular,
with  speculation/synchronization  performancdl2]
improved by 19.7% (integer) and 19.1% (floating-[13]
point) on average. With a method that utilized perfect
memory dependence information the correspondin
speedups would have been 20.9% (integer) antf!
20.4% (floating-point) over naive speculation. Thgs)
potential advantage of this design is that it leverages
the existing register dependence scheduler to alﬁ%]
implement load/store scheduling.
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