

dyninstAPI 3/15/01

Paradyn Parallel Performance Tools

DyninstAPI
Programmer’s Guide

Release 2.3
March 2001

Jeffrey K. Hollingsworth & Bryan Buck
Computer Science Department
University of Maryland
College Park, MD 20742
Email: hollings@cs.umd.edu

Web: www.cs.umd.edu/projects/dyninstAPI

ParaP

ynTM

 Page 2

dyninstAPI

1. Introduction ... 3

2. Abstractions ... 3

3. Simple Example... 4

4. Interface... 5

4.1 CLASS BPATCH ... 5
4.1.1 Callbacks ... 9

4.2 CLASS BPATCH_THREAD .. 11
4.3 CLASS BPATCH_SOURCEOBJ .. 15
4.4 CLASS BPATCH_FUNCTION ... 16
4.5 CLASS BPATCH_POINT .. 17
4.6 CLASS BPATCH_IMAGE ... 18
4.7 CLASS BPATCH_MODULE.. 20
4.8 CLASS BPATCH_SNIPPET... 21
4.9 CLASS BPATCH_TYPE ... 25
4.10 CLASS BPATCH_VARIABLEEXPR... 26
4.11 CLASS BPATCH_FLOWGRAPH ... 27
4.12 CLASS BPATCH_BASICBLOCK... 28
4.13 CLASS BPATCH_BASICBLOCKLOOP .. 29
4.14 CLASS BPATCH_SOURCEBLOCK ... 29
4.15 CLASS BPATCH_CBLOCK .. 29
4.16 CLASS BPATCH_VECTOR.. 30
4.17 CLASS BPATCH_SET ... 30
4.18 TYPE SYSTEM.. 32

5. Using the API .. 34

5.1 OVERVIEW OF MAJOR STEPS... 34
5.2 CREATING A MUTATOR PROGRAM .. 34
5.3 SETTING UP YOUR APPLICATION PROGRAM (MUTATEE).. 35
5.4 RUNNING YOUR MUTATOR ... 36
5.5 ARCHITECTURAL ISSUES ... 36

5.5.1 Solaris.. 36
5.5.2 Windows NT... 37

6. Complete Example... 38

Appendix A - Running the Test Cases .. 42

Appendix B - Common pitfalls ... 45

Index ... 46

References... 48

dyninstAPI 3/15/01

1. INTRODUCTION

The normal cycle of developing a program is to edit source code, compile it, and then execute the
resulting binary. However, sometimes this cycle can be too restrictive. We may wish to change
the program while it is executing, and not have to re-compile, re-link, or even re-execute the pro-
gram to change the binary. At first thought, this may seem like a bizarre goal, however there are
several practical reasons we may wish to have such a system. For example, if we are measuring
the performance of a program and discover a performance problem, it might be necessary to in-
sert additional instrumentation into the program to understand the problem. Another application
is performance steering; for large simulations, computational scientists often find it advantageous
to be able to make modifications to the code and data while the simulation is executing.

This document describes an Application Program Interface (API) to permit the insertion of code
into a running program. The API also permits changing or removing subroutine calls from the
application program. Runtime code changes are useful to support a variety of applications includ-
ing debugging, performance monitoring, and to support composing applications out of existing
packages. The goal of this API is to provide a machine independent interface to permit the crea-
tion of tools and applications that use runtime code patching. The API and a simple test applica-
tion are described in [1]. This API is based on the idea of Dynamic Instrumentation described in
[3].

The unique feature of this interface is that it makes it possible to insert and change instrumenta-
tion in a running program. This differs from other post-linker instrumentation tools [5] that per-
mit code to be inserted into a binary before it starts to execute.

The goal of this API is to keep the interface small and easy to understand. At the same time it
needs to be sufficiently expressive to be useful for a variety of applications. The way we have
done this is by providing a simple set of abstractions and a simple way to specify the code to in-
sert into the application1.

2. ABSTRACTIONS

The API is based on abstractions of a program and its state while in execution. The two primary
abstractions are points and snippets. A point is a location in a program where instrumentation can
be inserted. A snippet is a representation of a bit of executable code to be inserted into a program
at a point. For example, if we wished to record the number of times a procedure was invoked, the
point would be the first instruction in the procedure, and the snippets would be a statement to
increment a counter. Snippets can include conditionals, function calls, and loops.

1 To generate more complex code, extra (initially un-called subroutines) can be linked into the application program, and calls to
these subroutines can be inserted at runtime via this interface.

 Page 4

dyninstAPI

The API is designed so that a single instrumentation process can insert snippets into multiple
processes executing on a single machine. To support multiple processes, two additional abstrac-
tions, threads and images, are included in the API. A thread refers to thread of execution. De-
pending on the programming model, a thread can correspond to either a normal process or a
lightweight thread. Images refer the static representation of a program on disk. Images contain
points where their code can be modified. Each thread is associated with exactly one image.

The API includes a simple type system based on structural equivalence. If mutatee programs
have been compiled with debugging symbols and the symbols are in a format that dyninst under-
stands (currently only gcc on SPARC/Solaris), type checking is performed on code to be inserted
into the mutatee. See Section 4.17 for a complete description of the type system.

3. SIMPLE EXAMPLE

To illustrate the ideas of the API, we present several short examples that demonstrate how the
API can be used. The full details of the interface are presented in the next section. To prevent
confusion, we refer to the process we are modifying as the application, and the program that uses
the API to modify the application as the mutator. A mutator is a separate process that modifies an
application process.

A mutator program must create a single instance of the class BPatch. This object is used to ac-
cess functions and information that are global to the library. It must not be destroyed until the
mutator has completely finished using the library. For this example, we will assume that the mu-
tator program has declared a global variable called bpatch of class BPatch.

The first thing a mutator needs to do is identify the application process to be modified. If the
process is already in execution, this can be done by specifying the executable file name and proc-
ess id of the application as arguments to create an instance of a thread object:

appThread = bpatch.attachProcess(

name, proccesId);

This creates a new instance of the BPatch_thread class that refers to the existing process. It had
no effect on the state of the process (i.e., running or stopped). If the process has not been started,
the mutator specifies the pathname and argument list of a program to execute:

appThread = bpatch.createProcess(pathname, argv);

Once the application thread has been created, the mutator defines the snippet of code to be in-
serted and the points where they should be inserted. For example, if we wanted to count the
number of times a procedure called InterestingProcedure executes, the mutator might look like
this:

 Page 5

dyninstAPI

BPatch_image *appImage;
BPatch_Vector<BPatch_point*> *points;

// Open the program image associated with the thread and return a
// handle to it.
appImage = appThread->getImage();

// find and return the entry point to the "InterestingProcedure".
points = appImage->findProcedurePoint("InterestingProcedure",

BPatch_entry);

// Create a counter variable (but first get a handle to the correct type).
// by allocating in the application’s address space.
BPatch_variableExpr *intCounter =

appThread->malloc(*appImage->findType("int"));

// Create a code block to increment the integer by one.
// intCounter = intCounter + 1
//
BPatch_arithExpr addOne(BPatch_assign, *intCounter,
 BPatch_arithExpr(BPatch_plus, *intCounter, BPatch_constExpr(1)));

// insert the snippet of code into the application.
appThread->insertBlock(addOne, *points);

4. INTERFACE

This section describes functions in the API. The API is organized as a collection of C++ classes.
The primary classes are BPatch, BPatch_thread, BPatch_image, BPatch_point, and
BPatch_snippet. The API also uses a template class called BPatch_Vector. This class is
based on the Standard Template Library (STL) vector class.

4.1 Class BPatch

The BPatch class represents the entire DyninstAPI library. There can only be one instance of
this class at a time. This class is used to perform functions and obtain information not specific to
a particular thread or image.

BPatch_type *createArray(const char *name, BPatch_type *ptr,
unsigned int low, unsigned int hi)

Create a new array type. The name of the type is name, and the type of each element is
ptr. The first element of the array is low, and the last is high. The standard rules of
type compatibility, described in Section 4.17 are used with arrays created using this func-
tion.

 Page 6

dyninstAPI

BPatch_type *createEnum(const char *name, BPatch_Vector<char *>

elementNames, BPatch_Vector<int> elementIds)
BPatch_type *createEnum(const char *name, BPatch_Vector<char *>

elementNames)

Create a new enumerated type. There are two variations of this function. The first one is
used to create an enumerated type where the user specifies the identifier (int) for each
element. In the second form, the system specifies the identifiers for each element. In
both cases, a vector of character arrays is passed to supply the names of the elements of
the enumerated type. In the first form of the function, the number of element in the ele-
mentNames and elementIds vectors must be the same, or the type will not be cre-
ated. The standard rules of type compatibility, described in Section 4.17 are used with
enums created using this function.

BPatch_type *createScalar(const char *name, int size)

Create a new scalar type. The name field is used to specify the name of the type and the
size parameter is used to specify the size in bytes of each instance of the type. No addi-
tional information about this type is supplied. The type is compatible with other scalars
with the same name and size.

BPatch_type *createStruct(const char *name, BPatch_Vector<char *>

fieldNames, BPatch_Vector<BPatch_type *> fieldTypes)

Create a new structure type. The name of the structure is specified in the name parame-
ter. The fieldNames and fieldTypes vectors specify fields of the type. These two
vectors must have the same number of elements or the function will fail (and return
NULL). The standard rules of type compatibility, described in Section 4.17 are used with
structures created using this function. The size of the structure is the sum of the size of
the elements in the fieldTypes vector.

BPatch_type *createTypedef(const char *name, BPatch_type *ptr)

Create a new type called name, and having the type ptr.

BPatch_type *createPointer(const char *name, BPatch_type *ptr)
BPatch_type *createPointer(const char *name, BPatch_type *ptr,

int size)

Create a new type, named name, which points to objects of type ptr. The first form of
the function creates a pointer whose size is the same size equal to sizeof(void*) on
the target platform where the mutatee is running. In the second form of the command, the
size of the pointer is the value passed in the size parameter.

 Page 7

dyninstAPI

BPatch_type *createUnion(const char *name, BPatch_Vector<char *>
fieldNames, BPatch_Vector<BPatch_type *> fieldTypes)

Create a new union type. The name of the union is specified in the name parameter. The
fieldNames and fieldTypes vectors specify fields of the type. These two vectors
must have the same number of elements or the function will fail (and return NULL). The
standard rules of type compatibility, described in Section 4.17 are used with unions cre-
ated using this function. The size of the union is the size of the largest element in the
fieldTypes vector.

const char *getEnglishErrorString(int number)

This function returns the descriptive error string for the passed API error number. The re-
turned string may contain placeholders (%s) to indicate that a parameter from the error
callback (see the next section) should be substituted at that location.

