Appears in the Proceedings of the 33rd Annual International Symposium on Microarchitecture (MICRO-33), Dec. 10-13, 2000.

Register Integration: A Simple and Efficient Implementation of Squash Reuse

Amir Roth and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin - Madison
{amir, sohi}@cs.wisc.edu

Abstract valid work from sequentially younger computations to be
.))) . o i aborted, orsquashedand re-executed. Register integration
Register integration (or simply integration) is a mechanism for can be used to performquash reus§2, 18], to salvage the
incorporating speculative results directly into a sequential resits of squashed computations that are in fact control- and

execution using data-dependence relationships. In this pape e ; o :
we use integration to implement squash reuse, the salvaging OE#ata independent of the particular mis-speculation event that

instruction results that were needlessly discarded during thePréciPitated the recovery action.

course of sequential recovery from a control- or data- mis- i) : -
speculation. Many processors implement speculation using a level of indi-

rection that maps the architectural register name space to a
squashed instructions to remain in the physical register filelarger physical register storage space. The larger physical
tions of the squashed path, integration logic examines eaciall but one of which is speculative) to simultaneously co-
instruction as it is being renamed. Using an auxiliary table, exist. Successful speculation involves the promotion of newer
this circuit searches the physical register file for the physical mappings to non-speculative status; mis-speculation recovery
register belonging to the corresponding squashed instance ofestores prior mappings and recycles the speculative storage.
the instruction. If this register is found, integration succeedsmtegraﬁon is motivated by the observation that only restora-
and the squashed result is re-validated by a simple update Ofion of previous mappings is required for correct recovery. If

g]ned rrilg?/r%?/;gzlse.thoenggt-lg}?c?r[jaet?gb?en A?fﬁ%’%’ggh'iig%?grlgltﬁhe speculative values are left intact past a recovery event, then
Integration reduces contention for queuing and executionShOUId the processor re-trace part of the squashed path and dis-

resources, collapses dependent chains of instructions angover that some of the instructions were useful after all, only
accelerates the resolution of branches. It achieves this usinghe corresponding mappings will need to be restored; the val-
only rename-table manipulations; no additional values are ues themselves will already exist and will not need to be re-
read from or written to the physical registers. computed.

Our preliminary evaluation shows that a minimal integration
configuration can provide performance improvements of up tol he matching of squashed results with re-traced instructions is
8% when applied to current-generation micro-architectures accomplished using a second mapping into the physical regis-
and up to 11.5% when applied to more aggressive micro-ter file, theIntegration Table (IT) The IT differs from the
architectures. Integration also reduces the amount of wastefukequential mappingnfap tabl¢ in a fundamental way. The
speculation in the machine, cutting the number of instructionsmap table describes the contents of the physical registers in a
executed by up to 15% and the number of instructions fetCheﬂansient, sequentially dependent way from the point of view

To implement integration, we first allow the results of

along mis-speculated paths by as much as 6%. of the architectural registers. In contrast, the IT describes the
contents of the physical registers in a persistent, order-inde-
1 Introduction pendent way that reflects the operations and dataflow relation-

ships used to create the values they contain. While an
Modern microprocessors rely heavily speculative execution instruction is being register-renamed, the IT is used to search
to achieve performance. Sequential processors (ones that exte physical register file for a physical register that holds the
cute sequential programs) speculate on both control and datagsult of a previous squashed instance of the same instruction.
executing instructions before all of their input dependences aréf a register is found such that its creating instruction instance
known with certainty. Successful speculation improves per-had the same physical register inputs as the currently renamed
formance by sparing the speculated instructions the wait ofnstance, then the currently-renamed instruction is “recog-
having their execution context verified. On the other hand,hized” as having been previously executed and squashed. The
unsuccessful speculation, anis-speculation hurts perfor- instruction isintegratedby setting the sequential mapping for
mance by forcing the processorrecoverto some prior non- its output to point to the physical register allocated during the
speculative state and start over. This paper pregegtster initial (squashed) execution. The integrated instruction is
integration a mechanism for overcoming an inherent ineffi- complete for all intents and purposes; it can commit as soon as
ciency in conventional sequential mis-speculation recovery. the retirement algorithm allows.

The inefficiency we speak of is born of a basic antagonisticintegration has many advantages. Obviously, it reduces con-
combination found in sequential programs. While a sequentiasumption of and contention for execution resources. It also
program is composed of margcally independent computa- collapses data-dependent chains of instructions: a data-depen-
tions, the stateof the program is only defined sequentially at dent chain of dependent instructions cannot be executed in a
dynamic instruction boundaries. Since mis-speculation recovsingle cycle, but a completed chain of instructions may be
ery is defined in terms of this sequential state, a mis-speculaintegrated in a single cycle. Integrated branch instructions are
tion in one computation inadvertently but necessarily causesesolved immediately, and should these be mis-predicted

branches the mis-prediction penalty and subsequent demarstate (dependence graph) of the program as defined by the reg-
on the fetch engine are also reduced. From an engineeringster mapping. The inputs of the oldest squashed instructions
standpoint, integration is simple to implement. It is unambig-are found in this mapping. The fact that the inputs are valid
uously correct, involves no explicit verification and does not validates the outputs, which are themselves inputs of younger
require additional data paths to either read or write any valuesquashed instructions, and so on. Integration is the process of
into the physical registers. In general, integration involvestransitively recognizing this validity, instruction by instruction.
modifications only to the register renaming stage in the pro-For every instruction sequenced by the processor, the integra-
cessor; the rest of the pipeline is oblivious to its existence. tion logic looks for the result of a squashed instruction that had
the same input mappings. If one is found, the corresponding
Our initial experiments show that a minimal integration con- physical register is “un-squashed” or “pulled back into the
figuration can achieve speedups of up to 8% on a representaequential flow” simply by setting the sequential mapping to
tive current-generation microarchitecture. We estimate thapoint to it. This action re-validates the physical register map-
the speedup increases to up to 11.5% for more aggressiveing, and makes the input mappings of squashed instructions
microarchitectures. Integration also reduces the level ofthat depend on it valid, allowing them to be subsequently inte-
wasteful speculation in a processor, cutting the number ofgrated. Notice that this same mechanism naturally avoids the
instructions fetched along mis-speculated paths by as much ag-use of instructions whose data inputs have been invalidated.
6% and the number of instructions executed by 15%. As the processor sequences instructions from paths different
than the squashed one, the results of these instructions create
The rest of the paper is organized as follows. The next sectiomappings to new physical registers not found in the squashed
presents the basic integration algorithm and argues for its cordataflow graph. These new mappings effectively “detach”
rectness properties. Section 3 addresses some issues involviitbse portions of the squashed dataflow graph that depend on
in the implementation of integration. In section 4 we evaluatethe corresponding architectural name, and prevent them from
integration using cycle-level simulation. Section 5 discusseseing integrated.
related work. Section 6 presents our conclusions.
Integration of a result requires locating a squashed instance of
. the corresponding instruction with input physical registers
2 Integration identical to those of the current instance being renamed. To
facilitate this search, integration relies on theegration Table
IT), an auxiliary structure that indexes and tags squashed
sults using instruction identity and input mapping informa-
ion. Each entry in the IT corresponds to a squashed instruc-
ion instance and contains that instruction’s PC and the
physical registers used for that instance’s inputs and output.
The IT also contains three fields whose purpose will be made
clear later:Jump-Targetwhich is meaningful only for control
instructions, andMemory-Addressand Memory-Valuefields
2.1 Basic Algorithm which are meaningful only for loads and stores.

In this work, we use integration to implement squash reuse, th
salvaging of results that were unnecessarily discarded durin
the process of sequential mis-speculation recovery. In thi
section, we discuss the basic integration algorithm an(i
describe the principles that allow it to accomplish its goal in a
straightforward way. We specifically address the integration
of load instructions, which requires additional attention.

