Microarchitectural Miss/Execute Decoupling

Amir Roth, Craig B. Zilles and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin - Madison
{amir, zilles, sohi}@cs.wisc.edu

Abstract tural, rather than architectural, level. Instead of
extracting an architectural access stream from the pro-

The decoupled access/execute architecture described @am, we extract multiple speculative microarchitectural
machine that enables the access of memory values to BBISS streams Rather than running these miss streams
decoupled from the consumption of those valuesOn @ second architected pipeline, we execute them on
Although never widely adopted in its original form, the the additional hardware contexts of a multithreaded pro-
decoupled design is a compelling way to tolerate mem€€Ssor. Instead o_f requiring that miss streams bind cor-
ory latency. In this paper, we propose and demonstrate€Ct _/alues to registers on behalf of the execute stream,
a novel implementation of decoupling, one based on th&'e Simply ask them to perform performance-enhancing
following two refinements of the original idea. First, data movement, freeing them to use speculation in order
because the latency of cache hits can generally be tolert® perform this task more efficiently. By removing cor-
ated, we only decouple from the main program accesse&Ctness responsibilities from miss streams, decoupling
that are likely to miss in the cache. Second, our decou@nd latency tolerance are more easily achieved for a
pling takes place at the microarchitectural level, not the Wider class of programs.

architectural level. By treating the access stream as a)))])
speculative thread and not allowing it to modify the Our implementation of microarchitectural miss decou-
architectural state of the machine, we relax the correct-Pling is called speculative data-driven multithreading
ness constraints that were placed on it in the original (PDMT). DDMT is an new processing model that sup-
design. For many programs, this added flexibility POTtS the execution of speculative non-contiguous code
enables a level of decoupling and, consequently, latenc§eduences calledata-driven threads (DDTs)in this

tolerance that could not be achieved under the mordmplementation, the miss stream is split into multiple
constrained architectural model. sub-streams each of which is microarchitecturally

forked at a certain point by the original program and

speculatively executed as a DDT. The main stream and
1 Introduction se_veral DDTs execute in parallel by u_sing an under_lying

microarchitecture that supports multiple threads, like a

The Decoupled Access/Execute Architecture was proSimultaneous multithreading (SMT) processor [HK+92,
posed in 1982 [S82] and described a processor with g M99, TE+96]. The main thread then attemptsease
two instruction stream interface. Architectural decou-€ results produced by the DDTs.

pling was attractive at the time because it provided a]_ . .
means to sidestep the Flynn bottleneck of fetching/! "€ rest of the paper is organized as follows. In the next
decoding a single instruction per cycle and enabled®€ction, we describe the logical (not necessarily histori-
some load/use slip without the complexity of a full out- €&l) chain of observations that lead from the original
of-order implementation. The appeal of these particulad®coupled architecture to the speculatively decoupled

features of the architecture has largely disappeared ovdpicroarchitecture we propose. We then present a short

the past twenty years as nearly all microprocessor vencharacterization of the estimated usefulness of specula-

dors now ship superscalar, out-of-order processorstive miss streams. We conclude with a brief description

However, access decoupling itself is still appealing, perof PDMT and a short performance evaluation.

haps more so than ever. Today’s processors can tolerate

latencies of about 10 cycles — enough to cover the buI& .

of first level cache misses. However, the rapid increas€ From Decoupled Architecture to

in processor frequency has caused relative main mem- Speculative Decoupled Microarchitecture

ory access latencies to exceed 100 cycles. Access o .

decoupling is a compelling method for tolerating theseThe original decoupled architecture called for a two

latencies, since scaling the out-of-order mechanism foptream interface. Thaccess strearontained all mem-

this purpose has proven difficult. ory accesses and thdiackward sliceqall instructions
that transitively contribute values to the address calcula-

The access decoupling scheme we propose for today#0on). The execute streancontained everything else.

processors differs from the original design in two major The streams communicated via a set of architected

ways. First, we restrict decoupling to only those queues. When the access stream did not need values

accesses that are likely to result in cachisses Sec- from the execute stream, it could run ahead as far as

ond, we perform the decoupling at timeicroarchitec- result queueing would allow and, in doing so, effectively

