Speculative Multithreaded Processors

Gurindar S. Sohi and Amir Roth

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton St. Madison, WI 53706
sohi@cs.wisc.edu

Abstract. Architects of future generation processors will have hundreds
of millions of transistors with which to build computing chips. At the
same time, it is becoming clear that naive scaling of conventional (su-
perscalar) designs will increase complexity and cost while not meeting
performance goals. Consequently, many computer architects are advo-
cating a shift in focus from high-performance to high-throughput with
a corresponding shift to multithreaded architectures. Multithreaded ar-
chitectures provide new opportunities for extracting parallelism from a
single program via thread level speculation. We expect to see two ma-
jor forms of thread-level speculation: control-driven and data-driven. We
believe that future processors will not only be multithreaded, but will
also support thread-level speculation, giving them the flexibility to oper-
ate in either multiple-program /high-throughput or single-program/high-
performance capacities. Deployment of such processors will require in-
novations in means to convey multithreading information from software
to hardware, algorithms for thread selection and management, as well as
hardware structures to support the simultaneous execution of collections
of speculative and non-speculative threads.

1 Introduction

The driving forces behind the tremendous improvement in processing speed have
been semiconductor technology and innovative architectures and microarchitec-
tures. Semiconductor technology has provided the “bricks and mortar” — in-
creasingly greater numbers of increasingly faster on-chip devices. Innovations in
computer architecture and microarchitecture (and accompanying software) have
provided techniques to make good use of these building materials to yield high-
performance computing systems. Computer designs are constantly changing as
architects search for (and often find) innovations to match technology advances
and important shifts in technology parameters; this is likely to continue well into
the next decade.

The process of deciding how available semiconductor resources will be used
can be decomposed into two. First, the architect must decide on the desired
functionality: the techniques used to expose, extract and enhance performance.
Then comes the problem of implementation: the techniques must translated to
structures and signals which must themselves be designed, built and verified.

Though described separately, these issues are, in practice, very tightly coupled
in the overall design process. In the 1990s, novel functionality played the domi-
nant role in microprocessor design. With a “reasonable” limit on the overall size
of a design (e.g., fewer than tens of millions of transistors), the transistor budget
could be divided by high-level performance metrics only. Verification was (rel-
atively) simple and many of the problems encountered during implementation
were manageable: wire delays were not significant as compared to logic delays,
and power requirements were not exorbitant. In the future, however, implemen-
tation issues are likely to dominate even basic functionality. Monolithic designs
occupying many tens or hundreds of millions of transistors will be very diffi-
cult to design, debug, and verify, and increasing wire delays will make intra-chip
communication and clock distribution costly. These technology trends suggest
designs that are made of replicated components, where each component may be
as much as a complete processing element. Distributed, replicated organizations
can “divide and conquer” the complexities of design, debug and verification, and
can exploit localities of communication to deal with wire delays.

Fortunately, the twin goals of increasing single-program performance and
easing implementation are not in conflict. In fact, with the right model for paral-
lelism they can be synergistic. Speculative multithreading is such a model, mak-
ing it a leading candidate for implementation in future-generation processors.
In speculative multithreading, a processor is (logically) comprised of replicated
processing elements that cooperate on the parallel execution of a conventional
sequential program (also referred to as a conventional program thread) that has
been divided into chunks called speculative threads. Speculation is a key element.
Without speculation, programs can only be divided conservatively into threads
whose mutual independence must be guaranteed. Speculation allows these guar-
antees to be bypassed, producing much more aggressive divisions into threads
that are parallel with high probability.

2 Rationale for Speculative Multithreading

The motivation for using speculative multithreading comes from two directions.
On one hand, the potential for further increasing single-program performance
using known parallelism extraction techniques is diminishing. On the other, tech-
nology trends suggest processors that can execute multiple threads of code. These
circumstances invite us to find those few innovations that will enable such mul-
tithreaded processors to support the parallel execution of a single program.