BPatch_Vector<BPatch_thread*> *getThreads()

Return the list of threads that are currently defined. This list includes threads that were
directly created by calling new on BPatch_thread, and indirectly by the UNIX fork or NT
CreateProcess system call. The creation of BPatch_thread objects for indirectly created threads is
not yet implemented.

BPatch_thread *attachProcess(char *path, int pid) not implemented on AIX
BPatch_thread *attachThread(char *path, int pid, int tid) not yet

implemented
BPatch_thread *createProcess(char *path, char *argv[],

char *envp[] = NULL, int stdin_fd=0, int stdout_fd=1, int
stderr_fd=2)

Each of these functions returns a pointer to a new instance of the BPatch_thread class.
The “path” parameter needed by most of these functions should be the pathname of the
executable file containing the thread’s code. The attachProcess function returns a
BPatch_thread associated with an existing process. On some platforms, the path pa-
rameter can be NULL since the executable image can be derived from the process pid.
The createThread function returns a new BPatch_thread associated with an existing
thread within a process. The meaning of thread and process is implementation specific.
The ability to use these two functions to create a BPatch_thread object for an exist-
ing process depends on support from the underlying operating system and may not be im-
plemented on all platforms. A thread attached to using one of these functions is put into
the stopped state. The createProcess function creates a new process and returns a new
BPatch_thread associated with it. The new process is put into a stopped state before
executing any code.

The stdin_fd, stdout_fd, and stderr_fd parameters are used to set the stan-
dard input, output, and error of the child process. The default values of these parameters
leave the input, output, and error to be the same as the mutator process. To change these
values, an open UNIX file descriptor (see open(1)) can be passed.

 Page 8

dyninstAPI

bool pollForStatusChange()

This is useful for a mutator that needs to periodically check on the status of its managed
threads and does not want to have to check each process individually. It returns true if
there has been a change in the status of one or more threads that has not yet been reported
by either isStopped or isTerminated.

void setDebugParsing (bool state)

Turn on or off the parsing of debugger information. By default, the debugger information
(produced by the –g compiler option) is parsed on those platforms that support it. How-
ever, for some applications this information can be quite large. To disable parsing this in-
formation, call this method with a value of false prior to creating a process.

void setTrampRecursive (bool state) not implemented on Compaq Tru64 UNIX

Turn on or off trampoline recursion. By default, any snippets invoked while another snip-
pet is active will not be executed. This is the safest behavior, since recursively-calling
snippets can cause a program to take up all available system resources and die. For exam-
ple, adding instrumentation code to the start of printf, and then calling printf from that
snippet will result in infinite recursion.

This protection operates at the granularity of an instrumentation point. When snippets are
first inserted at a point, code will be created with recursion protection or not, depending
on the current state of flag. Changing the flag is not retroactive, and inserting more snip-
pets will not change recursion protection at the point. The recursion protection increases
the overhead of instrumentation points, so if there is no way for the snippets to call them-
selves, then calling this method with the parameter true will result in a performance
gain. This default value of this flag is false.

void setTypeChecking(bool state)

Turn on or off type-checking of snippets. By default type-checking is turned on, and an
attempt to create a snippet that contains type conflicts will fail. Any snippet expressions
created with type-checking off have the type of their left operand. Turning type-checking
off, creating a snippet, and then turn type-checking back on is similar to type cast opera-
tion is the C programming language.

bool waitForStatusChange()

This function waits until there is a status change to some thread that has not yet been re-
ported by either isStopped or isTerminated, and then returns true. It
is more efficient to call this function than to call pollForStatusChange in a loop,
because waitForStatusChange blocks the mutator process while waiting.

 Page 9

dyninstAPI

4.1.1 Callbacks

The following functions are intended as a way for API users to be informed when a sig-
nificant event occurs. Each allows a user to register a handler for some such event. The
return code for all callback registration functions is the handler that was previously regis-
tered (which may be NULL if no handler has previously been registered).

typedef enum BPatchErrorLevel { BPatchFatal, BPatchSerious,
BPatchWarning, BPatchInfo };

typedef void (*BPatchErrorCallback)(BPatchErrorLevel severity,

int number, char **params);

This is the prototype for the error callback function. The severity field indicates how im-
portant the error is (from fatal to information/status). The number is a unique number
that identifies this error message. Params are the parameters that describe the detail about
an error. For example, the process id where the error occurred. The number and meaning
of params depends on the error. However, for a single error number the number of
parameters returned will always be the same.

BPatchErrorCallback registerErrorCallback(BPatchErrorCallback
func)

This function registers the error callback function with the BPatch class. The return value
is the previous error callback function. The error callback is explicitly registered (rather
than using a pure a virtual function) so that BPatch users can change the error callback
during program execution (i.e., one error callback before a GUI is initialized, and a dif-
ferent one after).

typedef void (*BPatchThreadEventCallback)(BPatch_thread *thread);

This is the prototype for most callback functions associated with events that occur in a
thread. The thread parameter is the thread that the event has occurred in.

BPatchThreadEventCallback registerExecCallback(
BPatchThreadEventCallback func) only implemented on Solaris, Compaq Tru64
UNIX, and Irix

Registers a function to be called when a thread executes an exec system call. When the
function is called, the thread performing the exec will be paused.

BPatchForkCallback registerPreForkCallback(
BPatchForkCallback func) only implemented on Solaris, Compaq Tru64 UNIX, and Irix

Registers a function to be called when a BPatch_thread forks a new process. This call-
back is invoked just before the fork is performed. When the callback is invoked, the
thread performing the fork will be stopped.

 Page 10

dyninstAPI

BPatchThreadEventCallback registerThreadCreateCallback(
BPatchThreadEventCallback func) not yet implemented

Registers a function to be called when a new thread is created.

BPatchThreadEventCallback registerThreadDeleteCallback(
BPatchThreadEventCallback func) not yet implemented

Registers a function to be called when a new thread is terminated.

typedef void (*BPatchForkCallback)(BPatch_thread *parent,
BPatch_thread *child); only implemented on Solaris, Compaq Tru64 UNIX, and Irix

This is the prototype for the post fork callback, which is called after a fork. The parent
parameter is the parent thread, and the child parameter is a BPatch_thread repre-
senting the newly created process. When invoked as a pre-fork callback, the child is
NULL.

BPatchPostForkCallback registerPostForkCallback(
BPatchPostForkCallback func) only implemented on Solaris, Compaq Tru64 UNIX, and
Irix

Registers a function to be called just after the fork is performed. Both the thread perform-
ing the fork and the newly created thread will be paused when the callback is invoked.
Unless a post fork callback is registered, the mutator will not be attached to any child
processes. Since there is overhead associated with each tracked process, not setting the
callback allows the dyninst library to ignore any child processes. This is particularly use-
ful for instrumenting shell processes that create many (potentially) uninteresting children.

BPatchThreadEventCallback registerExitCallback(
BPatchThreadEventCallback func) only implemented on Solaris, Compaq Tru64
UNIX, and Irix

Registers a function to be called when a thread terminates.

typedef void (*BPatchDynLibraryCallback)(Bpatch_thread *thr,
Bpatch_module *mod, bool load);

This is the prototype for the dynamic linker callback function. The thr field contains the
thread that loaded or un-loaded a shared library. The mod field contains the module that
was loaded or unloaded. The load Boolean is true if the library was loaded and false if
it was unloaded.

BPatchThreadEventCallback registerDynLinkCallback(
BPatchThreadEventCallback func)

Registers a function to be called when an application has loaded or unloaded a dynamic
library.

 Page 11

dyninstAPI

4.2 Class BPatch_thread

The BPatch_thread class operates on (and creates) code in execution.

BPatch_thread(BPatch_Vector<BPatch_thread&>threads) not yet implemented

Creates a new “virtual” thread from a list of threads. This permits operations to be per-
formed on several threads as a group. This can (potentially) increase the efficiently of the
requests because they can be processed in parallel.

const BPatch_image *getImage()

Return the executable file associated with this BPatch_thread object and return a
handle to it. Depending on the implementation this might also parse the application's
symbol table.

bool getLineAndFile (unsigned long addr, unsigned short& lineNo,
 char* fileName,int length) not implemented on Irix

Given the address, addr, lookup the line number and source file that contains the source
code that corresponds to this location. This function returns true on a successful lookup,
and false on a failure. Failures can be due to either invalid addresses being passed, or if
the program was not compiled with debugging symbols. The first length characters of
the source file name are copied into fileName.

bool stopExecution()
bool continueExecution()
bool terminateExecution()

These three functions change the running state of the thread. stopExecution puts the
thread into a stopped state. Depending on the operating system, stopping one thread may
stop all threads associated with a process. continueExecution continues execution
of the thread (or group of threads if they have to be stopped atomically). terminate-
Execution terminates execution of the thread. Each function returns true on success, or
false for failure. Stopping or continuing a termiated thread will fail.

bool isStopped()
int stopSignal()
bool isTerminated()

There three functions query the status of a thread. isStopped returns true if the thread
is currently stopped. If the process is stopped (as indicated by isStopped), then stop-
Signal can be called to find out what signal caused the process to stop. isTermi-
nated returns true if the thread has exited. Any of these functions may be called multi-
ple times and calling them will not affect the state of the thread.

void catchSignal(int signum) not yet implemented
void ignoreSignal(int signum) not yet implemented

These two functions indicate that the process should be stopped or not when it receives
the named signal.

 Page 12

dyninstAPI

int dumpCore(const char *file, const bool terminate) implemented only on
AIX

This function causes the thread to dump its state to the passed file argument. If the ter-
minate flag is true, the thread is also terminated. The ability to use this function de-
pends on support from the underlying operating system and may not be implemented on
all platforms.

int dumpImage(const char *file) not implemented on NT

This function causes the thread to write the in-memory version of the program to the
specified file. This function is not intended for general use, but rather to help debug
implementations of dyninst. It’s semantics and level of implementation varies
greatly between platforms.

BPatch_variableExpr *malloc(int n)
BPatch_variableExpr *malloc(const BPatch_type &type)

These two functions allocate memory. Memory allocation is from a heap. The heap is not
(necessarily) the same heap used by the application. The available space in the heap may
be limited depending on the implementation. The first function, malloc(int n), al-
locates n bytes of memory from the heap. The second function, malloc(const
BPatch_type& t), allocates enough memory to hold an object of the specified type.
Using the second version is strongly encouraged because it provides additional informa-
tion to permit better type checking of the passed code. The returned memory is from a
global heap, and may be used in different snippets.

void free(const BPatch_variableExpr &ptr)

Free the memory in the passed ptr. The programmer is responsible to verify that all code
that could reference this memory will not execute again (either by removing all snippets
that refer to it, or by analysis of the program).

void oneTimeCode(const BPatch_snippet &expr)

Cause snippet to be evaluated once at the next available opportunity. This interface is use-
ful to cause an initialization function to be called in the application. The process must be
stopped to call this function.