“absorb” access latency on behalf of the execute streanaverhead is much smaller than that of a adding a second
The original decoupled architecture was realized, butonventional (full) access stream. Specifically, since it
did not gain widespread acceptance. Over the pagprovides only data movement services, the added stream
twenty years, several embodiments of decoupling werés constructed to deal only with accesses that are likely
proposed (and some were actually built) that succesto have long data movement components, in a sense
sively solved some of the problems that hampered prebecoming amiss streanrather than an access stream.
decessor designs. Indeed, the introduction of non-binding prefetch instruc-
tions coupled with the demonstration that the set of
One obstacle that slowed the acceptance of the originatatic loads that miss in the cache is both small and pre-
decoupled architecture was a marketplace increasingldictable [AS+93] combined to spawn a host of effective
dominated by single stream interface machines and sysnstantiations of this basic technique [ML+92, CB94,
tems with relatively high latency support for inter- LS+95, LM96].
stream communication. The desire for a single stream
solution was met early on with the observation that,The single re-merged stream approach has been widely
when adequate decoupling is possible, the access streaadopted, but does forfeit the true decoupling of the orig-
can simply be shifted ug with respect to the execute inal architecture. The fetch schedule, and consequently
stream and the two streams can subsequentlyebe the execute schedule, of the miss stream relative to the
merged Software pipelining [RG+82] is the premier rest of the program is rigid and pre-determined. The
instantiation of this concept. miss stream cannot asynchronously run ahead when the
main program stream is “pinned” by the processor’s
Traditional re-merging is effective but requires thatreorder buffer. This problem was solved by re-splitting
decoupling be possible in the first place. Decouplingthe added miss stream from the original program and
works well for programs that contain many operationsexecuting it as a separate thread on a multithreaded pro-
that obviously don’t contribute to address calculation. Itcessor [SD98]. Since communication is uni-directional
is not surprising that workloads circa 1982 were domi-(main program to miss) and occurs only at a miss stream
nated by programs that fit this description — floating-fork, a conventional multithreaded system could be
point programs. It may be that multimedia programs,used. Executing the miss stream in microcode [CS+99]
which have similar structure, will dominate future work- has also been proposed. Finer control over miss stream
loads. However, non-numeric programs, which havescheduling is achieved by splitting the miss stream into
been and will likely continue to be an important part of several sub-streams and forking each one separately.
workloads, have features — complex control flow, many
procedure calls and numerous statically unanalyzabl&Vhile multithreading restores decoupling, executing
accesses — that make statically distinguishing “purelymiss streams in architecture-level threads obligates the
execute” computations difficult [SP+98]. An observa- machine to execute them in full, fixing the amount of
tion that helped expand the scope of decoupling to diffi-imposed overhead. A better approach is to specify miss
cult-to-split, non-numeric applications was that splitting streams asints and to allow themicroarchitectureto
the progranper seis not strictly necessary. Aload con- execute them non-architecturally at its discretion, using
sists of two sub-operations. The first, bringing a dataeither dedicated [RM+98] or generic [RS01] hardware.
value to the processor, is not architecturally visible andBy giving the microarchitecture flexibility in allocating
can take a long time while the second, binding the valugesources to miss streams, miss stream resource con-
to a register, is architecturally visible and takes a fixed,sumption and overhead can be controlled dynamically
small amount of time. The availability of an architec- and adapted to anticipated need and available band-
tural mechanism that can perform the data movementvidth. The use of speculative, non-architectural multi-
function independently of the result binding removes thethreading has another advantage: it can be used to return
true decoupling requirement in the following way. miss streams to being parts of the original program. In
Instead of decoupling and shifting an access streanfact, depending on the underlying thread implementa-
within the program, we construct additional stream tion, the execution of a miss stream may contribute
that performs only data movement — the latency criticaldirectly to the execution of the original program thread,
yet non-architected portion of the task. We then shiftand as such would no longer constitute overhead. Con-
and merge this additional stream into the original pro-sider the following arrangement. Rather than split miss
gram. An access stream that provides only data movestreams from the original program, the program is kept
ment has the advantage of not requiring bindingintact and instructions belonging to miss streams are
communication through the precious architectural regisinsteadannotated Since they are composed of original
ter namespace; the data movement effect is implicitlyprogram instructions, miss streams are “binding” again.
communicated through the much larger namespace dfhe processor executes the annotated portions of the
the cache. Reduced register pressure can greatly uncoariginal program as speculative threads. Since these
strain an optimizing compiler and improve overall code portions execute ahead of their architected place in the
guality. Adding a second access stream to a prograroriginal program, their accesses implicitly perform the
does incur some execution overhead. However, thiglata movement function. The bindings themselves,