2.1 Limitations of Existing Techniques to Extract Parallelism

We begin by briefly reviewing the functionality and high-level operation of the
incumbent model for achieving high single-program performance — the super-
scalar model. Imperative programs — programs written in imperative languages
like Fortran, C, and Java — are defined by a static control flow in which individ-
ual instructions read and write named storage locations. At runtime, a super-
scalar processor unrolls the static control flow to produce a dynamic instruction

stream. The positions of reader and writer instructions in this stream defines the
way data flows from one operation to another, i.e., the algorithm itself. A super-
scalar processor creates a dynamic instruction window (an unrolled contiguous
segment of the dynamic instruction stream), repeatedly searches this window for
un-executed, independent instructions, and attempts to execute these instruc-
tions in parallel. Sustained high-performance demands that any given window
contain a sufficient number of independent instructions, i.e., a sufficient level of
instruction-level parallelism (ILP).

Unfortunately, the way in which imperative programs are written makes con-
sistently high ILP a rarity. In order to preserve their sanity, programmers struc-
ture programs in certain ways, a basic technique being the static (and hence
dynamic) grouping of dependent instructions. The spatial proximity of related
statements helps programmers reason about programs in a hierarchical fashion
but limits the amount of independent work that would available in a given win-
dow of dynamic instructions. Optimizing compilers attempt to improve the situ-
ation by transparently re-ordering instructions, mixing instructions from nearby
program regions to improve the overall levels of window ILP. However, while
very sophisticated, compiler scheduling is fundamentally limited by compilers’
inability to perfectly determine the original intent of the programmer and their
commitment to preserve the high-level structure of the original program.

The amount of parallel work being what it is, one option is to build a su-
perscalar processor with an instruction window large enough to simultaneously
contain code from different program regions (i.e., different functions or loop it-
erations). However, even if such a machine could be built — and there are many
engineering obstacles to doing so — there is fundamental problem in keeping a
large, contiguous instruction window full of useful instructions. Specifically, the
decreasing accuracy of a series of branch predictions leads to an exponentially
decreasing likelihood that instructions at the tail of the window will be useful.

Overcoming this problem requires a model that allows parallelism from dif-
ferent program regions to be exploited in a reasonably independent (i.e., non-
contiguous, non-serial) manner. Speculative multithreading is such a model. In
speculative multithreading, each program region is considered to be a specu-
lative thread, i.e., a small program. By executing multiple speculative threads
in parallel, additional parallelism can be extracted (especially if each thread is
mostly sequential). The threads are subsequently merged to recreate the origi-
nal program. Speculative multithreading allows a large instruction window to be
created as an ensemble of smaller instruction windows, thereby facilitating im-
plementation. In addition, a proper thread division can logically isolate branches
in one thread from those in another [27], relieving the fundamental problem of
diminishing instruction utility.

2.2 The Emergence of Multithreaded Architectures

Multithreaded processors — processors that support the concurrent execution
of multiple threads on a single chip — are beginning to look as if they will
dominate the landscape of the next decade. Two multithreaded processor models

are currently being explored. Simultaneous multithreading (SMT) [5,7,14,32,
33| uses a monolithic design with most resources shared amongst the threads.
Chip multiprocessing (CMP) [12] proposes a distributed design (a collection of
independent processing elements) with less resource sharing. The SMT model is
motivated by the observation that support for multiple threads can be provided
on top of a conventional ILP (i.e., superscalar) processor with little additional
cost. The CMP model is more conventionally motivated by design simplicity and
replication arguments. Both models target independent threads (multithreaded
a multiprogrammed workloads) and use multithreading to improve processing
throughput.

