Paradyn Parallel Performance Tools

User’s Guide

Release 3.2
March 2001

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@cs.wisc.edu

User’s Guide 3/14/01

Table of Contents Page i

L@ YT V= P 1-1..
1.1 Release NOtES (VEISION 3.2) ..uuuiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e e as 1-2
1.2 Release NOtES (VEISION 3.1) ...uuuiiiiiiiieieeeiiieeeeeeeeiitii e e e e e e e e re e as 1-2
1.3 Release NOteS (VEISION 3.0) ...uuuiiiiiiiiiiiiiiiiiee e et e e e e e e e e e e e e e e e e e 1-3
1.4 Supported hardware and software platformsccoovriiiiiiii 1-4
1.5 Other documentation: ManUAISuuuueiiiiiiiiiiiee e eeeeeaeees 1-6
1.6 Other documentation: TechniCal PAPEISccccuuiiiiiiiiiiiieieeeee e 1-6
1.7 Contacting the Paradyn deVEIOPErSuuueiiiiiiiii i 1-8
RUNNING PAradyN.........ooviiiiiiiiiiie et e e e e e e e e e e aeeeas 3 R 2
2.1 OVErVIEW Of MAJOI STEPS .evitiuuuiiiiieieeee e e e e et eeeeeeeetttt e e s e e e e e e e e e e e e eeeesseeabann e e eeeas 2-1
2.2 Setting up Paradyn and the Paradyn daemonsccccccciiiieeiiinninninniiiiiineee 2-1
2.3 Preparing your application Programccccceeeeeeeeeeeeeieeeeieiiiiiieee s s e e e e e e eeaeeeesesannnn 2-1
231 Generation of debug information (all platforms)cccovviiiiiiciinnnnn. 2-2
2.3.2 Including CodeView debug info in the executable (Windows NT) 2-2
P S S VoY1 g o T =T = T |/ o USSP 2-3
2.5 Running applications with Paradyn ... 2-5
2.5.1 DefiNiNg @ NEW PIrOCESSccoiiiuiiiiiriiiiiiierieeeeeeae e e e e e e e e e e e s s s s sasnbebbbeeeeeeeees 2-5
2.5.2 AHAChiNg 10 @ PrOCESSccceiiiiieiieeeetcee et e e e e 2-7
2.6 AICNITECIUIAI ISSUBSeveiiiiiiiiiiee ettt e e e e e e e e et e e e e e e e e e e e e 2-9
2.6.1 CommON PlAatfOrMSeeeiiiiie e 2-9
2.6.2 IMP oo ———————— 2-9
2.6.3 WINAOWS NT oottt e e e e e e e e e e e e 2-10
Main CoNtrol WINAOWoooiiiieiiiiiiee e e e e e e e e e e e e e e e e eeeenann s 3-1
G 200 R |V = V1 o T ¢ =T o 0o - Y S 3-1
3. L1 FHlE MENU ..ottt 3-1
3.1.2 SEIUP MEBINU ..ot e e et et e e e e et e e e e e eeana e eaaeees 3-1
3.1.3 PRASE MENU ...t e e e e e e e e e e e e eeaanae 3-2
3.1.4 VIS MENU/DUIION .eeeiiiiiiiiiiiiie e 3-2
3. 15 HEIP MENU oot 3-2
3.2 STAIUS TINES e e e e e e e e e e e e e e e 3-3
3.3 BULIONS ettt IC T 3-
TUNADIE CONSTANTS....ciiiiiiiiiie e aaeeesd N I 4
A1 OVEIVIEBW ..ttt e e e e e e e e et ettt ettt e e e e e e e e e e e e e e e eeeeeesesanan e e e aeeeeeeaaaeeeeeensnnes 4-1
4.2 User Tunable CONSIANTSuuuiiiiiiiiii e e e e e e e e e e e 4-2
4.3 Developer Tunable CONSLANTScccoooeiiiiiiiiii e 4-2
SEIECHNG FESOUITES.cciiiiieeeeeeee e e e e e e e e e e ettt e e e e e e e aaeeaeeeeeseesannnanas 5:1.......l.
5.1 Resources (The “WHEre” AXIS)ccoiiioiei e e e 5-1
5.2 The Where AXIiS QISPIAYuuurruuiiiiiiiiiiiiiiee e e e e e e e e 5-3
5.3 How to select foci using the WHhere AXISccccviiiiiiiciiiiiieeeeeeiee e 5-4
5.4 The Where AXIS GUI ... e e e e e e e e e e e eeeeeeeennnan 5-5
5.5 Call Graph diSPlaycccccuuiiiiiiiiiiiiiiiiec e 5-6
SEIECHING MEIIICS ...eeiiiiiiie e e e e e e e e eeeeen 6-1.......
6.1 HOW tO SEIECE MELIICS ..eevviiiiiiiiiiiee et 6-1

User’s Guide March 14, 2001 Release 3.0

10

11

12

Table of Contents Page ii

6.2 MELrC DESCIIPLIONS ...oeiiiiiiiiieie et e e e e e e e e e e e e bbb e e e 6-2
CONLIOIING VISIS ..ttt e e e e 7=1....
74 T = 1 1] o TSRS =1l 7
4 (6] o] o] [T R PP P PP POPPPPPRR 7-2
PRASES. ... a e e e e e e e e e et s—— 8-1..
8.1 Starting @ NeW PRASEcoiiiii s 8-1
8.2 Visualizations @and PRASEScouiiiiiiiiiiiii ittt 8-1
8.3 The Performance Consultant and phasesccoiiiiiiiiii e 8-1
Performance CONSUITANT............oooiiiiiii e e e e e e e e e 9-1
9.1 The W3 SearcCh MOUEIccccooii i e e e e e e e e e e e e 9-1
9.1.1 TRE WRY AXIS oreeiiiiii i e e e et a e e e e e e e e 9-2
9.1.2 The SearCh Strategy ... e 9-3
9.2 Running the Performance ConsSultantccccciiiiiiiiiiiiieee e 9-4
9.2.1 The Performance Consultant WINdOWccooiiiiiiiiiiiiiiiiiiiiccceeee e, 9-4
9.2.2 Starting and stopping a Search ... 9-5
9.2.3 The Search History Graph displayeeeeiiiiiiiiiiiiiiiiiee, 9-6
9.3 Interpreting the results of callgraph-based searchccccceeviiiiiiiiiiiiin, 9-7
9.4 Interpreting the results of module-then-function searchccccviiiiiiiciiinnnn. 9-8
9.5 Customizing the search Parametersciiiiiiiiieeeii s 9-13
Standard ViSi MOUUIESuueiii e e e e et e e e e aaeaes -L....... 10
10.1 TimMe HiStOQIam VISI ...uuuuuuiiiiiiiiie e e e eee et e aaaes 10-1
10.1.1 FHl@ MENU oo e e e e e e e e e e e eeeeeennnnes 10-2
10.1.2 CUINVE IMEINU ..ottt ettt e e e e e eab e e e e e eetar e e e e e eesaaaaeeaeeenes 10-2
10.1.3 Panning and ZOOMINGuuvuuuuiiiiiiieeeeeeeeeeeeeeeeeaeeser e e e e e e e e e eeaeeeeeeaennnns 10-2
10.2 BArCRAI VISI oeeeeeiiiiiiiiiie ettt e e e e e e e e eees 4.....10-
10.2.1 Changing metrics and foci being viewedcccccccoeiiiiiiiiniiiiiiiiinee, 10-5
10.2.2 VIEWING ALA ...ovvvviiiiiiiie e e e e e 10-5
10.3 TADIE VISI e 0:6......1
0 0 I Y od 1 o] o FS 0 1 1= L 10-7
10.3.2 VIBW IMEINU ..eiiiiiiiiiiiiiiiieeieee e e e e e e e e e e e e s s s s sttt e e e e e et e e aaeeaaeeeaaaesasaannnnnns 10-7
(O B R L =T = 1] Y] R 10-8
EXPOrting Paradyn DAtiiiiiiiiieeeiiceeeeeeie et e e e e e e 11-1
11.1 Saving PerformancCe Data ...t 11-1
11.2 SaViNg the WHREIE AXIS ...uueiiiiiiiii et e e e e e e e e aeees 11-3
11.3 Saving Performance Consultant Search Dataccccoooeeeeeeeiiiiiiiiiiiiiieeee e 11-3
Paradyn Configuration LANQUAJEcoeeeruruummiiiiaae e eeeeeeeeeeeeeeieeitiia s e e e e e e e aeaeeeeeeeennnnnnes 12-1
1022 I\ o) = 1[0 o PSPPSR 2:1.....1
12.2 LeXiCal CONVENTIONSuuiiiiiiiiiiiiiiiiiieee e e e e e e e e e s s s s s sttt eeeeeeeeeaaeeaeeaaaasssaannnnnes 12-1
12.3 LanNQUAQE SITUCTUIEoeutiieeieeiitee ettt e et e e e e e e et e e e e e e eaan e e e e eeennnaeeas 12-2
D2 = =T o [I [1 71 (oo S 12-3
12.5 Process defiNitiONoooiiiiiiiiiiiiiiiii et a e e e e 12-4
12.6 Tunable constant definitionoooiiiieiiiiii e 12-5

