Paradyn Parallel Performance Tools

DyninstAPI
Programmer’s Guide

Release 2.2
August 2000

Jeffrey K. Hollingsworth & Bryan Buck
Computer Science Department

University of Maryland

College Park, MD 20742

Email: hol | i ngs@s. und. edu

Web: www. ¢s. und. edu/ proj ect s/ dyni nst API

dyninstAPI 8/25/00

Page 2

g1 0o 1 1o o SR 3
Y 01 o o 0 T TSRS 3
SIMPIE EXAIMPIE. ...ttt ettt b et b e bbbt bt bt b s et b e e e et e b e s e b e s e e st e b e sneneebeneene b e 4
1= = ot RSSO 5
4.1 (OS] =] 1 o RPN 5
O R - | o 7= T <SP 9

4.2 CLASSBPATCH_THREADciitiiitiitieieeie et e st e ste ettt saeesteasbe e beebesbesaeesaessaeesae e st enseeasesnsesseanteans 11
4.3 CLASS BPATCH_SOURCEOBUcetiiieiieieesiessieasieeste et saeesteesbeesbeabessesaeesaessaeesaeessesnsesnsesssessesssenns 15
4.4 CLASS BPATCH_FUNCTION ..utiitieteeteetestesuessueesseessessesasessessseasseasessesasesaessaeesaeassesnsesnsessssssenssenns 16
4.5 CLASS BPATCH _POINT .. uttitiiittesteestee et ee sttt sbe ettt eae e sbeesbe e ke e beeabesaeesaeesaeesae e st ensesaseeneasbeanreans 18
4.6 CLASS BPATCH _IMAGEuiiitieittesteete ettt ettt ettt st e bt e s be e b e et e e besaeesae e saeesaeeabeenseeaseeneesaeanreans 18
4.7 CLASS BPATCH _MODULE......ctiiitiiteeieeie st st e st e ste et s bt saeesaeesbeesbe e beeeesaeesaessaeesaeensesnsesnsesssasbeanseans 20
4.8 CLASS BPATCH _SNIPPETiiitiiitteteeieeieste st et ste ettt s aeesbeesbe e be e beebesaeesaeesaeesae e st enseeasesnsenaeanbeans 21
49 CLASS BPATCH _TYPE ..ttt ittt ettt sttt ettt ettt he e b e b e e be et e st e sae e saeesaeenbeenbesaseeneesbeanbeans 25
4.10 CLASS BPATCH_VARIABLEEXPR.....cottitiiit e siee sttt ettt sttt ee e e st e sae e e sbesasesaeesaeaneeans 26
411 CLASS BPATCH _FLOWGRAPHcotiiieeiestesieesteaste e st ssesaeesseesbeesbeabessesaeesaessaeesaeensesnsesnsesssessenssenns 27
412 BPATCH _BASICBLOCKciitttititeitee e teeestee s teeestee s teesteesbe e eseessbasaseesnbaeasessnteeaseeentaeaseesnteeenneesnses 27
413 BPATCH_BASICBLOCKLOOPcccutiitiieitee sttt esteeesteeesiee st e et st eese e st e e nessbeesnessbeeeneesbeesneesares 28
414 BPATCH_SOURCEBLOCK......cciitttiteeitetesteesteeesieessteeesseesbeeasseesbeesnessbeesanessbeesneesabeesneesbeesaneesnnes 29
4.15 CLASSBPATCH _VECTOR......cittiitietieie ettt sttt ste ettt sttt e sbe e be e beetesaeesaeesaeesae e st ensesasesasesbeanbeans 29
4.16 OIS S] 2] N o S = LSRR ROURURI 29
4.17 Y PE SYSTEM....tiitiiteete ettt sttt ettt ettt eae e e b e e s b e e ke et e e abe s aee s ae e she e ehe e et e bt easeeaeeebeeebe e be e beenbesanesanas 31
USING ThE AP <.ttt b et b et b e et b e et eb e s e et bt seeae s b e e eb e sb e e ebese e e ebesreneas 33
51 OVERVIEW OF IMAJOR STEPS......eiiitiiteeieieesieesieaste e st asesasesseasseasbeebessesasesaessaeesaeessesnsesnsesssassessseans 33
5.2 CREATING A MUTATOR PROGRAMtiiiiiiiitiieeiieasieesie ettt steesteesbeessessesaessaessaeesaesssesnsesnsesssessesssenns 33
53 SETTING UP YOUR APPLICATION PROGRAM (MUTATEE)coutiteeriiieesiesteesiesteesse e sre e 34
54 RUNNING Y OUR IMUTATOR ...cuteeteeieseesueesteasseaseeseasseasseasseassessesaessaessaeasseansesnsesssssssassesssesnsessesnns 35
55 ARCHITECTURAL ISSUESutiiiititeeiteente ettt ettt et st e b te s ee s e s sae e sae e st ssesasesasasbeasbeesbeebesnsesasesanas 35
LN RS o] - =PRSS 35

552 RS6000 running IBM AIX VErSION 4.2 & 4.3 ..ottt 36

LT T Y g To (0 11T AN ST RRS 37

COMPIELE EXAMPIE......c.eceeitieetiit ittt bbb bbbt b e bt b e e e bt et e b e e e nenb e s ne e e 38
APPendiX A - RUNNING e TESE CASESceuiieieriiieiirieisieiet sttt b et b e b s bbbt bt b e b st e b e 42
Appendix B - COMMON PItFAIIS ..ot b e et b e et b et n e 45
... 46
REFBIEINCES. ...ttt ettt a et e et e be e bt eheeb e e Rt e Rt et e £ e e Rt Rt eEe e Rt Rt et et e EeeReeEeeReebeeneeneetententenaen 48

dyninstAPI

1. INTRODUCTION

The normal cycle of developing a program isto edit source code, compile it, and then execute the
resulting binary. However, sometimes this cycle can be too restrictive. We may wish to change
the program while it is executing, and not have to re-compile, re-link, or even re-execute the pro-
gram to change the binary. At first thought, this may seem like a bizarre goal, however there are
several practical reasons we may wish to have such a system. For example, if we are measuring
the performance of a program and discover a performance problem, it might be necessary to in-
sert additional instrumentation into the program to understand the problem. Another application
is performance steering; for large simulations, computational scientists often find it advantageous
to be able to make modifications to the code and data while the simulation is executing.

This document describes an Application Program Interface (API) to permit the insertion of code
into a running program. The APl also permits changing or removing subroutine calls from the
application program. Runtime code changes are useful to support a variety of applications includ-
ing debugging, performance monitoring, and to support composing applications out of existing
packages. The goal of this API is to provide a machine independent interface to permit the crea-
tion of tools and applications that use runtime code patching. The APl and a simple test applica-
tion are described in [1]. This API is based on the idea of Dynamic Instrumentation described in

3].

The unique feature of this interface is that it makes it possible to insert and change instrumenta-
tion in arunning program. This differs from other post-linker instrumentation tools [5] that per-
mit code to be inserted into a binary before it starts to execute.

The goal of this API is to keep the interface small and easy to understand. At the same time it
needs to be sufficiently expressive to be useful for a variety of applications. The way we have
done thisis by providing a simple set of abstractions and a simple way to specify the code to in-
sert into the application™.

2. ABSTRACTIONS

The API is based on abstractions of a program and its state while in execution. The two primary
abstractions are points and snippets. A point is alocation in a program where instrumentation can
be inserted. A snippet is arepresentation of abit of executable code to be inserted into a program
at apoint. For example, if we wished to record the number of times a procedure was invoked, the
point would be the first instruction in the procedure, and the snippets would be a statement to
increment a counter. Snippets can include conditionals, function calls, and loops.

! To generate more complex code, extra (initially un-called subroutines) can be linked into the application program, and calls to
these subroutines can be inserted at runtime viathis interface.

dyninstAPI 8/25/00

Page 4

The API is designed so that a single instrumentation process can insert snippets into multiple
processes executing on a single machine. To support multiple processes, two additional abstrac-
tions, threads and images, are included in the API. A thread refers to thread of execution. De-
pending on the programming model, a thread can correspond to either a normal process or a
lightweight thread. Images refer the static representation of a program on disk. Images contain
points where their code can be modified. Each thread is associated with exactly one image.

The API includes a simple type system based on structural equivalence. If mutatee programs
have been compiled with debugging symbols and the symbols are in aformat that dyninst under-
stands (currently only gcc on SPARC/Solaris), type checking is performed on code to be inserted
into the mutatee. See Section 4.16 for a complete description of the type system.

3. SSMPLE EXAMPLE

To illustrate the ideas of the API, we present severa short examples that demonstrate how the
APl can be used. The full details of the interface are presented in the next section. To prevent
confusion, we refer to the process we are modifying as the application, and the program that uses
the API to modify the application as the mutator. A mutator is a separate process that modifies an
application process.

A mutator program must create a single instance of the class BPatch. This object is used to ac-
cess functions and information that are global to the library. It must not be destroyed until the
mutator has completely finished using the library. For this example, we will assume that the mu-
tator program has declared a global variable called bpatch of class BPatch.

The first thing a mutator needs to do is identify the application process to be modified. If the
process is already in execution, this can be done by specifying the executable file name and proc-
essid of the application as arguments to create an instance of athread object:

appThread = bpatch. attachProcess(pat hnanme, proccesld);

This creates a new instance of the BPatch_thread class that refers to the existing process. It had
no effect on the state of the process (i.e., running or stopped). If the process has not been started,
the mutator specifies the pathname and argument list of a program to execute:

appThread = bpatch. creat eProcess(pat hnane, argv);

Once the application thread has been created, the mutator defines the snippet of code to be in-
serted and the points where they should be inserted. For example, if we wanted to count the
number of times a procedure called InterestingProcedure executes, the mutator might look like
this:

BPat ch_i nage *appl mage;
BPat ch_Vect or <BPat ch_poi nt *> *poi nts;

dyninstAPI

Page 5

/1 Open the programinage associated with the thread and return a
/1 handle to it.
appl mage = appThread->get | mage() ;

/1 find and return the entry point to the "InterestingProcedure"
poi nts = appl mage->fi ndPr ocedur ePoi nt ("I nt eresti ngProcedure"
BPat ch_entry);

/1l Create a counter variable (but first get a handle to the correct type).
/1 by allocating in the application’ s address space.
BPat ch_vari abl eExpr *intCounter =

appThr ead- >mal | oc(*appl mage- >fi ndType("int"));

/1l Create a code block to increnent the integer by one.
/1 i nt Counter = intCounter + 1
/1
BPat ch_arit hExpr addOne(BPat ch_assi gn, *int Counter
BPat ch_arit hExpr (BPatch_plus, *intCounter, BPatch _constExpr(1)));

/1 insert the snippet of code into the application
appThr ead- >i nsert Bl ock(addOne, *points);

4. INTERFACE

This section describes functions in the API. The API is organized as a collection of C++ classes.
The primary classes are BPatch, BPat ch_t hr ead, BPat ch_i nage, BPat ch_poi nt, and
BPat ch_sni ppet . The API aso uses atemplate class called BPat ch_Vect or. Thisclassis
based on the Standard Template Library (STL) vector class.

4.1 ClassBPatch

The BPatch class represents the entire DyninstAPI library. There can only be one instance of
thisclassat atime. Thisclassis used to perform functions and obtain information not specific to
aparticular thread or image.