During the course of processing, the program’s dataflom\we illustrate the basic algorithm using an example. Figure 1
graph, in the form of the results of its individual instructions, shows a short program fragment with four variables X,Y,Z and
is stored in the physical register file. At any point in the pro- W each allocated to a different logical register. For each
gram, the “active” vertices (results) of this graph are availabledynamic instruction, we show the instruction preceded by its
through a set of mappings that maps architectural registePC, the state of the Map and Integration Tables immediately
names to physical register locations and their values. Newafter the renaming of the instruction and descriptions of the
portions of the dataflow graph can only be attached to thesections taking place during sequential processing and in the IT.
“active” vertices. As each instruction is added to the graph, aThe shaded boxes and circled markers highlight the handling
physical register to hold its value is allocated and mapped taf instruction A5. The program undergoes three processing
the architectural output. Each instruction is annotated withphases. In the first, instructions Al through A8 are renamed
both the physical register holding its value and the prior physi-and executed; a new physical register is allocated to each
cal register mapping of the same architectural location.newly created result (marker 2). The second phase begins
Recovery entails backtracking over a portion of the programafter all the instructions have completed execution when a
restoring the previous mapping of each instruction’s outputbranch mis-prediction is detected at instruction A3. Instruc-
while recycling the storage for the squashed result. tions A8, A7, A6, A5 and A4 are recovered in reverse order
and the original mappings for their output registers are
Integration exploits the observation that mis-speculationrestored (marker 3). However, instead of recycling the physi-
recovery is obligated only to restore some prior sequentiakal registers, each result is entered into the IT and tagged with
mapping into the physical register file. That the results associthe instruction PC and physical register inputs used to create it
ated with the discarded mappings are also recycled duringmarker 4). Integration comes into play in the final phase.
recovery is an implementation convenience; leaving themHaving recovered from the mis-prediction, the sequential pro-
intact past the mis-speculation does not impact correctness (@fessor resumes fetching at the re-convergent point beginning
course, they must be recycled eventually lest the processait A5. We follow the renaming and potential integration of
“leak” away all physical registers). Assuming the results areeach instruction carefully.
kept, let us consider the point immediately after the comple-
tion of a recovery sequence. Just at this point, all squashethtuitively, the re-traced instance of Aghouldbe integrated
instructions are, in principle, still “attached” to the current since removing A4 did not change the value of Y. Indeed,

when A5 is renamed for a second time Y is mapped to 51In a four wide super-scalar machine, the integration decision
(marker 5), the same mapping it had during A5’s original, on these four instructions can be made in parallel. How this is
squashed execution (marker 1). Properly, the IT contains amlone is the subject of a future section. However, the example
entry for an instance of A5 with input physical register 51 demonstrated the four possible cases for super-scalar integra-
(marker 6). By comparing PC/input-register tuples from thetion: basic integration of an instruction (A5), basic non-inte-
dynamic instruction and map table with the corresponding ITgration of an instruction (A6), the integration of an instruction
tuples (marker 7 with 8, marker 5 with 6), we determine thatthat depends on an integrated instruction (A7), and the non-
integration can take place. The act itself consists of setting théntegration of an instruction that depends on a non-integrated
output mapping of A5 to the physical register originally allo- instruction (A8).

cated for it, 53 (marker 9). The IT entry is removed so that the

register will not be integrated by another instruction. 2.2 Integrating Loads

When A6 is renamed for the second time, it finds its input X an jntegrated instruction can be thought of as having two exe-
mapped to register 50. Changing the path has removed A4 angltions: aphysical executiowhere the instruction is actually
changed the value of X with respect to A6, invalidating it. executed and then squashed, andumhitectural executiofin
This invalidation is naturally reflected in the IT, as no entry for \ynich the integrated instruction is supposed to execute but
A6 W!th an input of 50 is found. The A6 IT entry has 52 as its joesn't actually do so. For most types of instructions, the
input; 52 was created by A4, which was squashedratde- 5gorithm we have shown so far is perfectly safe. The combi-
traced Without a match, the instruction is leftin the IT untilit 5tion of operation and valid input values, denoted by PC and
is evicted. A new physical register, 57, is allocated to the cur-pnysical registers respectively, guarantees that the results of
rent instance of A6. the physical execution are identical to those that would be pro-
.) . duced in the architectural execution, allowing the former to be
Recall, when we integrated A5, we entered its output (53) intogpstituted for the latter. Loads are the exception. The inte-
the map table. That action set the stage for A7, an instructionyration of a particular load is not guaranteed to be safe because
that depends on A5, to be integrated now. The squashed vek confiicting store may have executed between the load’s phys-
sion of A7 was executed with input register 53, the output ofic4| and architectural executions. A load that is either blindly
the squashed AS. When A7 is re-traced, its input is again S3ptegrated despite such a store conflict or that experiences a
thanks to the integration of A5. A7 is integrated in exactly the post-integration conflict is termenhis-integrated Mis-inte-
same manner that AS was. grations jeopardize correctness.

T.he final instruction in the group, AS, should not be integrated| g54s present a problem because physical register names are
since it depends on A6, which was itself not integrated. Suchot syfficient to detect load/store collisions. There are two
indeed is the case. When A6 wast integrateda new map- yays to ensure that mis-integrated loads are not allowed to
ping (57) was created for X. This new mapping prevents A8yetire. The first is to re-execute all integrated loads and treat a
from being integrated, much like the removal of A4 changedcnange in the output value as a mis-speculation. The second is
the mapping that prevented A6 from being integrated. to store data addresses (and potentially values) with loads in
the IT and use stores to invalidate matching loads. The first

Insn Action Dynamic Insn Map Table Integration Table IT Action
X Y VA wW PC 11 12 (0]

Rename/Alloc Al: X=0; 50 47 48 49 No Match
Rename/Alloc A2: Y=1; 50 51 48 49 No Match
Rename/Alloc A3: if(Z2==0) 50 51 | 48| 49 No Match
Rename/Alloc A4: X=1; 52351 48 49 No Match
Rename/Alloc A5: Y++; 52¥ 53 | 48 49 No Match
Rename/Alloc AG: X++; 54 53 48 49 No Match
Rename/Alloc A7: W=Y*Y, 54 53 48 55 No Match
Rename/Alloc A8: Z=X*Y; 54 53 56 55 No Match
Recover A8. Z=X*Y, 54 53 48 55 A8 54 53 56 Enter
Recover A7 W=Y*Y, 54 53 48 49 A7 53 53 5% Enter
Recover AB: X++; 5 53 48 49 Af 52 54 Enter
Recover A5 Y++; 52 51 48 49 A5 | 51 53 Enter
Recover A4 X=1; 5 51 48 49 éﬁb 50 52 Enter
Rename/Integrate eAS: Y++; 50€¥53 | 48 49 ASW 51 53 Match/Remove
Rename/Alloc AG: X++; 57 53 48 49 A6 | 52 54 No Match/Leave
Rename/Integrate A7: W=Y*Y, 57 53 48 55 A7 | 53 | 53| 55 Match/Remove
Rename/Alloc A8: Z=X*Y; 57 53 58 55 A8 | 54 | 53| 56 No Match/Leave

FIGURE 1. A Working Example of Integration. Shows the three-phase processing of a series of instructions.
The three phases are: (i) initial execution (ii) recovery and (iii) squashed-path re-execution. The shaded
guantities and circled markers highlight the actions surrounding instruction A5.