User’s Guide March 14, 2001 Release 3.0

Table of Contents Page iii

A (1Y o (Y 01 () o 12-6

A S (1 8 o (=3 1= {1 1) o R 12-6

12.9 Metric DeSCription LANQUAGEcuuuruumuniiieeeeeeeeeeeeeeeeeiiiiitiias s s s s e e e e e e e e e eeeeeeeennennnne 12-7
S I RO \V/ 1= 1 g Toa o [i 11 (o o 12-8
e Y = T = o] [12-8
e TG R Y/ o= PP 12-9
12.9.4 Predefined VariabIescoouviiviii e 12-10
12.9.5 RESOUICE lISIS .ouviiiiiiiiiiie et e e e e e e 12-11
S IS T O 0] £ 151 = 1] | 12-12
12.9.7 MetriC defiNItIONSiieeiieii e e e e e e e e eaaas 12-13
12.9.8 MEtrC StAtEMENTScvuniiiiiiiiii et e e e e e e e e eaans 12-15
12.9.9 MELrC EXPrESSIONS ...cceviiiiirriiiiiaiaae e e e e e e e eeeeeeeeeaaaatraaaa e s e e e aeeaaaaeeeeeeeernnnnnns 12-15
e T O T U T 1 o= | 12-16
12.9.11 Instrumentation rEQUESESciiiiiiie e e e e e e e e e 12-17
12.9.12 INStrumentation COUEccuuiiiiniiii e e e ea e eas 12-17
12.9.13 Interaction of constraints and MELHICSccuvvvviiiiiiiiieeiee e 12-18
12.9.14 A complete eXampPleuuuiiiiiiiiii e ————- 12-19

User’s Guide March 14, 2001 Release 3.0

1 Overview

List of Figures

Figure 1: Platforms on which Paradyn can monitor application processescccceeeeeennn. 1-5
2 Running Paradyn

Figure 2: Files needed tO run Paradyncoooiiiiiiiiiiiiiiie e e e e e e 2-2
Figure 3: Environment variables used when running Paradynccccoovvviiiiiiiiiiiiicnnneenn. 2-3
Figure 4: Starting Paradynueeeeeeiiiiiiiiieee e 4....... 2-
Figure 5: Defining a new application PrOCESSccciiieeiiiiiiiieeeerr st 2-5
Figure 6: Paradyn ready to run the applicationcccoooiiiiiii e 2-6
Figure 7: Specifying a process to attaCh 0. ... 2-8
Figure 8: Attach completed and application execution CONtiNUING.cvviiiiiiiiiieeeeeeeennne. 2-8
Figure 9: Sample Makefile for Windows NT.oiiiiiiiiiiieiieeiiiir e eeeeeeeeees 2-10
3 Main Control window

Figure 10: Paradyn Main Control WINAOWoooiiiiiiiiiiiiiiiiiii e 3-1
4 Tunable Constants

Figure 11: The Tunable Constants WINAOWcoooiiiiiiiiiiiiiiiiii e 4-1
Figure 12: Tunable Constants Descriptions WINAOWoooiiiiiiiiiiiiiiiiiiiiceeeeeee e 4-2
Figure 13: User-level Tunable CONSIANLSuviuiiiiiiiiii e e e e e e e e e e eeeaaaanens 4-3
Figure 14: Developer-level Tunable Constants. Use at your own risk!c.ccoeviiiiinennenn, 4-4
5 Selecting resources

Figure 15: Where AXIS WINAOW.cooiiiiiiiiiiiiiiiees et e e e e e e e e e e e eeeeeeeseennnnns 5-1
Figure 16: Showing all resources in the Where AXiS diSplay ..., 5-3
Figure 17: A single fOCUS SEIECIEAcooiiiiieeeeee e e e e e e e eeaaaanans 5-4
Figure 18: Multiple fOCI SEIECHIONcooiiiiiiie e eeeeaaaes 5-5
Figure 19: Callgraph diSPIaycccooeeei i e e L....... 5-
6 Selecting metrics

Figure 20: MEetriCS dialog DOXueeiiiiiiiiiiiiiie e 6-1
Figure 21: Metrics dialog box with several metrics selectedcccoeeeiiiiiiiiiiiccccceee e, 6-2
Figure 22: Metrics defined iN Paradyncoooiiiiiiiiiiiiiiiii e 6-3
Figure 23: Developer Mode Metrics defined in Paradynooovviiiiiiiiiiiiieee e 6-7
7 Controlling visis

Figure 24: Paradyn Main Control WINAOWceeuuuuimiiiiiiiieeeeeeeeeeeeeeeeeeeeetnnnnns e e e e e eeeeeeeees 7-1
Figure 25: Start A Visualization MENUouuiiiiiiiiiiii e e e e e e e e e e e eeeanaeaes 7-1
8 Phases

Figure 26: Phase Table DiSPIAYcccciiiiiiiiiieciee e e e e e e e e e e e e e eeaaaaanees 8-1
Figure 27: Time Histogram: Global PRASEcccoooiiiiiiiiii e 8-2
Figure 28: Time Histogram: Local Phase (3)ccccciiiiiiiiiiiiieiieeee e 8-2
9 Performance Consultant

FIgure 29: The WRY AXIS ..ooeiiiiiiiiiiee ettt e e 2. 9-
Figure 30: A sample Performance Consultant WindOWwuuiiiiiiiiiiie e 9-4
Figure 31: The Performance Consultant’s search begins ... 9-6
Figure 32: The Performance Consultant refines bottleneck to CPUboundccccccveeeen. 9-8
Tutorial March 14, 2001 Release 3.0

