
XOS: An Operating S y s t e m for t h e X-TRgE Arch i t e c ture

Bar ton Miller
David P r e s o t t o

Univers i ty of California
C o m p u t e r Sc ience Division

Berke ley , CA 94720

Abstrac t
This p a p e r d e s c r i b e s the f u n d a m e n t a l s of the X-TREE Opera t ing S y s t e m
(XOS), a s y s t e m d e v e l o p e d to inves t iga te the e f fec ts of the X-TREE a rch i t ec -
t u r e on o p e r a t i n g s y s t e m design. It out l ines the goals and c o n s t r a i n t s of
the p r o j e c t and d e s c r i b e s the m a j o r f e a t u r e s and m o d u l e s of XOS. Two con-
c e p t s a re of spec ia l in te res t : The first is d e m a n d paging a c r o s s the n e t w o r k
of nodes and the s e c o n d is s e p a r a t i o n of the global o b j e c t space and the
d i r e c t o r y s t r u c t u r e u s e d to r e f e r e n c e it. Weaknesses in the m o d e l a re dis-
c u s s e d along with d i r ec t ions for f u t u r e r e s e a r c h .

1. INTRODUCTION

X-TREE is an a r c h i t e c t u r e for the des ign and c o n s t r u c t i o n of d i s t r i bu t ed ,
m u l t i p r o c e s s o r c o m p u t e r s y s t e m s . Its m a j o r in ten t is to provide a m o d e l for
building powerful , low-cost s y s t e m s c o m p r i s e d of m a n y iden t ica l m i c r o p r o c e s s o r
chips (known in p rev ious p a p e r s as monol i th ic m i c r o p r o c e s s o r s) [Deep78,
Ditz80].

It was r e c o g n i z e d ea r ly in the X-TREE p r o j e c t t ha t it would no t be suff ic ient
to cons ide r only p a p e r ope ra t ing s y s t e m s des igns when a t t e m p t i n g to eva lua t e
the feas ib i l i ty of the X-TREE a r c h i t e c t u r e . The re fo re a p r o j e c t was u n d e r t a k e n
f rom April until D e c e m b e r in 1979 to wri te an a c t u a l s y s t e m tha t could run
u n d e r X-TREE. At the t ime, the h a r d w a r e was la rge ly hypo the t i ca l , which gave us
b o t h an advan tage and a p rob lem. On the one hand we could have g r e a t
inf luence on the even tua l design. On the o ther , we had no h a r d w a r e to run on.
To solve this p rob lem, we c o n s t r u c t e d a s i m u l a t o r running u n d e r UNIX on a VAX
11/780. The s imu la to r of the h a r d w a r e was b o t h ad hoc and slow, bu t it gave us
an o p p o r t u n i t y to t r y ou t our ideas wi thout a rea l X-TREE.

The X-TREE Opera t ing S y s t e m (XOS) is a gene ra l p u r p o s e ope ra t ing s y s t e m
for X-TREE. Our m a j o r goals were to d i scove r the a s p e c t s of the a r c h i t e c t u r e t h a t
inf luence the des ign of a d i s t r i b u t e d ope ra t ing s y s t e m and to s u g g e s t poss ib le
f e a t u r e s for the X-TREE tha t would aid an ope ra t ing sys t em.

1.1. The X-TRZE A r c h i t e c t u r e

While the de ta i l s of the a r c h i t e c t u r e are r a t h e r c o m p l i c a t e d [Pres80] , only
a few are r e l evan t to our d i scuss ion and n e e d be p r e s e n t e d here . They are:

Topology: Figure 1.1 dep ic t s a poss ib le X-TREE s y s t e m . It is i m p o r t a n t to
no te t h a t all dev ices are c o n n e c t e d to leaf nodes . This was a m a j o r inf luence in
the way the opera t ing s y s t e m was even tua l ly divided.

This study was sponsored in par t by the Joint Services Electronics Program, Contract
F44620-78-C-0100 and by the Nationa3 Science Foundation under Grant No. MCS 7807291.