BPatchSnippetHandle *insertSnippet(const BPatch_snippet &expr,
BPatch_point &point,
BPatch_callWhen when=[BPatch_callBefore| BPatch_callAfter],
BPatch_snippetOrder order = BPatch_firstSnippet)

BPatchSnippetHandle *insertSnippet(const BPatch_snippet &expr,
const BPatch_Vector<BPatch_point *> &points,
BPatch_callWhen when=[BPatch_callBefore| BPatch_callAfter],
BPatch_snippetOrder order = BPatch_firstSnippet)

Insert a snippet of code at the specified point. If a list of points is supplied, insert the code
snippet at each point in the list. The when argument specifies when the snippet is to be

 Page 13

dyninstAPI

called; a value of BPatch_callBefore indicates that the snippet should be inserted
just before the specified point or points in the code, and a value of
BPatch_callAfter indicates that it should be inserted just after. The order argu-
ment specifies where the snippet is to be inserted relative to any other snippets previously
inserted at the same point. The values BPatch_firstSnippet and
BPatch_lastSnippet can be used to indicate that the snippet should be inserted be-
fore or after all such snippets, respectively.

The semantics of BPatch_callBefore and BPatch_callAfter when applied
to entry and exit points are still being fully implemented. The following table summa-
rizes the intention of each point:

BPatch_procedureLocation BPatch_callWhen Meaning

BPatch_entry BPatch_callBefore First instruction in subroutine

BPatch_entry BPatch_callAfter First instruction in subroutine after activation record
(local variables) have been created

BPatch_exit BPatch_callBefore Last instruction in subroutine before activation re-
cord (local variables) destroyed

BPatch_exit BPatch_callAfter Last instruction in subroutine

Currently the two combinations to allow access just before and after the local variables
have been created are not implemented.

bool deleteSnippet(BPatchSnippetHandle *handle)

Remove the snippet associated with the passed handle. If the handle is not defined for the
thread, then deleteSnippet will return false.

bool removeFunctionCall(BPatch_point &point)

Disable the function call at the specified location. The point specified must be a valid
call point in the image of the requesting thread. The purpose of this routine is to permit
tools to alter the semantics of a program by eliminating procedure calls. The mechanism
to achieve the removal is left to the library implementor, but might include branching
over the call, or replacing it with nops. (Parameters are still evaluated).

bool replaceFunction (BPatch_function &old, BPatch_function &new)

Replace all calls to function old with calls to new. Return true upon success, false oth-
erwise. Only implemented on SPARC Solaris and Compaq Tru64 UNIX.

bool replaceFunctionCall(BPatch_point &point, BPatch_function &newFunc)

The function call at the specified point is changed to be a call to the function indicated by
newFunc. The purpose of this routine is to permit runtime steering tools to change the be-
havior of programs by replacing a call to one procedure by a call to another. Point must

 Page 14

dyninstAPI

be a function call point. If the change was successful, the return value is true, otherwise
false will be returned.

Note: care must be used when replacing functions. In particular if the compiler has per-
formed inter-procedural register allocation between the original caller/callee pair, the
replacement may not be safe since the replaced function may clobber registers the com-
piler thought the callee left untouched. Also the signatures of the both the function being
replaced and the new function must be compatible.

void setInheritSnippets(bool inherit) not yet implemented

Set a flag to indicate if instrumentation snippets should be inherited when the thread
forks. By default, instrumentation snippets are inherited by the child process.

void setMutationsActive(bool)

Enable or disable the execution of snippets for the thread. This provides a way to tempo-
rally disable all of the dynamic code patches that have been inserted without having to de-
lete them one by one. All allocated memory will remain unchanged while the patches are
disabled. When the mutations are not active, the process control functions (i.e., sto-
pExecution and continueExecution) can still be used. Requests to insert
snippets (including oneTimeCode) may not be made while mutations are disabled.

void detach(bool cont)

Detach from the thread. The thread must be stopped to call this function. The cont pa-
rameter is used to indicate if the thread should be continued as a result of detaching.

int getPid()

Return the id of the process to which the thread belongs.

bool loadLibrary(char *libname)

Load a dynamically linked library into the thread’s address space. The libname parameter
identifies the library to be loaded, in the standard way that dynamically linked libraries
are specified on the operating system on which the API is running. This function returns
true if the library was loaded successfully, otherwise it returns false. Not implemented AIX.

~BPatch_thread()

In addition to cleaning up its own state, the BPatch_thread class destructor may also kill
the underlying thread or process. If the process was created by using a BPatch_thread
constructor (as opposed to attaching to an existing thread by passing a pid to the construc-
tor), and detach was not called before the destructor then the process will be terminated
by the destructor. Otherwise it will continue to execute and any inserted snippets will
remain installed.

One additional convenience (non-member) function is provided to test if the status of any
of the threads managed by the mutator has changed.

 Page 15

dyninstAPI

4.3 Class BPatch_sourceObj

The BPatch_sourceObj class is the parent class for the BPatch_function, BPatch_module, and
BPatch_image classes. It provides a set of common methods for all three classes. In addition, it
can be used to build a “generic” source navigator using the getObjParent and getSourceObj
methods to get parents and children of a given level (i.e. the parent of a module is an image, and
the children will be the functions).

BPatch_sourceType getSrcType ()

Return the type of the current source object. Currently, the following values are available
BPatch_sourceProgram, BPatch_sourceModule, BPatch_sourceFunction, and BPatch_-
sourceUnknown_type. Eventually, the following additional types will be available:
BPatch_sourceOuterLoop, BPatch_sourceLoop, BPatch_srcBlock, BPatch_sourceState-
ment

BPatch_Vector<BPatch_sourceObj *> *getSourceObj ()

Return the children source objects of the current source object.

BPatch_sourceObj *getObjParent()

Return the parent source object of the current source object. The parent of a BPatch_-
image is NULL.

BPatch_Vector<BPatch_variableExpr *> *findVariable (const char

*name)

Lookup and return a handle to the named variable. The first form of the function looks
up only variables of global scope, and the second form uses the passed BPatch_point as
the scope of the variable. The returned BPatch_variableExpr can be used to create refer-
ences (uses) of the variable in subsequent snippets. The scoping rules used will be those
of the source language. If the image was not compiled with debugging symbols, this func-
tion will fail even if the variable is defined in the passed scope.

BPatch_language getLanguage () not yet implemented

Return the source language of the current BPatch_sourceObject. For programs that are
written in more than one language, BPatch_mixed will be returned. If there is insufficient
information to determine the language, BPatch_unknownLanguage will be returned.

BPatch_type *getType(char *name)not yet implemented

Lookup and return a handle to the named type. The handle can be used as an argument to
malloc to create new variables of the corresponding type.

 Page 16

dyninstAPI

4.4 Class BPatch_function

An object of this class represents a function in the application. A BPatch_image object (see de-
scription below) can be used to retrieve a BPatch_function object representing a given function.

bool getLineAndFile(int &start, int &end, char *filename,
int &max) not implemented on Irix

This function returns the (approximate) line number range for the specified function. It
returns false the function does not have line number information (i.e., stripped or com-
piled without debugging). The line number of the first executable statement of a function
is return in start. The line number of the last executable statement of a function is re-
turn in end. Up to max characters of the source file name for the function is copied into
filename, and max is updated to indicate the number of characters actually copied.

bool getLineToAddr (unsigned short lineNo,
BPatch_Vector<unsigned long>& buffer,

 bool exactMatch = true) not implemented on Irix

Return the address(es) of the instructions that represent the code for the passed line num-
ber, lineNo. If exactMatch is true, require and exact match for the passed line num-
ber. The function returns true on a successful lookup, and false if the line number can not
be located or if the program does no contain debugging information.

char *getName(char *buffer, int len)

This places the name of the function in buffer, up to len characters. It returns the
value of the buffer parameter.

char *getMangledName(char *buffer, int len) not yet implemented

This places the mangled (internal symbol) name of the function in buffer, up to len
characters. It returns the value of the buffer parameter.

BPatch_Vector<BPatch_localVar *> *getParams ()

Return a vector of BPatch_localVar that contain the parameters for this function.
The position in the vector corresponds to the position in the parameter list (starting from
zero). The returned local variables can be used to check the types of functions, and be
used in snippet expressions. NOTE: Using parameter BPatch_localVar expressions
in snippets is only supported for parameters that have a position on the function’s activa-
tion record. Parameters passed in registers (that remain in registers) cannot be accessed
using this method yet.

BPatch_type *getReturnType ()

Return the type of the return value for this function.

bool isSharedLib()not yet implemented

This function returns true if the function is defined in a shared library.

 Page 17

dyninstAPI

bool isLib()not yet implemented

This function returns true if the function is defined in a library (regardless of whether the
library is shared or non-shared).

const char *libraryName()not yet implemented

Return the name of the library that defines this function. If the function is not defined in
a library, a NULL will be returned.

Bpatch_module *getModule()

Return the module that defines this function. Depending on whether the program was
compiled for debugging or the symbol table stripped, this information may not be avail-
able.

const BPatch_Vector<BPatch_point *> *findPoint(const
BPatch_procedureLocation loc)

Return the BPatch_point or list of BPatch_points associated with the procedure. The
BPatch_procedureLocation argument is one of BPatch_entry, BPatch_exit,
BPatch_subroutine, BPatch_longJump, or BPatch_allLocations. It is used to select which
type of points associated with the procedure will be returned. BPatch_entry and
BPatch_exit request respectively the entry and exit points of the subroutine.
BPatch_subroutine returns the list of points where the procedure calls other procedures.
BPatch_longJumps returns any long jump statements made by the procedures. If the
lookup fails to locate any points of the requested type, a list with zero elements is re-
turned. The BPatch_longJump location is not yet implemented.

void *getBaseAddr()

Returns the starting address of the function in the mutatee’s address space.

unsigned int getSize() not yet implemented on Alpha

Returns the size of the function in bytes.

BPatch_flowGraph *getCFG()

Returns the control flow graph for the function, or NULL if this information is not avail-
able.