List of Figures

Figure 33: Search History Graph tunable constants for saving screen spaceccccvuveee. 9-9
Figure 34: The Performance Consultant refines bottleneck beyond CPUbound 9-10
Figure 35: The second set of Search History Graph refinementscccccooiiiiiiiiiiiiiiiiiiininn, 9-11
Figure 36: Final Search History Graph bottleneck refinementccccceiiiiiiiiiicicceenn, 9-12
10 Standard visi modules

Figure 37: Time Histogram with Selected CUINVEeccccuuiiiiiiiiiiiiiiiie e 10-1
Figure 38: Time Histogram with unsmoothed and hidden curvesccccceveviiiiiiiennnnnnn, 10-3
Figure 39: Zoomed Time HiSTOGIamuuuiuuiiiiiiii et e e e e e e e eeeeenaanes 10-3
Figure 40: Barchart visualization WINAOWccooiiiiiiiiiiiiiiiiiieiee e 10-4
Figure 41: Barchart showing total ValUESccooiiiiiiiiiiicceee e 10-5
Figure 42: Table visualization WINAOWooiiiiiiiiiiiiiiiinee e 10-6
Figure 43: Table visualization showing short focus Namesccccciiiiiiiiiiiiiiieeee, 10-7
Figure 44: Table visualization with values shown to two significant digits 10-9
Figure 45: 3D Terrain VISUALIZAtIONccooiiiiiiiiiiiiiiiiire e 10-9
11 Exporting Paradyn Data

Figure 46: EXport dialog WINAOWccooiiiiiiiiiiiiiiie ettt e e e e e e e eeeeeeeees 11-1
Figure 47: Performance Data File Header and Data FOrmatccccccceeeeeiiiiiiniiiiiiciiinnee, 11-2
Figure 48: The Paradyn Main Window after saving performance data.cccccceeeeennn. 11-2
Figure 49: The Paradyn Main Window after saving resource Names.cccccceeeeeeeeeeeeeeennn 11-3
Figure 50: Format for exported search data in Shg.IXt.coovviiiiiiiiiiiiiii s 11-4
Figure 51: Paradyn Main Window after saving Performance Consultant data. 11-4
12 Paradyn Configuration Language

Figure 52: LiSt Of MDL KEYWOIUSuuuiiiiiei et e e e e e 12-2
Figure 53: Predefined variabIes 12-10
Figure 54: Metric labels. ... 2L 12
Tutorial March 14, 2001 Release 3.0

Page 1-1

1 OVERVIEW

Paradyn is a tool for measuring the performance of parallel and distributed programs. When run
with Paradyn, instrumentation is dynamically inserted into an executing application program and
its performance is reported in real-time. Paradyn’s features include:

* Run-time program instrumentation: you do not have to modify your source code or use a spe-
cial compiler. Paradyn directly instruments the binary image of your running program.

» Performance data visualizations: Paradyn currently provides visualizations to present perfor-
mance data in time-plots, bar graphs, and tables.

* Automated search for performance bottlenecks: Paradyn’s Performance Consultant has a
well-defined notion of bottlenecks and directs Paradyn’s instrumentation in search of them.

* Multi-platform support: Paradyn currently can measure programs running on Solaris (SPARC
and x86), IRIX (MIPS), Linux (x86), Windows NT (x86), AIX & SP2 (RS6000), and Tru64
(Alpha).

» Paradyn can measure programs running on heterogeneous combinations of the above systems.
* Support for MPI and PVM message-passing.

* The ability to monitor and display performance data, and isolate performance problems to
particular intervals (“phases”) of program execution.

* An open interface for defining new performance metrics: the Metric Description Language
allows the advanced Paradyn user/programmer to define new performance metrics. These
metrics can be based on application specific performance data.

* An open interface for adding new run-time visualizers and external analysis: using Paradyn’s
Visilib, programmers can interface new or existing display routines to Paradyn performance
data, and Paradyn’s measurement data export capability supports analysis with external tools.

Paradyn differs from many performance tools in that it can decide what performance data to
collect while the program is running. When you select some performance metric to be displayed
for some part of your program, at that moment Paradyn will insert the necessary data gathering
instrumentation into your application program. This method allows you to have direct and
dynamic control over the overhead of data collection (so you don’t pay for what you don’t use).

A tool based on dynamic instrumentation can control instrumentation overhead and data vol-
ume while still being able to collect information about the time-varying behavior of long-running
complex application programs.

Dynamic instrumentation may seem a bit unusual at first. When you (or the Performance Con-
sultant) are not requesting a particular kind of performance data, it is usually not being collected.
This means that there may be intervals of time for which you cannot display data: if you display a
time-plot, there will be gaps in the curves. Paradyn tries to keep you informed of these details, so
that you can use this information to your advantage.

Note this manual contains color figures with detail which may not be easy to distinguish
when printed/viewed in grayscale.

User’s Guide March 14, 2001 Release 3.2

Page 1-2

1.1 Release notes (version 3.2)

Release 3.2 of the Paradyn Parallel Performance Tools is provided as both binary and source dis-
tributions, along with extensive documentation. This new release consolidates functionality intro-
duced with the preceding releases, incorporates fundamentally improved analysis and
instrumentation techniques, deploys these advanced technologies to additional platforms, and
generally enhances capabilities, performance and software engineering. The documentation from
the preceding 3.1 release is substantially unaltered for this release.

Key improvements for Paradyn 3.2 include:
» support for high-resolution wall timers on Linux based on the TSC register

» support for high-resolution CPU timers on Linux when used with a kernel built with the
hrtime patch. (See tharadyn Installation Guidefor details about obtaining and installing
this patch.)

» support for shared objects on AIX

» support for high-resolution wall timers on Irix

» improved predicted and observed cost estimates on Linux and Solaris
* improved process control and Fortran support on Irix

» function relocation on x86: functions with tight instrumention points are now relocated and
expanded to avoid trap-based instrumentation

* improved x86 function parsing
* many performance improvements and bug fixes

Platform changes for Paradyn 3.2:

* The Paradyn daemon is now supported for sequential programs on AlX 4.3
 PVM is no longer supported

» Paradyn 3.2 is the last release for Solaris 2.6

1.2 Release notes (version 3.1)

Key improvements for Paradyn 3.1 include:

» preliminary support for applications running on Tru64 Unix (Alpha): “beta” versions of the
Paradyn daemon and run-time library are available on request

» more reliable bootstrapping (for both explicit process creation and attaching to existing pro-
cesses) and handling of processes as they fork(), exec() and exit()

» support for x86 applications which have their own signal handlers (which would otherwise
conflict with Paradyn’s use of signals for instrumentation and control on these platforms)

» more flexible static and dynamic instrumentation heap organization
» cleaner source organization and easier, more configurable build
* many performance improvements, bug-fixes and software revisions.

User’s Guide March 14, 2001 Release 3.2

Page 1-3

1.3 Release notes (version 3.0)

New features for Paradyn 3.0 include:

» support for Irix 6.5 (MIPS; N64 & N32 ABIs; Origin MPI), Linux 2.2 (x86) and newer ver-
sions of Solaris

» support for applications using MPICH 1.2.0 on Linux and Solaris platforms
» support for Fortran applications on Irix and WindowsNT

» support for multithreaded applications and per-thread metrics (currently only Solaris threads
on SPARC/Solaris, through a separate Paradyn daemon and run-time library: see the separate
Instrumentation of Multithreaded Programslocument.)