21

node

~..ta path

\IlO Device
Figure 1.1

CoTrz~n,u~zictztions Herd~ucLre: X-TREE has a sophisticated c o m m u n i c a t i o n s
s y s t e m i m p l e m e n t e d in ha rdware . Points s ignif icant to the ope ra t i ng s y s t e m
are:

1) Multiple s t r e a m s of m e s s a g e s b e t w e e n nodes a re r o u t e d and m a i n t a i n e d
c o m p l e t e l y by ha rdware .

2) The only d a t a n e e d e d by the h a r d w a r e to rou t e the i n fo rma t ion is the node
a d d r e s s of the des t ina t ion . Node a d d r e s s e s a re of var iable l eng th to p e r m i t
an e xpa nda b l e a dd r e s s space. Refer to the node n u m b e r s in Figure 1.1.

C P U f l e z i b ~ y : An X-TREE CPU is m i c r o p r o g r a m m e d . The re fo re we had the
abil i ty to choose d a t a s t r u c t u r e s or address ing m e c h a n i s m s t h a t were appropr i -
ate.

Node ~ern.o~j size: Each node has on the order of 64K bytes of private
memory. Part of the memory contains the local kernel code, and part of it is
managed as a cache for the data and capabilities being referenced by processes
on that node. This placed a restriction on the maximum kernel size of approxi-
mately 32K bytes.

1.2. Speci6c Goals

As we have said above, our major goal was an operating system design for a
general purpose system to investigate aspects of the X-TREE architecture. Addi-
tional goals of the design were:

Resource shgTing: Since this was to be a distributed, general purpose
operating system it had to allow processes anywhere in the tree to share infor-
mation.

Effecf~ve use of the connecf~n tree: The main reason for many of the archi-
tectural decisions in X-TREE was to reduce traffic in the tree (especially the deci-
sion on topology). Therefore one of our major goals was to minimize the traffic
due to the operating system.

Process Migration: As a step toward reducing traffic caused by user
processes, we added the requirement that processes be able to migrate across
the system to nodes which would minimize traffic in the tree.

22

The r e s t of this p a p e r d e s c r i b e s t he X0S s y s t e m and how it a t t e m p t s to
m e e t t h e s e c r i te r ia .

2. SYSTEM STRUCTURE

XOS is m a d e up of five ma jo r m o d u l e s (see f igure 2.1):

1) the Microcoded Kernel (MK)

2) the Capabil i ty Manager (CM)

3) the Object Manager (0M)

4) the D i rec to ry S y s t e m (DS)

5) the C o m m a n d I n t e r p r e t e r (CI)

%

D S ~_~ - - ~ C I

0 M i C M

M K

Figure 2.1

to network

We chose to i m p l e m e n t t he se p a r t i c u l a r modu le s in o r d e r to wri te a c o m p l e t e
s y s t e m t h a t would cover the full s p e c t r u m of ac t iv i ty f r o m u s e r login to p rocess
execut ion . We had l i t t le des i re to offer this to a u s e r c o m m u n i t y s ince the
ac tua l h a r d w a r e was not y e t available.

The lowest level of the s y s t e m is i m p l e m e n t e d in the m i c r o c o d e d k e r n e l
(MK). The MK serves as the d i r ec t i n t e r f a c e to the p r o c e s s o r and provides t he
r e s t of the s y s t e m with an a b s t r a c t m a c h i n e which offers m e m o r y m a n a g e m e n t ,
c o m m u n i c a t i o n s , and schedul ing .

Above the MK are two modu le s t ha t work in close coopera t ion . The Object
Manager (0M) is cal led upon to handle all page faults, resolving t h e m by re t r i ev-
ing the r e q u e s t e d page. The Capabil i ty Manager (CM) c h e c k s acces s to objec ts
and p e r f o r m s all bit level ope ra t i ons on capabil i t ies . The 0M and CM of ten send
m e s s a g e s to one a n o t h e r s ince e a c h p e r f o r m s a func t ion the o the r needs , the
0M fe tch ing pages of C-lists for the CM and the CM resolving a c c e s s r ights for the
OM. Both the CM and 0M exist in the k e r n e l a d d r e s s space since t h e y n e e d

23

access into the representation of objects and capabilities.