4.5 Class BPatch_point

An object of this class represents a location in an application’s code at which the library can in-
sert instrumentation. A BPatch_image object (see description below) is used to retrieve a
BPatch_point representing a desired point in the application.

 Page 18

dyninstAPI

BPatch_procedureLocation getPointType()

Return the type of the point. This returned type is one of BPatch_entry, BPatch_exit,
BPatch_subroutine, BPatch_longJump, or BPatch_address.

BPatch_function *getCalledFunction()

Returns a BPatch_function representing the function that is called at the point. If the
point is not a function call site or the target of the call cannot be determined, then this
function returns NULL.

void *getAddress()

Returns the address of the first instruction at this point.

int getDisplacedInstructions(int maxSize, void **insns)

Copy (up to maxSize bytes), the instructions to be relocated at this point into the passed
array (insns). Return the actual number of bytes of instructions copied.

bool usesTrap_NP()

Returns true if inserting instrumentation at this point requires using a trap. On the x86
architecture, because instructions are of variable size, the instruction at a point may be too
small for the API library to replace it with the normal code sequence used to call instru-
mentation. Also, when instrumentation is placed at points other than subroutine entry,
exit, or call points, traps may be used to ensure the instrumentation fits. In this case, the
API replaces the instruction with a single-byte instruction that generates a trap. A trap
handler then calls the appropriate instrumentation code. Since this technique is used only
on some platforms, on other platforms this function always returns false.

4.6 Class BPatch_image

This class defines a program image (the executable associated with a thread). The only
way to get a handle to a BPatch_image is via the BPatch_thread member function getI-
mage().

const BPatch_point *createInstPointAtAddr (caddr_t address)

Return an instrumentation point at the specified address. This function is designed to
permit users who wish to insert instrumentation at arbitrary place in the code segment.
Currently the implementation of this function may use a trap instruction, making these
points more expensive than most instrumentation points. Also, on x86 platforms, users
should take care to ensure that the requested point is not in the middle of a multi-byte in-
struction. implemented only on AIX, SPARC Solaris and Irix.

const BPatch_Vector<BPatch_function *> *getProcedures()

Return a table of the procedures in the image.

 Page 19

dyninstAPI

Const BPatch_Vector<BPatch_module *> *getModules()

Return a table of the modules in the image.

BPatch_function *findFunction(const char *name)

Return a BPatch_function for the function name defined, or NULL if the function
does not exist. If the image defines multiple functions named name, it is arbitrary which
one is returned.

const BPatch_Vector<BPatch_point *> *findProcedurePoint(
const char *name,
const BPatch_procedureLocation loc)

Return the BPatch_point or list of BPatch_points associated with the requested procedure.
The BPatch_procedureLocation argument is one of BPatch_entry, BPatch_exit,
BPatch_subroutine, BPatch_longJump, or BPatch_allLocations. It is used to select which
type of points associated with the procedure will be returned. BPatch_entry and
BPatch_exit request respectively the entry and exit points of a subroutine.
BPatch_subroutine returns the list of points where the procedure calls other procedures.
BPatch_longJumps returns any long jump statements made by the procedures. If the
lookup fails to locate any points of the requested type, a list with zero elements is re-
turned. The function can fail either because the procedure does not exist or because there
are no such points. It is possible to have multiple functions with the same name, espe-
cially for static functions and in shared objects.

The BPatch_longJumps location and support for multiple functions with the same name have not yet been
implemented.

const BPatch_point *findLinePoint(const char *fileName, int line)
not yet implemented

Return the handle to the instrumentation point nearest to the requested fileName and line
number. The nearest point to a requested line is the last executable instruction before the
line (Note this function can have strange interactions with optimized code).

const BPatch_variableExpr *findVariable(const char *name)
const BPatch_variableExpr *findVariable(const BPatch_point

&scope,
const char *name) second form of this method is not implemented on NT or MIPS/Irix.

Lookup and return a handle to the named variable. The first form of the function looks
up only variables of global scope, and the second form uses the passed BPatch_point as
the scope of the variable. The returned BPatch_variableExpr can be used to create refer-
ences (uses) of the variable in subsequent snippets. The scoping rules used will be those
of the source language. If the image was not compiled with debugging symbols, this func-
tion will fail even if the variable is defined in the passed scope.

 Page 20

dyninstAPI

const BPatch_type *findType(const char *name)

Lookup and return a handle to the named type. The handle can be used as an argument to
malloc to create new variables of the corresponding type.

const char *getUniqueString() not yet implemented

Lookup and return a unique string for this image. Returns a string the can be compared
(via strcmp) to indicate if two images refer to the same underlying object file (i.e., execu-
table or library). The contents of the string is implementation specific and defined to
have no semantic meaning.

bool getLineToAddr (const char* fileName,unsigned short lineNo,
BPatch_Vector<unsigned long>& buffer,

 bool exactMatch = true) not implemented on Irix

Return the address(es) of the instructions that represent the code for the passed line num-
ber, lineNo, in the passed source code file name, fileName. If exactMatch is true,
require and exact match for the passed line number. The function returns true on a suc-
cessful lookup, and false if the line number or source file cannot be located or if the pro-
gram does not contain debugging information or the source file does not contain the line
passed.

4.7 Class BPatch_module

An object of this class represents a program module, which is part of a program’s executable im-
age. BPatch_module objects are obtained by calling the BPatch_image member function get-
Modules().

BPatch_function *findFunction (const char *name)

Return a BPatch_function for the function name defined in the module correspond-
ing to the invoking BPatch_module, or NULL if it does not define the function. If the
module defines multiple functions named name, it is arbitrary which one is returned.

bool getLineToAddr (unsigned short lineNo,
BPatch_Vector<unsigned long>& buffer,

 bool exactMatch = true) not implemented on Irix

Return the address(es) of the instructions that represent the code for the passed line num-
ber, lineNo. If exactMatch is true, require and exact match for the passed line num-
ber. The function returns true on a successful lookup, and false if the line number can not
be located or if the program does no contain debugging information.

const BPatch_Vector<BPatch_function *> *getProcedures()

 Return a table of the procedures in the module.

 Page 21

dyninstAPI

char *getName(char *buffer, int len)

This function copies the name of the module into a buffer, up to len characters. It returns
the value of the buffer parameter.

const char *libraryName() not yet implemented

Return the name of the library that contains the module. If the module is not part of a li-
brary, a NULL will be returned.

Bool isSharedLib() not yet implemented

This function returns true if the module is part of a shared library.

Bool isLib() not yet implemented

This function returns true if the module is part of a library (regardless of whether the li-
brary is shared or non-shared).

const char *getUniqueString() not yet implemented

Lookup and return a unique string for this image. Returns a string the can be compared
(via strcmp) to indicate if two images refer to the same underlying object file (i.e., execu-
table or library). The contents of the string is implementation specific and defined to
have no semantic meaning.

4.8 Class BPatch_snippet

A snippet is an abstract representation of code to insert into a program. Snippets are defined by
creating a new instance of the correct subclass of a snippet. For example, to create a snippet to
call a function, you create a new instance of the class BPatch_funcCallExpr. Creating a
snippet does not result in code being inserted into an application. Code is generated when a re-
quest is made to insert a snippet at a specific point in a program. Sub-snippets may be shared by
different snippets (i.e. a handle to a snippet may be passed as an argument to create two different
snippets), but whether the generated code is shared (or replicated) between two snippets is im-
plementation dependent.

const BPatch_type *getType()

 Return the type of the snippet.

float getCost()

 Return an estimate of the number of seconds it would take to execute the snippet. The
problems with accurately estimating the cost of executing code are numerous and out of
the scope of this document[2]. But, it is important to realize that the returned cost value is
(at best) an estimate.

The rest of the classes are derived classes of the class BPatch_snippet.

 Page 22

dyninstAPI

BPatch_arithExpr(BPatch_binOp op, const BPatch_snippet &lOperand,
const BPatch_snippet &rOperand)

 Perform the required binary operation. The available binary operators are:

Operator Description
BPatch_assign assign the value of rOperand to lOperand
BPatch_plus add lOperand and rOperand
BPatch_minus subtract rOperand from lOperand
BPatch_divide divide rOperand by lOperand
BPatch_times multiply rOperand by lOperand
BPatch_mod compute the remainder of dividing rOperand into lOperand

Not yet implemented.
 BPatch_ref Array reference of the form lOperand[rOperand]
BPatch_seq Define a sequence of two expressions (similar to comma in C)
BPatch_min Return the smaller of two operands

Not yet implemented.
BPatch_max Return the larger of two operands

Not yet implemented.

BPatch_arithExpr(BPatch_unOp, const BPatch_snippet &operand)

Define a snippet consisting of a unary operator. The available unary operators are
BPatch_negate, BPatch_addr, and Bpatch_deref. BPatch_negate takes an integer snippet
and returns the negation of the snippet. BPatch_addr takes a variable reference snippet
and returns a pointer to it. This is equivalent to the C operator (&) and is useful for call-
by-reference parameters. Bpatch_deref takes a variable that is a pointer and de-references
it. It is the equivalent of the C operator (*) and is useful for directly computing addresses
of stored data.

BPatch_boolExpr(BPatch_relOp op, const BPatch_snippet &lOperand,
const BPatch_snippet &rOperand)

 Define a relational snippet. The available operators are:

Operator Function
BPatch_lt Return lOperand < rOperand
BPatch_eq Return lOperand == rOperand
BPatch_gt Return lOperand > rOperand
BPatch_le Return lOperand <= rOperand
BPatch_ne Return lOperand != rOperand
BPatch_ge Return lOperand >= rOperand
BPatch_and Return lOperand && rOperand (Boolean and)
BPatch_or Return lOperand || rOperand (Boolean or)

The type of the returned snippet is boolean, and the operands are type checked.

 Page 23

dyninstAPI

BPatch_breakPointExpr()

Define a snippet that stops a thread when executed by it. The stop can be detected using
the isStopped member function of BPatch_thread, and the program’s execution can be
resumed by calling the continueExecution member function of BPatch_thread.

BPatch_constExpr(int value)
BPatch_constExpr(float value) not yet implemented
BPatch_constExpr(const char *value)
BPatch_constExpr(const void *value)
BPatch_constExpr(bool value) not yet implemented

 Define a constant snippet of the appropriate type. The char* form of the constructor cre-
ates a constant string; the null-terminated string beginning at the location pointed to by
the parameter is copied into the application’s address space, and the BPatch_constExpr
that is created refers to the location to which the string was copied.