however, arebufferedrather than exposed architectur- the induction instructionA5 forks a new speculative
ally. Now, when the main program thread catches up taniss stream to absorb the latency of the next iteration’s
the speculative thread, it “recognizes” it as actuallyaccesses. When the architectural thread (executing the
being the same piece of code it is about to executeentire program) reaches the next iteration, it reuses the
Rather than repeating the work, the main programvalues computed by the miss stream rather than re-exe-
thread simply “picks up” the buffered bindings of the cuting the corresponding instructions. As shown in this
appropriate instructions and skips over their executionexample, miss streams can be small and have low over-
Overhead is minimized because miss streams actualllgead, while allowing likely-to-miss accesses to be effi-
contribute to the execution of the original program. Thisciently decoupled from the main program. In this
is exactly the arrangement proposed by the originakexample, decoupling allow&5 andA3 of a given itera-
decoupled architecture! tion to proceed while the processor is executinggice
cessinvocation code from the previous iteration.

Al addqrl, zero, list

for (1= st I: 1 = I>next) ﬁg; Equrrzl,' 4/371) 3 Characterizing Speculative Miss Streams
process(->data); Ad:. jsr process Miss streams arelynamic backward slicegor just
AS: 1dq L, 0(r1) : ynam ard.)
A6 imp A2 sliceg of loads that are likely to miss in the cache. A
- Jmp slice is constructed by walking the dynamic instruction
)) stream backward from the offending load and adding
Entire program . Miss Streams any instruction that satisfies one of three kinds of active
(architectural thread) (microarchictural threads) dependences: (1) egister dependencin which the
Ad4:| [sr process — fork instruction writes a register that is read by an instruction
<«—— reuse results already in the slice, (2) anemory dependendé the
R A5:|1dgrl, O(rl) | instruction is a store that writes to the same address of a
< [LA6:| jmp A2 A5:|ldgrl, O(r1) [Ty load in the slice or (3) aontrol dependencé the
2| LA2:| beq rl, A7 A3:| ldq r2, 4(rl) Iv_v instruction is a branch on which an instruction in the
21| A3:| Idq r2, 4(r1) slice is control-dependent.
E || A4:| jsr process
=2 In this section, we present a short qualitative study of
S| A5 Idg rl, O(r1) the slices we intend to extract and pre-execute as miss
S | [A6:] jmp A2 A5:| 1dg 1, 0(r1) streams. A more complete study can be found here
2| A2:| beqrl, A7 —1A3:]1dq r2, 4(r1) [ZS00]. We characterize slices in terms of their size rel-
Ov| A3:]Idqr2, 41) [¢ ative to the original program regions with which they
A4:| s process overlap — these definitions are illustrated in Figure 1.
The size metric tells us how far ahead of its original
AS:|1dg rl, 0(rl) place in the program a miss stream can be shifted and,
AG:] jmp A2 AS:|1dg rl, 0(rl) consequently, how much latency it can hide. It also tells
A2: beqrl, A7 | A3:]ldq r2, 4(r1) us roughly how many resources a miss stream will con-
A3:|ldgr2, 4(rl) [< sume when executed in parallel with the original pro-
FIGURE 1. An example of microarchitectural ~ gram. A “good” miss stream is small and highly
miss/execute decoupling. concentrated towards end of the original program