BPat ch_type *createArray(const char *name, BPatch_type *ptr,
unsigned int [ow, unsigned int hi)

Create anew array type. The name of the typeisnane, and thetype of each element is
ptr. The first element of the array is| ow, and the last is hi gh. The standard rules of
type compatibility, described in Section 4.16 are used with arrays created using this func-
tion.

dyninstAPI

Page 6

BPat ch_type *creat eEnun{const char *nane, BPatch_Vector<char *>
el ement Nanmes, BPatch_Vector<int> el enentl ds)

BPat ch_type *creat eEnun{const char *nane, BPatch_Vector<char *>
el enent Nanes)

Create a new enumerated type. There are two variations of this function. The first oneis
used to create an enumerated type where the user specifies the identifier (int) for each
element. In the second form, the system specifies the identifiers for each element. In
both cases, a vector of character arrays is passed to supply the names of the elements of
the enumerated type. In the first form of the function, the number of element inthe el e-
ment Nanmes and el enent | ds vectors must be the same, or the type will not be cre-
ated. The standard rules of type compatibility, described in Section 4.16 are used with
enums created using this function.

BPat ch_type *createScal ar(const char *nane, int size)

Create anew scaar type. The nane field is used to specify the name of the type and the
Si ze parameter is used to specify the size in bytes of each instance of the type. No addi-
tional information about this type is supplied. The type is compatible with other scalars
with the same name and size.

BPat ch_type *createStruct(const char *nane, BPatch_Vector<char *>
fi el dNames, BPatch_Vector<BPatch_type *> fiel dTypes)

Create a new structure type. The name of the structure is specified in the nane parame-
ter. Thefi el dNanmes andfi el dTypes vectors specify fields of the type. These two
vectors must have the same number of elements or the function will fail (and return
NULL). The standard rules of type compatibility, described in Section 4.16 are used with
structures created using this function. The size of the structure is the sum of the size of
the elementsinthefi el dTypes vector.

BPat ch_type *createTypedef (const char *nanme, BPatch_type *ptr)

Create anew type called nane, and having thetypept r .

BPat ch_type *createPoi nter(const char *nanme, BPatch_type *ptr)
BPat ch_type *createPoi nter(const char *name, BPatch_type *ptr,
i nt size)

Create a new type, named namne, which points to objects of type pt r . The first form of
the function creates a pointer whose size is the same size equal to si zeof (voi d*) on
the target platform where the mutatee is running. In the second form of the command, the
size of the pointer isthe value passed inthe si ze parameter.

dyninstAPI

Page 7

BPat ch_type *creat eUni on(const char *name, BPatch_Vector<char *>
fi el dNames, BPatch_ Vector<BPatch type *> fiel dTypes)

Create anew union type. The name of the union is specified in the nane parameter. The
fiel dNanmes and fi el dTypes vectors specify fields of the type. These two vectors
must have the same number of elements or the function will fail (and return NULL). The
standard rules of type compatibility, described in Section 4.16 are used with unions cre-
ated using this function. The size of the union is the size of the largest element in the
fiel dTypes vector.

const char *getEnglishErrorString(int nunber)

This function returns the descriptive error string for the passed API error number. There-
turned string may contain placeholders (%s) to indicate that a parameter from the error
callback (see the next section) should be substituted at that location.

BPat ch_Vect or <BPat ch_t hr ead*> *get Thr eads()

Return the list of threads that are currently defined. This list includes threads that were
directly created by calling new on BPatch_thread, and indirectly by the UNIX fork or NT
CreateProcess system call. The creation of BPatch_thread objects for indirectly created threads is
not yet implemented.

BPat ch_t hread *attachProcess(char *path, int pid) notimplementedonAlX

BPat ch_thread *attachThread(char *path, int pid, int tid) notyet
implemented

BPat ch_t hread *createProcess(char *path, char *argv[],
char *envp[] = NULL, int stdin_fd=0, int stdout fd=1, int
stderr_fd=2)

Each of these functions returns a pointer to a new instance of the BPatch_thread class.

The “path” parameter needed by most of these functions should be the pathname of the
executable file containing the thread's code. The attachProcess function returns a
BPat ch_t hr ead associated with an existing process. On some platforms, the path pa-
rameter can be NULL since the executable image can be derived from the process pid.
The createThread function returns a r@®at ch_t hr ead associated with an existing
thread within a process. The meaning of thread and process is implementation specific.
The ability to use these two functions to creai&Pat ch_t hr ead object for an exist-

ing process depends on support from the underlying operating system and may not be im-
plemented on all platforms. A thread attached to using one of these functions is put into
the stopped state. The createProcess function creates a new process and returns a new
BPat ch_t hr ead associated with it. The new process is put into a stopped state before
executing any code.

Thestdin_fd, stdout _fd, andstderr_fd parameters are used to set the stan-
dard input, output, and error of the child process. The default values of these parameters
leave the input, output, and error to be the same as the mutator process. To change these
values, an open UNIX file descriptor (see open(1)) can be passed.

dyninstAPI

Page 8

bool pol | For St at usChange()

This is useful for a mutator that needs to periodically check on the status of its managed
threads and does not want to have to check each process individually. It returns true if
there has been a change in the status of one or more threads that has not yet been reported
by either i sSt opped ori sTer m nat ed.

voi d set DebugPar si ng (bool state)

Turn on or off the parsing of debugger information. By default, the debugger information
(produced by the —g compiler option) is parsed on those platforms that support it. How-
ever, for some applications this information can be quite large. To disable parsing this in-
formation, call this method with a valuefdodl se prior to creating a process.

voi d set TranpRecursive (bool state) notimplemented on Compaqg Tru64 UNIX

Turn on or off trampoline recursion. By default, any snippets invoked while another snip-
pet is active will not be executed. This is the safest behavior, since recursively-calling
shippets can cause a program to take up all available system resources and die. For exam-
ple, adding instrumentation code to the start of printf, and then calling printf from that
snippet will result in infinite recursion.

This protection operates at the granularity of an instrumentation point. When snippets are
first inserted at a point, code will be created with recursion protection or not, depending
on the current state of flag. Changing the flagdsretroactive, and inserting more snip-
pets will not change recursion protection at the point. The recursion protection increases
the overhead of instrumentation points, so if there is no way for the snippets to call them-
selves, then calling this method with the parametene will result in a performance

gain. This default value of this flagfial se.

voi d set TypeChecki ng(bool state)

Turn on or off type-checking of snippets. By default type-checking is turned on, and an

attempt to create a snippet that contains type conflicts will fail. Any snippet expressions
created with type-checking off have the type of their left operand. Turning type-checking

off, creating a snippet, and then turn type-checking back on is similar to type cast opera-
tion is the C programming language.

bool wai t For St at usChange()
This function waits until there is a status change to some thread that has not yet been re-
ported by either sSt opped ori sTerm nated, and then returns true. It

is more efficient to call this function than to cadlol | For St at usChange in a loop,
becausewvai t For St at usChange blocks the mutator process while waiting.

dyninstAPI

Page 9

4.1.1 Callbacks

The following functions are intended as a way for APl users to be informed when a sig-
nificant event occurs. Each allows a user to register a handler for some such event. The
return code for all callback registration functions is the handler that was previously regis-
tered (which may be NULL if no handler has previously been registered).

t ypedef enum BPat chErrorLevel { BPatchFatal, BPatchSeri ous,
BPat chWar ni ng, BPatchlnfo };

typedef void (*BPatchErrorCal | back) (BPat chErrorlLevel severity,
i nt nunber, char **parans);

Thisis the prototype for the error callback function. The severity field indicates how im-
portant the error is (from fatal to information/status). The number is a unique number
that identifies this error message. Params are the parameters that describe the detail about
an error. For example, the process id where the error occurred. The number and meaning
of params depends on the error. However, for a single error number the number of pa-
rameters returned will aways be the same.

BPat chError Cal | back regi sterErrorCal |l back(BPat chError Cal | back
func)

This function registers the error callback function with the BPatch class. The return value
IS the previous error callback function. The error callback is explicitly registered (rather
than using a pure a virtua function) so that BPatch users can change the error callback
during program execution (i.e., one error callback before a GUI is initialized, and a dif-
ferent one after).

t ypedef void (*BPatchThreadEvent Cal | back) (BPat ch_t hread *t hread);

This is the prototype for most callback functions associated with events that occur in a
thread. Thet hr ead parameter is the thread that the event has occurred in.

BPat chThr eadEvent Cal | back regi st er ExecCal | back(
BPat chThr eadEvent Cal | back func) onlyimplemented on Solaris, Compaq Tru64
UNIX, and Irix

Registers a function to be called when a thread executes an exec system call. When the
function is called, the thread performing the exec will be paused.

BPat chFor kCal | back regi st erPreForkCal | back(
BPat chFor kCal | back func) onlyimplemented on Solaris, Compag Tru64 UNIX, and Irix

Registers a function to be called when a BPatch_thread forks a new process. This call-
back is invoked just before the fork is performed. When the callback is invoked, the
thread performing the fork will be stopped.

dyninstAPI

Page 10

BPat chThr eadEvent Cal | back regi ster ThreadCr eat eCal | back(
BPat chThr eadEvent Cal | back func) not yet implemented

Registers a function to be called when a new thread is created.

BPat chThr eadEvent Cal | back regi st er ThreadDel et eCal | back(
BPat chThr eadEvent Cal | back func) not yet implemented

Registers a function to be called when a new thread is terminated.

t ypedef void (*BPatchForkCal | back) (BPatch_t hread *parent,
BPat ch_thread *chil d); onlyimplemented on Solaris, Compag Tru64 UNIX, and Irix

This is the prototype for the post fork callback, which is called after afork. The par ent
parameter is the parent thread, and the chi | d parameter is a BPat ch_t hr ead repre-
senting the newly created process. When invoked as a pre-fork callback, the child is
NULL.

BPat chPost For kCal | back regi st er Post For kCal | back(
BPat chPost For kCal | back func) onlyimplemented on Solaris, Compag Tru64 UNIX, and
Irix

Registers afunction to be called just after the fork is performed. Both the thread perform-
ing the fork and the newly created thread will be paused when the callback is invoked.
Unless a post fork callback is registered, the mutator will not be attached to any child
processes. Since there is overhead associated with each tracked process, not setting the
callback allows the dyninst library to ignore any child processes. Thisis particularly use-
ful for instrumenting shell processes that create many (potentially) uninteresting children.

BPat chThr eadEvent Cal | back regi sterExit Call back(
BPat chThr eadEvent Cal | back func) onlyimplemented on Solaris, Compaq Tru64
UNIX, and Irix

Registers a function to be called when a thread terminates.

typedef void (*BPatchDynLi braryCal |l back) (Bpatch_thread *thr,
Bpat ch_nodul e *nod, bool |oad);

This s the prototype for the dynamic linker callback function. Thet hr field contains the
thread that loaded or un-loaded a shared library. The nod field contains the module that
was loaded or unloaded. Thel oad Boolean is trueif the library was loaded and false if
it was unloaded.