BPatch_funcJumpExpr (const BPatch_function &func) only implemented on
SPARC Solaris and Compaq Tru64 UNIX

Define a snippet that represents a non-returning jump to function func. Func must take
the same number and type of arguments as the function in which this snippet is inserted;
these arguments will be passed to func. Func must also have the same return type. This
snippet can be used to change the implementation of a function (or conditionally change
it if the snippet is part of an if-statement).

When func returns, control flows as a return from the function in which this snippet is
inserted.

BPatch_funcCallExpr(const BPatch_function& func,
const BPatch_Vector<BPatch_snippet*> &args)

Define a call to a function, the passed function must be valid for the current code region.
Args is a list of arguments to pass to the function. If type checking is enabled, the types of
the passed arguments are checked against the function to be called (Availability of type
checking depends on the source language of the application and program being compiled
for debugging).

BPatch_gotoExpr(const BPatch_gotoExpr &target) not yet implemented

Branch to the passed snippet. When used with BPatch_ifExpr, the goto expression
can be used for simple looping. To implement the C loop:

 repeat
 i++
 until (i == 50);

the following BPatch code would be used:

// addOne: i++ -- Add one to the intCounter (i), also create “label”

 Page 24

dyninstAPI

// add One
BPatch_arithExpr addOne(BPatch_assign, *intI,
 BPatch_arithExpr(BPatch_plus, *intI, BPatch_constExpr(1)));

// if (i != 50) goto addOne
// First definition is the boolean expression.
// The second, generates the goto and the if statement
BPatch_boolExpr testFlag(BPatch_ne, *intI, BPatch_constExpr(50));
BPatch_ifExpr loopDone(testFlag, BPatch_gotoExpr(addOne));

class BPatch_ifExpr(const BPatch_boolExpr &conditional,

const BPatch_snippet &tClause,
const BPatch_snippet &fClause)

class BPatch_ifExpr(const BPatch_boolExpr &conditional,
const BPatch_snippet &tClause)

This constructor creates an if statement. The first argument, conditional, should be a
Boolean expression that is will be evaluated to decide which clause should be executed.
The second argument, tClause, is the snippet to execute if the conditional evaluates to
true. The third argument, fClause, is the snippet to execute if the conditional evaluates
to false. This third argument is optional. Else-if statements, can be constructed by making
the fClause of an if statement another if statement.

BPatch_paramExpr(int paramNum)

This constructor creates an expression whose value is a parameter being passed to a func-
tion. ParamNum specifies the number of the parameter to return (starting at 0). Since
the contents of parameters may be changed during subroutine execution, this snippet type
is only valid at points that are entries to subroutines, or when inserted at a call point with
the when parameter set to BPatch_callBefore.

BPatch_pidExpr() not yet implemented

This snippet results in an integer expression that contains the id of the process in which it
is executing.

BPatch_retExpr()

This snippet results in an expression that evaluates to the return value of a subroutine.
This snippet type is only valid at BPatch_exit points, or at a call point with the when
parameter set to BPatch_callAfter.

BPatch_sequence(const BPatch_Vector<BPatch_snippet*> &items)

Define a sequence of snippets. The passed snippets will be executed in the order in which
they appear in the list.

BPatch_tidExpr() not yet implemented

This snippet results in an integer expression that contains the id of the thread that is exe-
cuting this snippet. This can be used to record the threadId, or to filter instrumentation so
that it only executes for a specific thread.

 Page 25

dyninstAPI

BPatch_nullExpr()

Defines a null snippet. This snippet contains no executable statements; however it is a
useful place holder for the destination of a goto. For example, using goto and a nullExpr a
while loop can be constructed. For example, to construct the while loop:

while (i < 3) {
 i++;
}

The following snippets should be created:
BPatch_nullExpr loopDone;

// if (i > 3) goto loopDone
// First definition is the boolean expression.
// The second, generates the goto and the if statement
BPatch_boolExpr testFlag(BPatch_gt, *intI, BPatch_constExpr(3));
BPatch_ifExpr test(testFlag, BPatch_gotoExpr(loopDone));

// i++
BPatch_arithExpr addOne(BPatch_assign, *intI,
 BPatch_arithExpr(BPatch_plus, *intI, BPatch_constExpr(1)));

BPatch_Vector<BPatch_snippet *> statements;

statements.push_back(&test);
statements.push_back(&addOne);
statements.push_back(&loopDone);

BPatch_sequence whileLoop(statements);

4.9 Class BPatch_type

The class BPatch_type is used to describe the types of variables, parameters, return values, and
functions. Instances of the class can represent language predefined types (e.g. int, float), mutatee
defined types (e.g., structures compiled into the mutatee application), or mutator defined types
(created using the create* methods of the BPatch class).

BPatch_Vector<BPatch_field *> *getComponents()

Returns a vector of the types of the fields in a BPatch_struct or BPatch_union. If the data
class of the type is not BPatch_struct or BPatch_union, a null value is returned.

BPatch_Vector<BPatch_cblock *> *getCblocks()

Return the common block classes for the type. The methods of the BPatch_cblock can be
used to access information about the member of a common block. Since the same named
(or anonymous) common block can be defined with different members in different func-
tions, a given common block may have multiple definitions. The vector returned by this
function contains one instance of BPatch_cblock for each unique definition of the com-
mon block. If this method is invoked on a type whose BPatch_dataClass is not
BPatch_common, a null will be returned.

 Page 26

dyninstAPI

BPatch_type *getConstituentType()

Return the type of the base type. For a BPatch_array this is the type of each element,
for a BPatch_pointer this is the type of the object the pointer points to. For
BPatch_typedef types, this is the original type. For all other types, an undefined re-
sults will be returned.

BPatch_dataClass getDataClass()

Returns the data class of the type.

const char *getLow()
const char *getHigh()

Return the string representation of the upper and lower bound of an array. Calling these
two methods on a non-array types produces an undefined result.

const char *getName()

Return the name of the type.

bool isCompatible(const BPatch_type &otype)

Returns true if the passed type is type compatible with this type. The rules for type com-
patibility are given in Section 4.17. If the two types are not type compatible, the error re-
porting callback function will be invoked one or more times with additional information
about why the types are not compatible.

4.10 Class BPatch_variableExpr

The BPatch_variableExpr class is another class derived from snippet. It represents a variable
or area of memory in a thread’s address space. A BPatch_variableExpr can be obtained
from a BPatch_thread using the malloc member function, or from a BPatch_image us-
ing the findVariable member function. BPatch_variableExpr provides two member func-
tions not provided by other types of snippets:

bool readValue(void *dst)
void readValue(void *dst, int size)

Reads the value of the variable in an application’s address space that is represented by
this BPatch_variableExpr. The dst parameter is assumed to point to a buffer large
enough to hold a value of the variable’s type. If the size parameter is supplied, then the
number of bytes it specifies will be read. For the first version of this method, if the size of
the variable is known (i.e., no type information) information, no data is copied and the
method returns false.

 Page 27

dyninstAPI

bool writeValue(void *src)
void writeValue(void *src, int size)

Changes the value of the variable in an application’s address space that is represented by
this BPatch_variableExpr. The src parameter should point to a value of the variable’s
type. If the size parameter is supplied, then the number of bytes it specifies will be writ-
ten. For the first version of this method, if the size of the variable is known (i.e., no type
information) information, no data is copied and the method returns false.

void *getBaseAddr()

Return the base address of the variable. This is designed to let users who wish to access
elements of arrays or fields in structures do so. It can also be used to obtain the address of
a variable to pass a point to that variable as a parameter to a procedure call. It is more or
less equivalent to the ampersand (&) operator in C.

BPatch_Vector<BPatch_variableExpr *> getComponents()

Returns a vector of the components of a struct, or union. Each element of the vector is
one field of the composite type, and contains a variable expression for accessing it.

4.11 Class BPatch_flowGraph

The BPatch_flowGraph class represents the control flow graph of a function. It provides meth-
ods for discovering the basic blocks and loops within the function (using which a caller can navi-
gate the graph). A BPatch_flowGraph object can be obtained by calling the getCFG method
of a BPatch_function object.

BPatch_Set<BPatch_basicBlock*>* getAllBasicBlocks()

Returns a pointer to a BPatch_Set containing all the basic blocks in the flow graph.

void getEntryBasicBlock(BPatch_Vector<BPatch_basicBlock*>&)

Fill the given vector with pointers to all basic blocks that are entry points to the function.

void getExitBasicBlock(BPatch_Vector<BPatch_basicBlock*>&)

Fill the given vector with pointers to all basic blocks that are exit points of the function.

void getLoops(BPatch_Vector<BPatch_basicBlockLoop*>&)

Fill the given vector with a list of all natural(single entry) loops in the control flow graph.

(Note: If a function has a case statement or multi-jump instructions, the targets of the jumps are
found by searching instruction patterns (peep-hole). The instruction patterns generated are com-
piler specific and we included in control flow graph generation the ones we have seen. During
the control flow graph generation, if a pattern that is not handled is used for case statement or
multi-jump instructions in the function address space, the generated control flow graph may not
be complete.)

 Page 28

dyninstAPI

4.12 Class BPatch_basicBlock

The BPatch_basicBlock class represents a basic block in the application being instrumented.
Objects of this class representing the blocks within a function can be obtained using the
BPatch_flowGraph object for the function. BPatch_basicBlock includes methods for
navigating through the control flow graph of the containing function.

void getSources(BPatch_Vector<BPatch_basicBlock*>&)

Fill the given vector with the list of predecessors for this basic block (that is, basic blocks
that have an outgoing edge in the control flow graph leading to this block).

void getTargets(BPatch_Vector<BPatch_basicBlock*>&)*>&)

Fill the given vector with the list of successors for this basic block (that is, basic blocks
that are the destinations of outgoing edges from this block in the control flow graph).

bool dominates(BPatch_basicBlock*)*>&)

This function returns true if the argument is dominated in the control flow graph by this
block, and false if it is not.

BPatch_basicBlock* getImmediateDominator()*>&)

Return the basic block that immediately dominates this block in the control flow graph.

void
getImmediateDominates(BPatch_Vector<BPatch_basicBlock*>&)*>&
)

Fill the given vector with a list of pointers to the basic blocks that are immediately domi-
nated by this basic block in the control flow graph.

void getAllDominates(BPatch_Set<BPatch_basicBlock*>&)*>&)

Fill the given vector with a list of pointers to all basic blocks that are dominated by this
basic block in the control flow graph.

