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Playing Inside the Black Box:
Using Dynamic Instrumentation to Create Security Holes

Abstract

Programs running on insecure or malicious hosts have often been cited as ripe targets for security attacks. The
enabling technology for these attacks is the ability to easily analyze and control the running program. Dynamic
instrumentation provides the necessary technology for this analysis and control. As embodied in the DynInst API
library, dynamic instrumentation allows easy construction of tools that can: (1) inspect a running process, obtaining
structural information about the program; (2) control the execution of the program, (3) cause new libraries to be
dynamically loaded into the process’ address space; (4) splice new code sequences into the running program an
remove them; and (5) replace individual call instructions or entire functions.

With this technology, we have provided two demonstrations of its use: exposing vulnerabilities in a distributed
scheduling system (Condor), and bypassing access to a license server by a word processor (Framemaker). The firs
demonstration shows the danger of remote execution of a job on a system of unknown pedigree, and the second
demonstration shows the vulnerabilities of software license protection schemes. While these types of vulnerabilities
have long been speculated, we show how, with the right tool (the DynInst API), they can be easily accomplished.
Along with this discussion of vulnerabilities, we also discuss strategies for compensating for them.

1 Introduction

Programs in execution have long been considered to be immutable objects. Object code and libraries are em

the compiler, linked and then executed; any changes to the program require revisiting the compile or link st

contrast, we consider a running program to be an object that can be examined, instrumented, and re-arrange

fly. The DynInst API provides a portable library for tool builders to construct tools that operate on a running pro

Where previous tools might have required a special compiler, linker, or run-time library, tools based on DynIn

operate directly on unmodified binary programs during execution. In this papers, we show how this technology

used to subvert system security. The discussions will be based on two example cases: exposing vulnerabili

distributed scheduling system (Condor), and bypassing access to a license server by a word processor (Fram

For the Condor study, we create “lurker” processes that can be left latent on a host in the Condor pool.

lurker processes lie in wait for subsequent Condor jobs to arrive on the infected host. The lurker will then use D

to attach to the newly-arrived victim job and take control. Once in control, the lurker can cause the victim job to

requests back to its home host, causing it execute a wide variety of system calls.

For the license-server study, we constructed a collection of Dyninst-based tools that allowed us to underst

control flow within the application (Framemaker) program. As a result, we were able to detect and remove F

maker’s contact with the license server. In addition, there are frequent checks within Framemaker to see i

cached a valid license credential. Using our Dyninst-based tools, we were able to locate and neutralize these

For each of these studies, we provide some suggestions as to how to make them less vulnerable to attac
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2 DYNINST API

DynInst is an architecture-independent library for making on-the-fly modifications to a running program. It

not require any special preparation of the executable such as re-compiling or re-linking. Figure 1 shows the or

tion of a software tool based on the DynInst API. The tool, called themutator, is linked with the DynInst API library

and makes API calls to control and modify the application program, called themutatee. The DynInst library attaches

to the mutatee with the usual process debugging interface provided by the operating system, such asptrace or /proc

on Unix or the process control API on Windows/NT. Some operations, such as reading and writing the memory

mutatee, are performed by DynInst directly through this interface. Other more complex operations, such as all

memory, are executed by a library installed by DynInst in the mutatee, called therun-time instrumentation library

(RTinst).

With DynInst, the mutator can splicecode patches, sequences of machine instructions, at most locations in

mutatee. The mutator is provided with structural information, including the application call graph, intraproce

control glow graphs, and a list of function entry points, exit points, and call sites. DynInst provides an archite

independent mechanism for specifying code patches in terms of familiar program data and control flow oper

including assignment, logic and arithmetic, branching, and function calls. Individual function calls in the mutate

be replaced with calls to other functions (existing or newly loaded into the program; all calls to a function also c

replaced. The mutator can cause the mutatee dynamically load new libraries (.dll or .so) at any time. It also ca

an inferior RPC into the mutatee to cause it to asynchronously execute any function in the mutatee, includin

tions that are part of the mutatee’s code and functions in libraries that were loaded by DynInst.

3 Attack 1: The Lurking Condor Job

Our first attack demonstrates the use of DynInst technology to expose security vulnerabilities in a distributed c

ing environment.