region, near the offending load. Such a distribution
A simple example of microarchitectural decoupling is implies that the miss stream can be forked at the begin-
shown in Figure 1. At the top, we show source and cor-ning of the region and finish execution before the tar-
responding Alpha machine code for a simple list tra-geted load is processed by the original program thread.
versal loop. The instructions in bold aAs, the first
data access to each node — which results in a cach&he graph in Figure 2 shows several size accumulations
miss — andAb5, the pointer-chasing loop induction — for the slice of a single static load from the program
which when unwound comprises the full backward slicecompress These results are illustrative of slices in all
of A3. To tolerateA3 latency, we choose the speculative benchmarks. We show a single slice because averaging
miss streams to contain one instance®&fand one of the slices of multiple static loads blurs the important
A3. A miss stream is forked by the previous instance ofqualitative details. Three accumulations are shown. The
the induction instructiod5. This choice of miss stream top accumulation (the one with the largest area under-
and fork point allows us to leverage one full loop itera- neath it), is obtained by including all register, memory
tion, including the entire invocation oprocess for and control dependences in the slice. For the next slice,
latency tolerance purposes. The bottom of the figureve exclude control dependences. Doing so makes the
shows an abstract execution of these speculative miggsulting miss streargreedy— unable to determine at
streams on a multithreaded processor. Each instance sfintime which computations really need execution and

8 g X% ="
» 150 x e) oy o ——mm-
§ x(?(?/n c,o\"“O\ reg_sl_a,“'_"[‘e—"l Y _)
=1 = er
@ 100 =TT register (meﬂ\Ol’Y__CP_r_‘_’?ﬁ?Fj.F?.r.?g!s- """""""""
€ o1 0 e - T Teaser(memoD
s R T T
o T ! T T T T
0 100 200 300 400 500

dynamic instruction distance from cache missing load

FIGURE 2. Average cumulative slice sizes as functions of dynamic instruction distance from the load for a
single static load from compress.

which can be ignored, forcing it to execute all of them. threads[F93, SB+95, DO+95, SM98] may be used to
However, it also drastically reduces the size of the misexecute miss streams. However, these require that miss
stream, enhancing its run-ahead ability. streams be expanded to incluak instructions that are
sequentially interleaved with the computation (slice) of
In the final accumulation, we convert stable memoryinterest. Including irrelevant instructions in miss streams
dependences into register dependences. This is accordetracts from their ability to run ahead and hide latency
plished by identifying store/load pairs that consistentlyand increases the load on the system.
communicate (incidentally, this is the only way a miss
stream will ever contain a store), annotating the storefThe ability to execute non-contiguous code sequences
load communication, and excluding the address calculadoes come at an implementation cost. Since a DDT can-
tion of both instructions from the slice since it is no not be sequenced with a program counter, an additional
longer needed to propagate the data value. This micromechanism is required to precisely describe the instruc-
architectural “register allocation” requires a hardwaretions that comprise the DDT and how these are ordered.
mechanism for passing values from stores to loads within DDMT, the mechanism that provides this functional-
out calculating the addresses. Cloaking [MS97] is ondty is thedata-driven thread cache (DDTC)he DDTC
such mechanism. contains static representations of DDTs “straightened
out” and packed to look like linear code sequences. The
Our results indicate that conservative generation of mis®DTC isolates the fetch engine from the sequencing
streams vyields large streams that likely will not provide details of DDTs in much the same way that a trace cache
sufficient lookahead and will exact too much overhead[RB+96] abstracts the sequencing details of control-
However, by utilizing the speculative nature of missdriven code. A DDMT processor fetches DDTs from
streams to optimize away first control dependences thethe DDTC in chunks and places their component
memory dependences, we can construct streams that arestructions into the instruction queue. The rest of the
short enough to support sufficient decoupling to tolerateprocessor is oblivious to the non-contiguous nature of
long memory latencies. the DDT instructions. DDT instructions are renamed,
scheduled and executed like any other instructions,
although they are not retired nor are they allowed to

4 An Implementation of Miss Decoupling: ~ modify architected state.

Speculative Data-Driven Multithreading _
One component of DDMT we mention here but do not
The fact that miss streams are small relative to the origidescribe in detail is thmtegrationfacility. DDTs’ non-
nal program region they overlap and that the bulk of thecontiguous nature prevents them from describing a com-
work is concentrated towards the latter end of the regiorPlete picture of program state. As a result, the original
tells us that the potential to hide latency by pre-executProgram thread must re-sequence and re-execute all

ing miss streams exist. To realize this potential, we needvork performed in DDTs. Integration is a mechanism
an engine that can execute miss streams. that removes the re-execution portion of that require-