The only user processes implemented are the Directory System (DS) and
Command Interpreter (CI). These have no privileged commands and are there-
fore full-fledged user programs. The DS is a library of user routines used to pro-
vide an access structure to the object space. The CI is a terminal interface pro-
cess used to test the system.

The remaining sections will describe these structures (except for the CI)
and the concepts important to them.

3. ADDRESSING

X-TREE is an object-based system, with capabilities used for addressing
[Fabr74]. While capabilities in X-TREE are similar to capabilities in previous sys-
tems [Wulf74, Need77], various extensions and changes have been made to work
within the X-TREE architecture.

3.1. Objects

The basic addressable unit of X-TREE is the object. Data, programs,
processes, directories, files, and ports are all types of objects, and the actions of
sending a message, starting a process, accessing a file, or storing data all involve
operations on an object.

The address space of X-TREE is a virtual object space. All objects (except
ports and processes) reside at the leaf nodes of the tree, and all processes in
the tree have equal access. This is similar to the virtual segment space in Mul-
tics [Bens72], in that Multics segments form a uniform address space, poten-
tially available to all processes. In Multics, a segment may be in main memory,
on a swapping device, or on secondary storage. In the X-TREE system, an object
may reside on secondary storage (at the leaf nodes of the tree), or in a
processor's (internal node) local memory. Processes residing in any node of the
tree can address any object in the system, independent of their logical or physi-
cal locations. XOS maintains its segments in a uniform object space, allowing
organizational groupings such as directories to be provided by systems running
above the operating system kernel (i.e. the Directory System).

3.2. Capabilities

All addressing of objects in X-TREE is performed via eapab~s [Fabr74]. A
capability is the unforgeable key that is required to access an object. It may
reside only in objects. Capabilities serve three main functions: addressing, data
abstraction, and protection. A capability consists of a triple:

<address> <access rights> <object type>

Except for the address field, the capability in XOS is almost identical to those in
HYDRA [Cohe75]. Therefore we will focus only on the address portion and refer
the reader to the HYDRA papers for a complete description of capabilities.

3.3. Addresses

The address field of a capability defines the unique address of an object.
The address is in two parts:

<global node address> <local node address>

24

The global node address is t h e a d d r e s s of t h e p a r t i c u l a r n o d e of t h e t r e e on
w h i c h t h e o b j e c t r e s i d e s , a n d t h e local node address i d e n t i f i e s t he o b j e c t wi th in
t h e n o d e . One of t h e b a s i c goa l s of X-TREE is to avo id t h e l i m i t e d a d d r e s s i n g
r a n g e of m a n y p r e v i o u s a r c h i t e c t u r e s . O b j e c t and n o d e a d d r e s s e s a r e b o t h var i -
ab l e l eng th ; t h e r e a r e no i n t r i n s i c l imi t s on e i t h e r t h e size of t h e t r e e , o r t h e
n u m b e r of o b j e c t s loca l to a s ingle n o d e . In p r inc ip l e , t h e a d d r e s s s p a c e is
i nde f in i t e l y e x p a n d a b l e .

A g loba l a d d r e s s , w h i c h iden t i f i e s a n o d e wi th in t he t r e e , is e n c o d e d in t h e
s t a n d a r d X-TREE n o t a t i o n t h a t is u s e d b y t h e m e s s a g e r o u t i n g h a r d w a r e [Sequ78] .
S ince all s t a n d a r d o b j e c t s r e s i d e in t h e l e a v e s of t h e t r e e , t h e i r g loba l a d d r e s s e s
a lways n a m e l ea f n o d e s . F o r p o r t s a n d p r o c e s s e s , t h e g l o b a l a d d r e s s n a m e s t h e
n o d e in wh ich t h e p r o c e s s or p o r t was c r e a t e d .