3.1 Background

Condor is a system that allows users to schedule and run application programs on idle hosts in a widely-dis

environment [7,8,9]. Condor users do not have to have user accounts and privileges on theses hosts; Cond

responsibility for running the application programs in such a way that they should do no harm to the machin

which they run. However, this remote execution idiom can expose the Condor user to security risks.

Figure 1: DynInst API Operation
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A Condor application is typically linked with a special version of the system-call library; this library replaces

standard system calls with RPC stubs that forward the calls back to the user’ssubmitting machine(SM). When Con-

dor starts a program on the remoteExecution Machine(EM), it also starts ashadow processon the SM that receives

remote system calls from the application program and executes with the normal privileges of the submitting us

Figure 2). This remote system call path back to the SM provides a new type of security threat: someone on the

machine might subvert the application program and cause it to make inappropriate and malicious request

user’s SM. These requests might include accessing, modifying, or deleting private files, originating e-mail, pro

ing a virus, or initiating password cracking software. Since this path to the SM could provide an attacker with a

inside of an organization’s firewall, “crunchy” environments (crispy on the outside, soft on the inside) are vulne

Suppose a user has submitted a lawful job and it is scheduled on a malicious EM. Then the malicious su

at the EM can gain control over the Condor job. In particular, the superuser is able to modify the image of the

run time and make it execute arbitrary system calls. Even worse, as we demonstrate, is the ability of a normal

user to submit a malicious job that, at some later time, takes control over some other user’s application progr

cause it to make inappropriate system call requests. The remote execution scenario is not unique to Condo

occurs when a Web browser down-loads a Java applet. The applet often contacts the server (in fact, it is typica

strained to communicate only with its originating server) to make queries and requests. If we can easily subv

applet, we might cause the server to perform inappropriate actions [cite?].

The key concept is that the DynInst library makes it easy to take control of another program, analyze its

tion, and cause it to execute arbitrary instructions. Clever applications of this technology can avoid the need f

cial privileges and can make it difficult to trace the source of the intrusion.

3.2 The Attack Strategy

The steps taken to subvert a Condor job are as follows:

1. Submit our malicious job to Condor through the normal submissions process.

2. At some time in the future, Condor will schedule the malicious job on an idle computer (Figure 3a). Not

this computer might be in the same organization as the submitting user, or one in a different Condorflock, located

in another organization (possibly geographically far away). In a common Condor configuration, the job wi

Figure 2: A Condor Job in Execution
The application program is linked with the Condor RPC library, causing its system calls to be sent from the Exec

Machine (EM) to be processed on the Submitting Machine (SM).
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with an anonymous, restricted user ID (typically “nobody”).

3. The malicious job creates a new process (forks). We call this process thelurker (Figure 3b).

4. The malicious job departs, either completing or being checkpointed and migrated by Condor (Figure 3c).

5. The lurker process will wait until an innocent Condor job arrives (Figure 3d).

6. Since the newly arrived job has the same user ID, the lurker attaches to the new job, intercepts the syste

and causes inappropriate calls to be sent to the home node of the innocent job (Figure 3e).

Figure 3: Creating a Lurking Process to Take over a Innocent Condor Job
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Some notes:

• The malicious job could be designed to run for a long period of time, likely resulting in checkpointing and m

tion multiple times. At each subsequent host it visits, it has the option of creating another lurker process.

the malicious job terminates or migrates, the lurker process is left running, presumably dormant.

• The lurker process could also lie idle for a long time before springing into action (after many subsequent C

jobs had arrived and departed), making difficult to attribute the authorship of the malicious job.

We demonstrated the use of DynInst to create malicious lurking jobs. Our job was compiled to run on x86

hosts and tested on an isolated Condor pool on one of our local clusters. The malicious job simply waited for a

cent job, attached to it, and caused it to modify files in the innocent user’s home directory (we added entries

.rhosts  and.k5login  files to allow an intruder free access to login into their host).