* dynamic instrumentation and notification of dynamic function calls
* an extensive suite of inclusive metrics (i.e., metrics which include called functions)

» program callgraph display and alternative callgraph-based Code hierarchy search based on
retroactive (“catchup”) instrumentation execution for currently-executing (on-stack) functions
and cheaper inclusive metrics

* reorganization of processes and threads under the Machine resource hierarchy
» execution measurement data export capability to support analysis with external tools

* multiple inferior instrumentation heaps, localized to allow use of atomic single-instruction
instrumentation points on SPARC and MIPS.

» system-call interruption and restart (Solaris)

* instrumentation trigger guards available on SPARC, MIPS, RS6000 and x86 platforms
» support for remote/wide-area application monitoring

» shared-memory sampling now standard (i.e., added for WindowsNT and AIX)

» dynamic loading of Paradyn runtime librariibdyninstR7 now standard on all platforms
(except AIX)

* runtime histogramrthist) visi ported to Tk (like most other Paradyn visis and the main GUI)
» Paradyn GUI and visis ported to WindowsNT

» support for Microsoft CodeView debug format (WindowsNT)

* many performance improvements, bug-fixes and software re-engineering.

Further implementation details behind these features (and more) are available in the Paradyn
Developer’'s Guide

Paradyn releases attempt to make capabilities available as early as possible on a wide variety
of platforms, however, there are some limitations in the current version:
* Fortran and C++ application support is being improved on a number of platforms.

* CPU timers are being derived from virtual timers for more efficient management of large
groups of metric timers (such as those used for timing functions which are disabled and then
re-enabled during message-passing communication operations based on spin-waiting).

User’s Guide March 14, 2001 Release 3.2

Page 1-4

» Handling of collections of processes (on the same processor by a single Paradyn daemon) and
propagation of associated metrics to fork&exec’d processes are being improved, along with
the management of metrics defined on dynamic sets of processes. Support for applications
consisting of multiple executables (and distinct callgraphs/resources) is being improved.

* The automated search executed by the Performance Consultant is being streamlined/opti-
mized to avoid redundant instrumentation of nodes, and the callgraph-based version refined to
re-evaluate inclusively-exigent nodes with exclusive metrics to verify whether internal (non-
leaf) graph nodes are themselves exigent. The search from all such exclusively-exigent nodes
will then progress to consider other resource hierarchies.

* AIX application programs that are to be monitored using Paradyn need to be re-linked with
explicit code block markers and Paradyn’s run-time instrumentation library. This link step is
necessary because Paradyn isn’t yet able to dynamically load its instrumentation library under
AlX, and the peculiar format of libraries makes it difficult to distinguish user and library mod-
ules. Details of this link step are described in Section 2.3. Instrumentation of dynamically-
linked libraries is not supported on AlX.

» The standard version of Paradyn cannot safely handle some threaded applications or applica-
tions that share code space as it currently does not know about threads. If you use a non-pre-
emptive thread package, Paradyn will still work; performance data can be attributed to the
Unix processes, but cannot be broken-down by thread. If you use any multiprocessing or pre-
emptive threading package, Paradyn’s instrumentation is likely to misbehave (i.e., we make no
guarantees on what will happen). A separate Paradyn daemon and run-time library supporting
applications based on Solaris threads on SPARC is available: see the sépstrateenta-
tion of Multithreaded Programsiocument for further information.

» Paradyn currently uses 32-bit counters as the basis for some of its instrumentation. For very
frequent events, such as those triggered by hardware counters (such as instruction counters or
memory reference counters), these 32-bit counters will overflow. Future releases will allow
larger counters.

* Instrumentation and monitoring of 64-bit applications is not supported, except on MIPS/Irix.
64-bit SPARC/Solaris support is under development.

» x86/Solaris processes occasionally die during a Paradynd attach.
» x86/Solaris reports rollbacks from the systgathrvtime(timer which are being investigated.

* Instrumentation metrics for I1/O are based on the Unixi) andwrite() system calls. If
you use read or write for socket operations, these will appear as I/O. If you use other system
calls that do file 1/0O, these will not be accounted for.

Most (if not all) of these restrictions will be relaxed in an intermediate release or the next major
release of Paradyn.

1.4 Supported hardware and software platforms
The Paradyn user interface can run and Paradyn can monitor application programs on any of the

types of workstations and parallel computers listed in Figure 1. Paradyn can also monitor applica-
tion program running on heterogeneous combinations of these platforms.

User’s Guide March 14, 2001 Release 3.2

Page 1-

System ldentifier

Description

sparc-sun-solaris2.6

i386-unknown-solaris2.¢
i386-unknown-linux2.2

Mips-sgi-irix6.5

rs6000-ibm-aix4.3

i386-unknown-nt4.0
alpha-dec-0sf4.0

n

D

Solaris operating system version 2.6 or 7 on SPARC proces
(Note: only 32-bit applications are currently supported.)

Solaris operating system version 2.6 or 7 on x86 processors

Linux operating system version 2.2 on x86 processors.

IRIX operating system version 6.5 or later on MIPS processors.

Origin MPI is also supported.
(Note: only N64 and N32 ABI applications are supported.)

AIX operating system version 4.3 or later on RS6000 process
MPI is supported in the POE environment on SP2s.

Windows NT operating system version 4.0 on x86 processors

Tru64 Unix operating system version 4.0 on Alpha processot
(Note: only the Paradyn daemon and libraries are so far availab

5

SOrsS.

[7)

bOI'S.

D.

S.
le.)

Figure 1: Platforms on which Paradyn can monitor application processes

Note the following qualifiers:

* A Paradyn daemon and associated run-time library are available on request for Tru64 Unix

(Alpha), however, they are early versions with known significant problems, particularly with

instrumentation deletion and exclusive CPU metrics. While these don’t prevent use by experi-
enced Paradyn users, basic functionality, such as the Performance Consultant, is not usable.

* MPI programs can only be run under the POE environment on the SP2 and Irix on Origin, and

under MPICH 1.2 on Linux and Solaris platforms. Additional support is in development.

User’s Guide

March 14, 2001 Release 3.2

Page 1-6

1.5 Other documentation: Manuals
In addition to thidJser’s Guide the following documentation is available for Paradyn:

Installation Guide

The Installation Guide describes how to obtain Paradyn via anonymous ftp and install it on
your system(s). It also describes the minimum operating system and system software version
numbers needed for compatibility with this release of Paradyn.

Tutorial

The tutorial provides a step-by-step example of the use of Paradyn. It walks you through the
main features of starting a program with Paradyn, displaying performance visualizations, and
using the Performance Consultant. The tutorial is intended to show you many of the common
and most useful features, but is not a complete description of Paradyn’s features. This manual
(theUser’s Guidg contains the complete description of Paradyn.

VisiLib Programmer’s Guide

Visilib is the standard API interface for external processes that want to collect performance
data from Paradyn. Paradyn performance visualizations (Time Histogram, Bar Chart, Table
and 3D Terrain) execute as separate processes, using Visilib as their interface to Paradyn.

Visilib provides a simple interface and abstraction to the writer of a new performance visual-
ization. The library handles the details of communicating with Paradyn, processing incoming
performance data, providing notifications of changes in the data, and clean-up when Paradyn
terminates. Paradyn itself will start the visualization process and provide the user interface for
selecting the data to visualize. The writer of the visualization module is left to concentrate on
the display and graphics aspects.

MDL Programmer’s Guide

MDL programming hints and examples for those wishing to write their own metrics.