BPat chThr eadEvent Cal | back regi st er DynLi nkCal | back(
BPat chThr eadEvent Cal | back func)

Registers a function to be called when an application has loaded or unloaded a dynamic
library.

dyninstAPI

Page 11

4.2 ClassBPatch_thread

The BPatch_thread class operates on (and creates) code in execution.
BPat ch_t hr ead(BPat ch_Vect or <BPat ch_t hr ead&>t hr eads) not yet implemented

Creates a new “virtual” thread from a list of threads. This permits operations to be per-
formed on several threads as a group. This can (potentially) increase the efficiently of the
requests because they can be processed in parallel.

const BPatch_i mage *getl mage()

Return the executable file associated with ®Bigat ch_t hr ead object and return a
handle to it. Depending on the implementation this might also parse the application's
symbol table.

bool getLineAndFile (unsigned | ong addr, unsigned shorté& |ineNo,
char* fileNane,int |ength) notimplementedonIrix
and Windows NT

Given the addressddr , lookup the line number and source file that contains the source
code that corresponds to this location. This function returns true on a successful lookup,
and false on a failure. Failures can be due to either invalid addresses being passed, or if
the program was not compiled with debugging symbols. Thd fnsgt h characters of

the source file name are copied ihid eNane.

bool stopExecution()
bool conti nueExecuti on()
bool term nateExecution()

These three functions change the running state of the tleagExecut i on puts the

thread into a stopped state. Depending on the operating system, stopping one thread may
stop all threads associated with a processit i nueExecut i on continues execution

of the thread (or group of threads if they have to be stopped atomidadly)ri nat e-

Execut i on terminates execution of the thread. Each function returns true on success, or
false for failure. Stopping or continuing a termiated thread will fail.

bool i sStopped()
I nt stopSignal ()
bool isTerm nated()

There three functions query the status of a threa®t opped returns true if the thread

is currently stopped. If the process is stopped (as indicated &tyopped), thenst op-

Si gnal can be called to find out what signal caused the process toi stopr m -

nat ed returns true if the thread has exited. Any of these functions may be called multi-
ple times and calling them will not affect the state of the thread.

dyninstAPI

Page 12

voi d catchSignal (i nt signum notyetimplemented
voi d i gnoreSignal (int signum notyetimplemented

These two functions indicate that the process should be stopped or not when it receives
the named signal.

I nt dunpCore(const char *file, const bool term nate) implementedonlyon
AIX

This function causes the thread to dump its state to the passed file argument. If thet er -
m nat e flag is true, the thread is aso terminated. The ability to use this function de-
pends on support from the underlying operating system and may not be implemented on
al platforms.

i nt dunpl mage(const char *fil e) notimplemented on NT

This function causes the thread to write the in-memory version of the program to the
specified file. This function is not intended for general use, but rather to help debug
Implementations of dyninst. It's semantics and level of implementation varies
greatly between platforms.

BPat ch_vari abl eExpr *mal | oc(int n)
BPat ch_vari abl eExpr *mal | oc(const BPatch_type &t ype)

These two functions alocate memory. Memory allocation is from a heap. The heap is not
(necessarily) the same heap used by the application. The available space in the heap may
be limited depending on the implementation. The first function, mal | oc(i nt n), al-
locates n bytes of memory from the heap. The second function, mal | oc(const

BPat ch_t ype& t), alocates enough memory to hold an object of the specified type.
Using the second version is strongly encouraged because it provides additional informa-
tion to permit better type checking of the passed code. The returned memory is from a
global heap, and may be used in different snippets.

voi d free(const BPatch_vari abl eExpr &ptr)

Free the memory in the passed ptr. The programmer is responsible to verify that all code
that could reference this memory will not execute again (either by removing all snippets
that refer to it, or by analysis of the program).

voi d oneTi neCode(const BPatch_sni ppet &expr)

Cause snippet to be evaluated once at the next available opportunity. Thisinterface is use-
ful to cause an initialization function to be called in the application. The process must be
stopped to call this function.

BPat chSni ppet Handl e *i nsert Sni ppet (const BPat ch_sni ppet &expr,
BPat ch_poi nt &poi nt,
BPat ch_cal | When when=[BPatch_cal | Before| BPatch_call After],
BPat ch_sni ppet Order order = BPatch_first Snippet)

BPat chSni ppet Handl e *i nsert Sni ppet (const BPat ch_sni ppet &expr,
const BPat ch_Vect or <BPat ch_poi nt *> &points,

dyninstAPI

bool

bool

bool

Page 13

BPat ch_cal | When when=[BPatch_cal | Before| BPatch_call After],
BPat ch_sni ppet Order order = BPatch_first Snippet)

Insert a snippet of code at the specified point. If alist of pointsis supplied, insert the code
snippet at each point in the list. The when argument specifies when the snippet is to be
called; a value of BPat ch_cal | Bef or e indicates that the snippet should be inserted
just before the specified point or points in the code, and a vaue of
BPat ch_cal | Aft er indicates that it should be inserted just after. The or der argu-
ment specifies where the snippet is to be inserted relative to any other snippets previously
inserted a the same point. The values BPat ch_first Snippet and
BPat ch_| ast Sni ppet can be used to indicate that the snippet should be inserted be-
fore or after all such snippets, respectively.

The semantics of BPat ch_cal | Bef ore and BPat ch_cal | After when applied
to entry and exit points are still being fully implemented. The following table summa-
rizes the intention of each point:

BPatch_procedurel ocation BPatch callWhen Meaning

BPatch_entry BPatch callBefore First instruction in subroutine

BPatch_entry BPatch_call After First instruction in subroutine after activation record
(local variables) have been created

BPatch_exit BPatch callBefore Last instruction in subroutine before activation re-
cord (local variables) destroyed

BPatch_exit BPatch call After Last instruction in subroutine

Currently the two combinations to allow access just before and after the local variables
have been created are not implemented.

del et eSni ppet (BPat chSni ppet Handl e *handl e)

Remove the snippet associated with the passed handle. If the handle is not defined for the
thread, then deleteSnippet will return false.

renoveFuncti onCal | (BPat ch_poi nt &poi nt)

Disable the function call at the specified location. The point specified must be a valid
call point in the image of the requesting thread. The purpose of this routine is to permit
tools to alter the semantics of a program by eliminating procedure calls. The mechanism
to achieve the remova is left to the library implementor, but might include branching
over the call, or replacing it with nops. (Parameters are still evaluated).

repl aceFunction (BPatch_function &l d, BPatch _function &new)

Replace all calsto function ol d with callsto new. Return true upon success, false oth-
erwise. Only implemented on SPARC Solaris and Compag Tru64 UNIX.

dyninstAPI

Page 14

bool repl aceFuncti onCal | (BPatch_point &point, BPatch_function &iewrunc)

The function call at the specified point is changed to be a call to the function indicated by
newFunc. The purpose of this routine isto permit runtime steering tools to change the be-
havior of programs by replacing a call to one procedure by a call to another. Point must
be a function call point. If the change was successful, the return value is true, otherwise
false will be returned.

Note: care must be used when replacing functions. In particular if the compiler has per-
formed inter-procedural register allocation between the original caller/callee pair, the
replacement may not be safe since the replaced function may clobber registers the com-
piler thought the callee left untouched. Also the signatures of the both the function being
replaced and the new function must be compatible.

voi d setlnherit Sni ppet s(bool inherit) notyetimplemented

Set a flag to indicate if instrumentation snippets should be inherited when the thread
forks. By default, instrumentation snippets are inherited by the child process.

voi d set Mut ati onsActi ve(bool)

Enable or disable the execution of snippets for the thread. This provides a way to tempo-
rally disable all of the dynamic code patches that have been inserted without having to de-
lete them one by one. All allocated memory will remain unchanged while the patches are
disabled. When the mutations are not active, the process control functions (i.e., st o-
pExecuti on and conti nueExecuti on) can still be used. Requests to insert
snippets (including oneTi neCode) may not be made while mutations are disabled.

voi d detach(bool cont)

Detach from the thread. The thread must be stopped to call this function. The cont pa-
rameter is used to indicate if the thread should be continued as a result of detaching.

I nt getPid()

Return the id of the process to which the thread belongs.
bool | oadLi brary(char *Ii bnamne)

Load a dynamically linked library into the thread’s address space. The libname parameter
identifies the library to be loaded, in the standard way that dynamically linked libraries
are specified on the operating system on which the API is running. This function returns
true if the library was loaded successfully, otherwise it returns fedsenplemented Al X.

~BPat ch_t hread()

In addition to cleaning up its own state, the BPatch_thread class destructor may also Kkill
the underlying thread or process. If the processavested by using a BPatch_thread
constructor (as opposed to attaching to an existing thread by passing a pid to the construc-
tor), and detach was not called before the destructor then the process will be terminated

dyninstAPI

Page 15

by the destructor. Otherwise it will continue to execute and any inserted snippets will
remain installed.

One additional convenience (non-member) function is provided to test if the status of any
of the threads managed by the mutator has changed.

4.3 ClassBPatch_sour ceObj

The BPatch_sourceObj class is the parent class for the BPatch_function, BPatch_module, and
BPatch_image classes. It provides a set of common methods for al three classes. In addition, it

can be used to build a “generic” source navigator using the getObjParent and getSourceObj
methods to get parents and children of a given level (i.e. the parent of a module is an image, and
the children will be the functions).

BPat ch_sour ceType get SrcType ()

Return the type of the current source object. Currently, the following values are available
BPatch_sourceProgram, BPatch_sourceModule, BPatch_sourceFunction, and BPatch_-
sourceUnknown_type. Eventually, the following additional types will be available:
BPatch_sourceOuterLoop, BPatch_sourceLoop, BPatch_srcBlock, BPatch_sourceState-
ment

BPat ch_Vect or <BPat ch_sour ceCbj *> *get SourceCbj ()

Return the children source objects of the current source object.

BPat ch_sourceQbj *get Cbj Parent ()

Return the parent source object of the current source object. The parent of a BPatch_-
image is NULL.

BPat ch_Vect or <BPat ch_vari abl eExpr *> *findVari abl e (const char
*namne)

Lookup and return a handle to the named variable. The first form of the function looks
up only variables of global scope, and the second form uses the passed BPatch_point as
the scope of the variable. The returned BPatch_variableExpr can be used to create refer-
ences (uses) of the variable in subsequent snippets. The scoping rules used will be those
of the source language. If the image was not compiled with debugging symbols, this func-
tion will fail even if the variable is defined in the passed scope.

BPat ch_| anguage get Language () not yet implemented

Return the source language of the current BPatch_sourceObject. For programs that are
written in more than one language, BPatch_mixed will be returned. If there is insufficient
information to determine the language, BPatch_unknownLanguage will be returned.

dyninstAPI

Page 16

BPat ch_type *get Type(char *nane) not yet implemented

Lookup and return a handle to the named type. The handle can be used as an argument to
malloc to create new variables of the corresponding type.

4.4 ClassBPatch_function

An object of this class represents a function in the application. A BPatch_image object (see de-
scription below) can be used to retrieve a BPatch_function object representing a given function.

bool getLineAndFile(int &start, int &nd, char *fil enane,
I Nt &max) notimplemented on Irix and Windows NT

This function returns the (approximate) line number range for the specified function. It returns
false the function does not have line number information (i.e., stripped or compiled without de-
bugging). The line number of the first executable statement of a function is return in start .
The line number of the last executable statement of a function is return in end. Up to max
characters of the source file name for the function is copied into f i | enamne, and max is updated
to indicate the number of characters actually copied.

bool getLi neToAddr (unsigned short |ineNo,
BPat ch_Vect or <unsi gned | ong>& buffer,
bool exactMatch = true) notimplemented on Irix and Windows NT

Return the address(es) of the instructions that represent the code for the passed line num-
ber, | i neNo. If exact Mat ch istrue, require and exact match for the passed line num-
ber. The function returns true on a successful lookup, and false if the line number can not
be located or if the program does no contain debugging information.

char *get Name(char *buffer, int |en)

This places the name of the function in buf f er, up to | en characters. It returns the
value of the buffer parameter.

char *get Mangl edNanme(char *buffer, int |en) notyetimplemented

This places the mangled (internal symbol) name of the function in buf f er, upto | en
characters. It returns the value of the buffer parameter.

BPat ch_Vect or <BPat ch_I| ocal Var *> *get Parans ()

Return a vector of BPat ch_| ocal Var that contain the parameters for this function.