As technology changes, the distinction between the SMT and CMP microar-
chitectures is likely to blur. Increasing wire delays will require decentralization
of most critical processor functionality, while flexible resource allocation policies
will enhance the appearance of (perhaps asymmetric) resource sharing. Regard-
less of the specific implementation, multithreaded processors will logically appear
to be collections of processing elements. The interesting question is whether this
organization can be exploited to improve not only throughput but also the exe-
cution time of a single program. Thread-level speculation is the key to enabling
this synergy. In addition to executing conventional parallel threads, the logical
processors could execute single programs that are divided into speculative threads.
Speculative multithreaded processors will provide not only high throughput but
also high single-program performance when needed.

3 Dividing Programs into Multiple Threads

There are several ways in which to divide programs into threads. We categorize
these divisions as control-driven and data-driven depending on whether threads
are divided primarily along control-flow or data-flow boundaries. Each division
strategy can be further sub-categorized as either non-speculative — the threads
are completely independent from the point of view of the processor and any
dependence is explicitly enforced using architectural synchronization constructs,
or speculative — the threads may not be perfectly independent, or synchronized,
and it is up to the hardware to detect and potentially recover from violations of
the independence assumptions.

The threads obtained from a division of a program are expected to execute
on different (logical) processing units. To achieve concurrency, prozimal threads
(i.e., threads that will simultaneously co-exist in the machine) need to be highly
data-independent. If data-independence can be achieved, concurrency (and hence
performance) can scale almost linearly with the number of threads even for small
per-thread window sizes, and efficiency can be kept constant as bandwidth and
(hopefully) performance are increased. We expect that speculation can allow
data-independence criteria to be achieved more easily, giving speculative solu-
tions distinct performance and applicability advantages over their more conven-
tional non-speculative counterparts.

3.1 Control-Driven Threads

Although the object of multithreading a program is to divide it into data-
independent (parallel) threads, the most natural division of an imperative pro-
gram is along control-flow boundaries into control-driven threads. The archi-
tectural semantics of imperative programs are control-driven: instructions are
totally ordered and architectural state is precisely defined only at instruction
boundaries. Control-flow is explicit while data-flow is implicit in the total or-
der. In control-driven multithreading, the dynamic instruction stream is divided
into contiguous segments that can subsequently be “sewn” together end-to-end
to reconstruct the sequential execution. The challenge of control-driven multi-
threading is finding division points that minimize inter-thread data dependences.

We should note here that control-driven multithreading is not the same as
parallel programming. Parallel programs do execute multiple concurrent control-
driven threads, but these threads exchange data in arbitrary ways. The seman-
tics of a parallel program is rarely the semantics of the individual threads run
in series. In contrast, control-driven multithreading is a way of imposing par-
allel execution on what is in essence a sequential program. Data flows between
control-driven threads in one direction only, from sequentially “older” threads
to “younger” ones.

Non-Speculative Control-Driven Threads. Without support for detecting
and recovering from data-dependence violations or to abort unnecessary threads
and discard their effects, non-speculative control-driven multithreading requires
strict guarantees about the ezecution-certainty and data-integrity of threads.
Execution-certainty requirements spawn from the fact that thread execution
cannot be undone, and mean that non-speculative control-driven threads can
only be forked if their execution is known to be needed. In order to maximize
concurrency, execution certainty is usually achieved by forking a thread at a
previous control-equivalent point, e.g., forking of a loop iteration at the be-
ginning of the previous iteration. Data-integrity refers to the requirement that
access to thread shared data must occur (or appear to occur) in sequential or-
der. When we speak of data-integrity, we are mainly concerned with memory-
integrity. Support for direct inter-thread register communication is typically not
available. We assume that if it is provided then appropriate synchronization
is provided along with it. In contrast, inter-thread memory communication is
naturally available, meaning that access to any memory location that could
potentially be shared with other threads must be explicitly synchronized. Of
course, data-sharing/synchronization should be kept to a minimum to allow for
adequate concurrency among threads.