It is i m p o r t a n t to n o t e t h a t t h e g loba l a d d r e s s is t h e a d d r e s s of a phys ical
n o d e wi th in t h e t r e e . This m e a n s t h a t a g iven o b j e c t m u s t r e s i d e on a p a r t i c u l a r
n o d e (e.g. , a p a r t i c u l a r d i sk d r ive or s e t of d i sk d r ives) . The c a s e w h e r e a s ec -
t i on of t h e t r e e fails and d a t a m u s t b e m o v e d (e.g. , m o u n t e d on a d i f f e r e n t l ea f
n o d e ' s d i sk dr ive) c a n n o t b e h a n d l e d b y t he c u r r e n t s t r u c t u r e .

3.4. L o c a l a d d r e s s t r a n s l a t i o n

E a c h n o d e ha s on t he o r d e r of 64K b y t e s of loca l m e m o r y . P a r t of t h e
m e m o r y c o n t a i n s k e r n e l code , a n d p a r t of i t is m a n a g e d as a c a c h e for t h e d a t a
a n d c a p a b i l i t i e s be ing r e f e r e n c e d b y the p r o c e s s e s on t h a t node .

c-list
current offset for
domain capability page #

OATB

access rights local page
frame #

Figure 3.1

E a c h n o d e m u s t k e e p a l is t of p a g e s c u r r e n t l y r e s i d i n g in t h e l oca l m e m o r y ,
a n d t he o b j e c t s to w h i c h t h e y be l ong . S ince e a c h c a p a b i l i t y a d d r e s s is v a r i a b l e
length, and on each data or capability reference the page cache must be
searched, hardware support is provided to increase efficiency. Each capability
reference is actually an index operation (offset) into the c-list for the current

25

d o m a i n (see PW0 d e s c r i p t i o n in s e c t i o n 4). The re is an a s soc ia t ive m e m o r y
(ca l led the Object Addre s s T rans l a t i on Buffer, or 0ATB [McCr80]) thafi t r a n s l a t e s
the c u r r e n t dom a in , c-list offset for fihe capabi l i ty , and page n u m b e r (f rom t h e
offset p o r t i o n of the a d d r e s s) to t h e a c c e s s r igh t s and local page f r a m e n u m b e r .
This is i l l u s t r a t e d in f igure 3.1.

3.5. Pre--fetching and forwarding

Objects residing at the leaf nodes are stored on mass storage devices such
as disk. It is the responsibility of the Object Manager (0M) to access pages from
disk and transfer them to the appropriate node. When a request for a page of an
object originates from a node in the tree, the request is sent to an agent for the
OM residing in that node. The page request is then forwarded to the proper leaf
node where the 0M accesses the page and sends it to the requesting node.

The 0M attempts to optimize disk accesses by pre-fetching pages. Different
pre-fetching strategies are used depending on the type of access. For example,
access to an object containing executable code would typically use a working set
organization [DennS0], while access through a sequential file would always
attempt Lo have the next page available. The proper strategy is selected by exa-
mining an history of accesses.

For synchronization and shared access when an access request is made (at
the leaf node) to a shared page whose latest version is not currently resident at
the leaf node, the request is forwarded to the node that actually has the page.
The pages is then sent to the requesting node. Each time the latest version of
the page moves to another node, a message is sent to the leaf node that is the
home for that page, notifying it of the new location. If a request is forwarded to
a node that no longer has the page, the request is forwarded on to the node that
does have the page. After a certain number of forwardings, the request is
returned to the leaf node.

It is important to note that the 0M that is resident on each node is not the
same. Non-leaf nodes contain only an agent 0M which sends its requests to the
0M's on the leaf nodes conLaining the secondary storage devices. This greatly
decreases the size of the kernel in non-leaf nodes.

3.6. Structure of addressing an object

Revocation of access to an object once a capability has been issued has
been a problem in previous capability-based systems. A refinement of this prob-
lem is the ability to change (reduce or increase) the access rights to an object
after the capability for that object has been distributed. One solution to this
problem is to use a resource manager. Each reference to some type of object is
through this resource manager. It is up to the manager to decide whether a
given access request should be honored. Using this organization, complex cri-
teria may be used. A drawback of this approach is that for simple accesses, the
resource manager may be much too slow. A different solution to the revocation
problem was proposed by Redell [Rede74]. This method was applied in X0S as
follows.