method uses a simple IT but reduces the positive impact ofion. The reasoning behind this decision is that it is the inte-
successful integration, forcing integrated loads to consumgration of completedinstructions that contributes most to
execution bandwidth. The second increases the potentigberformance. Integration provides two main performance ben-
impact of successful integration, but complicates the IT some«fits: it allows instructions to bypass the issue engine and it
what. Our framework models store invalidations. collapses dependent chains of instructions. Neither of these
benefits applies to instructions that have not issued and only
. the first applies to instructions that have issued but not com-
3 Implementation Aspects pleted. However, the number of instructions likely to be inte-

. rated while in this post-issue/pre-completion state is small,
In this section we discuss several implementation aspects Q

int tion includi I dificati that t b de t nd in return for forfeiting them, we simplify the handling of
Integration Including all modifications that must bé made 10 ,aqrated instructions by assuming that all integrated instruc-

the base microarchitecture, the integration circuit itself, andy,ng are complete. Faulting instructions are also excluded
the mechanism that ensures the safe integration of 0ads. oy the IT, since faults may have side effects that would need

to be reproduced on integration.
3.1 Base Micro-architecture Requirements

One of the principles of integration is that it allows speculative
Integration is not a technique that can be applied to all specuphysical registers to “survive” recovery. This means that dur-
lative microarchitectures. Its implementation requires that theing recovery output registers of instructions that are entered
base microarchitecture allow speculative results to remairinto the IT are not reclaimed and added to the free list as usual.
intact past a mis-speculation recovery action and support theiowever, we must be explicit about who is responsible for
out-of-order allocation and freeing of speculative storage. eventually freeing the registers of instructions thet in the

IT, so that these registers are not “leaked”. The policy is actu-
These requirements disqualify many current microarchitec-ally quite straightforward. The IT assumes responsibility for
tures. In-order speculative microarchitectures like Sun'sthe physical registers of its entries. If an entry is evicted with-
UltraSparc-lll that use working (future) register files indexed out having been integrated, it physical register is added to the
by architectural register number both disallow arbitrary free list. Conversely, if an entris integrated, responsibility
assignments of physical results to architectural names an¢br the register returns to the re-order buffer, which handles it
overwrite the mis-speculated instructions results during recovin the usual way. One caveat is that the IT entry of an inte-
ery. Intel's P6 [10] core processors and HAL's SPARC64 V grated instruction must be cleared so that no other sequential
[7] keep speculative results in the re-order buffer, preventinginstruction will attempt to get ownership of the corresponding
their preservation past a mis-speculation recovery. 1BM'sregister (the output of two simultaneously active instructions
Power [19] processors and (we believe) AMD’s K7 [5] have may not be allocated to the same physical register). Notice,
physical register files separate from the re-order buffer, buthe change of ownership mechanism also allows the same
also have an architectural register file and require that physicahstruction to be repeatedly squashed and integrated.
registers be allocated and freed in-order. Microarchitectures
with physical register models thaénsupport integration are The next subsection describes the integration related modifica-
the out-of-order Alpha processors starting with the 21264 [11]tions to the register renaming logic. Here, we describe what
those of MIPS beginning with the R10000 [21], and (we happens to an instruction after it has been integrated which,

believe) Intel's Pentium 4 NetBurst microarchitecture [9]. having decided that only completed instructions can be inte-
grated, is not much. An integrated instruction is entered into
3.2 A Micro-architecture with Integration the re-order buffer marked as completed and the integrated

physical register is set as its “current mapping”. Integrated

We now examine a microarchitecture that includes integratiofoads (and stores) are allocated load (or store) queue entries
and comment on changes in the flow of instructions throughthat are filled using the ITMemory-Addressand Memory-

the modified pipeline. A pipeline with integration is shown in Valuefields and marked as completed. These entries, too, are
Figure 2(a); the structural modifications and new register tagordinary. Finally, if the integrated instruction is a branch, the
and data paths are in bold. We work from the back of the pipeJesolution and potential recovery sequences are started imme-
line to the front, explaining how instructions become candi- diately using theJump-TargetT field as a recovery address.
dates for integration before dealing with the flow of integrated The integrated instruction can bypass the out-of-order execu-

instructions. A later subsection is dedicated to explaining thetion core; it does not need to be allocated to a reservation sta-
integration circuit itself in detail. tion, scheduled, executed, or written back.

Since integration deals with salvaging the results of squashe@ 3 Integration Circuit

instructions, the most natural time to insert instructions into

the IT is during mis-speculation recovery. Implementation of The most delicate piece of the integration mechanism is the
IT insertion is straightforward for micro-architectures that integration circuit itself. The integration circuit examines each

implement recovery using serial rollback. Most microarchi- dynamic instruction and decides whether or not that instruc-
tectures, however, including the Alpha 21264 [11] and MIPStion may be integrated. Of course, it must do so for multiple,

R10000 [21], implement recovery as a monolithic copy from apotentially dependent instructions in parallel. In this section,
checkpoint. IT insertion is slightly more involved in this case, we describe one possible implementation of this logic and its
but its particulars do not affect integration performance. Forcomplexity. We begin with a scalar description of the circuit,

clarity, we explain the process as serial. before proceeding to the super-scalar case.

One important qualification to the IT entry procedure is the Scalar register renaming occurs in two logical steps. First, an
exclusion of all instructions that have not completed execu-instruction’s logical inputs are renamed to physical outputs

using lookups in the map table. Second, its logical output isnewly allocated physical register. For example, in a group of
allocated a new physical register and this new logical-to-physfour two-input, one-output instructions each of the second
ical mapping is entered into the sequential map table, allowingnstruction’s inputs has to be compared with the first instruc-
future instructions that need the value to obtain their inputstion’s output, each of the third instruction’s inputs has to be
from the correct location. We call the two stagegut routing compared with the outputs of the first two instructions and
and output allocation respectively. Integration adds a piece each of the fourth instruction’s inputs has to be compared with
called output selectiorin which the output mapping must be the outputs of the first three instructions. The total number of
chosen between a newly allocated physical register and aomparisons for this case is 12 and in genéraN(N-1)/2,
physical register obtained from an IT entry. The output selec-with | the number of inputs per instruction ai the super-
tion circuit occurdogically afterthe input routing circuit since scalar width or the number of parallel renaming operations. In
the integration test must compare the input physical registergeneral, the depth of the circuit is linear withand the num-
of the sequential instance with those in the IT entry. However,ber of comparisons grows S,
the scalar implementation of integration can be thought of as
occurring in one of two ways. In the first, output selection is In addition to the conventional dependence-check circuit that
implemented serially after input routing with the integration compares logical registers, integration requires that we imple-
table indexed by instruction P@nd input physical registers. ment output selection and any corrections it might imply for
In the second, output selection is split inf lookup which input routing for subsequent instructions. Recall, for the sca-
happens in parallel with input routing, and isegration test lar integration test we compared each IT entry input with the
which occurs logically after it. In this organization, shown in corresponding register retrieved from the map table. In the
Figure 2(b), the IT is indexed BYC onlyand the physical reg- super-scalar case, we must also compare it to the physical reg-
ister numbers are used to match tags. Both schemes likelister outputs for all integration candidates of all prior instruc-
require pipelining register renaming into at least two stages. tions in the group. Note, we do not have to compare the
candidate inputs with the newly allocated physical registers
The merits of each implementation are open to debate in theorresponding to each prior instruction: the situation in which
scalar realm, but in a super-scalar environment only the secondn instruction is dependent on a prior instruction in the group
is viable. While the first scheme interleaves and serializes thend is integrated while the prior instruction is not is obviously
input routing and output selection decisions that must be mad@mpossible. Nevertheless, although the priority encoding
for each instruction, the PC-only indexed scheme permits alepth of the circuit is stilN, the superscalar width, the number
parallel prefix implementation similar to the one used to super-of physical register comparisons now grows with bbttand
scalarize conventional register renaming. Let us review conthe number of possible IT matchéd, The precise formula is
ventional super-scalar renaming. Super-scalar renaming is* ((gN(N-l)IZ)M + N) * M); the growth of the function is
more complex than scalar renaming because its input routingN2M2. The complexity of the circuit is very close to that of
decisions must reflect intra-group dependences. To do saggister renaming for a direct-mapped IT, but diverges for
dependency-check logic acts in parallel with output allocation.higher-associativity implementations. For instance, a four-
This logic compares the logical input of each instruction in thewide machine with a direct-mapped IT requires 20 physical
group with the logical output of each previous in-group register comparisons to implement integration. The same
instruction; a match overrides the initial input routing retrieved machine with a 2-way IT needs 64 comparisons. Just for
from the map table and routes the input to the appropriatescale, an 8-wide machine with a 4-way IT requires 960 com-