With such strict safety requirements, the division of a program into non-
speculative threads has traditionally fallen into the realm of the programmer
and compiler. The programmer has the deepest knowledge of the parallel di-
mensions of his algorithm and the potential for data-sharing among different
divisions. However, performing thread division by hand is tedious, and manual

attempts to minimize synchronization often lead to errors. In light of these dif-
ficulties, much effort has been placed into using the compiler to automatically
multithread (parallelize) programs. Although (debugged) compilers don’t make
errors, and compiler tedium is less of an issue than programmer tedium, compiler
multithreading has had success only in very limited domains.

Speculative Control-Driven Threads. Non-speculative control-driven mul-
tithreading suffers from two major problems. First, execution-certainty require-
ments limit thread division to control-independent program points, which may
not satisfy the primary data-independence criteria. Second, even when proximal
threads are data-independent, if this independence is unprovable, then conser-
vative synchronization must be used to guard against the unlikely (but remotely
possible) case of a re-ordered communication. Where synchronization is need-
lessly applied, concurrency and performance are unnecessarily lost.

Speculation can alleviate these problems. In speculative control-driven mul-
tithreading, memory does not need to be explicitly synchronized at all. The
correct total order of memory operations can be reconstructed from the (ex-
plicit or implied) order of the threads. This ordering can be used as the basis for
hardware support to detect and potentially recover from inter-thread memory-
ordering violations [10, 11]. With such support, access to thread shared data can
proceed optimistically, with penalties incurred only in those cases when data is
actually shared by proximal threads and the accesses occur in non-sequential
order. Furthermore, since ordering violation scenarios are typically predictable,
slight modifications to the basic mechanism allow it to learn to recognize these
scenarios early and artificially synchronize the offending store/load pairs [4,17].

The execution-certainty constraints can be lifted using similar mechanisms.
The ability to recover from inter-thread memory-ordering violations implies the
presence of hardware that can buffer or undo changes to architected thread
state. This support can be used to undo an entire thread, allowing threads
to be spawned at points at which their final usefulness cannot be absolutely
guaranteed, but where usefulness likelihood is high and the data-independence
(parallelism) characteristics are more favorable.

Speculative control-driven multithreading has been the subject of academic
research in the 1990’s [1,6,9,13,16,27,29, 34] and is slowly finding its way into
commercial products. Sun’s MAJC architecture [31] supports such threads, via
its Space Time Computing (STC) model. More recently, NEC’s Merlot chip
[18] uses speculative control-driven multithreading to parallelize the execution
of code that can’t be parallelized by other known means. We expect that more
processors will make use of speculative control-driven threads in the coming
decade, as this technology moves from the research phase into commercial im-
plementations.

3.2 Data-Driven Threads

Where control-driven multithreading divides programs along control-flow bound-
aries, data-driven multithreading uses data-flow boundaries as the major divi-

sion criteria. Such a division naturally achieves the desired inter-thread data-
independence and resulting parallelism [2, 15,19, 25, 26].

Data-driven threads are almost ideal from a performance and efficiency stand-
point. In its pure form, data-driven multithreading occurs at the granularity of a
single instruction [2,19]. Data-driven instruction sequencing (i.e., fetch) is trig-
gered by the availability of one of its input operands. Instructions enter the
machine as soon as they may be able to execute but no sooner. This arrange-
ment maximizes the amount of work that may be used to overlap with long
latency instructions, while not wasting resources on instructions that are not
ready to use them.

Instruction-level data-driven sequencing is not the only option. Data-driven
sequencing may be used on a thread granularity with conventional, control-driven
sequencing used at the instruction level [15, 26, 30]. In this organization, instruc-
tions from one or several related computations are packed into totally-ordered
threads that implicitly specify data-flow relationships. Individual threads are
assigned to processing elements and sequenced and executed in a control-driven
manner. However, the data-flow relationships between threads are represented
explicitly and thread creation is triggered in a data-driven manner (i.e., by the
availability of its data inputs from the outcome of a previous thread). The data-
driven threads we expect to see in future processors are likely to be of this form.