ment. Re-sequencing is still mandatory, but integration
The engine we propose issamultaneous multithreading Uses the re-sequencing process to match up DDT
(SMT) processor modified to support the speculativeinstructions with their corresponding original program
sequencing and execution of non-sequential pieces dhread counterparts. The main thread integrates (incor-
code. We call this new execution model speculativeporates) results computed by DDT instructions by mak-
data-driven multithreading (DDMTJRSO01]; the non- ing the buffered result bindings architecturally visible (a
sequential code segments are catlath-driven threads Process we alluded to earlier). The decision about
(DDTs). DDMT's unique support for non-contiguous Whether or not a given instruction can be integrated is
speculative threads is important because miss streani@plemented as an extension to register renaming. By
are not composed of sequential instructions. It shoulchoice, we allow only instructions that have completed
be noted that other, more conventional speculativeexecution in the DDT before being renamed in the main
thread models that supparbntrol-driven (sequential) thread to be integrated.

using a different, shorter input data set. We permit a
maximum DDT length of 32 instructions and require a
We evaluate a DDMT implementation of miss/executerun-ahead head-start of at least 64 dynamic instructions.
decoupling for six programs — selected for their rela-We assume that the resulting DDT annotations are
tively high data cache miss rates — two each from theencoded into the executable and are loaded from the
SPEC95, SPEC2000 and Olden benchmark suites. Wexecutable into the DDTC on demand. None of our pro-
compile the programs for the Alpha EV6 architecture gram use more than 11 distinct DDT miss streams.
using the Digital UNIX V4cc compiler with flagsO3
-fast and simulate them in their entirety.

5 Performance Evaluation

Performance results are summarized in Table 1. Perfor-
mance improvements range from a negligible 0.1% for
Our cycle-level simulator is built using the SimpleScalarli to 17.3% formst The higher speedups tell us that,
3.0 [BA97] Alpha toolkit. It models an 8-wide SMT while a significant portion of second level cache hit
processor with out-of-order speculative execution and datency can be hidden by a machine with 128 instruction
maximum of 128 instructions, 64 loads or 32 stores in-re-ordering capability, the additional decoupling pro-
flight. The pipeline has 3 fetch, 2 decode/rename and Xided by DDMT, specifically its ability to generate
schedule/register-read stages. Up to 2 loads and 2 storéegche misses while the original program thread is
may issue per cycle. Address generation takes 1 cyclépinned”, further increases memory-level parallelism
with an additional cycle for either a first level cache hit (MLP) — the degree of memory access overlapping.
or a store queue bypass. Loads issue in the presence of
older stores with unknown addresses — on a mis-specle provide several metrics to support these results.
lation, the load and younger instructions are squashed.oad latency is the average difference between the issue
The memory system consists of a 32KB instructionand completion times of eveigommittedoad. MSHR
cache and a 64KB data cache, both 2-way set-associg@ccupancy is the average number of simultaneously out-
tive with 32 byte lines, a shared 1MB, 4-way set-asso-standing misses — an MLP measure. In most cases,
ciative, 64-byte line second level cache and 32-entryaverage load latency decreases while MLP increases
TLB's. Upto 16 load misses can be simultaneously out-suggesting that the DDT’s are overlapping misses that
standing. The second level cache takes 12 cycles tare further away than a single instruction window’s
access, main memory access takes 70 cycles. The segorth. Inmst the dominant DDT encapsulates a hash
ond level cache and memory buses are 32 and 16 bytdgble search including hash function calculation. Execu-
wide and operate at full and one-fourth processor fretion of this DDT overlaps a second hash bucket traversal
quency, respectively. The simulated processor has with the one taking place in the main program thread,
hardware contexts which share all resources, and igoubling the MLP but increasing bus contention to a
capable of running the original program thread and up tdevel thatslightly increaseshe average load latency.
three concurrent speculative streams. Thread priority is
explicit at fetch only with bandwidth allocated in round- The observed speedups are somewhat smaller than the
robin fashion among active threads on a cycle basis. latency and MLP diagnostics suggest. The reason for
this is that miss streams contend for resources with the
We model an offline, profile-driven implementation of main program thread, slowing it down. We approximate
DDT-annotation generation. The selection algorithmthe contention effect by measuring the number of
processes a program trace that is generated from a runstructions fetched by DDTs. These numbers range