(@) (b)
P Integration Table Instruction Map Table Free List
@
= Rename
2 Fetch PC 11 12 O
(0]
% Integrate!— -
[S]
| L= v
2 PC 11 12 O X Y Z W
ol E|l3l = A5]51 53 [50]53[48149] [57]56]
gl slgls \/
w 0| S| © LQ‘
o c ol © » N
5| & |
|2 >
£ _ - 4

% 8 Instruction Active Lisk—»
= Recover] PC 11 12 O PC 11 12 O X Y Z W

Commit, free old physical register A5|51] [53] [AS]51] [53] [50153148149] [57]56]

FIGURE 2. Implementation Aspects. (a) A micro-architecture with integration. Integration-specific
modifications in bold. In addition to the actual integration table (IT) and modified rename logic, there are
additional paths from the instruction ordering buffer (ROB) to the IT that are used during recovery, a path
from the IT to the free list, and paths between the IT and the load and store queues. (b) Scalar, PC-indexed
integration circuit. A scalar integration circuit in which the IT and map table are accessed in parallel. An
extension of this circuit implements super-scalar integration. The diagram traces the IT, map table and free
list, as well as the instruction itself through the two steps of integration-enabled register renaming. At the top
of the figure, the instruction shown is raw and the structures are as they appear before the instruction is
renamed. At the bottom, the instruction is renamed and the structures reflect that fact.

parisons! Certainly, a highly associative integration circuit is squashing, integration must be careful not to confuse a value
challenging to build. In the evaluation section, we quantify the mis-speculated instruction and its dependent instructions with
performance impact of higher associativity. correctly executed squashed instructions. IT entries that corre-
spond to data mis-speculated results must not be integrated.
We should mention here that some of the complexity of theOne broad solution to this problem would be to not enter
integration circuit may be moved off-line into the IT itself. squashed instructions into the IT during recovery from these
For instance, the IT could internally perform the intra-group kinds of mis-speculations. However, this solution is too harsh
dependence checks and store groups of dependent instructiossice it prevents the correctly executed instructions that were
in a kind of “trace” that can be integrated usil§*M com- lost during recovery from being salvaged. An effective trick is
parisons. However, IT management becomes much moréo enter all completed instructiorexceptfor the value mis-
complex in this case, and there is the added problem of choosspeculated instructioitself into the IT. This omission effec-
ing the grouping of instructions into traces. An investigation tively “detaches” all dependent instructions from possible inte-
of such optimizations is outside the scope of this work. gration, while leaving all independent instructions intact.

There is an interesting interaction between integration and
another technique for salvaging work lost to a data mis-specu-

When first presenting integration, we remarked that special@tion, selective squashin@, 12, 15, 16]. In selective squash-
support must be provided to ensure that loads that have bedRg: instructions are kept in reservation stations until
invalidated by intervening stores are removed from integratiorf€tirement allowing them to simply re-issue as data mis-specu-
consideration. At the very least, the mis-integration should beations are _resolvegj. If sele"ctwe squashisgmplemented,
detected so that alternative corrective action can be takerintegration is not “activated” during data mis-speculations
Mis-integration detection and avoidance are implementecfiNce the instructions are not squashed and re-fetched. Inte-
using a simple extension to the processor’s basic load speculgration, on the other hand, still handles control mis-specula-
tion mechanism. Processors that supfoed speculation ~ tON squashes which, quite conveniently, cannot be handled by
(advancing loads past incomplete stores) detect store/loag€lective squashing. Integration and selective squashing com-
ordering violations as follows. The load and store queues conP!ément each other nicely. However, we do not explore their
tain address and value fields. Completed stores check the|pteraction experimentally; our simulations model full squash-
address and value against address/value payswrigerpre- g for all mis-speculations.

viously completed loads. An address overlap coupled with a

value mismatch signals a memory ordering violation which is3.6 Setting the Size of the Physical Register File
handled by replaying the load in some way.

3.4 Safe Load Integration via Store Invalidation

A final implementation note concerns the size of the IT and its
The solution handles two cases. The mis-integration detectiomelationship to the total size of the physical register file. To
case covers conflicts with stores that compkfter the load avoid resource stalls, the number of physical registers should
has been integrated. Mis-integration detection is implementede equal to the maximum number of values (both architectural
naturally by the native load speculation mechanism. Recalland speculative) that can be “in play” at any time. For a spec-
loads are entered into the IT along with their address and valuelative machine this is equal to the number of architected reg-
fields from the load queue. When they are integrated, thesésters plus the maximum number of renamed in-flight
fields arerestored tothe load queue. To a completing store, instructions (the size of the re-order buffer). Now, the IT is
therefore, an integrated load looks just like any other com-simply a mechanism for keeping physical registers “in circula-
pleted load and conflicts are handled in the usual way. Mistion” for longer periods of time; values in the IT are still con-
integration avoidance targets conflicts with stores that comsidered “in play”. Consequently, to avoid resource stalls in a
pletebeforea load is integrated. To implement avoidance, we micro-architecture with integration, the size of the physical
simply extend the store-invalidation procedure to include IT register file should be equal to the number of architected regis-
loads. The IT essentially “snoops” completed stores, matchiers plus the size of the re-order buffdusthe size of the IT.
ing their address/value pairs with the Memory-Address/Mem-In our simulated configurations, we use this formula to ensure
ory-Value pairs of IT loads. An address match/value that the machine never stalls for lack of a free physical register.
mismatch causes the invalidation of the corresponding load,
preventing it from being integrated. Detection and avoidance .
can also be implemented using purely address-based criteria4 Performance Evaluation

Our results show that most mis-integrations are avoided'Ve evaluate the potential performance impact of integration
Those that aren't, while not impacting correctness canusing cycle-level simulation. We present a full set of results

degrade performance as they are equivalent to normal load d‘pr one specific design meant to represent a potential current-

value mis-speculations. Our performance evaluation sectiorg?nﬁr”“lt'orll (?{ veéy near futgret)h mll_lc_rgprpcessor. We theg
will measure the prevalence of mis-integration. rietly 100k at two dimensions in the 11 design space, size an

associativity. To be fair, we quantify the adverse performance
. . . effects of any additional pipeline stages required by integra-
3.5 Handling Data Mis-Speculations tion. Finally, we try to project integration’s impact on more

)) .) .) aggressive future-generation microarchitectures.
The discussion of load integration brings up an important note

regarding integration and the way it must deal with instruc- .

tions squashed due to data mis-speculations like speculativd-1 EXxperimental Framework
memory-ordering violations [14, 22] and value mis-specula-
tions [12]. Specifically, for micro-architectures like the Alpha
21264 [11], in which data mis-speculations are handled b