Non-Speculative Data-Driven Threads. Non-speculative data-driven mul-
tithreading is difficult to implement for imperative languages. The main barrier
is the incongruity of the requirement of an explicit data-flow program repre-
sentation and the reality that for imperative programs, data-flow information is
often impossible to explicitly specify a priori even as it applies to a few well de-
fined boundaries. A data-forwarding error, either of omission or false commission,
changes the meaning of the program. The automatic conversion of imperative
code to data-flow explicit form has been the subject of some research, but in
general, data-driven program representations can only be constructed for code
written in functional (data-driven) languages.

Speculative Data-Driven Threads. Non-speculative data-driven multithread-
ing suffers from two major problems. First, programs can generally not be di-
vided into data-driven threads. Second, even in cases where a division is possible,
the resulting representation breaks the sequential semantics created by the pro-
grammer and the correlation between the executing program and the source code
from which it was derived. Sequential semantics (or at least their appearance) is
very important for program development, debugging, and the interaction with
non-data-driven system components and tasks. The loss of sequential semantics
is more serious than simply being a disturbance to the programmer.

Again, speculation is likely to be the key to solving these problems. How-
ever, a shift in approach regarding the role of multithreading may be needed
first. Two complementary observations guide this new approach. First, program
development and debugging will probably require the presence of a “main” or

“architectural” thread whose execution will implement the sequential, control-
driven semantics of the program. Second, programs inherently contain sufficient
levels of ILP, but this ILP is hindered by long-latency microarchitectural events
like cache misses and branch mis-predictions. The parallelism in the program
can be extracted if these latencies — which are likely to get relatively longer —
can be tolerated. These observations suggest a different role for multithreading,
one which does not require dividing the program per se. Instead, the program
is augmented with “helper” threads that run ahead and pre-execute or “solve”
problem instructions before they have a chance to cause stalls in the “main”
program thread. We believe that it is in this capacity, as high-powered “helper”
threads, that speculative data-driven threads can best be used in an imperative
context [3, 8, 20,21, 23,24, 28, 35].

In the “helper” model, selected computations are copied from the program
and packed into data-driven threads [8,23,24]. Now, the program is executed
as a single control-driven thread, as usual. However, at certain points in the
main program, data-driven threads are spawned in order to pre-execute the
computation of some future problem instruction. When the main program thread
catches up to the data-driven thread, it has the option of picking up the result
directly [8,21-23] or simply repeating the work (albeit with a reduced latency)
[20].

The role of speculation is intermingled with the reduced “helper” status
of data-driven threads. The fact that the control-driven thread is present and
ultimately responsible for the architectural interface, immediately relieves data-
driven threads from any correctness obligations. Without these obligations, data-
driven threads can be constructed using whatever data-flow information is avail-
able. In addition, they need not comprise a complete partitioning of the program;
their use may be reserved only for those situations in which their parallelism-
enhancing characteristics are most needed.

4 Practical Aspects

Whether future processors will also include support for speculative threads —
either control-driven, data-driven or both — depends on the discovery of ac-
ceptable solutions to several practical problems. These problems range from the
low-level (i.e., how threads should be implemented) to the high-level (i.e., how
threads should be used) and cover all levels in between. We briefly touch upon
some of these issues in this section.

4.1 System Architecture

The broadest decision that needs to be made and the one that will have the most
impact on other decisions is the division of labor and responsibilities between the
programmer, compiler, operating system and processor. It is obvious that the
processor will execute the threads. However, the answer to the question of what
entity should be responsible for other thread-related tasks — from selecting the

threads themselves to spawning, scheduling, resource allocation and communi-
cation — is not clear. Placing all of the responsibility on the processor is one
attractive option. With near-future processors having nearly one billion tran-
sistors, a few million can be dedicated to multithreading-specific management
tasks (perhaps as a separate co-processor). A processor-only implementation has
no forward or backward compatibility problems, it preserves the current system
interface, while enhancing the performance of legacy software. Its drawbacks are
added design complexity and the mandate rigidity and simplicity of the thread
selection and management algorithms.