The position in the vector corresponds to the position in the parameter list (starting from

zero). The returned local variables can be used to check the types of functions, and be

used in snippet expressions. NOTE: Using parameter BPat ch_| ocal Var expressions

in snippets is only supported for parameters that have a position on the function’s activa-
tion record. Parameters passed in registers (that remain in registers) cannot be accessed
using this method yet.

dyninstAPI

Page 17

BPat ch_type *get ReturnType ()

Return the type of the return value for this function.
bool i sSharedLi b() not yet implemented

This function returns true if the function is defined in a shared library.
bool i sLi b() not yet implemented

This function returns true if the function is defined in alibrary (regardless of whether the
library is shared or non-shared).

const char *I|ibraryNane() notyetimplemented

Return the name of the library that defines this function. If the function is not defined in
alibrary, aNULL will be returned.

Bpat ch_nodul e *get Modul e()

Return the module that defines this function. Depending on whether the program was
compiled for debugging or the symbol table stripped, this information may not be avail-
able.

const BPat ch_Vect or <BPat ch_poi nt *> *fi ndPoi nt (const
BPat ch_pr ocedureLocati on | oc)

Return the BPatch point or list of BPatch_points associated with the procedure. The
BPatch procedureLocation argument is one of BPaich entry, BPatch_exit,
BPatch_subroutine, BPatch_longJump, or BPatch_allLocations. It is used to select which
type of points associated with the procedure will be returned. BPatch entry and
BPatch_exit request respectively the entry and exit points of the subroutine.
BPatch_subroutine returns the list of points where the procedure calls other procedures.
BPatch_longJumps returns any long jump statements made by the procedures. If the
lookup fails to locate any points of the requested type, a list with zero elements is re-
turned. The BPatch_longJump location is not yet implemented.

voi d *get BaseAddr ()

Returns the starting address of the function in the mutatee’s address space.
unsi gned int getSize() notyetimplemented on Alpha

Returns the size of the function in bytes.
BPat ch_fl owGraph *get CF&) onlyimplemented on Sparc/Solarisand Irix

Returns the control flow graph for the function, or NULL if this information is not avail-
able.

dyninstAPI

Page 18

45 ClassBPatch_point

An object of this class represents a location in an application’s code at which the library can in-
sert instrumentation. A BPatch_image object (see description below) is used to retrieve a
BPatch_point representing a desired point in the application.

BPat ch_procedurelLocati on get Poi nt Type()

Return the type of the point. This returned type is one of BPatch_entry, BPatch_exit,
BPatch_subroutine, BPatch_longJump, or BPatch_address.

BPat ch_f uncti on *get Cal | edFuncti on()

Returns a BPatch_function representing the function that is called at the point. If the
point is not a function call site or the target of the call cannot be determined, then this
function returns NULL.

voi d *get Addr ess()

Returns the address of the first instruction at this point.
I nt getDi splacedl nstructions(int maxSi ze, void **insns)

Copy (up to maxSize bytes), the instructions to be relocated at this point into the passed
array (insns). Return the actual number of bytes of instructions copied.

bool usesTrap_ NP()

Returns true if inserting instrumentation at this point requires using a trap. On the x86
architecture, because instructions are of variable size, the instruction at a point may be too
small for the API library to replace it with the normal code sequence used to call instru-
mentation. Also, when instrumentation is placed at points other than subroutine entry,
exit, or call points, traps may be used to ensure the instrumentation fits. In this case, the
API replaces the instruction with a single-byte instruction that generates a trap. A trap
handler then calls the appropriate instrumentation code. Since this technique is used only
on some platforms, on other platforms this function always returns false.

4.6 ClassBPatch_image

This class defines a program image (the executable associated with a thread). The only
way to get a handle to a BPatch_image is via the BPatch_thread member function getl-
mage().

const BPat ch_poi nt *createl nst Poi nt At Addr (caddr _t address)
Return an instrumentation point at the specified address. This function is designed to
permit users who wish to insert instrumentation at arbitrary place in the code segment.

Currently the implementation of this function may use a trap instruction, making these
points more expensive than most instrumentation points. Also, on x86 platforms, users

dyninstAPI

Page 19

should take care to ensure that the requested point is not in the middle of a multi-byte in-
struction. implemented only on AlX

const BPat ch_Vect or <BPat ch_function *> *get Procedures()

Return atable of the proceduresin the image.
Const BPat ch_Vect or <BPat ch_nodul e *> *get Modul es()

Return atable of the modulesin the image.
BPat ch_function *findFunction(const char *nane)

Return a BPat ch_f unct i on for the function name defined, or NULL if the function
does not exist. If the image defines multiple functions named narne, it is arbitrary which
oneisreturned.

const BPat ch_Vect or <BPat ch_poi nt *> *fi ndPr ocedur ePoi nt (
const char *nane,
const BPat ch_procedurelLocation | oc)

Return the BPatch_point or list of BPatch_points associated with the requested procedure.
The BPatch procedureLocation argument is one of BPatch entry, BPatch exit,
BPatch_subroutine, BPatch_longJump, or BPatch_allLocations. It is used to select which
type of points associated with the procedure will be returned. BPatch_entry and
BPatch_exit request respectively the entry and exit points of a subroutine.
BPatch_subroutine returns the list of points where the procedure calls other procedures.
BPatch_longJumps returns any long jump statements made by the procedures. If the
lookup fails to locate any points of the requested type, a list with zero elements is re-
turned. The function can fail either because the procedure does not exist or because there
are no such points. It is possible to have multiple functions with the same name, espe-
cialy for static functions and in shared objects.

The BPatch_longJumps location and support for multiple functions with the same name have not yet been
implemented.

const BPat ch_point *findLi nePoi nt (const char *fileNane, int |ine)
not yet implemented

Return the handle to the instrumentation point nearest to the requested fileName and line
number. The nearest point to a requested line is the last executable instruction before the
line (Note this function can have strange interactions with optimized code).

const BPat ch_vari abl eExpr *findVari abl e(const char *nane)
const BPat ch_vari abl eExpr *fi ndVari abl e(const BPat ch_poi nt
&scope,
const char *nane) second form of this method is not implemented on NT or MIPS/Irix.

Lookup and return a handle to the named variable. The first form of the function looks
up only variables of globa scope, and the second form uses the passed BPatch_point as
the scope of the variable. The returned BPatch variableExpr can be used to create refer-

dyninstAPI

Page 20

ences (uses) of the variable in subsequent snippets. The scoping rules used will be those
of the source language. If the image was not compiled with debugging symbols, this func-
tion will fail even if the variable is defined in the passed scope.

const BPatch_type *findType(const char *nane)

Lookup and return a handle to the named type. The handle can be used as an argument to
malloc to create new variables of the corresponding type.

const char *get Uni queString() notyetimplemented

Lookup and return a unique string for this image. Returns a string the can be compared
(viastrcmp) to indicate if two images refer to the same underlying object file (i.e., execu-
table or library). The contents of the string is implementation specific and defined to
have no semantic meaning.

4.7 ClassBPatch_module

An object of this class represents a program module, which is part of a program’s executable im-
age. BPatch_module objects are obtained by calling the BPatch_image member function get-
Modules().

BPat ch_function *findFunction (const char *nane)

Return aBPat ch_f unct i on for the functiomnane defined in the module correspond-
ing to the invoking BPatch_module, or NULL if it does not define the function. If the
module defines multiple functions nameae, it is arbitrary which one is returned.

bool getLi neToAddr (unsigned short |ineNo,
BPat ch_Vect or <unsi gned | ong>& buf fer,
bool exactMatch = true) notimplemented on Irix and Windows NT

Return the address(es) of the instructions that represent the code for the passed line num-
ber,l i neNo. If exact Mat ch is true, require and exact match for the passed line num-
ber. The function returns true on a successful lookup, and false if the line number can not
be located or if the program does no contain debugging information.

const BPat ch_Vect or <BPat ch_function *> *get Procedures()

Return a table of the procedures in the module.
char *get Name(char *buffer, int |en)

This function copies the name of the module into a buffer, up to len characters. It returns
the value of the buffer parameter.

const char *l|ibraryNane() notyetimplemented

Return the name of the library that contains the module. If the module is not part of a li-
brary, a NULL will be returned.

dyninstAPI

Page 21

Bool i sSharedLi b() notyetimplemented

This function returns true if the module is part of a shared library.
Bool isLib() notyetimplemented

This function returns true if the module is part of alibrary (regardless of whether the li-
brary is shared or non-shared).

const char *getUni queString() notyetimplemented

Lookup and return a unique string for this image. Returns a string the can be compared
(via strcmp) to indicate if two images refer to the same underlying object file (i.e., execu-
table or library). The contents of the string is implementation specific and defined to
have no semantic meaning.

4.8 ClassBPatch_snippet

A snippet is an abstract representation of code to insert into a program. Snippets are defined by
creating a new instance of the correct subclass of a snippet. For example, to create a snippet to
call a function, you create a new instance of the class BPat ch_f uncCal | Expr . Credting a
snippet does not result in code being inserted into an application. Code is generated when a re-
guest is made to insert a snippet at a specific point in a program. Sub-snippets may be shared by
different snippets (i.e. a handle to a snippet may be passed as an argument to create two different
snippets), but whether the generated code is shared (or replicated) between two snippets is im-
plementation dependent.

const BPatch_type *get Type()

Return the type of the snippet.
fl oat get Cost ()

Return an estimate of the number of seconds it would take to execute the snippet. The
problems with accurately estimating the cost of executing code are numerous and out of
the scope of this document[2]. But, it is important to realize that the returned cost valueis
(at best) an estimate.

Therest of the classes are derived classes of the class BPatch_snippet.

BPat ch_ari t hExpr (BPat ch_bi nOp op, const BPatch_sni ppet & Operand,
const BPat ch_sni ppet & Operand)

Perform the required binary operation. The available binary operators are:

dyninstAPI

Page 22

Operator Description
BPatch_assign assign the value of r Oper and to| Oper and
BPatch_plus add | Oper and and r Oper and
BPatch_minus subtract r Qper and from| Oper and
BPatch_divide divider Oper and by | Oper and
BPatch_times multiply r Oper and by | Oper and
BPatch_mod compute the remainder of dividing r Oper and into | Oper and
Not yet implemented.
BPatch_ref Array reference of theform| Oper and[r OQper and]
BPatch_seq Define a sequence of two expressions (similar to commain C)
BPatch_min Return the smaller of two operands
Not yet implemented.
BPatch_max Return the larger of two operands
Not yet implemented.

BPat ch_ari t hExpr (BPat ch_unQp,

const BPat ch_sni ppet &oper and)

Define a snippet consisting of a unary operator. The available unary operators are
BPatch_negate, BPatch_addr, and Bpatch_deref. BPatch_negate takes an integer snippet
and returns the negation of the snippet. BPatch_addr takes a variable reference snippet
and returns a pointer to it. Thisis equivalent to the C operator (&) and is useful for call-

by-reference parameters. Bpatch_deref takes a variable that is a pointer and de-references
it. It isthe equivalent of the C operator (*) and is useful for directly computing addresses
of stored data.