We evaluate integration using the SPEC2000 integer bench-
);nark suite. The programs are compiled for the Alpha EV6

architecture by the Digital UNIX V4&c compiler with optimi- lations. These numbers give a feel for the degree of mis-spec-
zations-O3 -fast . We use the test datasets for reporting ulation in each program and its causes. Comparing these
performance for all benchmarks excegrlomk There we are groups of numbers pair-wise gives an idea of the overall effect
forced to use the training set because the test set contains fof integration on speculative (mis-speculative) processor activ-
and exec calls that our simulation environment does not supity. The next two parts measure the activity and effectiveness
port. Where multiple test data sets are given we use the longesf integration using more direct metrics. We report absolute
running one, specificallplacefor vpr andkajiya for eon We counts of instructions integrated, loads integrated, and mis-
simulate all programs in their entirety. predicted branches integrated (and ostensibly, immediately
resolved).
The simulation environment is built on top of the SimpleScalar
3.0 [1] Alpha toolkit. The cycle-level simulator models an out- The shaded at the bottom computes the characteristic and per-
of-order machine similar in organization to an unclusteredformance metrics of integration and its impact on perfor-
Alpha 21264 [11] with nominal stages fetch, register renamemance. Thecontribution rateis the number of instructions
and dispatch, schedule, execute, writeback and commit. Thetegrated as a percentage of the total number of instructions
out-of-order scheduling logic speculates loads aggressivelygommitted; it is the amount of work integration contributes to
issuing them even in the presence of prior stores with unavailthe architectural execution of the program. Hadvage ratds
able addresses. A mis-speculation causes the load and alumber of instructions integrated as a percentage of squashed
downstream instructions to be squashed and re-fetched. Oyand completed) instructions and measures the rate at which
model does not include a dependence-speculation mechanisimtegration candidates are harvested. The contribution and sal-
that may reduce the incidence of memory-ordering violationsvage rates measure both a program'’s inherent suitability for
[3, 14, 22]. However, we don't believe that the inclusion of integrationand our mechanism’s ability to capture integration
such a mechanism would take away a significant portion of thecandidates. The final three metrics measure the percentage of
impact of integration, since most integration candidates arenstructions fetched, instructions executed and total execution
produced by control mis-speculation. The recovery mechatime saved by integration.
nism itself is modeled as serial with bandwidth equal to com-
mit. Recovery stalls renaming, but execution and retiremenfThe performance figures show that integration is equally effec-
from the head of the machine may continue. We model ative on all benchmarks. On some, likzip, vpr, crafty and
memory system with non-blocking caches, finite write-bufferstwolf, it cuts execution time by upwards of 5%. On others, it
and miss-status holding registers (MSHR), and cycle accuratachieves speedups of less than 1%. To explain this behavior
bus utilization. Table 1 shows the simulation parameters inwe appeal to the structure of the programs and to the contribu-
detail. IT configuration is specified inline with the respective tion and salvage rates, which help correlate this structure with
presentation of results. The Alpha has 64 architectural regissuitability for integration. There are some programs that for
ters; the number of physical registers for a given configurationstructural reasons simply cannot take advantage of integration.

is therefore always set to be 64 + ROB size + IT size. One possibility is that the programs have few squash-causing
branch mis-predictions and memory-ordering violations.
4.2 Base Configuration Results Another is that branch mis-predictions are present but that the

code within the conditional arms is so long that the processor
Table 2, which is split into two for readability, shows the per- doeés not have time to fetch and execute the re-convergent
formance impact of integration using a 256-entry direct- €910N before the branch is resolved. Finally, if the re-conver-
mapped IT on the configuration described above. Data is pre9€nt regionis reachable along the mis-speculated path, it is
sented in four main parts. The first two characterize the perforP0Ssible that it contains no data-independent instructions, the
mance of the base and modified system in terms of instruction§nes that can later be integrated.

fetched and executed, branch mis-predictions and branch mis- . .
prediction resolution latency, and total memory-ordering vio- How do the benchmarks break down according to these crite-

ria? Bzip2 for instance, encounters branch mis-predictions

Front-End Symmetric 16K-entry combined 10-bit history gshare and 2-bit predictors. 2K entry, 4-way asspciative
BTB, 32 entry return-address-stack. 3-cycle fetch. 32-entry instruction buffer. Up to 8 instructionf from

two cache blocks fetched per cycle. A maximum of one taken branch per cycle. 8-wide singl¢-cycle
decode. Direct, unconditional jump mis-predictions recovered at decode.

Issue 8-way superscalar out-of-order speculative issue with a maximum of 128 instructions or 64 loads or 32
Mechanism stores in flight. 2-cycle schedule/register read. Loads speculatively issue in the presence of earlipr stores
with unknown addresses. The load and subsequent instructions are squashed and re-fetched on fp memory
ordering violation. Recovery from all forms of mis-speculation is serial with a bandwidth of 8 instrugtions

per cycle. Recovery stalls register renaming, but execution of unrecovered instructions may prdceed in
parallel. Store to load bypass takes 2 cycles. Memory and control instructions have the highest scheduling
priority. Priority within a group is determined by age.

Memory 32KB, 32B lines, 2-way associative, 1-cycle access L1 instruction cache. 64KB, 32B lines, 2-way gssocia-
System tive, 2-cycle access, L1 data cache. A maximum of 16 outstanding load misses. 16-entry store byffer. 16-
entry ITLB, 32-entry DTLB with 30-cycle hardware miss handling. Shared 1MB, 64B line, 4-way as§ocia-
tive, 12 cycle access L2 cache. 70-cycle memory latency. 32B bus to L2 cache clocked at procefsor fre-
guency. 16B bus to memory clocked at 1/3 processor frequency. Cycle level bus utilization modelpd.

Functional Units| 8 INT ALU (1), 2 INT mult/div (3/20), 3 FP add (2), 1 FP mult/div (4/24), 4 load/store (2). The FP aqders
(latency) and all multipliers are fully pipelined.

TABLE 1. Simulated machine configuration.

infrequently (fewer than once every 400 instructions). It falls a strange case. It executes many instructions along squashed
under the first categoryBzip2s salvage rate is close to 40%, paths but, since many squashes are due to load mis-specula-
but it executeso few instructions along mis-speculated pathstion, integrates only a relatively low percentage of them. Per-
as compared to other programs that the overall pool of integraformance gain is achieved because many of the integrated
tion candidates is small. The second two categories are soménstructions are mispredicted branches. The four benchmarks
what more difficult to distinguish from one another, but five of we mentioned at the top execute a lot of work along mis-spec-
ulated paths and integrate that work at a high rate. These pro-

the other benchmarksjcg mcf parser perlbmkandgap fall

into them. These programs incur branch mis-predictions olgrams benefit the most from integration. Other factors that
memory ordering violations every 100 instructions or so (or contribute to the observed impact of integration but are diffi-
more frequently), execute (and squash) somewhat moreult to quantify directly are the parallelism in the high-integra-
instructions than they commit, yet permit the successful inte-tion regions and the extent to which the integrated instructions
gration of only around 20% of squashed instructiovertexis

help collapse dependence chains.