compress li gzip vpr em3d mst
Insns committed (millions) 331.39 1188.87 336727 692.50 248.88 280.77
Loads (millions) 42.68 302.6B 677.78 19837 71159 33.58
Base L1 misses (millions) 3.8 3.46 2312 8(46 24.50 .16
Avg. load latency (cycles) 3.63 2.70 2.6 341 4241 19.85
Avg. MSHR occupancy (/cyclq 1.89 1.51 0.B3 1{67 1Q.76 §.94
Base + | DDT's forked (millions) 3.57 4.32 26.28 7.09 0.80 0p2
DDMT DDT insns fetched (millions) 104.08 29.20 671{02 145.24 28.20 I6.24
DDT insns integrated (milliong 15.82 13.88 248|52 37.14 12.82 10.30
DDT loads integrated (milliong 2.12 4.00 13.80 5|04 5.61 .52
Avg. load latency (cycles) 3.34 2.44 2.11 3{37 29.58 21.19
Avg. MSHR occupancy (/cyclq 3.05 2.50 1.p5 1{81 12.58 .81
Speedup over base 1.6% 0.1% 15.4% 12.0% 7.2% 17.3%

TABLE 1. Using speculative data-driven multithreading to pre-execute miss streams.

from reasonable 5-10% to a quite high 30% tmm- sion 2.0. Technical Report CS-TR-97-1342, University of

ress In the latter case, when overhead and contentio Wisconsin-Madison, Jun. 1997.
P rBCBQ4] T.-F. Chen and J.-L. Baer. A Performance Study of Software

increase to the point of offsetting a”, benefit, DDMT and Hardware Prefetching Techniqué®oc. ISCA-21Apr.
should be suppressed. A mechanism for doing so 1994.

dynamically is straightforward but beyond the scope of[CS+99] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Si-
this paper. multaneous Subordinate Microthreading (SSMProc.

ISCA-26 May 1999.
DO+95] P. Dubey, K. O'Brien, K. O'Brien, and C. Barton. Single-

One interesting metric is the percentage of fetched DD Program Speculative Multithreading (SPSM) Architecture:
instructions that are eventually integrated — lower than gzrggilf;é%sisteggggin&Grained MultithreadingProc.
60% for all benchmarks and as low as 15% &mm- i un. ;

. . e F93 M. Franklin. The Multiscalar Architecture. Ph.D. Thesis.
press Low integration rates indicate that DDTs fetch ™% 1 LR 200 B e g6, Complter Sciences
and execute many instructions unnecessarily. This is Dept., University of Wisconsin-Madison, Nov. 1993.
due in part to working set differences in data sets use@HK+92] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nish-
for DDT selection and execution, but more so to the imura, Y. Nakase, T. Nishizwa. An elementary processor ar-
. ! . chitecture with simultaneous instruction issuing from
mhe_rently greedy nature of DDTs. A_S we mentl_o_ned multiple threads. In Proc. of the 19th Annual International
earlier, DDTs represent control greedily, not explicitly. Symposium on Computer Architecture, May 1992.

A DDT may contain Computations that exist along [LS+95] M. Lipasti, W. Sch_mid't, S. Kunkel an_d R. Roediger. SPAID:

dynamically exclusive paths However. rather than take Software Prefetching in Call and Pointer Intensive Environ-
. . L L ments.Proc. MICRO-28 Nov. 1995.

the time to SynChron'Ze with the Ong'nal Pfogfam thread[LM9~’:3] C-K. Luk and T. Mowry. Compiler Based Prefetching for

or to execute a piece of code to decide which computa- Recursive Data-StructureBroc. ASPLOS-70ct. 1996.

tions to execute and which to discard, it simply executegMS97] A. Moshovos and G. Sohi. Streamlining Inter-Operation

all of them. The result is some amount of wasted work. Memory Communication via Data-Dependence Prediction.

Note. DDT effici . ttied t in th db h Proc. MICRO-30QDec. 1997.