Developer’'s Guide

This is intended for those who wish to understand the Paradyn source code—whether to just
to browse it or to actually make changes with the intent of rebuilding Paradyn from scratch.

Instrumentation of Multithreaded Programs

Describes implementation of instrumentation for threaded programs, with current usage and
status information for using Paradyn with applications based on Solaris threads on SPARCs.

1.6 Other documentation: Technical papers

Following is a bibliography of currently available papers on the technology contained in or related
to Paradyn. These papers and others may be obtained from the Paradyn Project Web home page.

User’s Guide March 14, 2001 Release 3.2

10.

11.

12.

13.

14.

15.

Page 1-7

“The Paradyn Parallel Performance Measurement Tools”, Barton P. Miller, Mark D. Callaghan,
Jonathan M. Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kun-
chithapadam, and Tia NewhalEEE Computer28, 11, (November 1995). Special issue on Parallel
and Distributed Processing Tools.

“An Adaptive Cost Model for Parallel Program Instrumentation” Jeffrey K. Hollingsworth and Barton
P. Miller. EuroPar’96 ConferencelLyon, France, August 1996. AppearsladCS 1123Vol.l, pp. 88-
97, Springer-Verlag.

“Dynamic Program Instrumentation for Scalable Performance Tools”, Jeffrey K. Hollingsworth, Bar-
ton P. Miller, and Jon Cargill&calable High Performance Computing CoKioxville, May 1994.

“Dynamic Control of Performance Monitoring on Large Scale Parallel Systems”, Jeffrey K. Holling-
sworth and Barton P. Millemternational Conference on Supercomputifigkyo, July 19-23, 1993.

“The Paradyn Parallel Performance Tools and PVM”, Barton P. Miller, Jeffrey K. Hollingsworth, and
Mark D. CallaghanEnvironments and Tools for Parallel Scientific Computing J. J. Dongarra and
B. Tourancheau, eds., SIAM Press, 1994.

“Mapping Performance Data for High-Level and Data Views of Parallel Program Performance”, R.
Bruce Irvin and Barton P. Millemternational Conf. on Supercomputijrghiladelphia, May 1996.

“A Performance Tool for High-Level Parallel Programming Languages”, R. Bruce Irvin and Barton P.
Miller. Programming Environments for Massively Parallel Distributed Systems K. M. Decker
and R. M. Rehmann editors, Birkhauser Verlag, pp. 299-314, 1994.

“Optimizing Array Distributions in Data-Parallel Programs”, Krishna Kunchithapadam and Barton P.
Miller. 7th Workshop on Languages and Compilers for Parallel Computimaca, NY. August 1994.

“Integrating a Debugger and Performance Tool for Steering”, Krishna Kunchithapadam and Barton P.
Miller. Workshop on Debugging and Performance Tuning for Parallel Computing Systemps Cod,
Massachusetts, USA, October 1994.

“What to Draw? When to Draw? An Essay on Parallel Program Visualization”, Barton P. Nidler.
nal of Parallel and Distributed Computirif, 2 (June 1993).

“Binary Wrapping: A Technique for Instrumenting Object Code”, Jon Cargille and Barton P. Miller.
SIGPLAN Noticeg7, 6 (June 1992).

“Finding Bottlenecks in Large-scale Parallel Programs”, Jeffrey K. Hollingsworth, August 1994. Uni-
versity of Wisconsin-Madison Computer Sciences Department Tech. Report #1243 (Ph.D. Thesis).

“Performance Measurement Tools for High-Level Parallel Programming Languages”, R. Bruce Irvin,
October 1995. University of Wisconsin-Madison Computer Science Department Technical Report
#1292 (Ph.D. Thesis).

“MDL: A Language and Compiler for Dynamic Program Instrumentation”, Jeffrey K. Hollingsworth,
Barton P. Miller, Marcelo J. R. Gongalves, Oscar Naim, Zhichen Xu and Ling ZHR&@T'97, San
Francisco, California, USA, November, 1997.

“A Callgraph-based Search Strategy for Automated Performance Diagnosis,” Harold W. Cain, Barton
P. Miller and Brian J. N. WyligEuroPar'200Q Miinchen, Germany, August 2000.

User’s Guide March 14, 2001 Release 3.2

Page 1-8

1.7 Contacting the Paradyn developers

There are various ways to get in touch with us. We are glad to answer questions and appreciate

feedback.

e-mail;

Web:

FTP:

FAX:

Postal:

paradyn@cs.wisc.edu

This is our project e-mail address. Use this address for technical questions or requests.

http://www.cs.wisc.edu/~paradyn

This is our home page. From this page, you can find out how to get a binary or source version
of Paradyn. You can also get updates and news on the current release of Paradyn.

ftp://grilled.cs.wisc.edu/paradyn/

This is our ftp site. In the “paradyn” directory, you will find subdirectories containing the bi-
nary and source versions of the Paradyn release. Make sure to look at the README files!

+1-608-262-9777

Paradyn Project

c/o Prof. Barton P. Miller
Computer Sciences Department
University of Wisconsin

1210 W. Dayton Street
Madison, WI 53706-1685
US.A.

User’s Guide March 14, 2001 Release 3.2

Page 2-1

2 RUNNING PARADYN

In this section, we describe the steps that you should follow to run Paradyn. First we give you an
overview of the major steps and then we explain each one in detail. For this section, we are
assuming that you have already installed Paradyn as documentedhistéiiation Guide

2.1 Overview of major steps

To run Paradyn, follow the steps:

1. Set up Paradyn and daemons (Section 2Y&u need to specify the location of the Paradyn
executable and configuration files and some external libraries.

2. Prepare your application program (Section 2.8enerally Paradyn is able to handle unmodi-
fied executables, however, on some platforms you may need to re-link your application pro-
gram with Paradyn’s run-time dynamic instrumentation library.

3. Run Paradyn (Section 2.4Paradyn has several options that you may use during execution,
such as adding a new process to your application. These options may be specified directly on
the command line or in a Paradyn configuration file for the application.

Sections 2.2 through 2.4 explain these steps in more detail.

2.2 Setting up Paradyn and the Paradyn daemons

Paradyn has two main parts: the Paradyn front-end and user interface (“paradyn”) and the Paradyn
daemons (“paradynd”), which are the agents that run on each remote host where your application
program is running. Paradyn contains the user interface that allows you to display performance
visualizations, use the Performance Consultant to find bottlenecks, start or stop your application,
and monitor the status of your application. The Paradyn daemons operate under the control of
Paradyn to monitor and instrument the application processes. Paradyn also uses configuration files
to specify details of Paradyn configuration, instrumentation and application programs. You must
have Tcl and Tk library files installed to be able to use the Paradyn front-end. Also, a special RPC
package is required to use Paradyn on Windows NT systems.

For the details of installing Paradyn, its daemons, Tcl/Tk and other external software, refer to
the Paradyn Installation Guide

After you have installed Paradyn, you need to specify the location of Paradyn’s executable and
configuration files. The files needed to run Paradyn are listed in Figure 2, along with explanations
of their use. The environment variables that are needed or helpful when running Paradyn are listed
in Figure 3, along with a description of their use.

2.3 Preparing your application program
On most platforms, Paradyn is able to instrument unmodified executableafdess (or *.exe).