BPat ch_bool Expr (BPat ch_rel Op op, const BPatch_sni ppet & Operand,
const BPat ch_sni ppet &r Oper and)

Define arelationa snippet. The available operators are:

Operator Function

BPatch It Return I0perand < rOperand

BPatch eq Return I0Operand == rOperand

BPatch gt Return I0Operand > rOperand

BPatch_le Return |Operand <= rOperand

BPatch_ne Return I0Operand != rOperand

BPatch_ge Return I0perand >= rOperand

BPatch_and Return |0Operand & & rOperand (Boolean and)
BPatch or Return |0Operand || rOperand (Boolean or)

The type of the returned snippet is boolean, and the operands are type checked.
BPat ch_br eakPoi nt Expr ()

Define a snippet that stops a thread when executed by it. The stop can be detected using

thei sSt opped member function of BPatch_thread, and the program’s execution can be
resumed by calling theont i nueExecut i on member function of BPatch_thread.

dyninstAPI

Page 23

BPat ch_const Expr (i nt val ue)

BPat ch_const Expr (fl oat val ue) not yet implemented
BPat ch_const Expr (const char *val ue)

BPat ch_const Expr (const void *val ue)

BPat ch_const Expr (bool val ue) notyetimplemented

Define a constant snippet of the appropriate type. The char* form of the constructor cre-

ates a constant string; the null-terminated string beginning at the location pointed to by

the parameter is copied into the application’s address space, and the BPatch_constExpr
that is created refers to the location to which the string was copied.

BPat ch_funcJunpExpr (const BPatch_function & unc) onlyimplemented on
SPARC Solaris and Compaq Tru64 UNIX

Define a snippet that represents a non-returning jump to furfaion. Func must take

the same number and type of arguments as the function in which this snippet is inserted,;
these arguments will be passed tmc. Func must also have the same return type. This
shippet can be used to change the implementation of a function (or conditionally change
it if the snippet is part of an if-statement).

Whenf unc returns, control flows as a return from the function in which this snippet is
inserted.

BPat ch_f uncCal | Expr (const BPat ch_functi on& func,
const BPat ch_Vect or <BPat ch_sni ppet *> &ar gs)

Define a call to a function, the passed function must be valid for the current code region.

Args is a list of arguments to pass to the function. If type checking is enabled, the types of
the passed arguments are checked against the function to be called (Availability of type
checking depends on the source language of the application and program being compiled
for debugging).

BPat ch_got oExpr (const BPat ch_got oExpr &t arget) notyet implemented

Branch to the passed snippet. When used BRat ch_i f Expr, the goto expression
can be used for simple looping. To implement the C loop:
r epeat
i ++
until (i == 50);

the following BPatch code would be used:

/] addOne: i++ -- Add one to the intCounter (i), also create “label”

/I add One

BPatch_arithExpr addOne(BPatch_assign, *intl,
BPatch_arithExpr(BPatch_plus, *intl, BPatch_constExpr(1)));

/I if (i 1= 50) goto addOne

/I First definition is the boolean expression.
/I The second, generates the goto and the if statement

dyninstAPI

Page 24

BPat ch_bool Expr testFl ag(BPatch_ne, *intl, BPatch_constExpr(50));
BPat ch_i f Expr | oopDone(testFl ag, BPatch_got oExpr (addOne));

cl ass BPat ch_i f Expr (const BPat ch_bool Expr &conditi onal,
const BPat ch_sni ppet &t C ause,
const BPat ch_sni ppet &f Cl ause)

cl ass BPat ch_i f Expr (const BPat ch_bool Expr &conditi onal,
const BPat ch_sni ppet &t C ause)

This constructor creates an if statement. The first argument, condi t i onal , should be a
Boolean expression that is will be evaluated to decide which clause should be executed.
The second argument, t Cl ause, is the snippet to execute if the conditional evaluates to
true. The third argument, f Cl ause, isthe snippet to execute if the conditiona evaluates
to false. Thisthird argument is optional. Else-if statements, can be constructed by making
thef Cl ause of anif statement another if statement.

BPat ch_par anExpr (i nt paranmum

This constructor creates an expression whose value is a parameter being passed to a func-
tion. Par amNum specifies the number of the parameter to return (starting at 0). Since
the contents of parameters may be changed during subroutine execution, this snippet type
isonly valid at points that are entries to subroutines, or when inserted at a call point with
thewhen parameter set to BPat ch_cal | Bef or e.

BPat ch_pi dExpr () not yetimplemented

This snippet results in an integer expression that contains the id of the processin which it
IS executing.

BPat ch_r et Expr ()

This snippet results in an expression that evaluates to the return value of a subroutine.
This snippet typeisonly valid at BPat ch_exi t points, or a acall point with the when
parameter setto BPat ch_cal | After.

BPat ch_sequence(const BPatch_Vect or <BPat ch_sni ppet *> & t ens)

Define a sequence of snippets. The passed snippets will be executed in the order in which
they appear in thelist.

BPat ch_ti dExpr () notyetimplemented

This snippet results in an integer expression that contains the id of the thread that is exe-
cuting this snippet. This can be used to record the threadld, or to filter instrumentation so
that it only executes for a specific thread.

BPat ch_nul | Expr ()
Defines a null snippet. This snippet contains no executable statements; however it is a

useful place holder for the destination of a goto. For example, using goto and a nullExpr a
while loop can be constructed. For example, to construct the while loop:

dyninstAPI

Page 25

while (i < 3) {
i ++;
}

The following snippets should be created:

BPat ch_nul | Expr | oopDone;

/1 if (i > 3) goto | oopDone

/1 First definition is the bool ean expression

/1 The second, generates the goto and the if statenent

BPat ch_bool Expr testFl ag(BPatch _gt, *intl, BPatch_constExpr(3));
BPat ch_i f Expr test(testFlag, BPatch_got oExpr (| oopDone));

[++
BPat ch_arit hExpr addOne(BPat ch_assi gn, *intl,
BPat ch_arit hExpr (BPatch_plus, *intl, BPatch constExpr(1)));

BPat ch_Vect or <BPat ch_sni ppet *> st at enent es;

statenents. push_back(&t est);
statenents. push_back(&ddOne) ;
statenents. push_back(&nul | Expr) ;

BPat ch_sequence whil eLoop(initStatenents);

4.9 ClassBPatch_type

The class BPatch_type is used to describe the types of variables, parameters, return values, and
functions. Instances of the class can represent language predefined types (e.g. int, float), mutatee
defined types (e.g., structures compiled into the mutatee application), or mutator defined types
(created using the create* methods of the BPatch class).

BPat ch_Vect or <BPat ch_fi el d *> *get Conponent s()

Returns a vector of the types of the fields in a BPatch_struct or BPatch_union. If the data
class of the type isnot BPatch_struct or BPatch_union, anull value is returned.

BPat ch_t ype *get Constituent Type()

Return the type of the base type. For aBPat ch_ar r ay thisisthe type of each element,
for a BPat ch_poi nt er this is the type of the object the pointer points to. For
BPat ch_t ypedef types, thisisthe original type. For al other types, an undefined re-
sults will be returned.

BPat ch_dat aCl ass get Dat aCl ass()

Returns the data class of the type.

const char *getLow()
const char *get Hi gh()

Return the string representation of the upper and lower bound of an array. Calling these
two methods on a non-array types produces an undefined result.

dyninstAPI

Page 26

const char *get Nane()

Return the name of the type.
bool isConpati bl e(const BPatch_type &otype)

Returns true if the passed type is type compatible with this type. The rules for type com-
patibility are given in Section 4.16. If the two types are not type compatible, the error re-
porting callback function will be invoked one or more times with additional information
about why the types are not compatible.

4.10 ClassBPatch_variableExpr

The BPatch_variableExpr class is another class derived from snippet. It represents a variable

or area of memory in a thread’s address space. BRat ch_vari abl eExpr can be obtained
from aBPat ch_t hr ead using themal | oc member function, or from BPat ch_i nage us-

ing thef i ndVari abl e member function. BPatch_variableExpr provides two member func-
tions not provided by other types of snippets:

bool readVal ue(void *dst)
voi d readVal ue(void *dst, int size)

Reads the value of the variable in an application’s address space that is represented by
this BPatch_variableExpr. Thast parameter is assumed to point to a buffer large
enough to hold a value of the variable’s type. If the size parameter is supplied, then the
number of bytes it specifies will be read. For the first version of this method, if the size of
the variable is known (i.e., no type information) information, no data is copied and the
method returns false.

bool writeValue(void *src)
void witeVal ue(void *src, int size)

Changes the value of the variable in an application’s address space that is represented by
this BPatch_variableExpr. Ther ¢ parameter should point to a value of the variable’s
type. If the size parameter is supplied, then the number of bytes it specifies will be writ-
ten. For the first version of this method, if the size of the variable is known (i.e., no type
information) information, no data is copied and the method returns false.

voi d *get BaseAddr ()

Return the base address of the variable. This is designed to let users who wish to access
elements of arrays or fields in structures do so. It can also be used to obtain the address of
a variable to pass a point to that variable as a parameter to a procedure call. It is more or
less equivalent to the ampersand (&) operator in C.

BPat ch_Vect or <BPat ch_vari abl eExpr *> get Conponent s()

Returns a vector of the components of a struct, or union. Each element of the vector is
one field of the composite type, and contains a variable expression for accessing it.

dyninstAPI

Page 27

411 ClassBPatch_flowGraph

The BPatch_flowGraph class represents the control flow graph of a function. It provides meth-
ods for discovering the basic blocks and loops within the function (using which a caller can navi-
gate the graph). A BPat ch_f | owG aph object can be obtained by calling the get CFG method
of aBPat ch_f uncti on object. All methods of BPatch_flowGraph are implemented only on
the SPARC Solaris and MIPS Irix platforms.

BPat ch_Set <BPat ch_basi cBl ock*>* get Al | Basi cBl ocks()

Returns a pointer to a BPatch_Set containing all the basic blocks in the flow graph.
voi d get EntryBasi cBl ock(BPat ch_Vect or <BPat ch_basi cBl ock*>&)

Fill the given vector with pointersto all basic blocks that are entry points to the function.
voi d get Exi t Basi cBl ock(BPat ch_Vect or <BPat ch_basi cBl ock*>&)

Fill the given vector with pointersto al basic blocks that are exit points of the function.
voi d get Loops(BPat ch_Vect or <BPat ch_basi cBl ockLoop*>&)

Fill the given vector with alist of all loopsin the control flow graph.

4.12 ClassBPatch_basicBlock

The BPatch_basicBlock class represents a basic block in the application being instrumented.
Objects of this class representing the blocks within a function can be obtained using the
BPat ch_f | owGr aph object for the function. BPat ch_basi cBl ock includes methods for
navigating through the control flow graph of the containing function. All methods of this class
are implemented only on the SPARC Solaris and MIPS Irix platforms.

voi d get Sour ces(BPat ch_Vect or <BPat ch_basi cBl ock*>&)

Fill the given vector with the list of predecessors for this basic block (that is, basic blocks
that have an outgoing edge in the control flow graph leading to this block).

voi d get Tar get s(BPat ch_Vect or <BPat ch_basi cBl ock*>&)

Fill the given vector with the list of successors for this basic block (that is, basic blocks
that are the destinations of outgoing edges from this block in the control flow graph).

bool dom nat es(BPat ch_basi cBl ock*)

This function returns true if the argument is dominated in the control flow graph by this
block, and falseif it is not.