gzip vpr gcc _l mcf crafty parser
Committed instructions (M) 3367.27 1566./0 201564 250.63 4204.78 42P3.56
[Base | Fetched instructions (M) 5555167 3661.92 3816.01 527.67 8080.35 7b15.99
Executed instructions (M) 4114.58 206979 2327.15 292.49 5158.60 4854.72
Mispredicted branches (M) 16.61 20.48 22|93 .54 38.80 3.08
Misprediction resolution lat. (g 29.712 18.41 1685 33.37 21.48 .78
Mis-speculated loads (M) 2.50 0.00 0.p0 0jo1 1.35 _]7.14
[Base | Fetched instructions (M) 5376.16 3424)83 3709.65 500.96 7639.44 7374.33
+IT [Executed instructions (M) 3481.16 1774/06 2133.07 271.98 4649.16 4982.10
Mispredicted branches (M) 15.91 20.p0 22|97 .54 38.84 .05
Misprediction resolution lat. (g 27.56 15.66 15/86 31.96 19.27 .15
Mis-speculated loads (M) 3.29 0.%9 0.6 0]02 1.41 .20
Integrated instructions (M) 640.70 249.35 167.73 15.85 450.31 274.49|
Integrated loads (M) 177.12 90.69 55.60 3.28 200.29 78.19
Integrated mispredicted branches (M) 0.78 0.59 0.17 0.01 0.53 0.54
Integrated/committed (%) (contrib.) 19.0 15.9 8.3 6.1 10.6 6.5]
Integrated/squashed (%) (salvage) 61.9 46.7 29.1 24.0 45.3 28.3
Fetched insns saved (%) 3.2 6.6 2.8 3.7 5.2 1.9
Executed insns saved (%) 15.4 15.3 8.3 7.0 9.9 5.6
Execution time saved (%) 4.8 8.1 2.0 1.1 5.2 1.1
eon perlbmk E gap vortex bzip2 twolf l
"Committed instructions (M) 458.29 27684.03 116958 9808.12 8822.14 2p8.73
[Base | Fetched nstructions (M) 98782 5189055 173B.94 17977.94 10694.62 530.94
Executed instructions (M) 554.43 3030091 1227.20 11678.81 9067.05 495.94
Mispredicted branches (M) 4.34 261.86 9/80 34.98 24.40 P.89
Misprediction resolution lat. (G 14.32 60.65 24,82 1241 19.56 15.56
Mis-speculated loads (M) 3.92 13.66 0.15 43.15 Q.16 .32
Base | Fetched instructions (M) 957.42 5134183 172218 17111.10 10688.29 405.40
+IT [Executed instructions (M) 501.30 2896436 1184.67 991P.20 8917.34 28.77
Mispredicted branches (M) 4.31 262.p7 987 33.85 24.49 P.89
Misprediction resolution lat. (G 13.56 59.88 24135 10.36 19.10 .98
Mis-speculated loads (M) 3.714 13.56 0.18 40,14 Q.52 b3z
Integrated instructions (M) 41.35| 1308.39 3.80 157.36 132.05 22.35
Integrated loads (M) 12.37 435.56 1.04 34.93 44.27 8.38
Integrated mispredicted branches (M) 0.30 7.67 0.02 11.73 0.27 0.27
Integrated/committed (7)/0) (contrib.) 9.0 4.7 0.3 1.6 15 8.6
Integrated/squashed (%) (salvage) 44.8 22.4 22.4 7.3 334 41.4
Fetched instructions saved (%) 3.1 11 1.0 4.8 0.5 4.8
Executed instructions saved (%) 9.6 4.4 3.3 151 1.7 9.2
Execution time saved (%) 3.0 0.9 0.4 3.1 0.4 5.6

TABLE 2. Detailed Performance Impact of Adding a Direct-Mapped, 256-entry IT to a Current Generation
Microarchitecture. Raw quantities are listed in millions of events (M) or cycles (c).

To a first order, integration is primarily a technique for reduc- 4.3 Impact of Table Size and Associativity
ing the number of instructions executed in a program. To that

end it is fairly successful, reducing the consumption of execu-Two important parameters in the design of the IT are its size
tion bandwidth by 1% to 15%. However, a rather striking and associativity. ~ Since the IT always contains thest
trend is the incredibly strong correlation between the perfor-recently squashethstructions, its size determines the degree
mance of integration and its second order effect, reducing théo which it can salvage work froralder squashed regions. If
number of instructions fetched, which it does at rates that varythe IT is too small, older squashed instructions would be
from close to nil to near 7%. Integration is a technique thatevicted before they could be integrated. However, an overly
operates at decode/rename time. It is is therefore unable ttarge IT is also undesirable since it implies an overly large
eliminate the latency and bandwidth of fetch from the cost of(and overly slow) physical register file.
an integrated instruction. Integration frees up execution band-
width for new instructions, but does not directly free up more The effect of IT size on the performance impact of integration
fetch bandwidth to fetch those new instructions (it actually is shown in Figure 3(a). The trends certainly support our pro-
can, but only indirectly via the accelerated resolution of mis-gram-structure explanation for the bimodal nature of integra-
predicted branches). As a result, the reduced consumption dfon, as each group of benchmarks responds differently to
execution bandwidth generally leaves bubbles and open slotshanges in IT size. Those benchmarks that fail to benefit from
in the execution pipelines. Actual performance gain is moreintegration for structural reasons do so consistently, regardless
closely related to the number of instructions eliminated fromof IT size. More integration resources do not change the fact
processing completely. that the product of program and machine does not produce
many valid integration candidates. On the other hand, pro-
One opportunity for integration to do harm is by precipitating grams whose structure does allow them to support integration,
squashes through mis-integrations. However, our figures showan draw additional benefit from additional integration
that although memory-ordering squashes are sometimersesources. In general, however, a very large IT is not neces-
increased with integration, the number of introduced squashesary. A significant fraction of the benefit can be achieved with
is small in comparison with the number of loads integrated.a small IT that can buffer the squashed results from the last
On the whole, integratioreduceshe amount of mis-specula- mis-speculated region. For this set of programs and our
tion activity in the processor, cutting down the number of machine configuration, 256 entries (enough space to buffer
instructions fetched and (to a lesser degree) executed. Thigstructions from between 4 to 8 mis-speculated regions)
fact suggests two interesting applications for integration. Theappears to be sufficient. The corresponding number of physi-
first is as a dynamic power and energy reduction techniqueal registers is 448.
[13]. This use, of course, requires that the power characteris-
tics of integration itself be acceptable, something that has noThe associativity of the IT has two different uses that impact
yet been investigated. The second application is in a simultaperformance in two ways. From the standard viewpoint, asso-
neous multithreading (SMT) processor [6, 20], where severatiativity is a mechanism for more efficient management of col-
narrow front-ends share a large out-of-order execution engindisions in the IT. Specific to the integration circuit, however,
This could be an ideal environment for integration, which associativity can also determine the number of squashed
would reduce contention in the back end, and would requireinstances of the same static instruction that are simultaneously
only (replicated) narrow, low-complexity integration circuits. considered for integration. Although the first use does not

10 (a) Effect of IT Size on Performance Impact of Integration
<
T 8 O 64
=
B O 128
£ B 256
s 4 3 B 512
i . il | Il
()
() T mill | mun crrm
gzip vpr gee mcf crafty parser eon perbmk gap vortex bzip2 twolf
10 (b) Effect of IT Associativity on Performance Impact of Integration
S
5 8 a 1
>
& & =3 2
£ m 4
= 4
S
3 2
(&)
S
gzip vpr gee mcf crafy parser eon perbmk gap vortex bzip2 twolf

FIGURE 3. Effect of IT Size and Associativity on Performance Impact of IntegrationPercentage of
execution time saved using (a) a direct-mapped IT of four sizes: 64, 128, 256 and 512. (the corresponding
physical register file sizes are 256, 320, 448 and 704) and (b) a 256-entry IT with associativities 1, 2 and 4.