However, some platforms require preparation of executables, and Paradyn will benefit from the
inclusion of debug information on all platforms. This section details the application preparation

User’s Guide March 14, 2001 Release 3.2

Page 2-2

File Use
paradyn The executable that starts a Paradyn session and provides the majn user
paradyn.exe interface. There are versions for each supported platform and an apgropri-

ate version should be placed in a location that will be found by your shell's
search path (or you can specify the full path name to run it).

paradynd The executable for a Paradyn daemon. Versions exist for each of the sup-
paradynd.exe ported target application environments, and an appropriate version should
be placed in a location that will be found by your shell’'s search path (or

you can specify the full path name to run it).

paradyn.rc Contains crucial information, such as metric and daemon definitions] The
following steps are used to try to find this file (in the order listed):

1. Look for the fileparadyn.rc in the directory specified by the environ-
ment variable PARADYN_ROJTi.e., $PARADYN_ROOT/paradyn.rc).

2. Look in your current working directory for the fieradyn.rc
.paradynrc In addition toparadyn.rc , Paradyn will also look in your account’s home

directory for a file namedparadynrc (note the slightly different form)
Should it exist, this file is processed after, and in additiopatagyn.rc

Figure 2: Files needed to run Paradyn

required or recommended for use with Paradyn. Additional platform-specific build and execution
details are documented in Section 2.6

2.3.1 Generation of debug information (all platforms)

Paradyn will benefit from access to debug information for the application under study, so we
recommend that executables be built to contain debug information if possible. For most compil-
ers, this means passing the -g compile flag to generate debugging information. For the Microsoft
Visual C++ compiler, use -Z7 or -Zi.

Note that often this does not require disabling any compiler optimizations, and while generat-
ing debug information may result in a slightly slower build and larger executable, there are no
execution performance implications.

2.3.2 Including CodeView debug info in the executable (Windows NT)

Windows NT presents a special case for Paradyn with respect to debug information. The
Microsoft Visual C++ compiler, by default, places debug information in an external “program
database” file with apdb extension. However, with debug information in this external file, Para-
dyn cannot determine the information it needs about the executable. Instead, Paradyn currently
requires that executables on Windows NT be built so that the debug information is included in the
executable itself.

User’s Guide March 14, 2001 Release 3.2

Page 2-3

Environment Variable | Use

U

PARADYN_ROOT Specifies the location of thgradyn.rc configuration file. In source
code distributions of Paradyn, it is also used to locate the root of the
Paradyn code tree. (Not required if you are running Paradyn from
your current working directory or from your home directory.)

PARADYN_LIB Used to specify the Paradyn run-time instrumentation shared gbject
file (libdyninstRT.s0.1 or libdyninstRT.dll). It must specify,
the full path name of this file. E.g.,

setenv PARADYN_LIB /usr/home/me/lib/libdyninstRT.so.1

(Note: when running PVM applications, the shared object file must
be in a directory that is readable by any uker.

Note: under IRIX,PARADYN_LIB should be set to the path of the

libdyninstRT.so0.1 file, regardless of the ABI used by the
application under study. ThigbdyninstRT_n32.s0.1 file should
be in the same directory as thiedyninstRT.so0.1 file. Paradyn’s

daemon automatically chooses the correct runtime library basegd on
the ABI used by the application under study.

TCL_LIBRARY These environment variables specify the location of the Tcl and Tk
TK_LIBRARY command files needed to implement the basic Tcl/Tk object typgs. If
you have been using a current installed version of Tcl/Tk, you prpba-
bly already have these correctly set. If not, see the instructions in the
Paradyn Installation Guidefor information on setting them.

Figure 3: Environment variables used when running Paradyn

To ensure that debug information is appropriately placed in the executable file itself, pass the
“-debug -pdb:none " flags to the Microsoft linker when linking the executable. These flags
indicate that the linker should generate CodeView-format (also called “Microsoft style”) debug
information and place it in the executable rather than a separate PDB file.

2.4 Running Paradyn

At this point, your should be ready to run your application program with Paradyn. You start Para-
dyn by entering the following command at a command prbmpt

% paradyn

Several optional command line arguments can be used when invoking Paradyn:

* -f <pcl-configuration-filename>
specifies a file from where Paradyn can read configuration commands (see Section 12);

1. A command prompt is available under Windows NT from the “Command Prompt” item under the Pro-
grams submenu of the Start menu.

User’s Guide March 14, 2001 Release 3.2

Page 2-4

-default_host <host name>
specifies the default host where Paradyn should start an application when no host name is
given. (If the-default_host option is not used, the default host is the local host.)

-x <connect-filename>

specifies a file to which Paradyn daemon start-up information will be written, which may be
used by external programs to explicitly start Paradyn daemons on different hosts which will
connect to this Paradyn front-end. (This file is created if it doesn’t already exist.)

Paradyn should start running and display the Paradyn Main Control Window, shown in
Figure 4. This window has five menu optiorisle, Setup, Phase, Visi, and Help. These
options allow you to:

. File: At present, the only command in this men&ig Paradyn .

2. Setup: This menu has selections to allow you to describe a new application program to run

from scratch Define a Process , described below) or attach to an already-running application
processAttach to a Process , below). In addition, you can bring up windows which allow you
to start the Performance Consultapérformance Consultant , described in Section 9), change
Paradyn’s tunable constant&ifable Constants Control , described in Section 4), bring up the
call graph of the prograntéll Graph , described in Section TODO), and view the WhereAxis
(Where Axis, described in Section TODO).

. Phase: start and define a new local phase for visualizations and analysis (see Section 8).
. Visi: start visualizations of your application performance (see Section 7).
. Help: get additional information about Paradyn.

Additionally, there are four buttons in this windoRUN, PAUSE, EXPORT andEXIT. RUN

andPAUSE are disabled when there is no application currently defined. These two buttons allow
you to run or stop execution of your application as you WiSkPORT will open a dialog offering

to save the data from current measurements to files for off-line analysis (see Section 11). Finally,
EXIT will exit Paradyn, terminating the application program if necessary, and end the session.

The Paradyn Main Control Window can contain several status lines. Each status line repre-

sents information about some part of Paradyn or your application. In the initial window, there is a
status line labeled “UIM status”. This line shows the current state of Paradyn’s User Interface
Manager (“ready” in this case).

Paradyn Main Control

Fila Setup Phase Visi Help | {18

VI status = readn

4' | EXFORT | ﬂl

Figure 4: Starting Paradyn

User’s Guide March 14, 2001 Release 3.2

Page 2-5

2.5 Running applications with Paradyn

There are two ways to give Paradyn an application program to monitor: defining a new process to
start, and attaching to an already-running process. These two methods are described below.

2.5.1 Defining a new process

One way to measure a program with Paradyn is to select the opéfime A Process from
theSetUp menu. A new window appears, as shown in Figure 5.

Deafine A Process

User:
Host:
Directory: |[/pfparadynfapplications
Daernon! prrrd ¥ defd winntd mpid

Cornrmard: |f|:n:||

ACCEFT CANCEL

Figure 5: Defining a new application process

From this window, you can specify the following parameters:

1. User. This is your login name on the host on which Paradyn will run your application process.
If you leave this field blank, the login will default to your current login name.

2. Host: This is the name of the host on which Paradyn will run your application. If you leave
this field blank, it will default to the host specified with thiefault_host command line
option to paradyn, or to the current host (the one on which the Paradyn front-end is running),
if the option-default_host is not used.