BPat ch_basi cBl ock* get | mmedi at eDomi nat or ()

Return the basic block that immediately dominates this block in the control flow graph.

dyninstAPI

Page 28

voi d get | medi at eDom nat es(BPat ch_Vect or <BPat ch_basi cBl ock* >&)

Fill the given vector with alist of pointers to the basic blocks that are immediately domi-
nated by this basic block in the control flow graph.

voi d get Al | Dom nat es(BPat ch_Set <BPat ch_basi cBl ock*>&)
Fill the given vector with alist of pointersto all basic blocks that are dominated by this

basic block in the control flow graph.
BPat ch_sour ceBl ock* get Sour ceBl ock() implemented only on SPARC Solaris

Return the source block containing this basic block.
i nt get Bl ockNunber ()

Return the ID number of this basic block.
bool get AddressRange(voi d*& _startAddress, void*& _endAddress)
This function returns the starting and ending addresses of the range of instructions that

make up this basic block, if thisinformation is available. It returnstrueif the returned ad-
dresses are valid, and false

4.13 ClassBPatch_basicBlockL oop

An object of this class represents a loop in the code of the application being instrumented. All
methods of BPatch_basicBlockLoop are implemented only on the SPARC Solaris and MIPS Irix
platforms.

voi d get BackEdges(BPat ch_Vect or <BPat ch_basi cBl ock*>&)

Fill the given vector with alist of pointers to the basic blocks that are the sources of the
backedges that define the loop.

voi d get Cont ai nedLoops(BPat ch_Vect or <BPat ch_basi cBl ockLoop* >&)

Fill the given vector with alist of the loops nested within this loop.
voi d get LoopBasi cBl ocks(BPat ch_Vect or <BPat ch_basi cBl ock*>&)

Fill the given vector with alist of all basic blocks that are part of thisloop.
BPat ch_basi cBl ock* get LoopHead()

Return the basic block at the head of this|oop.
BPat ch_Set <BPat ch_vari abl eExpr*>* get Looplterators() notyetimplemented

Return a set containing the variables used as |oop iterators.

dyninstAPI

Page 29

4.14 ClassBPatch_sourceBlock

An object of this class represents a source code level block. For C or C++, this is any block of
code surrounded by brackets, as well as such entities as the bodies of loops and the true and false
branches of conditional statements (even if these are not surrounded by brackets). All methods of
this class are implemented only on the SPARC Solaris platform.

voi d getLines (BPatch_Vect or<unsi gned short >&)

Fill the given vector with alist of the lines contained within the source block.

4.15 ClassBPatch_Vector

The BPatch_Vector classis acontainer used to hold other objects used by the API. It isbased on
the Standard Template Library (STL) Vector container class. At the time of the writing of this
document, STL has been adopted as part of the ANSI C++ standardization, but implementations
were not widely available. As aresult, the initial version of the API uses its own compatible sub-
set of the Vector class.

BPat ch_Vect or ()

Create a new empty vector.
I nt size()

Return the number of elements in the container instance.
voi d push_back(const T& x)

Add x to the end of the Vector.
const T& operator[](int n) const

Return the nth element of the Vector.

The following example illustrates how to declare a vector, add elements to it, and iterate over
them:

BPat ch_Vector<int> list_of _ints;

list_of _ints.push_back(1);
list_of _ints.push_back(2);

for (int i =0; i <list_of_ints.size(); i++)
printf(*%d\n”, list_of_ints[i]);

4.16 ClassBPatch_Set

BPatch_Set is another container class, similar to the set class in the Standard Template Library
(STL). It maintains a collection of objects and provides fast lookup. Elements are ordered by a

dyninstAPI

Page 30

comparison function, which can be user-supplied. This alows for efficiently returning a sorted
list of elements, or returning the value of the minimum or maximum el ement.

BPat ch_Set ()

A constructor that creates an empty set with the default comparison function.
BPat ch_Set (const BPat ch_Set <T, Conpar e>& newBPat ch_Set)

Copy constructor.
I nt size()

Returns the number of e ementsin the set.
bool enmpty()

Returns trueif the set is empty, or falseif it is not.
void insert(const T&)

Insert the given element into the set.
voi d renmove(const T&)

Remove the given element from the set.
bool contai ns(const T&)

Return true if the argument is a member of the set, otherwise returns false.
T* el enent s(T*)

Fill an array with alist of the elements in the set, sorted in ascending order according to
the comparison function. The input argument should point to an array large enough to
hold the elements. This function returns its input argument, unless the set is empty, in
which case it returns false.

T m ni mun()

Returns the minimum element in the set, as determined by the comparison function. For
an empty set, the result is undefined.

T maxi mun()

Returns the maximum element in the set, as determined by the comparison function. For
an empty set, the result is undefined.

BPat ch_Set <T, Conpar e>& oper at or = (const BPat ch_Set <T, Conpar e>&)

The assignment operator.

dyninstAPI

Page 31

bool operator== (const BPat ch_Set <T, Conpar e>&)

The equality operator. Returns true if both sets consist entirely of elements that are each
equal to an element in the other set.

bool operator!= (const BPatch_Set <T, Conpar e>&)

The inequality operator. Returns true if either set contains an el ement not in the other set.
BPat ch_Set <T, Conpar e>& operat or += (const T&)

Add the given object to the set.
BPat ch_Set <T, Conpar e>& operat or| = (const BPat ch_Set <T, Conpar e>&)

Set union operator. Assigns the result of the union to the set on the left hand side.
BPat ch_Set <T, Conpar e>& oper at or & (const BPat ch_Set <T, Conpar e>&)

Set intersection operator. Assigns the result of the intersection to the set on the left hand
side.
BPat ch_Set <T, Conpar e>& oper at or-= (const BPat ch_Set <T, Conpar e>&)

Set difference operator. Assigns the difference of the sets to the set on the left hand side.
BPat ch_Set <T, Conpar e> operator| (const BPatch_Set <T, Conpar e>&)

Set union operator.
BPat ch_Set <T, Conpar e> operator & (const BPat ch_Set <T, Conpar e>&)

Set intersection operator.
BPat ch_Set <T, Conpar e> operator- (const BPatch_Set <T, Conpar e>&)

Set difference operator.

4.17 Type System

The dyninst API type system is based on the notion of structural equivalence. Structural equiva-
lence was selected to alow the system the greatest flexibility in allowing users to write mutators
that work with applications compiled both with and without debugging symbols enabled. Using
the create* methods of the Bpatch class, a mutator can construct type definitions for existing mu-
tatee structures. This information alows a mutator to read, and write complex types even if the
application program has been compiled without debugging information. However, if the applica-
tion has been compiled with debugging information, the dyninst API will verify the type com-
patibility of the operations performed by the mutator.

The rules for type computability are that two type must be of the same storage class (i.e. arrays
are only compatible with other arrays) to be type compatible. For each storage class, the follow-
ing additional requirements must be met for two type to be compatbible:

dyninstAPI

Page 32

Bpat ch_scal ar

Scalars are compatible if their names are the same (as defined by strcmp), and their sizes
are the same.

BPat ch_poi nt er

Pointers are compatible if the types they point to are compatible.
BPat ch_func

Functions are compatible, if they their return types are compatible, have same number of
parameters, and position by position, each element of the parameter list is type compati-
ble.

BPat ch_array

Arrays are compatibleif they have the same number of elements (regardless of their lower
and upper bounds), and the base element types are type compatible.

BPat ch_enuner at ed

Enumerated types are compatible if they have the same number of elements, and the iden-
tifiers of the elements are the same.

BPat ch_structure
BPat ch_uni on

Structures and unions are compatible if they have the same number of constituent parts
(fields), and each item by item each field is type compatible with the corresponds field of
the other type.

In addition, if either of the types is the type BPatch_unkownType, then the two types are com-
patible. Variables in mutatee programs that have not been compiled with debugging symbols (or
in the symbols are in a format that the dyninst library does not recognize) will be of type
BPatch_unkownType.

dyninstAPI

Page 33

5. USING THE API

In this section, we describe the steps needed to compile your mutator and mutatee programs and
to run them. First we give you an overview of the maor steps and then we explain each one in
detail.

5.1 Overview of Major Steps

To use the dyninstAPI, you just have to:

(1) Create a mutator program (Section 5.1): Y ou need to create a program that will modify some
other program. For example, the mutator shown in Section 6.

(2) Set up your mutatee (Section 5.3): On some platforms, you need to link your application with
the dyninstAPI's run time instrumentation library. Note: this step is only needed in the initial
release of API. Future releases will eliminate this restriction.

(3) Run the mutator (Section 5.4): the mutator will either create a new process or attach to an ex-
isting one (depending on the whether createProcess or attachProcess is used).

Sections 5.2 through 5.4 explain these steps in more detail. In addition, Section 5.5 describes any
issues related to a specific hardware or operating systems. In this section, we assume that you
have already installed the API distribution and setugPtb&«TFORMandDYNI NST_ROOT envi-

ronment variables. The installation of the API is described in the README file in the distribu-
tion tar file.

5.2 Creating a Mutator Program

The first step in using the dyninstAPI is to create a mutator program. The mutator program
specifies the mutatee (either by naming an executable to start or by supplying a process id for an
existing process). In addition, your mutator will include the calls to the API library to modify the
mutatee. For the rest of this section, we assume that the mutatee is the sample program (retee)
given in Section 6. The following fragment of a Makefile shows how to link your mutator pro-
gram with the dyninstAPI library on most platforms:

retee.o. retee.c
$(CO -c $(CFLAGS) -1 $(DYN NST_ROOT)/ corel/ dyi nst APl / h

retee: retee.o
$(CC) retee.o -LS(DYNI NST_ROOT)/Ii b/ $(PLATFORM \
-ldyninst APl -liberty -0 retee
On Solaris, the option “-lelf” must also be added to the link step. On Compaq Tru64 UNIX, the
option “-Imld” must also be supplied.

dyninstAPI

Page 34

Under Windows NT, the mutator also needs to be linked with the i magehl p library, which is
shipped with Visual C++. Below isafragment from a Makefile for Windows NT:

CC = cl

retee.obj: retee.c
$(CO -c $(CFLAGS) -1 $(DYN NST_ROQOT)/ core/ dyni nst APl / h

ret ee. exe: retee.obj
link -out:retee.exe retee.obj \
$(DYNI NST_ROOT) \ I i b\ $(PLATFORM \ | i bdyni nst API . i b \
i magehl p.lib

5.3 Setting Up your Application Program (mutatee)

In future releases, you will be able to instrument unmodified binary (a.out) files. The current re-
lease requires an extralinking step with the following items:

(1) On most platforms, any additional code that your mutator might need to call in the mutatee
(for example files containing instrumentation functions that were too complex to write di-
rectly using the API) must be linked with your application. Simply add these files to the line
<insert any additional modules here> in Figure 1. On SPARC Solaris, Linux, and Compaq
True4 UNIX, you may put such code into a dynamically loaded shared library, which your
mutator program can load into the mutatee at runtime using the loadLibrary member function
of BPatch_thread.

(2) Additionally, on most platforms we need to use the flags - g (to generate debugging) when
compiling. The command line switches used to specify these options are different for Visual
C++ on Windows NT; see section 5.5.3 for information about compiling on Windows NT.

(3) To locate the runtime library that dyninst needs to load into your program, an additional envi-
ronment variable must be set. The variable DYNINSTAPI_RT_LIB should be set to the full
pathname of the run time instrumentation library, which should be:

$DYNINST_ROOT/lib/$PLATFORM/libdyninstAPI_RT.so.1

Figure 1 is an example of how you would modify the link command in your Makefile (on one of
the Unix-based platforms) to handle the extralink step required by the current version of the API.
If your Makefile contained the link step shown in Figure 1:

(@), you would change it to the version shown in Figure 1.

(b). Note that the additionsin Figure 1 are shown in bold.

dyninstAPI

Page 35

OBJECTS = nain.o this.o that.o
LI BDI R = $DYNI NST_ROOT/ | i b/ $PLATFORM

bubba. pd: ${OBJECTS}
${CC) ${ OBIECTS} \
<insert any additional modules here>\
-Im-1lcurses -lterncap -o bubba. pd

(b) The Link Command Modified to Run Application. Items in Bol d
f ace show the changes (additions)

Figure 1. Changing Your Makefile to Link an Application as a dynin-
stAPI mutatee. Note: some platforms require a few additional options;
see Section 5.5.