0 e_' - etciency inottied to _m_am rea . ranc [ML+92] T. Mowry, M. Lam and A. Gupta. Design and Evaluation of
prediction accuracy. In fact, efficiency may increase a Compiler Algorithm for PrefetchingProc. ASPLOS-5
with decreased prediction accuracy. We are investigat- Oct. 1992.

i i i i [PG99] J.-M. Parcerisa and A. Gonzalez. The Synergy of Multi-
ing DDT extensions for reducmg this waste. threading and Access/Execute DecoupliRgoc. HPCA-5
Jan. 1999.
[RG+82] B. Rau, C. Glaeser, and R. Picard. Efficient Code Generation
6 Summary For Horizontal Architectures: Compiler Techniques and Ar-

chitectural Support. Proc. ISCA-9, Apr. 1982.

As initiall d the d led y éRB+96] E. Rotenberg, S. Bennett and J. Smith. Trace Cache: A Low
s Initially proposed, the decoupled access/execut Latency Approach to High Bandwidth Instruction Fetching.

architecture has not been widely adopted. However, its Proc. MICRO-29 Dec. 1996.

motivating observations and key features have formedRM+98] A. Roth, A. Moshovos, and G. Sohi. Dependence Based
the basis for many load latency tolerance techniques. grc"ifeltggg‘g for Linked Data StructureBroc. ASPLOS-8
The latest 'n_camat'on 1S data-(_jrlven mUIt'th_readmg[RSOH A. Roth and G.S. Sohi. Speculative Data-Driven Multi-
(DDMT). Unlike other recent variants, DDMT imple- threadingProc. HPCA-7 (to appear)Jan. 2001.

ments decoupling at the microarchitectural, rather thariRS00] A. Roth and G.S. Sohi. Register Integration: A Simple and

architectural, level, freeing the access stream from cor- Efficient Implementation of Squash ReuBeoc. MICRO-33
(to appear) Dec. 2000.

rectness .oblllgat|on_s. This ad_ded flexibility minimizes [SP+98] S. Sastry, S. Palacharla and J. Smith. Exploiting Idle Floating
synchronization with the main thread and promotes Point Resources for Integer Executi@roc. PLDI ‘98, Jun.
higher degrees of decoupling and, consequently, latency 1998.

tolerance. [S82] J. Smith. Decoupled Access/Execute Computer Architec-

ture.Proc. ISCA-9Jul. 1982.
[SB+95] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Proces-
sors.Proc. ISCA-22Jun. 1995.
ACknOWIedgements [SD98] Y. Song and M. Dubois. Assisted Execution. Technical Re-
port #CENG 98-25, Dept. of EE-Systems, University of
. . . . Southern California, Oct. 1998.
This work was supported in part by National Science[smog) J. steffan and T. Mowry. The Potential for Using Thread

Foundation grants MIP-9505853 and CCR-9900584, Level Data-Speculation to Facilitate Automatic Paralleliza-

donations from Intel Corp. and Sun Microsystems, the tion. Proc. HPCA-4 Feb. 1998.

University of Wisconsin Graduate School and Intel [TE+*96] D.Tullsen, S.Eggers, J.Emer, H.Levy, J.Lo, and
. R. Stamm. Exploiting Choice: Instruction Fetch and Issue on

Ph.D Fellowships. The authors thank the anonymous an Implementable Simultaneous Multithreading Processor.

referees for their reviews. Proc. ISCA-23May 1996.

[YM95] W. Yamamoto and M. Nemirovsky, Increasing Superscalar
Performance Through Multistreamirigroc. PACT-95Jun.
1995.

References [ZS00] C. Zilles and G. Sohi. Understanding the Backward Slices of
Performance Degrading InstructiorBroc. ISCA-27 Jun.
[AS+93] S. Abraham, R. Sugumar, D. Windheiser, B. Rau and R. 2000.

Gupta. Predictability of Load/Store Instruction Latencies.
Proc. MICRO-26Dec. 1993.
[BA97] D. Burger and T. Austin. The SimpleScalar Tool Set, Ver-

	1 Introduction
	2 From Decoupled Architecture to Speculative Decoupled Microarchitecture
	3 Characterizing Speculative Miss Streams
	4 An Implementation of Miss Decoupling: Speculative Data-Driven Multithreading
	5 Performance Evaluation
	6 Summary