3. Directory: Paradyn runs paradynd and your application as follows. First, it performs a remote
login operation using the “User” and “Host” fields specified above. The current directory (on
the remote machine) at this point is the root directory—not usually where your application
program resides. The “directory” entry box allows you to specify a directory to change to
before executing the command specified in the “Command” entry box. Note that the pathname
given is interpreted on the field named in the “Host” field. For UNIX hosts, the allowed syntax
is familiar: the path specified may start with a slash (/") (specifying an absolute path name,
starting from the file system root directory), or it may start with a tilde (“*~") followed by a
user name (specifying a path name rooted at the specified user’s home directory). A tilde not
followed by a user name is the same as a tilde followed by the current user name. For Win-
dows NT hosts, the path may start with a drive letter, for example “d:\myprograms\bubba”.
Both forward and backslashes are accepted in Windows NT paths.

4. Command: The command that will start this instance of your application program. If the

User’s Guide March 14, 2001 Release 3.2

Page 2-6

Directory entry has been filled in, the command is executed with the current directory set to
the specified path. If the Directory entry is left blank, then the command will be executed with
the current directory set to the home directory of the specified user. Under Windows NT, any
backslashes in the command must be escaped with another backslash, for example “..\\bubba
exampleb”.

5. Daemon This option allows you to specify which Paradyn daemon to run. For most uses, the
default daemon (“defd”) is appropriate. For Windows NT applications, use the “winntd” dae-
mon. For MPI applications, select either “mpid”. If you specify additional daemons in the
Paradyn configuration file, they will appear here.

Once you have made your selections, clickfarept and Paradyn will start the application
program and initialize it. When the status of the Paradyn window is like that in Figure 6, the pro-
gram is ready to run and be measured.

Paradyn Main Control f |
File Setup Phase Visi Help | ¥y

UIM status : readyp
Application mame : program: foo, machine: {local host), wser: (self), daemon:
Application status
Data Manager : readyp
Processes : PID=173E3
. brie : PID=12363, rceadp.

RUN | EXPORT | EXIT |

Figure 6: Paradyn ready to run the application

The window in Figure 6 shows several new status lines with the following information:

1. Application nameThis is the name of the application prograiwo(), the host machine where
it has been started (if remote), the user identifier which it is running as (if different), and the
type of daemon which is monitoring defd).

Application statusThis is the overall application status (eitR&USEDor RUNNING.
Data Manager This is the status of Paradyn’s Data Manager.
ProcessesThis is the process identifier of the controlling process in your application.

a M wbd

brie: There is one status line on each host or node on which you are running your application;
here there is the status line for host “brie”. It shows the current status of your application pro-
cess on this host/node.

Notice that since you have defined a new process the RUN button is enabled and you are ready
to run and measure your program!

The information in the “Define a Process” window can be stored in a Paradyn Configuration
Language (PCL) file. In this file, the user can specify information such as: user application, new

User’s Guide March 14, 2001 Release 3.2

Page 2-7

visualizations to be added to the system, new metrics, and additional paradyn daemons. The com-
plete details of the Paradyn Configuration Language are given in Section 12.

As a simple example, if we want to run an application called “bubba”, with an executable file
named “bubba_pd” indicating special Paradyn support, a file called “bubba.pcl” might contain:

process bubba {
dir “/p/paradyn/applications/sequential/bubba”;
command “bubba_pd example.dat”;
daemon defd,;

}

and the command to automatically start Paradyn with this application would be like this:
% paradyn -f bubba.pcl

This command tells Paradyn to run the application “bubba” in the directory specified by “dir”
using the command line specified by “command” with the Paradyn daemon specified by “dae-
mon” (defd or default daemon in this case).

2.5.2 Attaching to a process

Sometimes, defining a new process from Paradyn as shown in the previous sub-section is not con-
venient. The main limitation of defining a new process is that a new process is launched every
time you run Paradyn (and killed every time you exit Paradyn). Many programs you may wish to
measure are not amenable to starting up and shutting down every time you wish to measure them.
Typically these are server-type programs, which are meant to run for an indefinite amount of time.
In such cases, it is more convenient to attach to an already-running program when you wish to
measure it with Paradyn, and to detach from it when you exit Paradyn.

Paradyn currently does not offer the option to detach from the application leaving it running
when you exit; on exit, Paradyn kills the application it is monitoring and all its associated pro-
cesses. This limitation will be removed in a future release.

To attach to a running process, choas@ach to a Process from theSetup menu of the Para-
dyn main window. A dialog box (Figure 7) will appear.

The User, Host, and Daemon items have the same meaning as in Section 2.5.1. The most
important box ispPid, where you specify the process identifier of the process (onHtize
machine) you wish to attach to. ThEecutable file item lets you specify a full pathname to the
executable file corresponding to the process id. The Paradyn Daemon needs to find the executable
file on disk in order to extract symbols (procedures, modules) that will go icdhe portion of
the Paradynwhere Axis . Obtaining symbols from the executable file is also done when defining a
new process (Section 2.5.1). However, it can be burdensome to enter the full path name of a pro-
cess that you want to attach to; it is possible that you might not even know the disk directory from
which it was launched. Therefore, if you leave thecutable file item blank, the Paradyn Dae-
mon will make an effort to locate its value automatically. (It obtains the program name by examin-
ing the process’ first argumenrdygv[0] . It then looks in several directories for this program
name; it searches the process’ current directory and all items RATE$S environment variable.

User’s Guide March 14, 2001 Release 3.2

Page 2-8

Attach to a Process
User: I
Host: Ihrie
ixecutable file: I."p."parad_',m."applications."Test_dist."hubba_seq!iSEG—unknmﬁm—snlarisE.5."hubba
Pid: |13054
Daermnon: s pvmd & defd ~ wrinntd - mpid

Entering a pid is mandatory.,

Enter the full path to the execitable in ‘Executable file”. It will be used just to parse the symbal table,
Paradyn tries to determine this information automatically, so you can usually leave ‘Executahle file” blank,

After attaching: | -+ Pause applicaton | . Runapplicaton | @ Leaveasis |

ATTACH | CANCEL |

Figure 7: Specifying a process to attach to.

For those interested, further technical details on how attach is performed can be found in the sep-
arateParadyn Developer’s GuidgIf Paradyn reports that it cannot locate the executable file, you
will have to enter the full path name in thescutable file field.

The Paradyn daemon can attach to a process, whether it is currently running or stopped. After
it has attached, you may wish to have the daemon automatically pause or run the application. To
do this, choose eithérause application 0or Run application items from the dialog box. The default
is Leave as is , wWhich detects whether the program was running or stopped at the time of attach.
Note that the process is necessarily paused for a short time while the Paradyn daemon initializes it
(parses its symbol table, parses any shared libraries it has been linked with, etc.)

When you have entered the desired parameters, cligR'oxcH to perform the attach opera-
tion. When ready, the Paradyn main window should look like Figure 8.

Paradyn Main Control f |
File Setup Phase Visi Help | yr

M status : readp
Application name : oprogran: Splpacadpndapplications Test_dists/bubba_szeqri3fe-
Application stalus : RUHRIHG
Data Manager : readp
Processes : PID=13052
. bxie : oapplication oonming

| PAURSE | EXFPORT | EXIT |

Figure 8: Attach completed and application execution continuing.

User’s Guide March 14, 2001 Release 3.2

Page 2-9

2.6 Architectural issues

Certain platforms require slight modifications to the procedures discussed above. In this subsec-
tion, we describe each of them in turn.

2.6.1 Common Platforms

These notes apply for Solaris (SPARC and x86), Linux (x86), Irix (MIPS), and AIX (RS/6000).
Variations for Windows NT and MPI programs follow.