5.4 Running Your Mutator

At this point, your should be ready to run your application program with your mutator. For ex-
ample, to start the sample program shown in Section 6:

%retee foo <pid>

5.5 Architectural I ssues

Certain platforms require slight modifications to the procedures discussed above. In this subsec-
tion, we describe each of them in turn.

55.1 Solaris

When using the Sun C or Fortran compilers, you should also specify the - xs option together with
-g. The - g option alone will direct the compiler to place debugging information in the object
files (. o files), but it will not place the debugging information on the executable (a. out) file.
Y ou must use the - xs option so that the compiler will add the debugging information to the a.out
file. The - xs option is not needed if you are using gcc. The following is an example of linking on
Solaris.

dyninstAPI

Page 36

OBJECTS = main.o this.o that.o
LI BDI R = $DYNI NST_ROOT/ | i b/ $PLATFORM
bubba. pd: ${OBJECTS}
cc -g-xs \
${ OBJECTS} \
-1 m —lcurses -ltermcap \
-0 bubba

Linking an application to run with the dyninstAPI.
Itemsin Bold face show the changes for Solaris.

Figure 2: Sample Makefilefor Solaris

5.5.2 RS/6000 running IBM AlX version 4.2 & 4.3

When linking AIX programs, in order to insert instrumentation into your application, you need to

link the API's run time instrumentation library (libdyninstAPI_RT.0) with your application. In
addition, three additional options are needed. The first is the link flagobj r eor der. Note

that this flag needs to be interpreted by the AIX linker, but is unknown to most compilers. Dif-
ferent compilers pass arguments to the linker differently. In some, if the argument isn’t under-
stood by the compiler, it gets passed to the linker automatically. On others, a specific prefix flag
is needed to tell the compiler “this is a linker option; don't try to interpret it.” For example, when
linking using the GNU gcc or g++ compilers, preface the option with nker to get:

- Xl i nker -bnoobjreorder

The second AlX-specific option is needed to ensure that the runtime library (libdynin-
stAPI_RT.0) gets linked properly. Compared to traditional UNIX linkers, the AIX linker is un-
usually aggressive in optimization. One optimization is the removal of code that is not called
elsewhere in the binary. Since the routines in libdyninstAPl_RT.o are called only by code in-
serted by dynamic (runtime) instrumentation, by default, the AIX linker will unfortunately leave
out the contents of libdyninstAPI_RT.o. What is needed is a way to force the linker to include
certain routines and variables. In the AIX linker, this is done with b <f i | enane> option,
where<fi | enane> is a text file containing a list of functions and/or variable nhames. We have
provided such a file for you in the AIX ftp distribution; the file is called
DYNI NSTAPI _RT_EXPORTS. Assuming you have installed this file in the same directory as

| i bdyni nst RT. o, the following should be added to your link line:

-bE: $(LI BDI R)/ DYNI NSTAPI _RT_EXPORTS

Of course, if necessary, preface this option with whatever is required by your compiler to pass it
verbatim to the linker; e.gXl i nker, as above.

The last option is due to the AIX subroutine load. On each execution of load--in addition do do-
ing its normal functionality--the subroutine reloads segment 1 (the executable program) and seg-
ment 13 (the shared library text). This subroutine is used during the MPI initialization, to load a

dyninstAPI

Page 37

text segment used to output error messages in a specific language (for English versions, this file
is/usr/lib/nls/loc/en_US). The load subroutine causes problems since the new segments
overwrites the previous modifications inserted by the mutator. In order to prevent this, whenever

using MPI, / usr/1'i b/ nl s/ | oc/ en_US (or some comparable file) must be included when link-

ing your application. In addition to including this file, during your application’s link phase, the
following environment variables must be set or unset:

setenv NLSPATH /usr/Ilib/nls/nmsg/en_US
unset env LANG

F77 = Jusr/bin/f77 LIBDIR =\

f.o: $(DYNI NST_ROOT) /| i b/ $(PLATFORV)
$(F77) -g -c $< F77 = /usr/bin/f77

dunmy: $(0BJ) LD = /bin/ld
$(F77) -0 $@ .f.o:

$(0BJ) $(F77) -g -c $<

dummy: $(0BJ)
$(LD) -a archive-o $@ /lib/crt0.0\
$(0BJ) \
$(LI1BDIR)/libdyninstAPI_RT.o\
-lcl -lisamstub -Ic /usr/lib/end.o

(a) The Oringinal Makefile (b) The nodified Makefil e

Figure3: An Example of Changing the Makefileto Link a Fortran Application.

55.3 WindowsNT

Under Windows NT, the insertion of code at some instrumentation points requires the use of an
interrupt instruction, which generates an event that must be serviced by the mutator process. The
API library performs this event handling transparently in the gall$ For St at usChange and

wai t For St at usChange. This means that it is important under Windows NT to call one of
these functions frequently, in order to ensure that the events are handled in a timely manner. It
also means that a mutator program cannot detach or exit and leave instrumentation code running
in the mutatee, since there would then be no program to handle the interrupt events.

On Windows NT the run-time instrumentation library is loaded dynamically, andigaot
need to relink your application with this library. First the environment variable
DYNI NSTAPI _RT_LI B is checked; if it is defined, the library is loaded from this file. If the
variable is not defined, the DLUL bdyni nst APl _RT. dl | is loaded by searching the follow-
ing directories:

The directory from which the application loaded.

The current directory.

1
2.
3. The Windows system directory (usually C:\WINDOWS\SY STEM 32).
4, Thedirectoriesthat are listed in the PATH environment variable.

dyninstAPI

Page 38

To locate procedure and variables in your mutatee, the APl needs symbolic debug information,
so you must compile your application with debugging information enabled. We currently only
handle COFF symbols, so you must also direct the compiler and linker to generate a COFF sym-
bol table (CodeView format is not supported). The option to enable COFF symbol table will de-
pend on the compiler used. For the Microsoft compiler this options are /Z7. Y ou must also direct
the linker to generate symbolic information in the symbol file. The options /debug and
/debugtype:coff must be passed to the linker. Figure 4 shows a sample Makefile for the Microsoft
Visual C++ compiler.

CC =cl 127
OBJECTS = fo00.0bj bar. obj
PDDI R = c:\paradyn\lib\i 386-unknown-nt4.0

foo: $(OBJIECTS)
link -out:foo.exe -debug -debugtype: coff \
$(OBJECTS)

Figure 4: sample M akefile for Windows NT.

The API needs to instrument some system libraries (in particular, kernel32.dll), and this can only
be done if the symbols for the system libraries are installed. The symbols are available with the
NT disks, and they can be installed by the compilers (e.g. the Microsoft Development Studio has
an option to install the system symbolsfiles).

6. COMPLETE EXAMPLE

In this section we show a complete program to demonstrate the use of the API. The exampleisa

program called “re-tee.” It takes three arguments: the pathname of an executable program, the
process id of a running instance of the same program, and a file name. It adds code to the run-
ning program that copies to the named file all output that the program writes to its standard out-
put file descriptor (so it works like “tee,” which passes output along to its own standard out while
also saving it in a file). The motivation for the example program is that you run a program, and it
starts to print copious lines of output to your screen, and you wish to save that output in a file
without having to re-run the program.

Using the API to directly create programs is possible, but somewhat tedious. We anticipate that
most users of the APl will be tool builders who will create higher level languages for specifying

instrumentation. For example, the MDL language[4].
#i ncl ude <stdio. h>
#i ncl ude <fcntl. h>
#i ncl ude "BPat ch. h"

#i ncl ude "BPatch_Vector. h"
#i ncl ude "BPatch_t hread. h"

BPat ch bpat ch;

dyninstAPI

Page 39

mai n(int argc, char *argv[])
int pid;
if (argc !'= 4)
fprintf(stderr, "Usage: % prog filenane pid log filenane\n",argv[O0]);
exit(1);
pid = atoi (argv|[2])

/1 Attach to the program
BPat ch_t hread *appThread = bpatch. attachProcess(argv[1], pid);

/1 Read the programi s i mage and get an associ ated i nage object
BPat ch_i nage *appl mage = appThread- >get | nage();

/! Find the entry point to the procedure "wite"
BPat ch_Vect or <BPat ch_poi nt *> *points =

appl nage- >fi ndPr ocedur ePoi nt ("wite", BPatch entry);
if ((*points).size() == 0)

fprintf(stderr, "Unable to find entry point to \"wite.\"\n");
exit(1);

/1l Generate code that opens the file the first tine it is called.

/1 The code to be generate is:

/1 if (!flagvar) {

/1 fd = open(argv[3], O WRONLY| O CREAT, 0666);
/1 flagvar = 1;

/1 }

/1 (1) Find the open function

BPat ch_functi on *openFunc = appl nage->fi ndFuncti on("open");

/1 (2) Allocate a vector of snippets for the paraneters to open
BPat ch_Vect or <BPat ch_sni ppet *> openArgs;

/1 (3) Create a string constant expression from argv| 3]
BPat ch_const Expr fileNanme(argv[3]);

/1 (4) Create two nore constant expressions _WRONLY| O CREAT and 0666
BPat ch_const Expr fil eFl ags(O WRONLY| O_CREAT) ;
BPat ch_const Expr fil eMode(0666);

/1 (5) Push 3 &% 4 onto the list fromstep 2
openAr gs. push_back(&f i | eNane) ;
openAr gs. push_back(&f il eFl ags) ;
openAr gs. push_back(&f i | eMode) ;

/1 (6) create a procedure call using function found at 1 and

/1 paranmeters fromstep 5.
BPat ch_funcCal | Expr openCal | (*openFunc, openArgs);

/1 (7) allocate a variable to hold the open file descriptor
BPat ch_vari abl eExpr *fdVar =

dyninstAPI

Page 40

appThr ead- >mal | oc(*appl mage- >fi ndType("int"));

/1 (8) create assignnment statement of variable fromstep 7 to return
/1 value fromstep 6.
BPat ch_ari t hExpr openFil e(BPatch_assign, *fdVar, openCall);

/1 (9) Find the integer type, and then allocate a variable
/1 of this type to be used as a flag to indicate if the
/1 open call was made on a previous call to wite.

BPat ch_vari abl eExpr *fl agVar =
appThr ead- >mal | oc(*appl mage- >fi ndType("int"));

/1 Declare a snippet vector to hold the list of itens
BPat ch_Vect or <BPat ch_sni ppet *> initStatenents;

/1 (10) flagvar = 1
BPat ch_arit hExpr setFl ag(BPatch_assi gn, *flagVar, BPatch _const Expr(1));

/1 (11) nake a sequence of the open and the assignnent statenents
i nitStatenments. push_back(&openFil e);

i nitStatenments. push_back(&setFl ag) ;

BPat ch_sequence i nit Sequence(initStatenments);

/1 (12) create expression (flagvar == 1)
BPat ch_bool Expr testFl ag(BPatch_eq, *flagVar, BPatch_const Expr(0));

/1 (13) use expression #12 and statenent #11 to produce if-statenent
BPat ch_i f Expr initlfNeeded(testFlag, initSequence);

/1l Generate the code that copies all wites to file descriptor 1
/1 to our log file.