BPatch_sourceBlock* getSourceBlock()*>&) noti mplemented only on Irix

Return the source block containing this basic block.

int getBlockNumber()*>&)

Return the ID number of this basic block. The IDs are consecutive from 0 to n-1, where n
is the number of basic blocks in the flow graph to which this basic block belongs.

bool getAddressRange(void*& _startAddress, void*& _endAddress)
*>&)

This function returns the starting and ending addresses of the range of instructions that
make up this basic block, if this information is available. It returns true if the returned ad-
dresses are valid, and false

 Page 29

dyninstAPI

4.13 Class BPatch_basicBlockLoop

An object of this class represents a loop in the code of the application being instrumented.

void getBackEdges(BPatch_Vector<BPatch_basicBlock*>&)*>&)

Fill the given vector with a list of pointers to the basic blocks that are the sources of the
backedges that define the loop.

void getContainedLoops(BPatch_Vector<BPatch_basicBlockLoop*>&)

Fill the given vector with a list of the loops nested within this loop.

void getLoopBasicBlocks(BPatch_Vector<BPatch_basicBlock*>&)*>&)

Fill the given vector with a list of all basic blocks that are part of this loop.

BPatch_basicBlock* getLoopHead()*>&)

Return the basic block at the head of this loop.

BPatch_Set<BPatch_variableExpr*>* getLoopIterators() not yet implemented

Return a set containing the variables used as loop iterators.

4.14 Class BPatch_sourceBlock

An object of this class represents a source code level block. For C or C++, this is any block of
code surrounded by brackets, as well as such entities as the bodies of loops and the true and false
branches of conditional statements (even if these are not surrounded by brackets). not imple-
mented on Irix.

void getLines (BPatch_Vector<unsigned short>&)

Fill the given vector with a list of the lines contained within the source block.

4.15 Class BPatch_cblock

This class is used to access information about a common block.

BPatch_Vector<BPatch_field *> *getComponents()

Return a vector containing the individual variables of the common block.

BPatch_Vector<BPatch_function *> *getFunctions()()

Return a vector of the functions that can see this common block with the set of fields de-
scribed in getComponents. However, other functions that define this common block
with a different set of variables (or sizes of any variable) will not be returned.

 Page 30

dyninstAPI

4.16 Class BPatch_Vector

The BPatch_Vector class is a container used to hold other objects used by the API. It is based on
the Standard Template Library (STL) Vector container class. At the time of the writing of this
document, STL has been adopted as part of the ANSI C++ standardization, but implementations
were not widely available. As a result, the initial version of the API uses its own compatible sub-
set of the Vector class.

BPatch_Vector()

 Create a new empty vector.

int size()

 Return the number of elements in the container instance.

void push_back(const T& x)

 Add x to the end of the Vector.

const T& operator[](int n) const

 Return the nth element of the Vector.

The following example illustrates how to declare a vector, add elements to it, and iterate over
them:

BPatch_Vector<int> list_of_ints;

list_of_ints.push_back(1);
list_of_ints.push_back(2);

for (int i = 0; i < list_of_ints.size(); i++)
 printf(“%d\n”, list_of_ints[i]);

4.17 Class BPatch_Set

BPatch_Set is another container class, similar to the set class in the Standard Template Library
(STL). It maintains a collection of objects and provides fast lookup. Elements are ordered by a
comparison function, which can be user-supplied. This allows for efficiently returning a sorted
list of elements, or returning the value of the minimum or maximum element.

BPatch_Set()

A constructor that creates an empty set with the default comparison function.

BPatch_Set(const BPatch_Set<T,Compare>& newBPatch_Set)

Copy constructor.

int size()

Returns the number of elements in the set.

 Page 31

dyninstAPI

bool empty()

Returns true if the set is empty, or false if it is not.

void insert(const T&)

Insert the given element into the set.

void remove(const T&)

Remove the given element from the set.

bool contains(const T&)

Return true if the argument is a member of the set, otherwise returns false.

T* elements(T*)

Fill an array with a list of the elements in the set, sorted in ascending order according to
the comparison function. The input argument should point to an array large enough to
hold the elements. This function returns its input argument, unless the set is empty, in
which case it returns false.

T minimum()

Returns the minimum element in the set, as determined by the comparison function. For
an empty set, the result is undefined.

T maximum()

Returns the maximum element in the set, as determined by the comparison function. For
an empty set, the result is undefined.

BPatch_Set<T,Compare>& operator= (const BPatch_Set<T,Compare>&)

The assignment operator.

bool operator== (const BPatch_Set<T,Compare>&)

The equality operator. Returns true if both sets consist entirely of elements that are each
equal to an element in the other set.

bool operator!= (const BPatch_Set<T,Compare>&)

The inequality operator. Returns true if either set contains an element not in the other set.

BPatch_Set<T,Compare>& operator+= (const T&)

Add the given object to the set.

BPatch_Set<T,Compare>& operator|= (const BPatch_Set<T,Compare>&)

Set union operator. Assigns the result of the union to the set on the left hand side.

 Page 32

dyninstAPI

BPatch_Set<T,Compare>& operator&= (const BPatch_Set<T,Compare>&)

Set intersection operator. Assigns the result of the intersection to the set on the left hand
side.

BPatch_Set<T,Compare>& operator-= (const BPatch_Set<T,Compare>&)

Set difference operator. Assigns the difference of the sets to the set on the left hand side.

BPatch_Set<T,Compare> operator| (const BPatch_Set<T,Compare>&)

Set union operator.

BPatch_Set<T,Compare> operator& (const BPatch_Set<T,Compare>&)

Set intersection operator.

BPatch_Set<T,Compare> operator- (const BPatch_Set<T,Compare>&)

Set difference operator.

4.18 Type System

The dyninst API type system is based on the notion of structural equivalence. Structural equiva-
lence was selected to allow the system the greatest flexibility in allowing users to write mutators
that work with applications compiled both with and without debugging symbols enabled. Using
the create* methods of the Bpatch class, a mutator can construct type definitions for existing mu-
tatee structures. This information allows a mutator to read, and write complex types even if the
application program has been compiled without debugging information. However, if the applica-
tion has been compiled with debugging information, the dyninst API will verify the type com-
patibility of the operations performed by the mutator.

The rules for type computability are that two type must be of the same storage class (i.e. arrays
are only compatible with other arrays) to be type compatible. For each storage class, the follow-
ing additional requirements must be met for two type to be compatbible:

Bpatch_scalar

Scalars are compatible if their names are the same (as defined by strcmp), and their sizes
are the same.

BPatch_pointer

Pointers are compatible if the types they point to are compatible.

BPatch_func

Functions are compatible, if they their return types are compatible, have same number of
parameters, and position by position, each element of the parameter list is type compati-
ble.

 Page 33

dyninstAPI

BPatch_array

Arrays are compatible if they have the same number of elements (regardless of their lower
and upper bounds), and the base element types are type compatible.

BPatch_enumerated

Enumerated types are compatible if they have the same number of elements, and the iden-
tifiers of the elements are the same.

BPatch_structure
BPatch_union

Structures and unions are compatible if they have the same number of constituent parts
(fields), and each item by item each field is type compatible with the corresponds field of
the other type.

In addition, if either of the types is the type BPatch_unkownType, then the two types are com-
patible. Variables in mutatee programs that have not been compiled with debugging symbols (or
in the symbols are in a format that the dyninst library does not recognize) will be of type
BPatch_unkownType.

 Page 34

dyninstAPI

5. USING THE API

In this section, we describe the steps needed to compile your mutator and mutatee programs and
to run them. First we give you an overview of the major steps and then we explain each one in
detail.

5.1 Overview of Major Steps

To use the dyninstAPI, you just have to:

(1) Create a mutator program (Section 5.1): You need to create a program that will modify some
other program. For example, the mutator shown in Section 6.

(2) Set up your mutatee (Section 5.3): On some platforms, you need to link your application with
the dyninstAPI’s run time instrumentation library. Note: this step is only needed in the initial
release of API. Future releases will eliminate this restriction.

(3) Run the mutator (Section 5.4): the mutator will either create a new process or attach to an ex-
isting one (depending on the whether createProcess or attachProcess is used).

Sections 5.2 through 5.4 explain these steps in more detail. In addition, Section 5.5 describes any
issues related to a specific hardware or operating systems. In this section, we assume that you
have already installed the API distribution and setup the PLATFORM and DYNINST_ROOT envi-
ronment variables. The installation of the API is described in the README file in the distribu-
tion tar file.

5.2 Creating a Mutator Program

The first step in using the dyninstAPI is to create a mutator program. The mutator program
specifies the mutatee (either by naming an executable to start or by supplying a process id for an
existing process). In addition, your mutator will include the calls to the API library to modify the
mutatee. For the rest of this section, we assume that the mutatee is the sample program (retee)
given in Section 6. The following fragment of a Makefile shows how to link your mutator pro-
gram with the dyninstAPI library on most platforms:

retee.o: retee.c
 $(CC) -c $(CFLAGS) -I$(DYNINST_ROOT)/core/dyinstAPI/h

retee: retee.o

 $(CC) retee.o -L$(DYNINST_ROOT)/lib/$(PLATFORM) \
 -ldyninstAPI -liberty -o retee

On Solaris, the option “-lelf” must also be added to the link step. On Compaq Tru64 UNIX, the
option “-lmld” must also be supplied. You will also need to make sure that the

 Page 35

dyninstAPI

LD_LIBRARY_PATH or LIBPATH (AIX) environment variable includes the directory that con-
tains the dyninst shared library. This is typically $DYNINST_ROOT/lib/$PLATFORM.

Under Windows NT, the mutator also needs to be linked with the imagehlp library, which is
shipped with Visual C++. Below is a fragment from a Makefile for Windows NT:

CC = cl

retee.obj: retee.c
 $(CC) -c $(CFLAGS) -I$(DYNINST_ROOT)/core/dyninstAPI/h

retee.exe: retee.obj
 link -out:retee.exe retee.obj \

 $(DYNINST_ROOT)\lib\$(PLATFORM)\libdyninstAPI.lib \
 imagehlp.lib

5.3 Setting Up your Application Program (mutatee)

On most platforms, you can instrument unmodified binary (a.out) files. However, there is a base
shared library that needs to be available to be loaded into your application (by the mutator), and
you may wish to create library of pre-compiled instrumentation routines that you mutator will
insert calls to.

On most platforms, any additional code that your mutator might need to call in the mutatee (for
example files containing instrumentation functions that were too complex to write directly using
the API) must be linked with your application. Simply add these files to the line <insert any ad-
ditional modules here> in Figure 1. On SPARC Solaris, AIX, Linux, and Compaq Tru64
UNIX, you may put such code into a dynamically loaded shared library, which your mutator pro-
gram can load into the mutatee at runtime using the loadLibrary member function of
BPatch_thread.