necessarily imply the second, we use associativity to quantifyAlthough the effects of pipeline depth increases take away
both IT eviction policy and integration circuit complexity in some of integration’s performance, such increases are by no
order to simplify the discussion. The impact of IT associativ- means mandatory. The access times of large physical register
ity on integration performance is shown in Figure 3(b). Thefiles can be controlled using techniques like replication [11,
trends are similar to those observed when changing the size df9] or banking [4] and while integration probably requires
the IT; the bimodal effect is still present for the same program-two-stage register renaming, it should not add stages to
structural reasons. The trends are much less pronounced, howtready pipelined renaming implementations.
ever. Except for in the cases gtipandvortex there is little
benefit to ha_/ing an_ything more c_omplex t_han a dire_ct-map_ped4_5 Impact of Base Microarchitecture
IT that supplies a single integration candidate per instruction.
That higher associativities that would overly complicate the one final piece of data we would like to provide is an estimate
integration circuit are unnecessary is good news indeed. of the impact of integration for more aggressive microarchitec-
tures. To model a microarchitecture that hopefully represents
4.4 Impact of Increased Pipelining a next-generation microprocessor, we begin with the organiza-
tion of our basic 8-way machine. We double the re-ordering
Earlier we mentioned that an implementation of integrationcapability by doubling the sizes of the instruction and memory
mayrequire register renaming to be pipelined into two stagesordering buffers; the number of physical registers is increased
Such an increase in pipeline depth will erode some of the peraccordingly. In the memory system, we double the size of the
formance gained by integration, and potentially induce absol2 cache to 2 MB and increase the number of simultaneously
lute slow-downs for programs that did not originally benefit outstanding misses to 16. To simulate a faster clock, we
from integration and would now be forced to pay for its imple- deepen the pipeline to 5-cycle fetch, 3-cycle decode/rename
mentation. The increased number of physical registers maand 4-cycle register read, lengthen cache array access time to 3
also require adding additional register read/schedule cycles. cycles, and slow raw memory access time and the memory bus
by 50%. In Figure 4(b), we compare the speedups achieved by
The impact of increased pipelining for both register renamingour baseline integration configuration (a direct-mapped 256-
and register read is shown in Figure 4(a). Integration-inducecentry IT) when applied to both the current-generation and
increased pipelining does mitigate the performance impact ohext-generation microarchitectures.
integration, even producing slow-downs for those benchmarks
which integration does not help. The dominant effect is anOne trend that is noticeable by its novelty is that, unlike
increase in the branch resolution latency which cuts integraincreasing IT size or associativity, a more aggressive micro-
tion’s fetch savings. There is an interesting interplay betweerarchitecturedoesincrease the impact of integration on pro-
increased pipelining and integration. On one hand, it length-grams that do not benefit from it in a more conservative imple-
ens the branch resolution latency, increasing the number ofnentation. The reason for this is that a more speculative
instructions that can be executed along mis-speculated pathmachine changes the structural behaviasf the program.
On the other, it slows down the executionaf instructions, Larger re-order buffers that provide more room for speculation
reducing the completion rate of squashed instructions. Thend a deeper pipeline that increases the time it takes to dis-
overall effect on the number of integration candidates and intecover and resolve branch mis-predictions combine to raise the

grations is small. total number of instructions executed along mis-speculated
10 (a) Effect of Increased Pipelining on Performance Impact of Integration

S

5 8 O Base

>

& 6 B Rename+1

g 4 [B RegRead +1

s 1

g 0 _-_Ei_zb_l_h_i

w 2

gzip vpr gce mcf crafty parser eon perbmk gap vortex bzip2 twolf
12 (b) Effect of Base Microarchitecture Aggressiveness on Performance Impact of Integration

<

- 10 O current-generation

=

3 8 B Next-generation

(]

E 6

'_

s 4

.

g o i il —ll

gzip vpr gee mcf crafty —parser eon perbmk gap vortex bzip2 twolf

FIGURE 4. Effect of Increased Pipelining and a More Aggressive Base Microarchitecture on Performance
Impact of Integration. Execution time saved using a direct-mapped 256-entry IT for (a) our base
microarchitecutre with integration-deepend pipeline and (b) a more aggressive base microarchitecture.

paths. That increases the number of potential integration caninvalidate the architectural buffer (this is a familiar theme).
didates and, in turn, successful integrations. For example, &hadow buffer tags and results can be re-used if the instruction
larger machine can mis-speculate longer along a conditiongproves to be control- and data- independent. Control indepen-
arm and is more likely to reach (and squash) the re-convergerdent instructions are found by associatively searching the
region along the mis-speculated path. Our results indicate thatquashed region of the shadow buffer; their data-independent
between 5% and 50%ore instructions are integrated in the nature is checked using an architectural-name-based invalida-
more aggressive, more-speculative configuration. tion scheme. The DCI buffer is essentially an architectural-
name-based implementation of squash re-use similar to IR that
The relative increase in the effectiveness of integration is probuses a shadow re-order buffer rather than an RB.
ably larger than a simple increase in integrated instructions can
account for. As the graph shows, integration is 50% to 120%We have already alluded to the interplay between integration
more effective in reducing execution time in the aggressiveandselective squashini@, 12, 15, 16], which allows instruc-
configuration than in the base configuration. Absolute perfor-tion instances to execute multiple times “in-place” before
mance improvements for the next-generation micro-architecretirement. Selective squashing is an effective way of dealing
ture are close to or over 10% for several benchmarks. Theavith data mis-speculations, in which the correct instructions
reason for this boost is that in the more aggressive, morare already in the machine. Selective squashing allows the
deeply pipelined implementation, the benefit of each inte-penalty of squash and re-fetch to be avoided at the cost of
grated instruction is also relatively higher. Specifically, the keeping instructions in the reservation-station longer and
longer register-read times make integration’s ability to col-increasing reservation-station contention. Selective squash-
lapse dependent chains of instructions more important. Théng, however, cannot salvage work lost to control mis-specula-
absoluteimportance of instant branch mis-prediction resolu- tion. Integration and selective squashing are duals. Both
tion is also increased by longer register-read times. Howevenechniques salvage instructions by keeping around information
the relative impact of this effect is somewhat mitigated for longer than is conventionally required, physical registers
because the depth of the front end increases as well. for integration and reservation stations for selective squashing.
However, while selective squashing actively picks out instruc-
tions dependent on the mis-speculation, integration waits for
5 Related Work all squashed instructions to be re-processed then picks out the

. . ones that were actually mis-speculation independent.
The termsquash reusevas introduced to describe one of the y P P

tasks performed binstruction Reuse (IR)L8]. IR is a table-
based technique for avoiding the execution of an instructiong Conclusions and Future Work
that has been previously executed with the same inputs. In
addition to squash reuse, in which the reused value come®/e present register integration (or justegration), a tech-
from the same instance of the instruction that has merely beenique for salvaging valid results that have been unavoidably
squashed, IR implementgeneral reusgin which the reused lost due to the sequential nature of speculation and mis-specu-
value comes from a different (not necessarily squashed) previlation recovery. Integration is a discipline that allows specula-
ous instance that just happens to have the same input operandse results to remain in the physical register file past recovery
Integration implements only squash reuse because it requiresvents with the hope that they were independent of the mis-
that the value already exist in the register file and that thespeculation in question and can be used once the particulars of
physical register inputs of the squashed instruction matckthat mis-speculation have been resolved. Integration logic is
exactly with the inputs of the instruction it will “replace”. IR implemented as a modification to conventional register renam-
lifts these constraints by storing the squashallieinside the ing that recognizes the validity of squashed results using their
lookup table (which is called euse buffeor RB) and writing ~ data-dependences and spares the processor from having to re-
it into the register file when reuse is detected and by basing thexecute the corresponding instructions.
reuse criterion itself is omstance-independent architectural
quantitieslike values or logical register names, rather than Our initial evaluation shows that integration has the potential
instance-dependent micro-architectudales like physical reg- for noticeable performance improvements of up to 8% at con-
ister numbers. IR is very applicable, it can exploit generalfigurations representative of current-generation processors and
reuse and be implemented on any microarchitecture, but hasiep to 11.5% for more aggressive, more speculative, more-
somewhat complex implementation. A value-based reuse testeeply pipelined next-generation configurations. These speed-
implies the need to read registers, which not only complicatesups are achieved through a combination of reduction in the
the register file, but also moves IR further back in the pipeline,consumption of execution and fetch bandwidths, the collaps-
reducing its impact. An architectural-name-based reuse teshg of dependent instruction chains, and the acceleration of
removes the need to read registers but requires an explictiranch resolution. Our numbers indicate that programs typi-
dependence-tracking scheme within the RB so as not taally are able to reuse between 20% and 60% of all squashed
become too conservative. Both IR forms require additionalinstructions that have completed execution prior to squashing,
write data-paths into the register file. In integration, the reusedepresenting between 1% and 19% of committed instructions.
values are already stored in physical registers so no additional
register data-paths to read or write any values are required. APerhaps more important than integration’s performance char-
the same time, the physical-register-based nature of the reusteristics, are its mis-speculation reduction characteristics. In
test implements dependence-tracking naturally. addition to improving performance, integration reduces the
overall level of wasted work performed by the processor. It
The Dynamic Control Independence (DCIR] buffer is reduces the number of instructions executed by re-using
another result salvage mechanism that operates in a centralizedjuashed computations and its acceleration of branch resolu-
window environment. The DCI buffer is a shadow re-order tion reduces the number of instructions fetched along mis-
buffer whose contents persist past mis-speculation events thapeculated paths. According to our results, the number of