On these platforms we support instrumenting shared objects (dynamically-linked libraries).
Dynamic executables are executables that are linked with shared object files, and are the default
output generated by the link-editor, therefore no special flags are needed to create dynamic exe-
cutables. Paradyn’s run-time instrumentation library is a shared obj@giistRT.so.1)

which is dynamically loaded at run-time, and does not need to be linked with the executable.

Shared objects will show up on the Paradyn Where axis and performance data can be collected
for functions from shared objects. Also, the Performance Consultant will include functions in
shared objects in its search for bottlenecks. The Mi&Xclude option can be used to specify
shared objects and/or functions from shared objects that should not be included in the Perfor-
mance Consultant’s search. This is discussed in more detail in Section 12.8.

When using the Sun C or Fortran compilers on Solaris, you should also specity tioption
together with-g . The-g option alone will direct the compiler to place debugging information in
the object files .6 files), but it will not place the debugging information on the executable
(a.out) file. You must use thexs option so that the compiler will add the debugging information
to the a.out file. Thexs option is not needed if you are using GNU compilers.

Paradyn supports both the n32 and 64-bit ABI formats for Irix binaries. This requires the use
of different dynamic instrumentation libraries for n32 and 64-bit processes, however, Paradyn
transparently handles all details necessary to choose which library to use at run-time.

Inter-library calls on AIX appear to be made by a “shadow” function with the same name as
the function being called. Paradyn detects these shadow functions and appends “_linkage” to their
names. This is simply for clarification purposes.

2.6.2 MPI

To run an MPI application under Paradyn one should follow the steps described in
Section 2.5.1. The user should 8i&gemonto mpid. The Commandield should contain the same
command line one uses to launch the application without Paradyn(@gyyri -np 2 hello ”).

Note that theProcessedield for MPI1 will identify the type of MPI being used (POE, IRIX or
MPICH) and not the processes involved in the job. Platform-specific details are given below.

* |RIX-native MPI : Paradyn currently does not support the [file] " mpirun option. For
more information on the interaction between IRIX-native MPI and Paradyn, sdeatheyn
Developer’'s Guide

User’s Guide March 14, 2001 Release 3.2

Page 2-10

* MPICH : Currently, Paradyn supports MPICH version 1.2.0 with the default P4 driver. The
user should use therpirun ” command to start an application. Unsupported mpirun options
include “p4pg file 7, *“-gdb” and “- dox”. The “mpirun ” command will be started through
a remote shell on the machine specified intustfield of the dialog box. If no name is spec-
ified, it will run on the frontend machine.

 POE MPI on AlX : the POE job launchetoe can be entered in the command field or omitted.

2.6.3 Windows NT

The way Paradyn works in Windows NT is similar to other platforms, however there are a few
small differences.

On Windows NT the run-time instrumentation libratgdyninstRT.dll) is loaded dynam-
ically. You must either definBARADYN_LIBwith a full path tolibdyninstRT.dlI or have itin
a directory that is listed in your “path” environment variable, so that it can be found by the
dynamic linker.

Paradyn needs symbolic debug information, so you must compile your application with
debugging information enabled. We currently handle CodeView (also called “Microsoft style”)
and COFF symbol formats, though we recommend CodeView format since it provides more com-
plete and accurate information than with COFF symbols. The option to enable a CodeView sym-
bol table will depend on the compiler used. For the Microsoft compiler this optiam isr /zi
You must also direct the linker to generate symbolic information in the executable file. The
options/debug and pdb:none must be passed to the linker. Figure 9 shows a sample Makefile for
the Microsoft Visual C++ compiler.

CC=cl/z7
OBJECTS = main.obj this.obj that.obj

bubba.exe: $(OBJECTS)
link -out:bubba.exe -debug -pdb:none $(OBJECTS)

Figure 9: Sample Makefile for Windows NT.

Paradyn needs to instrument some system libraries (in partigedie#i32.dll), and this can
only be done if the symbols for the system libraries are installed. The symbols are available with
the NT CD-ROM, and they can be installed by the installation programs of compilers (e.g. the
Microsoft Development Studio has an option to install the system symbols files).

The files which are needed to run on Windows NT@amdynd.exe (the paradyn daemon),
libdyninstRT.dll (the run-time dynamic instrumentation library), atvdtrpc.dil (a version
of the Sun RPC library for Windows NT, included with the Paradyn binary release, which is used
by Paradynd to communicate with the Paradyn front-end). All of these files should be in directo-
ries that are listed on your “path” environment variable.

In order to have a Paradyn daemon started automatically by the Paradyn front-end (as for the
other platforms), you need to have a remote shell daemsbwl ©r sshd running on the Windows
NT machine(s), and you must be able to execute commands on Windows NT from the Unix

User’s Guide March 14, 2001 Release 3.2

Page 2-11

machine where the Paradyn front-end is running. If you don’t haveslagh running on the Win-

dows NT machine, you must start the Paradyn daemon manually. Either referxo toenmand-

line option for Paradyn to automatically get this information (Section 2.4) or use the information
from the “Daemon start-up info” menu item under the “File” menu in the Paradyn user interface.
You must start paradynd giving the exact arguments shown in that dialog but specifying the appro-
priate “flavor” (which will bewinntd for a Paradyn daemon and application processes running
on Windows NT): note that for each session the port identifier (and possibly also host machine)
arguments will be slightly different, so you can’t reuse exactly the same command line for differ-
ent Paradyn sessions. The command line to start paradynd on Windows NT will look like:

paradynd -zwinnt -12 -m myhostmachine.domain.org -p 12345

Once the Paradyn daemon is started, it connects to the existing Paradyn front-end session, and
everything else will work as usual.

Note that Paradyn is currently not expected to work with gcc-compiled application programs
under Windows NT.

User’s Guide March 14, 2001 Release 3.2

Page 3-1

3 MAIN CONTROL WINDOW

In this section we discuss features of the Paradyn main control window (an example is shown in
Figure 10). The Paradyn main window is the interface though which a user can access all parts of
the Paradyn tool. The main window is divided into three sections; the top section contains a menu
bar, the middle section contains a dynamic set of status lines (split into a generic part and a part
for per-process status information which is both resizable and scrollable), and the bottom section
contains a set of menu buttons. We discuss the details of each of these below.

Pararlvn Nl
. £
File Setup Phase Visi Help |

UIH status ! ready
Epplication name : program: foo, machine: beaufort, user: (self), daemon: def

Application status
Data Hanager : ready
Processes : PID=26%90

beaufort : PID=Z690, ready.

“RUN | | EXPORT | EXIT |

Figure 10: Paradyn Main Control window

3.1 Main menubar

The menu bar in the Paradyn main control window contains five items; four of these display a
sub-menu when selected, and the other opens a dialog, as follows:

3.1.1 File menu

TheFile sub-menu contains only the one menu it@&xit Paradyn . When this item is selected, the
Paradyn process and all currently-associated application, daemon and visualization processes exit.
The same effect can be achieved by clicking oretie button (Section 3.3).

3.1.2 Setup menu

The Setup menu contains items to define an application process, to attach to an already-running
application process, to create a Performance Consultant window, to bring up the Tunable Con-
stants dialog, and to bring up the Where Axis display. Seleabetipe A Process displays the

Define A Process window (this window is shown in Figure 5 in Section 2.5.1). This is a mecha-
nism through which a user can provide information about their application so that Paradyn can
start it. A description of how to use thefine A Process window is given in Section 2.5.1.

Using Define A Process creates (i.e. starts