Since thread-selection is such an important and delicate problem, it seems
logical to push at least that function to software or perhaps even the programmer.
Thread-selection algorithms implemented in software can be more sophisticated
and may produce better thread divisions. Thread divisions chosen by the pro-
grammer — who understands the program at its highest, algorithmic levels —
and subsequently communicated to the compiler, may be better still. However,
any path in which multithreading information flows from or through software to
the hardware requires a change in the software/hardware interface. Such changes
are typically met with some resistance, especially if they have architectural se-
mantics that need to be implemented.

Our expectation is that speculative thread information is likely to be con-
veyed from software to hardware, but in an advisory form. An example of advi-
sory information are prefetch instructions that are found in many recent archi-
tectures. The understanding is that the hardware may act upon this informa-
tion either fully, partially or selectively, or even ignore it altogether, all without
impacting correctness. The option to enhance or refine this information dynam-
ically is left to the processor as well. Restricting speculative thread information
to an advisory role relieves the architect from many functionality guarantees
that would hamper future generation implementations.

4.2 Specific Hardware Support

For the full power of speculative multithreading to be realized, hardware support
is required. Specifically, threads need to be made “lightweight” with mechanisms
for fast thread startup and inter-thread communication and synchronization.
Hardware support for speculation includes buffering for speculative actions and
facilities for fast correct-speculation state commit and, likewise, mis-speculation
recovery. The precise support required for control-driven and data-driven threads
is somewhat different. An additional challenge is to provide this support, as
well as support for conventional parallel threads, using a uniform set of simple
mechanisms.

One apparent requirement for the implementation of lightweight threads
(speculative and otherwise) is a mechanism for passing values from one thread
to another via registers. Memory communication and synchronization is likely
to be reasonably fast on a speculatively multithreaded processor, since the bulk
of it will occur through the highest level of shared on-chip cache. However, a
register path for communication and synchronization is likely to be faster still.

Inter-thread register communication will also allow thread register contexts to
be initialized quickly, accelerating thread start-up.

We assume that the register-communication mechanism will implement inter-
thread register synchronization. Another requirement is a mechanism for enforc-
ing correct ordering of memory operations from different threads. At a high
level, such a mechanism would buffer loads from young threads and compare
them with colliding stores from older threads. Designs for inter-thread memory
ordering mechanisms are known in both centralized [10] and distributed forms
[11]. The distributed form uses a modified cache-coherence protocol that blends
naturally with the protocol that implements general data-sharing for parallel
threads. We expect this form to find widespread use in future processors.

5 Summary

Future processors will be comprised of a collection of logical processing elements
that will collectively execute multiple program threads. To overcome the limi-
tations in dividing a single program into multiple threads that can execute on
these multiple logical processing elements, speculation will be used. A sequen-
tial program will be “speculatively parallelized” and divided into speculative
threads. Speculative threads are not only a good match for the microarchitec-
tures that are likely to result as technology advances, they have the potential to
overcome the limitations of currently-known methods to extract instruction-level
parallelism.

There are two main types of speculative threads that we expect to be used:
control-driven and data-driven threads. Speculative control-driven threads have
already begun to appear in commercial products (e.g., Sun’s MAJC and NEC’s
Merlot), while speculative data-driven threads are still in the research phase.

Several technologies will have to be developed before speculative multithread-
ing is commonplace in mainstream processors. These include means for conveying
thread information from software to hardware, algorithms for thread selection
and management, and hardware and software to support the simultaneous exe-
cution of a collection of speculative and non-speculative threads. Consequently
we expect the next decade of processor development to be at least as exciting
as previous decades.