X-TREE capabilities come in two forms: direct and indirect. Each object has,
as part of its structure, an indirect field. This field consists of a special capabil-
ity associated with the object. A direct capability ignores the indirect field, and
behaves as described previously. An indirect capability addresses the object
through the Capability stored in the indirect field. It is possible then, to invali-
date the indirect field of an object and thereby revoking access to anyone with
an indirect capability for that object. The access rights of the capability in the
indirect field may be modified causing the access rights of anyone with an

26

i n d i r e c t c a p a b i l i t y to be c h a n g e d . If t h e i n d i r e c t f ield is s u b s t i t u t e d wi th a c a p a -
b i l i ty for a n o t h e r ob jec t , th i s a c t s as a r e n a m i n g func t i on .

4. PROCESSES

4.1. P r o c e s s e s and Messages
XOS uses t h e p a r a d i g m of p r o c e s s e s c o m m u n i c a t i n g via m e s s a g e s a n d m e s -

sage s t r e a m s . A p r o c e s s ex i s t s on on ly one p r o c e s s o r a t a t i m e a l t h o u g h it m a y
m i g r a t e f r o m one p r o c e s s o r to a n o t h e r du r ing i ts e x i s t e n c e . The p r o c e s s is
d e s c r i b e d in i ts e n t i r e t y by the P r o c e s s Work Object , d e f i n e d below. The s a m e
t y p e s of c o m m u n i c a t i o n s m e c h a n i s m s a re u s e d b o t h by p r o c e s s e s for c o m m u n i -
c a t i o n s a n d b y the d isk s y s t e m for pag ing t ra f f ic . As m e n t i o n e d above, all da t a ,
i n s t r u c t i o n , a n d dev ice a c c e s s e s a r e t r e a t e d as o b j e c t a c c e s s e s a n d t h e r e f o r e
use t he s a m e pag ing m e c h a n i s m .

4.2. Process Work Object (1 ~ 0)
The PWO c o n t a i n s all i n f o r m a t i o n for def in ing an o b j e c t i n c l u d i n g s t a c k

pointers and registers. A single capability (pointing to the PWO) describes a pro-
cess. There are two reasons for this compact representation. One is to provide
an object understood by the processor that can be used to provide fast context
switches (similar to the VAX's System Control Block [DEC78]). The other reason
is to facilitate the migration of processes. The act of swapping the PW0 to disk
and then back up to another node (or directly to the other node) is sufficient to
migrate the process to another processor.

Like other objects, the PW0 contains both a data part and a c-list. This is
necessary since the program counter (PC), the current frame, and execution
stack all are made up of a capability section and a data section. For the PC, the
capability points to the current program object and the data part is the offset
into the object of the current instruction.

Figure 4.1 depicts the PW0. The beginning of the data part contains:

• 8 3Z-bit general purpose registers

• the offset to the top of the data part of the execution stack

• the offset to the top of the capability part of the execution stack

• the offset to the beginning of the data part of the current routine frame

• the offset to the beginning of the capability part of the current routine
f r a m e

• the offset into the current program object of the current instruction

The first capability in the c-list is that of the current program object. These
locations are actually shadows of physical registers resident in the processor.
Whenever a PW0 is written out, these shadows are filled in by the processor
microcode with the values of the corresponding registers.

Starting a process is performed by loading the process pointer (PP) with
the capability for its PW0. The microcode then loads the registers from the sha-
dows. The actual loading of the PP is performed by the dispatching hardware,
which is described in the scheduling section.

4.S. Inter-Process Communication (IPC)

Communication in X0S is similar to DEMOS [Bask76]. It is message-based,
unidirectional, and capability accessed. Remote and local communication
appear the same to processes.