3.3 Protecting the SM from the Lurker Attacks

It is clear that there several approaches that the Condor can use to add the security of the SM. The mo

approach is to create a “sandbox” around the shadow process on the SM. Sandboxing techniques can includ

• Restrict the system calls that the shadow will accept. The restricted calls might include process creation (fork and

exec), network access (socket), and process control (kill).

• Restrict access to particular file directories. This restriction could be simple and severe, by usingchroot to limit

the shadow to access only the current directory. More flexible policies and possibly per-job policies also co

used.

Security on the EM machine can also be increased. Techniques useful on the EM include:

• Some UNIX versions, such as Sun’s Solaris, allow you to specify the set of allowable system calls to be sp

when a process is created. When Condor starts a job on the EM, it would disallow such calls as fork, prev

the creation of lurking processes. It is necessary for the operating system kernel to perform this restriction

the Condor remote system call library does not allow a job to call such functions asfork, the job can simple create

its own assembly language version of the call.

• Clean up after a job migrates or completes. Condor can check for all new processes created under the “n

user ID and remove these when it thinks that the job is done on this host. Any lurker processes should be

by this strategy.

• User multiple user ID’s. If Condor had a relatively large collection of user ID’s, and cycled among these

when starting new jobs, then a lurking process would not have access to subsequently arriving jobs (until e

jobs were run that Condor cycled through the list). This technique is less desirable to Condor because it r

an organization to add new user IDs on each machine in the Condor pool (current UNIX platforms have

default, a standard “nobody” user so no privileged per-host administration is necessary).

The above three techniques would be effective if the EM host is trusted. If EM has a malicious owner (with

ileged access), then they can bypass any of these techniques. In general, running a job on a malicious host is

atic; this is a topic that we are currently researching).

4 Attack 2: Subverting License Checking

Our second attack demonstrates the use of DynInst technology to subvert commercial software license prote

4.1 Background

Many modern software products use some form of checking that the user is legally authorized to run the pr
 February 9, 2001
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Such checks are intended to prevent piracy and enforce the software vendor’s product licensing terms. A c

approach to license checking involves getting some data from an external source (such as a protected file or a

network server) and verifying it for validity.

Our goal was to bypass such checking and attain full program functionality even when the license data co

be obtained. We developed several DynInst-based tools that help analyze a running program without any prio

mation about the executable and without access to source code. Our target application was the Framemaker w

cessing tool from Adobe, and these tests were performed on an UltraSPARC IIi running Solaris.

While w e focused on programs that use a license server, our results can be easily extended to produc

local license files. The evaluation of the application is similar in both cases since the access to the remote o

credential often appears in a similar, well-defined place in the program.

4.2 The Attack Strategy

We approached the problem of bypassing license checking from several angles. First, we attempted to see

gram as a black box, from which we capture the I/O for later replay. Second, we traced the flow control with

program to understand where the license checking is performed. The combination of these two methods he

understand the program behavior, a necessary step in modifying the license checking.

We capture I/O operations by using DynInst to attach itself to the mutatee and trace all library functions tha

forms I/O, thus making it applicable in analyzing the behavior of programs with network communications

replace theopen, read, write, send, andrecv library function, among others, with custom versions. This newopen sets

up a trace file for later use byread andwrite, which are modified to copy their data into the mirror file. In this way w

can save the contents of any temporary files, socket activity, and data worth analyzing. Using this techniq

located those I/O operations that were specific to contacting the license server.

Once we were able to trace the I/O operations of the application, we then traced the control flow (at the fu

call level) within the application. By tracing the control flow for both the cases where the application was able t

cessfully contact the license server and the case where it failed, we were able to locate where the license c

occurs. More important, we were able to determine the functions to be skipped or replaced to avoid the failure

license check.

4.3 The Attack Toolkit

Our attack techniques are embodied in a collection of tools that we built. These tools simplified the analysis ta

are generally useful for other similar tasks. The tools include a function call tracer, function argument parser, an

to DynInst compiler. These tools can be accessed through two different interfaces, the DynInst command lin

preter or the License Bypasser GUI.