Acknowledgements

This work was supported in part by National Science Foundation grants MIP-
9505853 and CCR-9900584, donations from Intel and Sun Microsystems, the
University of Wisconsin Graduate School and by an Intel Foundation Graduate
Fellowship.

References

1. H. Akkary and M.A. Driscoll. A Dynamic Multithreading Processor. In Proc. 31st
International Symposium on Microarchitecture, pages 226-236, Nov. 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Arvind and R.S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow

Architecture. IEEE Transactions on Computers, 39(3):300-318, Mar. 1990.

R.S. Chappell, J. Stark, S.P. Kim, S.K. Reinhardt, and Y.N. Patt. Simultaneous
Subordinate Microthreading (SSMT). In Proc. 26th International Symposium on
Computer Architecture, May 1999.

G.Z. Chrysos and J.S. Emer. Memory Dependence Prediction using Store Sets.
In Proc. 25th International Symposium on Computer Architecture, pages 142-153,
Jun. 1998.

. G.E. Daddis and H.C. Torng. The concurrent execution of multiple instruction

streams on superscalar processors. In Proc. International Conference on Parallel
Processing, pages 76-83, May 1991.

P.K. Dubey, K. O’brien, K.A. O’brien, and C. Barton. Single-Program Specula-
tive Multithreading (SPSM) Architecture: Compiler-Assisted Fine-Grained Mul-
tithreading. In Proc. 1995 Conference on Parallel Architectures and Compilation
Techniques, pages 109-121, Jun. 1995.

J. Emer. Simultaneous Multithreading: Multiplying Alpha’s Performance. Micro-
processor Forum, Oct. 1999.

. A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Analysis of Branch Mis-

predictions and Its Application to Early Resolution of Branch Outcomes. In Proc.
81st International Symposium on Microarchitecture, pages 59-68, Dec. 1998.

M. Franklin. The Multiscalar Architecture. PhD thesis, University of Wisconsin-
Madison, Madison, WI 53706, Nov. 1993.

M. Franklin and G.S. Sohi. ARB: A Hardware Mechanism for Dynamic Reordering
of Memory References. IEEE Transactions on Computers, May 1996.

S. Gopal, T.N. Vijaykumar, J.E. Smith, and G.S. Sohi. Speculative Versioning
Cache. In Proc. 4th International Symposium on High-Performance Computer
Architecture, pages 195-205, Feb. 1998.

L. Hammond, B.A. Nayfeh, and K. Olukotun. A Single-Chip Multiprocessor. IEEE
Computer, 30(9):79-85, Sep. 1997.

L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip
multiprocessor. In Proc. 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 58-69, Oct. 1998.

H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y. Nakase, and
T. Nishizawa. An Elementary Processor Architecture with Simultaneous Instruc-
tion Issuing from Multiple Threads. In Proc. 19th Annual International Symposium
on Computer Architecture, pages 136-145, May 1992.

R.A. Iannucci. Toward a Dataflow/von Neumann Hybrid Architecture. In Proc.
15 International Symposium on Computer Architecture, pages 131-140, May 1988.
Z. Li, J.-Y. Tsai, X. Wang, P.-C. Yew, and B. Zheng. Compiler Techniques for Con-
current Multithreading with Hardware Speculation Support. In Proc. 9th Work-
shop on Languages and Compilers for Parallel Computing, Aug. 1996.

A. Moshovos, S.E. Breach, T.N. Vijaykumar, and G.S. Sohi. Dynamic Speculation
and Synchronization of Data Dependences. In Proc. 24th International Symposium
on Computer Architecture, pages 181-193, Jun. 1997.