27

PROCESS WORK OBJECT

d a t a s t a c k p o i n t e r .

c ap s t a c k p o i n t e r

' d a t a f r a m e p o i n t e r

c ap f r a m e p o i n t e r "

° c u r r e n t p r o g r a m offse t

p r o g r a m o b j e c t

27-/ / / .2 / , ' I / ,

/ , " / , . . , . , / , ,

current program o o] e c l

/ /
J

Figure 4.1

AH messages are sent to a special object called a port. Ports are owned by
processes. When a process wishes to receive messages it creates a port object
and passes send capabilities for that port to other processes. It can do this
either by saving the capabilities in commonly accessible objects or by handing
them off to a switchboard process with whom every process can communicate.
If two-way communications are to be established, the other process can send
back a port capability with which to talk. The actual port object exists in the
global space and contains the node location of the process that created the port.

Messages contain both data and capabilities. This allows the transfer of
capabilities between processes. Messages can be sent either in datagrarn or vir-
tual circuit mode. The receiver has no idea in which mode the messages are
being sent. ~rtual circuits provide sequenced data streams with routing per-
formed only once for the whole stream. A process may set up sequenced com-
munications by sandwiching the message stream between two special system
calls which open (set-up) and close (tear-down) a virtual circuit.

Remote process to process communication corresponds directly to physical
c i r cu i t s . I~rtual channels c o m p r i s e a u n i - d i r e c t i o n a l m e s s a g e s t r e a m t r a v e l i n g
over a p h y s i c a l c i r cu i t , wi th a r e t u r n s t r e a m in a n o t h e r p h y s i c a l c i r c u i t p rov id -
ing a c k n o w l e d g m e n t s for t h e m e s s a g e s . S o f t w a r e is u s e d to g u a r a n t e e s e q u e n -
t i a l i t y a n d to m a k e c i r c u i t t i m e - o u t s invis ible to t h e p r o c e s s e s . When a c i r c u i t
t i m e s out , a spec i a l Lear -down m e s s a g e is s e n t by t h e c o m m u n i c a t i o n s s o f t w a r e
to f r ee t h e c i r cu i t . Datagrarrts are m e s s a g e s e n v e l o p e d by s e t - u p a n d t e a r - d o w n
m e s s a g e s . Again a r e t u r n p a t h is p r o v i d e d for a c k n o w l e d g e s . T i m e - o u t s a r e n o t
a f a c t o r s i n c e a Lear -down follows t h e m e s s a g e . P r o t o c o l s in t h e virtual circuit
case a r e n e g a t i v e a c k n o w l e d g e . In t h e c a s e of datagrarns e v e r y m e s s a g e m u s t
be a c k n o w l e d g e d .

28

S i n c e t h e n u m b e r of p o s s i b l e p h y s i c a l c o n n e c t i o n s is f inite, c o m m u n i c a t i o n s
m a y b e c o m e s a t u r a t e d d e s p i t e t h e ava i l ab i l i t y of t i m e - o u t t e a r - d o w n s . A S t a t i s t -
ical T ime-d iv i s ion Mul t ip lex (STDM) c h a n n e l is r e s e r v e d in e a c h n o d e to al low
m e s s a g e flow in t h e c a s e w h e r e t he c h a n n e l s b e c o m e s a t u r a t e d . By c o n v e n t i o n ,
on ly d a t a g r a m s a r e s e n t ove r th is c h a n n e l .

4.4. P r o c e s s S c h e d u l i n g

XOS p r o c e s s s c h e d u l i n g is v e r y p r imi t ive , dea l ing on ly wi th a p r i o r i t y m i c r o -
c o d e d s c h e d u l e r . All p r o c e s s e s a r e a l lowed to r u n un t i l e i t h e r t h e y c o m p l e t e ,
t h e y b l o c k awai t ing r e s o u r c e s , o r a h i g h e r p r i o r i t y p r o c e s s p r e e m p t s . This s im-
p le s c h e m e is fe l t to be su f f i c i en t s i n c e t h e e x p e c t e d n u m b e r of p r o c e s s e s p e r
n o d e is s m a l l - on t h e o r d e r of t h r e e or four .

The k e r n e l m i c r o c o d e i m p l e m e n t s i n s t r u c t i o n s for l inking and un l ink ing
p r o c e s s e s on B p r i o r i t y levels . The p r o c e s s e s r u n r o u n d r o b i n a t e a c h level , e a c h
r u n n i n g unt i l it b l o c k s . The h i g h e s t p r i o r i t y p r o c e s s a lways r u n s . The p r i o r i t y
q u e u e s a r e l i n k e d l is ts , e a c h e l e m e n t c o n t a i n i n g a p o i n t e r to a PWO r e s i d e n t in
the n o d e ' s m e m o r y .