Additionally, on most platforms we need to use the flags -g (to generate debugging) when com-
piling. The command line switches used to specify these options are different for Visual C++ on
Windows NT; see section 5.5.2 for information about compiling on Windows NT.

To locate the runtime library that dyninst needs to load into your program, an additional envi-
ronment variable must be set. The variable DYNINSTAPI_RT_LIB should be set to the full
pathname of the run time instrumentation library, which should be:

$DYNINST_ROOT/lib/$PLATFORM/libdyninstAPI_RT.so.1

Figure 1 is an example of how you would modify the link command in your Makefile (on one of
the Unix-based platforms) to handle the extra link step required by the current version of the API.
If your Makefile contained the link step shown in Figure 1:

 Page 36

dyninstAPI

(a), you would change it to the version shown in Figure 1.

(b). Note that the additions in Figure 1 are shown in bold.

OBJECTS = main.o this.o that.o

LIBDIR = $DYNINST_ROOT/lib/$PLATFORM

bubba.pd: ${OBJECTS}
 ${CC) ${OBJECTS} \
 <insert any additional modules here> \
 -lm -lcurses -ltermcap -o bubba.pd

(b) The Link Command Modified to Run Application. Items in Bold
face show the changes (additions)

Figure 1: Changing Your Makefile to Link an Application as a dynin-
stAPI mutatee. Note: some platforms require a few additional options;
see Section 5.5.

5.4 Running Your Mutator

At this point, your should be ready to run your application program with your mutator. For ex-
ample, to start the sample program shown in Section 6:

% retee foo <pid>

5.5 Architectural Issues

Certain platforms require slight modifications to the procedures discussed above. In this subsec-
tion, we describe each of them in turn.

5.5.1 Solaris

When using the Sun C or Fortran compilers, you should also specify the -xs option together with
-g. The -g option alone will direct the compiler to place debugging information in the object
files (.o files), but it will not place the debugging information on the executable (a.out) file.
You must use the -xs option so that the compiler will add the debugging information to the a.out
file. The -xs option is not needed if you are using gcc. The following is an example of linking on
Solaris.

 Page 37

dyninstAPI

OBJECTS = main.o this.o that.o
LIBDIR = $DYNINST_ROOT/lib/$PLATFORM
bubba.pd: ${OBJECTS}
 cc -g -xs \
 ${OBJECTS} \
 -lm –lcurses -ltermcap \
 -o bubba

Linking an application to run with the dyninstAPI.
Items in Bold face show the changes for Solaris.

Figure 2: Sample Makefile for Solaris

5.5.2 Windows NT

Under Windows NT, the insertion of code at some instrumentation points requires the use of an
interrupt instruction, which generates an event that must be serviced by the mutator process. The
API library performs this event handling transparently in the calls pollForStatusChange and
waitForStatusChange. This means that it is important under Windows NT to call one of
these functions frequently, in order to ensure that the events are handled in a timely manner. It
also means that a mutator program cannot detach or exit and leave instrumentation code running
in the mutatee, since there would then be no program to handle the interrupt events.

On Windows NT the run-time instrumentation library is loaded dynamically, and you do not
need to relink your application with this library. First the environment variable
DYNINSTAPI_RT_LIB is checked; if it is defined, the library is loaded from this file. If the
variable is not defined, the DLL libdyninstAPI_RT.dll is loaded by searching the follow-
ing directories:

1. The directory from which the application loaded.
2. The current directory.
3. The Windows system directory (usually C:\WINDOWS\SYSTEM32).
4. The directories that are listed in the PATH environment variable.

To locate procedure and variables in your mutatee, the API needs symbolic debug information,
so you must compile your application with debugging information enabled. We currently only
handle COFF symbols, so you must also direct the compiler and linker to generate a COFF sym-
bol table (CodeView format is not supported). The option to enable COFF symbol table will de-
pend on the compiler used. For the Microsoft compiler this options are /Z7. You must also direct
the linker to generate symbolic information in the symbol file. The options /debug and
/debugtype:coff must be passed to the linker. Figure 3 shows a sample Makefile for the Microsoft
Visual C++ compiler.

 Page 38

dyninstAPI

CC = cl /Z7

OBJECTS = foo.obj bar.obj

PDDIR = c:\paradyn\lib\i386-unknown-nt4.0

foo: $(OBJECTS)
 link -out:foo.exe -debug -debugtype:coff \
 $(OBJECTS)

Figure 3: sample Makefile for Windows NT.

The API needs to instrument some system libraries (in particular, kernel32.dll), and this can only
be done if the symbols for the system libraries are installed. The symbols are available with the
NT disks, and they can be installed by the compilers (e.g. the Microsoft Development Studio has
an option to install the system symbols files).

6. COMPLETE EXAMPLE

In this section we show a complete program to demonstrate the use of the API. The example is a
program called “re-tee.” It takes three arguments: the pathname of an executable program, the
process id of a running instance of the same program, and a file name. It adds code to the run-
ning program that copies to the named file all output that the program writes to its standard out-
put file descriptor (so it works like “tee,” which passes output along to its own standard out while
also saving it in a file). The motivation for the example program is that you run a program, and it
starts to print copious lines of output to your screen, and you wish to save that output in a file
without having to re-run the program.

Using the API to directly create programs is possible, but somewhat tedious. We anticipate that
most users of the API will be tool builders who will create higher level languages for specifying
instrumentation. For example, the MDL language[4].

#include <stdio.h>
#include <fcntl.h>
#include "BPatch.h"
#include "BPatch_Vector.h"
#include "BPatch_thread.h"

BPatch bpatch;

main(int argc, char *argv[])
{
 int pid;

 if (argc != 4) {
 fprintf(stderr, "Usage: %s prog_filename pid log_filename\n",argv[0]);
 exit(1);
 }

 pid = atoi(argv[2]);

 Page 39

dyninstAPI

 // Attach to the program
 BPatch_thread *appThread = bpatch.attachProcess(argv[1], pid);

 // Read the program’s image and get an associated image object
 BPatch_image *appImage = appThread->getImage();

 // Find the entry point to the procedure "write"
 BPatch_Vector<BPatch_point *> *points =
 appImage->findProcedurePoint("write", BPatch_entry);

 if ((*points).size() == 0) {
 fprintf(stderr, "Unable to find entry point to \"write.\"\n");
 exit(1);
 }

 // Generate code that opens the file the first time it is called.

 // The code to be generate is:
 // if (!flagVar) {
 // fd = open(argv[3], O_WRONLY|O_CREAT, 0666);
 // flagVar = 1;
 // }

 // (1) Find the open function
 BPatch_function *openFunc = appImage->findFunction("open");

 // (2) Allocate a vector of snippets for the parameters to open
 BPatch_Vector<BPatch_snippet *> openArgs;

 // (3) Create a string constant expression from argv[3]
 BPatch_constExpr fileName(argv[3]);

 // (4) Create two more constant expressions _WRONLY|O_CREAT and 0666
 BPatch_constExpr fileFlags(O_WRONLY|O_CREAT);
 BPatch_constExpr fileMode(0666);

 // (5) Push 3 && 4 onto the list from step 2
 openArgs.push_back(&fileName);
 openArgs.push_back(&fileFlags);
 openArgs.push_back(&fileMode);

 // (6) create a procedure call using function found at 1 and
// parameters from step 5.
 BPatch_funcCallExpr openCall(*openFunc, openArgs);

 // (7) allocate a variable to hold the open file descriptor
 BPatch_variableExpr *fdVar =
 appThread->malloc(*appImage->findType("int"));

// (8) create assignment statement of variable from step 7 to return
 // value from step 6.
 BPatch_arithExpr openFile(BPatch_assign, *fdVar, openCall);

 // (9) Find the integer type, and then allocate a variable
 // of this type to be used as a flag to indicate if the
 // open call was made on a previous call to write.
 BPatch_variableExpr *flagVar=
 appThread->malloc(*appImage->findType("int"));

 Page 40

dyninstAPI

 // Declare a snippet vector to hold the list of items
 BPatch_Vector<BPatch_snippet *> initStatements;

 // (10) flagVar = 1;
 BPatch_arithExpr setFlag(BPatch_assign, *flagVar, BPatch_constExpr(1));

 // (11) make a sequence of the open and the assignment statements
 initStatements.push_back(&openFile);
 initStatements.push_back(&setFlag);
 BPatch_sequence initSequence(initStatements);

 // (12) create expression (flagVar == 1)
 BPatch_boolExpr testFlag(BPatch_eq, *flagVar, BPatch_constExpr(0));

 // (13) use expression #12 and statement #11 to produce if-statement
 BPatch_ifExpr initIfNeeded(testFlag, initSequence);

 // Generate the code that copies all writes to file descriptor 1
 // to our log file.
 // Call write with the same data but for our file descriptor
 // The C code we generate is:
 // if (parameter[0] == 1) {
 // write(fd, parameter[1], parameter[2])
 // }

 // Find the write function call
 BPatch_function *writeFunc = appImage->findFunction("write");

 // Build up a parameter list with the items:
 // 1) The file description of our log file
 // 2) First parameter to the original function
 // 3) Second parameter to the original function
 BPatch_Vector<BPatch_snippet *> writeArgs;
 BPatch_paramExpr paramBuf(1);
 BPatch_paramExpr paramNbyte(2);
 writeArgs.push_back(fdVar);
 writeArgs.push_back(¶mBuf);
 writeArgs.push_back(¶mNbyte);

 // Create a function call snippet write(fd, parameter[1], parameter[2])
 BPatch_funcCallExpr writeCall(*writeFunc, writeArgs);

 // (1) Build a vector of snippets with each statement being push on
 BPatch_Vector<BPatch_snippet *> copyWriteStatements;
 copyWriteStatements.push_back(&initIfNeeded);
 copyWriteStatements.push_back(&writeCall);

 // (2) Convert the vector into a sequence
 BPatch_sequence copyWrite(copyWriteStatements);

 // (3) Create the boolean expression ($param[0] == 1)
 BPatch_boolExpr compareFd(BPatch_eq, BPatch_paramExpr(0),
 BPatch_constExpr(1));

 // (4) Create if statement using expression from (3) and
 // true clause from (2)
 BPatch_ifExpr logStdout(compareFd, copyWrite);

 Page 41

dyninstAPI

 // Insert the code into the thread.
 appThread->insertSnippet(logStdout, *points);

 // Detach from the thread.
 delete appThread;

 printf("Done.\n");
}

 Page 42

dyninstAPI

APPENDIX A - RUNNING THE TEST CASES

This section describes how to run the dyninstAPI test cases. The primary purpose of the test
cases is to verify that the API has been installed correctly (and for use in regression testing by the
developers of the dyninst library). The code may also be of use to others since it provides a fairly
complete example of how to call most of the API methods. The test suite consists of four pro-
grams (test{1,2,3,4}) and up to ten mutatee programs (test{1,2,3,4a,4b}.mutattee_{cc,gcc}).