N. Nishi, T. Inoue, M. Nomura, S. Matsushita, S. Toru, A. Shibayama, J. Sakai,
T. Oshawa, Y. Nakamura, S. Shimada, Y. Ito, M. Edahiro, M. Mizuno, K. Minami,
O. Matsuo, H. Inoue, T. Manabe, T. Yamazaki, Y. Nakazawa, Y. Hirota, and
Y. Yamada. A 1 GIPS 1 W Single-Chip Tightly-Coupled Four-Way Multiprocessor
with Architecture Support for Multiple Control-Flow Execution. In Proc. 47th
International IEEE Solid-State Clircuits Conference, Feb. 2000.

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

G. Papadopoulos and D. Culler. Monsoon: An Explict Token-Store Architecture.
In Proc. 17th International Symposium on Computer Architecture, pages 82-91,
Jul. 1990.

A. Roth, A. Moshovos, and G.S. Sohi. Dependence Based Prefetching for Linked
Data Structures. In Proc. 8th Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 115-126, Oct. 1998.

A. Roth, A. Moshovos, and G.S. Sohi. Improving Virtual Function Call Target
Prediction via Dependence-Based Pre-Computation. In Proc. 1999 Internation
Conference on Supercomputing, pages 356-364, Jun. 1999.

A. Roth and G.S. Sohi. Register Integration: A Simple and Efficent Implementation
of Squash Re-Use. In Proc. 38rd Annual International Symposium on Microarchi-
tecture, Dec. 2000.

A. Roth and G.S. Sohi. Speculative Data-Driven Multithreading. Technical Report
CS-TR-00-1414, University of Wisconsin, Madison, Mar. 2000.

A. Roth, C.B. Zilles, and G.S. Sohi. Speculative Miss/Execute Decoupling. In
Proc. Workshop on Memory Access Decoupling in Superscalar and Multithreaded
Architectures, Oct. 2000.

S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba. An Architecture of
a Dataflow Single Chip Processor. In Proc. 16th Annual International Symposium
on Computer Architecture, pages 46-53, May 1989.

M. Sato, Y. Kodama, S. Sakai, Y. Yamaguchi, and Y. Koumura. Thread-based
Programming for the EM-4 Hybrid Dataflow Machine. In Proc. 19th Annual In-
ternational Symposium on Computer Architecture, pages 146-155, May 1992.
G.S. Sohi, S. Breach, and T.N. Vijaykumar. Multiscalar Processors. In Proc. 22nd
International Symposium on Computer Architecture, pages 414-425, Jun. 1995.
Y.H. Song and M. Dubois. Assisted Execution. Technical Report #CENG 98-25,
Department of EE-Systems, University of Southern California, Oct. 1998.

J.G. Steffan and T.C. Mowry. The Potential for Using Thread Level Data-
Speculation to Facilitate Automatic Parallelization. In Proc. 4th International
Symposium on High Performance Computer Architecture, Feb. 1998.

M. Takesue. A Unified Resource Management and Execution Control Mechanism
for Data Flow Machines. In Proc. 14th Annual International Symposium on Com-
puter Architecture, pages 90-97, Jun. 1987.

M. Tremblay. MAJC: An Architecture for the New Mille-
nium. In Proc. Hot Chips 11, pages 275-283, Aug. 1999.
http://www.sun.com/microelectronics/MAJC/documentation/docs/HC99sm.pdf.
D.M. Tullsen, S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo, and R.L. Stamm. Ex-
ploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous
Multithreading Processor. In Proc. 23rd International Symposium on Computer
Architecture, pages 191-202, May 1996.

W. Yamamoto and M. Nemirovsky. Increasing Superscalar Performance Through
Multistreaming. In Proc. 1995 Conference on Parallel Architectures and Compila-
tion Techniques, Jun. 1995.

Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for Speculative Run-Time
Parallelization in Distributed Shared-Memory Multiprocessors. In Proc. 4th Inter-
national Symposium on High-Performance Computer Architecture, Feb. 1998.
C.B. Zilles and G.S. Sohi. Understanding the Backward Slices of Performance
Degrading Instructions. In Proc. 27th International Symposium on Computer Ar-
chitecture, pages 172-181, Jun. 2000.