Function Call Tracer

Using DynInst, tracing is easy: we insert code at the beginning and at the end of a function in the mutate

inserted code will generate output that the mutator can interpret. The depth of the call stack, order of calls, and

values from each function are reported. To avoid inserting excessive instrumentation, we incrementally instru

the program, following the calls down the call stack, as follows. Starting withmain, we:

1. Before calling the function: insert a trap at the entry and exit points of the function.

2. On entry to an instrumented function: insert a trap before and after all the function calls made by that fun

3. On exit from a function: remove the traps before and after the calls made by that function.

4. After the call to the function completes: remove the entry and exit traps.
 February 9, 2001
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In step 2, if we discover a call that uses a function pointer, we cannot immediately identify the destination of th

In this case, we instrument the call site to determine the address of the callee. Once we have that address, w

DynInst library to map that address to the function name. The result is that we eventually generate a compl

graph for the application. This approach is similar to the one used by the DynInst-based Paradyn performanc

when it automatically instruments an application program in searching for performance problems [2].

Function Argument Parser

The function argument parser makes it easy to track the type and name of each parameter to a function in the

tion, if either the program was compiled with debugging information or the user provides this information. We d

oped a tool that helps automate this process by parsing a strings such as:

int open(char *name, int oflags, int mode)

char *strcpy(char*, char*)

to determine each of the arguments. This information is passed to a code-snippet generator that will produce

API calls to generate instrumentation code. The instrumentation code, when inserted into the application, will

the parameter and return values to provide a more detailed analysis of the internal workings of the applicatio

gram.

Java to DynInst Compiler (JavaD)

To simplify the task of creating code snippets, we built a Java to DynInst compiler. The DynInst API calls oper

the machine-language level for building code sequences. While this is a simple interface, it can be cumberso

error-prone to manually construct these sequences.

The Java to DynInst compiler (JavaD) supports all the arithmetic expressions, function calls and if state

that are necessary for snippet insertion. Since there are no loops in DynInst, these constructs were not include

compiler. Figure 4 shows an example of a Java snippet that conditionally opens a file, and its corresponding se

of DynInst calls.

class X {
  public int open(String path, int flag, int mode) { }

public static void main(String argv[]) {
    int test = 1;
    if (test != 0) {
      open(filename, O_WRONLY | O_CREAT, 0666);
    }
  }
}

Figure 4: Java Input to the JavaD Compiler and the Corresponding DynInst API Output
 February 9, 2001
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DynInst Command Line Interpreter (Dynit)

The DynInst command line interpreter, called dynit, provides access to the previously described analysis tools

DynInst code generation primitives; it also includes various debugger-like process control commands. Dynit pr

a scripting facility that aids in performing repeated experiments.

The Dynit code generation functions provide a command line interface to the basic code snippet construct

insertion primitives. These snippet definitions can be constructed and re-used. Code insertion include simpl

tion, and function call and whole function replacement. The process control commands allow the user to star

insert breakpoints, control tracing, and inspect (print) function state information.

The License Bypasser GUI

The License ByPasser GUI is our top level tool for accessing the tool set. It allows the user to walk through th

graph of the target application, search it, list functions that call or are called from a specific function, list module

license-related functions in the application, load user-defined libraries, replace function calls and continue exe

All the dynit commands are accessible through the ByPasser GUI. Figure 5 shows part of the GUI.

4.4 Attacking Framemaker

We first traced the network I/O from the Framemaker application, both when allowed to successfully contact a

server, and then prevented from making successful contact.

We next traced the control flow in Framemaker, using the previously described tools. We found that there

functions that directly perform some kind of license-related activity and, by transitivity, these functions (and

tions called from these function) call a total 1,181 functions, out of a total of 16,943 functions in FrameMaker.

By inspecting these top level functions, we discovered the following characteristics of Framemaker, rela

license checking:

• During the initialization phase, FrameMaker’smain function callsNlOpenLicenses, which contacts the license

BPatch_function *openFunc = $IMAGE->findFunction("open");
BPatch_Vector<BPatch_snippet*> openArgs;

BPatch_variableExpr *test = $THREAD->malloc(*$IMAGE->findType("int"));

BPatch_arithExpr $ArithExpr(BPatch_assign, *test,
                            BPatch_constExpr(1)); //<-Arith. Expr.