/1 Call wite with the sane data but for our file descriptor

/1 The C code we generate is:

/1 if (parameter[0] == 1) {

/1 wite(fd, parameter[1], paraneter[2])

/1 }

/1 Find the wite function cal
BPat ch_function *witeFunc = appl mage->fi ndFunction("wite");

/1 Build up a paraneter list with the itens:

/1 1) The file description of our log file
/1 2) First paraneter to the original function
/1 3) Second paraneter to the original function

BPat ch_Vect or <BPat ch_sni ppet *> writeArgs
BPat ch_par anExpr paranBuf (1) ;

BPat ch_par anExpr par anf\byt e(2);

writeArgs. push_back(fdVar);

writ eArgs. push_back(&ar anBuf) ;

writeArgs. push_back(&ar am\byt e) ;

/'l Create a function call snippet wite(fd, paraneter[1l], paraneter[2])
BPat ch_funcCal | Expr witeCall (*witeFunc, witeArgs);

/1 (1) Build a vector of snippets with each statenent being push on
BPat ch_Vect or <BPat ch_sni ppet *> copyWiteStatenents;
copyWiteStat enents. push_back(& nitlfNeeded);

dyninstAPI

Page 41

copyWiteStatenents. push _back(&witeCall);

/1 (2) Convert the vector into a sequence
BPat ch_sequence copyWite(copyWiteStatenents);

/1 (3) Create the bool ean expression ($paranf0] == 1)

BPat ch_bool Expr conpar eFd(BPat ch_eq, BPat ch_par anExpr (0),
BPat ch_const Expr(1));

/1 (4) Create if statenment using expression from(3) and

/1 true clause from (2)

BPat ch_i f Expr | ogSt dout (conpareFd, copyWite);

/1l Insert the code into the thread.
appThr ead- >i nsert Sni ppet (| ogSt dout, *poi nts);

/!l Detach fromthe thread.
del et e appThr ead;

printf("Done.\n");

dyninstAPI

Page 42

APPENDIX A - RUNNING THE TEST CASES

This section describes how to run the dyninstAPI test cases. The primary purpose of the test
cases is to verify that the API has been installed correctly (and for use in regression testing by the
developers of the dyninst library). The code may also be of use to others since it provides afairly
complete example of how to call most of the APl methods. The test suite consists of four pro-
grams (test{ 1,2,3,4}) and up to ten mutatee programs (test{ 1,2,3,4a,4b} .mutattee {cc,gcc}).

To compile the tests suite, type make in the appropriate platform specific directory under
(.../dyninstAPl/tests). This should produce, depending on the platform, 8 to 24 programs and
several shared libraries.

To run one of the tests, simply enter the test program name (e.g., testl). This will run the test,
and the output should be a series of lines indicating each test number as it completes. In addi-
tion, the tests take the following command line arguments:

-attach

Run the mutatee process and have the mutator attach to it rather than using the create-
Process method. The -attach option is not available for test3.

- mut at ee <nut at ee nane>

Run the mutatee namedirut at ee name> rather than the default mutatee for thistest.
This is useful to run test cases with versions of the mutatee compiled with a systems na-
tive compiler in addition to the GNU compilers. If currently supported, the mutatee for
the native compiler is named testN.mutatee cc (see table at the end of this section for a
list of platforms).

-n32

Run the 32-bit version of the mutatee test. This flags is only valid on SGI platforms. This
command line flag changes the shared libraries that are loaded to libtest? n32.so, it also
changes the mutatee to test?.mutatee_gcc_n32. If you want to test 32-bit mutatees com-
piled with the native compiler, use -n32 and -mutatee test?.mutatee_cc_n32. The order of
-n32 and -mutatee is important.

- run <subtest #> <subtest #> ...

Only run the specific sub-tests listed. For example, to run sub-test case 4 of test2 you
would enter test2 -run 4

-skip <subtest #> <subtest #> ...

Skip the specific sub-tests listed. For example, to skip sub-test case 4 of test2 you would
enter test2 - skip 4 . All other testsare run.

dyninstAPI

Page 43

-V
Print out the name of the dyninst runtime library the will be used to run this test. Thisis
useful to check that your environment is correctly setup to run mutator programs.

-ver bose
Enable detailed debugging output. This is useful when trying to track down the reason
that one (or more) of the test cases failed.

- V+
Enable the printing of warning level error messages (Bpat chWar ni ng) to standard
output. Thisisuseful for debugging the test cases.

-V++

Enable the printing of information and warning level messages via the error reporting
callback function (Bpat chWar ni ng and Bpat chl nf 0). These options are useful for
debugging the test cases.

Some test cases are not implemented on some platforms (due to OS restrictions or missing fea-

tures). If a test is not run on a specific platform, the messaigepped test #XX will be
displayed. If any of the tests produces a line of the forirFai | ed test #XX’ there is
something wrong with the version of the API or its installation. Each test should still produce a
message of the formrPassed t est #XXX’, and a message at the end indicating that either all
tests were passed, or all requested tests were passed (if the -run option is used).

Note: test2 produces a few lines that look like error messages since it is testing the error report-
ing features of the API (e.g., “file not found). Check for the “All tests passed” message at the
end to confirm correct execution.

The following tables summaries the current status of the implementation of the various tests
cases on different platforms and compilers. For each platform, the entry under the column for a
test indicates any tests that are currently being skipped due to missing or un-supported features.
The notes refer to other possible problems with the platforms. With the exception of MIPS and
NT (where the native vendor compilers are used), for all platforms the dyninst library and test
mutators were built and tested using the gcc 2.95 compiler. The compiler or compilers used for
the mutatees is shown in the second column.

dyninstAPI

Page 44

Notes:

PLATFORM il oo Testl Tet2 | Test3 | Testd | Tests
Compiler(s)
apha-dec-0sf4.0 Gcc, native 31 7,9 1-12
1386-unknown-linux2.2 Gee 20, 22 9 1-4 1-12
1386-unknown-nt4.0 Native 20-22, 30 6-7, 9-10% @ 1-4 1-12
1386-unknown-solaris (2.6-2.8) Gcc, native 20, 22 9-10 1-12
mips-sgi-irix6.4 (+) Gcc, native 22-27,30 * 1-12
rs6000-ibm-aix4.2/4.3 Gcc, native 21-22, 30-31 6,7,9 1-4 1-12
sparc-sun-solaris(2.6-2.8) - 32bit | Gec, native #
Platform Note

1386-unknown-linux2.0

mips-sgi-irix6.4

1386-unknown-nt4.0

sparc-sun-solaris(2.6-2.8)

dyninstAPI

% warnings generated:
-attach "continue: No such process'
test2 "wait returned status of an unknown process'
We have tested with RedHat Version 6.1
+ -n32 tests same as default (64-bit) case
* tests occasionally hang upon completion (sometimes
freed by psor telnet or ...)

% warnings generated:
-attach "process::isRunning_() returning true’
@ test3.mutatee prints "abnormal program termination"

warnings generated:
Can't find function in BPatch_function vector:
_10_default_doallocate in module genops.c
Test5 runs only with mutatees compiled using g++, not
the native compiler.

Page 45

APPENDIX B - COMMON PITFALLS

This appendix is designed to point out some common pitfalls that users have reported when using
the dyninst system. Many of these are either due to limitations in the current implementations, or
reflect design decisions that may not produce the expected behavior from the system.

Attach followed by detach

If a mutator attaches to a mutatee, and immediately exists, the current behavior is that the
mutatee is left suspended. To make sure the application continues, call detach with the

appropriate flags.

Attaching to a program that has already been modified by dyninst
If amutator attaches to a program that has aready been modified by a previous mutator, a
warning message will be issued. We are working to fix this problem, but the correct

semantics are still being specified. Currently, amessage is printed to indicate that this has
been attempted, and the attach will fail.

dyninstAPI

Page 46

~ D

~BPatch_thread - 15 deleteSnippet - 14
detach - 15
dumpCore - 12

A dumplmage - 12

attachProcess - 7

attachThread - 7 F
findFunction - 20, 21

B findLinePoint - 20
findPoint - 18
findProcedurePoint - 20

BPatch_arithExpr - 22

findType - 21
BPatch_boolExpr - 23 . .
BPatch_breakPointExpr - 23 Ilrr;céValr?ble +16,20

BPatch_constExpr - 24
BPatch_funcCallExpr - 24 funcJumpExpr - 24
BPatch_function - 16

BPatch_gotoExpr - 24

BPatch_ifExpr - 25 G

BPatch_image - 19

BPatch_module - 21 getAddress - 18
Bpatch_nullExpr - 26 getBaseAddr - 18, 28
Bpatch_paramExpr - 25 getCalledFunction - 18
BPatch_pidExpr - 25 getComponents - 26, 28
BPatch_point - 18 getConstituentType - 26
BPatch_retExpr - 25 getCost - 22
BPatch_sequence - 25 getDataClass - 27
BPatch_snippet - 22 getDisplactedinstructions - 19
BPatch_sourceObj - 15 getEnglishErrorString - 7
BPatch_thread - 11 getHigh - 27
BPatch_tidExpr - 25 getimage - 11
BPatch_type - 26 getLanguage - 16
BPatch_variableExpr - 27 getLineAndFile - 11, 16
BPatch_Vector - 30 getLines - 30
BPatchErrorCallback - 9, 11 getLineToAddr - 17, 21
BPatchErrorLevel - 9 getLow - 27
BPatchPostForkCallback - 10 getMangledName - 17
BPatchThreadEventCallback - 9 getModules - 19

getName - 17, 21, 27
getObjParent - 16

C getParams - 17
getPointType - 18
getProcedures - 19, 21
getReturnType - 17

catchSignal - 12
continueExecution - 11

tSize - 18
createArray - 5 ge .
createEnum - 6 getSourceObj - 16
createlnstPointAtAddr - 19 getSrcType - 15

getThreads - 7
getType - 22
getUniqueString - 21, 22

createPointer - 6
createProcess - 7
createScalar - 6
createStruct - 6
createTypedef - 6
createUnion - 7

dyninstAPI

ignoreSignal - 12
insertSnippet - 13
isCompatible - 27
isLib - 17, 22
isSharedLib - 17, 22
isStopped - 12
isTerminated - 12

registerExecCallback - 9
registerExitCallback - 10
registerPostForkCallback - 10
registerPreForkCallback - 10
registerThreadCreateCallback - 10
registerThreadDeleteCallback - 10
removeFunctionCall - 14

replaceFunction - 14

replaceFunctionCall - 14

Page 47

L

libraryName - 17, 21

M

malloc - 12

O

oneTimeCode - 13

S

setDebugParsing - 8

setinheritSnippets - 14
setMutationsActive - 14
setTrampRecursive - 8

setTypeChecking - 8
size - 30
stopExecution - 11
stopSignal - 12

P

pollForStatusChange - 8, 9

T

terminateExecution - 11

Type Checking - 32

R

readValue - 27

registerDynamicLinkCallback - 11
registerErrorCallback - 9

dyninstAPI

U

usesTrap_NP - 19

w

writeValue - 27

Page 48

REFERENCES

1 B. Buck and J. K. Hollingsworth, "An API for Runtime Code Patching," Journal of Supercomputing Appli-
cations (to appear), 2000.

2. J. K. Hollingsworth and B. P. Miller, "Using Cost to Control Instrumentation Overhead," Theoretical Com-
puter Science, 196(1-2), 1998, pp. 241-258.

3. J. K. Hollingsworth, B. P. Miller, and J. Cargille, "Dynamic Program Instrumentation for Scalable Perform-
ance Tools," 1994 Scalable High-Performance Computing Conf., Knoxville, Tenn., pp. 841-850.

4, J. K. Hollingsworth, B. P. Miller, M. J. R. Goncalves, O. Naim, Z. Xu, and L. Zheng, "MDL: A Language

and Compiler for Dynamic Program Instrumentation,” International Conference on Parallel Architectures
and Compilation Techniques (PACT). Nov. 1997, San Francisco, pp. 201-212.

5. J. R. Larus and E. Schnarr, "EEL: Machine-Independent Executable Editing,” PLDI. June 18-21, 1995, La
Jolla, CA, ACM, pp. 291-300.

dyninstAPI