instruction fetches saved can reach 6% and the number dB]
instruction executions saved, 15%. Both of these numbers
grow relatively as the underlying micro-architecture becomes
more aggressive. These characteristics make integration an
interesting candidate for reducing dynamic-power and energy4]
and also suggest its use in reducing resource contention in
simultaneously multi-threaded (SMT) processors.

The implementation of integration is simple, requiring only an [5]
integration table (IT), a small cache-like structure with limited
content-addressible capabilities and an integration circuit][6]
which is added to the register renaming logic. No changes to
either the fetch or execution engines themselves are necessa[]
and integration does not require the reading or writing of any
register values, only map table manipulations are used. Th¢g]
performance improvements we present are all achievable with
the minimal complexity implementation of integration.

9
Future work in the area of integration includes a more thor-[]
ough evalutation of the IT design space, experiments with[10]
more varied benchmarks, and a more detailed investigation
into the interaction of different micro-architectural parameters 11]
with integration. A study of the high-level characteristics of
programs that draw benefit from integration is also interesting 12]
We have mentioned possibility for interesting synergy betweerl
integration and selective squashing; that possibility needs fur-
ther investigation. The power aspects of integration and it: 13]
potential use as a power-reduction technique are also subjects
of open research.

The most interesting future direction for integration lies in its [14]
ability to support new speculation models. As we have pre-
sented it, integration is a mechanism that can re-impose lost
sequential semantics on a set of instructions using only their
data-dependences. The real power of integration, however,
may be in its ability to impose such semantics on a set of{15]
instructions that werenot executed sequentially in the first
place Integration enables a new form of speculatidata-

driven speculationin which speculative execution proceeds [16]
along statically annotated data-dependence arcs with no
regards to sequencing. Integration is used subsequently to
sequence the results into a control-driven sequential forn{17]
required by the architectural interface. In fact, integration was
invented during the course of our investigation into a new form

of speculative multithreading callespeculative data-driven

multithreading (DDMT)[17]. [18]

Acknowledgements [19]
This work was supported in part by National Science Founda—20
tion grants MIP-9505853 and CCR-9900584, donations froml2%]
Intel Corp. and Sun Microsystems, the University of Wiscon-
sin Graduate School and an Intel Ph.D Fellowship. The

authors thank the anonymous referees for their reviews. [21]

References [22]

[1] D.Burger and T. Austin. The SimpleScalar Tool Set,
Version 2.0. Technical Report CS-TR-97-1342, Univer-
sity of Wisconsin-Madison, Jun. 1997.

Y. Chou, J. Fung, and J. Shen. Reducing Branch Mispre-
diction Penalties via Dynamic Control Independence De-
tection. In Proc. 1999 International Conference on
Supercomputingpages 109-118, Jun. 1999.

(2]

G. Chrysos and J. Emer. Memory Dependence Predic-
tion using Store Sets. IAroc. 25th International Sympo-
sium on Computer Architectur@ages 142-153, Jun.
1998.

J.-L. Cruz, A. Gonzalez, M. Valero, and N. Topham.
Multiple-Banked Register File Architectures. Proc.
27th Annual International Symposium on Computer Ar-
chitecture pages 316-325, Jun. 2000.

K. Diefendorf. K7 Challenges InteMicroprocessor Re-
port, 12(14), Nov. 1998.

K. Diefendorf. Compaq Chooses SMT for Alphdicro-
processor Reportl3(16), Dec. 1999.

K. Diefendorf. HAL Makes SPARCS FlyMicroproces-
sor Report13(5), Nov. 1999.

M. Franklin. The Multiscalar ArchitecturePhD thesis,
University of Wisconsin-Madison, Madison, WI 53706,
Nov. 1993.

P. Glaskowsky. Pentium 4 (Partially) Previewddicro-
processor Reportl4(8), Aug. 2000.

L. Gwenapp. Intel’'s P6 Uses Decoupled Superscalar De-
sign.Microprocessor Repord(2), Feb. 1995.

R. Kessler. The Alpha 21264 Microprocesd&EE Mi-
cro, 19(2), Mar./Apr. 1999.

M. Lipasti. Value Locality and Speculative Execution
PhD thesis, Department of Electrical and Computer En-
gineering, Carnegie-Mellon University, May 1997.

S. Manne, A. Klauser, and D. Grunwald. Pipeline Gat-
ing: Speculation Control for Energy Reduction.Rnoc.
25th Annual International Symposium on Computer Ar-
chitecture pages 132-141, Jun. 1998.

A. Moshovos and G. Sohi. Memory Dependence Specu-
lation Tradeoffs in Centralized, Continuous-Window Su-
perscalar Processors. Rroc. 6th Annual International
Symposium on High-Performance Computer Architec-
ture, pages 301-312, Feb. 2000.

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith.
Trace Processors. Proc. 30th International Symposium
on Microarchitecturepages 138-148, Dec. 1997.

E. Rotenberg and J. Smith. Control Independence in
Trace Processors. IRroc. 32nd International Sympo-
sium on Microarchitecturepages 4-15, Nov. 1999.

A. Roth and G. Sohi. Speculative Data-Driven Multi-
threading. InProc. 7th International Symposium on
High-Performance Computer Architecture (to appear)
Jan. 2001.

A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. In
Proc. 24th International Symposium on Computer Archi-
tecture pages 194-205, Jun 1997.

P. Song. IBM’s Power3 to Replace P23@icroproces-
sor Report11(15), Nov. 1997.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simulta-
neous Multithreading: Maximizing On-Chip Parallelism.
In Proc. 22nd International Symposium on Computer Ar-
chitecture pages 392-403, Jun. 1995.

K. Yeager. The MIPS R10000 Superscalar Microproces-
sor.|IEEE Micro, Apr. 1996.

A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Specula-
tion Techniques for Improving Load-Related Instruction
Scheduling. InProc. 26th Annual International Sympo-
sium on Computer Architecturpages 42-53, May 1999.

	1 Introduction
	2 Integration
	2.1 Basic Algorithm
	2.2 Integrating Loads

	3 Implementation Aspects
	3.1 Base Micro-architecture Requirements
	3.2 A Micro-architecture with Integration
	3.3 Integration Circuit
	3.4 Safe Load Integration via Store Invalidation
	3.5 Handling Data Mis-Speculations
	3.6 Setting the Size of the Physical Register File

	4 Performance Evaluation
	4.1 Experimental Framework
	4.2 Base Configuration Results
	4.3 Impact of Table Size and Associativity
	4.4 Impact of Increased Pipelining
	4.5 Impact of Base Microarchitecture

	5 Related Work
	6 Conclusions and Future Work