BPatch_constExpr path(filename);
BPatch_constExpr flag(O_WRONLY|O_CREAT);
BPatch_constExpr mode(0666);

openArgs.push_back(&path);
openArgs.push_back(&flag);
openArgs.push_back(&mode);

BPatch_funcCallExpr openCall(*openFunc, openArgs);      //<-function call

BPatch_Vector<BPatch_snippet*> StatementsInsideIF;
StatementsInsideIF.push_back(&/*pointer to the statement goes here*/);
BPatch_sequence IFSequence(StatementsInsideIF);
BPatch_boolExpr boolExpr(BPatch_eq, *test, BPatch_constExpr(0));
BPatch_ifExpr IFExpr(boolExpr,IFSequence);      //<-If Epression

Figure 4: Java Input to the JavaD Compiler and the Corresponding DynInst API Output
 February 9, 2001
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server, retrieves the license data, and stores it in memory for later use. Even if theNlOpenLicenses fails and no

license is retrieved, the program continues initializing, going through all the steps for setting up windows,

ing the user defaults, the Most-Recently-Used document list, and other configuration settings.

• At the end of the initialization phase,main callsNluiCheckLicense. This function checks the license data in mem

ory. If no valid license was obtained, FrameMaker displays a dialog box asking the user whether to g

“demo” mode or exit (demo mode does not allow the user to save files). It then callsChangeProductToDemo or

FmExit, depending on the user input.

• The program continues execution and displays the standard FrameMaker tool bar. The license checking

tion is performed once more, when the user opens or create a document. If the license data is missing or

text warning about the lack of a license is displayed, and access to the full functionality is denied. Otherwis

Figure 5: Interface to the License Bypasser GUI
 February 9, 2001
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functionality is enabled, and the user can proceed with creating, editing, and saving documents. The

checking validation code is called frequently while the user edits a document, even though an initial li

check validation was done.

We successfully bypassed the licensing checks by the following steps. Each of these steps was facilit

using DynInst to modify the executing Framemaker application.

1. Allowed the retrieval of the license data to fail.

2. Prevented FrameMaker from entering demo mode by deleting the function call ofChangeProductToDemo.

3. Bypassed the first license data validation by skipping over the sequence of code that performed it.

4. Modified all later license data validations to always succeed, regardless of the presence of the license

memory. The modification is done by changingNluiCheckLicense to always return “true”.

Using this controlled failure mode, we successfully ran FrameMaker without a license being obtained fro

license server.

4.5 Protecting the Application from License Attacks

In many ways, good software engineering practices make it easier to find the parts of an application related to

ing licenses. The common functions of obtaining a license and verifying its validity were encapsulated in fun

and used consistently throughout the application. Such clean design is usually intended to make software m

able, easier to maintain, and easier to incorporate new functionality. These same characteristics help the per

intends on circumventing the checks.

Basic code obfuscation techniques [3] can be used to make this type of checking more difficult. These tech

can include obscure naming of modules and functions and violating modularity by having many implementati

the same functionality. The multiple implementations should certainly include the license check function, but s

also include the error reporting code. If the checking code detects a violation, it will then report an error. It is a s

task to detect all calls to the error reporting code, and list the stack-trace showing which functions reported th

5 Conclusions

The goal of this paper was to provide concrete examples of the kinds of problems that have caused specula

many years. It is easy to monitor and control almost any running program. It is also easy to make arbitrary c

that program’s behavior. The DynInst library makes this type of activity a commodity. The Condor and Frame

examples were intended to show specific ways in which such techniques could be applied to production softw

There is always a tension in the decision as whether it is better to reveal a security problem, thereby

awareness and providing strong incentive to try to fix the problem, or to keep such problems a secret. Unfortu

it is usually the innocent users of a software application or system that are the last to know about such vulnera

We believe that openness of such problems raises the general awareness of the community and causes

improvement in security.

The techniques used in this paper present serious challenges to the security community. Safe remote ex

including preventing inappropriate operations and prevent undetected modification or spoiling of computa

results, is a difficult problem that needs more significant study. The problem of providing selective authorizat

run an application program is similarly challenging. Both of these problems present scientific and commercia

cerns, and both are likely to spawn interest research in the coming years.
 February 9, 2001
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