To compile the tests suite, type make in the appropriate platform specific directory under
(…/dyninstAPI/tests). This should produce, depending on the platform, 8 to 24 programs and
several shared libraries.

To run one of the tests, simply enter the test program name (e.g., test1). This will run the test,
and the output should be a series of lines indicating each test number as it completes. In addi-
tion, the tests take the following command line arguments:

-attach

Run the mutatee process and have the mutator attach to it rather than using the create-
Process method. The -attach option is not available for test3.

-mutatee <mutatee name>

Run the mutatee named <mutatee name> rather than the default mutatee for this test.
This is useful to run test cases with versions of the mutatee compiled with a systems na-
tive compiler in addition to the GNU compilers. If currently supported, the mutatee for
the native compiler is named testN.mutatee_cc (see table at the end of this section for a
list of platforms).

-n32

Run the 32-bit version of the mutatee test. This flags is only valid on SGI platforms. This
command line flag changes the shared libraries that are loaded to libtest?_n32.so, it also
changes the mutatee to test?.mutatee_gcc_n32. If you want to test 32-bit mutatees com-
piled with the native compiler, use -n32 and -mutatee test?.mutatee_cc_n32. The order of
-n32 and -mutatee is important.

-run <subtest #> <subtest #> …

Only run the specific sub-tests listed. For example, to run sub-test case 4 of test2 you
would enter test2 -run 4 .

-skip <subtest #> <subtest #> …

Skip the specific sub-tests listed. For example, to skip sub-test case 4 of test2 you would
enter test2 - skip 4 . All other tests are run.

 Page 43

dyninstAPI

-V

Print out the name of the dynInst runtime library the will be used to run this test. This is
useful to check that your environment is correctly setup to run mutator programs.

-verbose

Enable detailed debugging output. This is useful when trying to track down the reason
that one (or more) of the test cases failed.

-v+

Enable the printing of warning level error messages (BpatchWarning) to standard
output. This is useful for debugging the test cases.

-v++

Enable the printing of information and warning level messages via the error reporting
callback function (BpatchWarning and BpatchInfo). These options are useful for
debugging the test cases.

Some test cases are not implemented on some platforms (due to OS restrictions or missing fea-
tures). If a test is not run on a specific platform, the message “Skipped test #XX” will be
displayed. If any of the tests produces a line of the form “**Failed test #XX” there is
something wrong with the version of the API or its installation. Each test should still produce a
message of the form “Passed test #XXX”, and a message at the end indicating that either all
tests were passed, or all requested tests were passed (if the -run option is used).

Note: test2 produces a few lines that look like error messages since it is testing the error report-
ing features of the API (e.g., “file not found). Check for the “All tests passed” message at the
end to confirm correct execution.

The following tables summaries the current status of the implementation of the various tests
cases on different platforms and compilers. For each platform, the entry under the column for a
test indicates any tests that are currently being skipped due to missing or un-supported features.
The notes refer to other possible problems with the platforms. With the exception of MIPS and
NT (where the native vendor compilers are used), for all platforms the dyninst library and test
mutators were built and tested using the gcc 2.95 compiler. The compiler or compilers used for
the mutatees is shown in the second column.

 Page 44

dyninstAPI

PLATFORM
Mutatee

Compiler(s)
Test1 Test 2 Test3 Test4 Test5

alpha-dec-osf4.0 Gcc, native 31,35 7, 9 1-12
i386-unknown-linux2.2 Gcc 20, 22 9 1-4 1-12
i386-unknown-nt4.0 Native 20-22, 30 6-7, 9-10% @ 1-4 1-12
mips-sgi-irix6.4 (+) Gcc, native 22-27, 30 * 1-12
rs6000-ibm-aix4.2/4.3 Gcc, native 21-22, 35 9 1-4 1-12
sparc-sun-solaris(2.6-2.8) - 32bit Gcc, native

Notes:

Platform Note
i386-unknown-linux2.0 % warnings generated:

 -attach "continue: No such process"
 test2 "wait returned status of an unknown process"
We have tested with RedHat Version 6.1

mips-sgi-irix6.4 + -n32 tests same as default (64-bit) case
* tests occasionally hang upon completion (sometimes

freed by ps or telnet or ...)

i386-unknown-nt4.0 % warnings generated:
 -attach "process::isRunning_() returning true"
@ test3.mutatee prints "abnormal program termination"

sparc-sun-solaris(2.6-2.8) # warnings generated:
 Can’t find function in BPatch_function vector:
 _IO_default_doallocate_ in module genops.c
Test5 runs only with mutatees compiled using g++, not
the native compiler.

 Page 45

dyninstAPI

APPENDIX B - COMMON PITFALLS

This appendix is designed to point out some common pitfalls that users have reported when using
the dyninst system. Many of these are either due to limitations in the current implementations, or
reflect design decisions that may not produce the expected behavior from the system.

Attach followed by detach

If a mutator attaches to a mutatee, and immediately exists, the current behavior is that the
mutatee is left suspended. To make sure the application continues, call detach with the
appropriate flags.

Attaching to a program that has already been modified by dyninst

If a mutator attaches to a program that has already been modified by a previous mutator, a
warning message will be issued. We are working to fix this problem, but the correct se-
mantics are still being specified. Currently, a message is printed to indicate that this has
been attempted, and the attach will fail.

 Page 46

dyninstAPI

INDEX

~

~BPatch_thread · 14

A

attachProcess · 7
attachThread · 7

B

BPatch_arithExpr · 22
BPatch_basicBlockLoop · 29
BPatch_boolExpr · 22
BPatch_breakPointExpr · 23
BPatch_cblock · 29
BPatch_constExpr · 23
BPatch_flowGraph · 27
BPatch_funcCallExpr · 23
BPatch_function · 16
BPatch_gotoExpr · 23
BPatch_ifExpr · 24
BPatch_image · 18
BPatch_module · 20
Bpatch_nullExpr · 25
Bpatch_paramExpr · 24
BPatch_pidExpr · 24
BPatch_point · 17
BPatch_retExpr · 24
BPatch_sequence · 24
BPatch_Set · 30
BPatch_snippet · 21
BPatch_sourceBlock · 29
BPatch_sourceObj · 15
BPatch_thread · 11
BPatch_tidExpr · 24
BPatch_type · 25
BPatch_variableExpr · 26
BPatch_Vector · 30
BPatchErrorCallback · 9, 10
BPatchErrorLevel · 9
BPatchPostForkCallback · 10
BPatchThreadEventCallback · 9

C

catchSignal · 11
Class BPatch_basicBlock · 28
continueExecution · 11
createArray · 5
createEnum · 6
createInstPointAtAddr · 18

createPointer · 6
createProcess · 7
createScalar · 6
createStruct · 6
createTypedef · 6
createUnion · 7

D

deleteSnippet · 13
detach · 14
dominates · 28
dumpCore · 12
dumpImage · 12

F

findFunction · 19, 20
findLinePoint · 19
findPoint · 17
findProcedurePoint · 19
findType · 20
findVariable · 15, 19
free · 12
funcJumpExpr · 23

G

getAddress · 18
getAddressRange · 28
getAllDominates · 28
getBackEdges · 29
getBaseAddr · 17, 27
getBlockNumber · 28
getCalledFunction · 18
getCblocks · 25
getComponents · 25, 27, 29
getConstituentType · 26
getCost · 21
getDataClass · 26
getDisplactedInstructions · 18
getEnglishErrorString · 7
getFunctions · 29
getHigh · 26
getImage · 11
getImmediateDominates · 28
getImmediateDominator · 28
getLanguage · 15
getLineAndFile · 11, 16
getLines · 29
getLineToAddr · 16, 20
getLoopBasicBlocks · 29
getLoopHead · 29
getLow · 26

 Page 47

dyninstAPI

getMangledName · 16
getModules · 19
getName · 16, 21, 26
getObjParent · 15
getParams · 16
getPointType · 18
getProcedures · 18, 20
getReturnType · 16
getSize · 17
getSourceBlock · 28
getSourceObj · 15
getSources · 28
getSrcType · 15
getTargets · 28
getThreads · 7
getType · 21
getUniqueString · 20, 21

I

ignoreSignal · 11
insertSnippet · 12
isCompatible · 26
isLib · 17, 21
isSharedLib · 16, 21
isStopped · 11
isTerminated · 11

L

libraryName · 17, 21

M

malloc · 12

O

oneTimeCode · 12

P

pollForStatusChange · 8

R

readValue · 26
registerDynamicLinkCallback · 10
registerErrorCallback · 9
registerExecCallback · 9
registerExitCallback · 10
registerPostForkCallback · 10
registerPreForkCallback · 9
registerThreadCreateCallback · 10
registerThreadDeleteCallback · 10
removeFunctionCall · 13
replaceFunction · 13
replaceFunctionCall · 13

S

setDebugParsing · 8
setInheritSnippets · 14
setMutationsActive · 14
setTrampRecursive · 8
setTypeChecking · 8
size · 30
stopExecution · 11
stopSignal · 11

T

terminateExecution · 11
Type Checking · 32

U

usesTrap_NP · 18

W

writeValue · 27

 Page 48

dyninstAPI

REFERENCES

1. B. Buck and J. K. Hollingsworth, "An API for Runtime Code Patching," Journal of Supercomputing Appli-

cations (to appear), 2000.
2. J. K. Hollingsworth and B. P. Miller, "Using Cost to Control Instrumentation Overhead," Theoretical Com-

puter Science, 196(1-2), 1998, pp. 241-258.
3. J. K. Hollingsworth, B. P. Miller, and J. Cargille, "Dynamic Program Instrumentation for Scalable Perform-

ance Tools," 1994 Scalable High-Performance Computing Conf., Knoxville, Tenn., pp. 841-850.
4. J. K. Hollingsworth, B. P. Miller, M. J. R. Goncalves, O. Naim, Z. Xu, and L. Zheng, "MDL: A Language

and Compiler for Dynamic Program Instrumentation," International Conference on Parallel Architectures
and Compilation Techniques (PACT). Nov. 1997, San Francisco, pp. 201-212.

5. J. R. Larus and E. Schnarr, "EEL: Machine-Independent Executable Editing," PLDI. June 18-21, 1995, La
Jolla, CA, ACM, pp. 291-300.