4.5. P r o c e s s Migrat ion

One of XOS's o b j e c t i v e s was to u n d e r t a k e i n v e s t i g a t i o n s of p r o c e s s m i g r a -
t ion f r o m n o d e to n o d e in t h e s y s t e m . P r o c e s s m i g r a t i o n c o u l d b e u s e d in
a t t e m p t i n g to d y n a m i c a l l y m o v e p r o c e s s e s c l o s e r to i ts d a t a in o r d e r to r e d u c e
m e s s a g e t raf f ic . To f a c i l i t a t e p r o c e s s m i g r a t i o n , t h e r e p r e s e n t a t i o n of a p r o c e s s
(i ts s t a t e) was d e s i g n e d to b e eas i ly t r a n s p o r t e d f r o m one p r o c e s s o r to a n o t h e r .
A p r o c e s s c a n b e c o m p l e t e l y r e p r e s e n t e d b y i ts PWO. S ince t h e PWO is an
o b j e c t , it c a n b e m o v e d b e t w e e n p r o c e s s o r s , t h e r e b y m o v i n g t h e p r o c e s s to
a n o t h e r node . The p r o b l e m is m o r e c o m p l e x w h e n p o r t o b j e c t s a r e involved.
When a p r o c e s s m o v e s , all p r o c e s s e s c o m m u n i c a t i n g wi th i t a r e now p o i n t i n g to
t he old node . However , in XOS, all s u c h p o i n t e r s a r e t r e a t e d as h in ts .]f a m e s -
sage s e n d a r r i ve s a t t h e wrong node , a s p e c i a l n e g a t i v e a c k n o w l e d g e is s e n t to
the s e n d e r . The s e n d i n g n o d e ' s k e r n e l t h e n r e t r i e v e s t h e a c t u a l l o c a t i o n of t h e
p o r t b y r e a d i n g t h e p o r t o b j e c t i tself , a c o p y of wh ich is k e p t on disk. Af te r ge t -
t ing t he new h in t i t t r i e s t he s e n d again. This p r o c e s s c o n t i n u e s un t i l t h e m e s -
sage c a t c h e s up wi th t h e rov ing p r o c e s s .

5. DIRECTORY SYSTEM

The X0S D i r e c t o r y S y s t e m [Mi1179] is i n c l u d e d in t h e X0S d e s i g n for a
n u m b e r of r e a s o n s . Fi rs t , i t is an e x a m p l e of a u s e r - l e v e l (n o n - k e r n e l) p r o t e c t e d
s u b s y s t e m . This p r o v i d e d an a p p l i c a t i o n to t e s t t h e low-level p a r t s of t h e
o p e r a t i n g s y s t e m . Second , t h e D i r e c t o r y S y s t e m s u p p l i e d a n a m e m a p p i n g
m e c h a n i s m . And last , t h e D i r e c t o r y S y s t e m p r o v i d e d a d a t a o r g a n i z a t i o n faci l-
i ty.

5.1. D irec tory S y s t e m as a n o n - u n i q u e , u s e r s u b s y s t e m .

The DS is an e x a m p l e of a u se r - l eve l , p r o t e c t e d s u b s y s t e m . O p e r a t i o n s on
o b j e c t s of t y p e directory a r e c o n t r o l b y t he DS. It s h o u l d b e n o t e d t h a t t h e DS is
a "non- f i l e s y s t e m " . A d i r e c t o r y is m e r e l y a l i s t of c a p a b i l i t i e s fo r s o m e o b j e c t s ,
and any o b j e c t w h o s e c a p a b i l i t y is c o n t a i n e d in a d i r e c t o r y is t e r m e d afile. The
d i r e c t o r y s y s t e m only p r o v i d e s a c c e s s c o n t r o l to t h e c a p a b i l i t i e s for files; n o t to
t he files t h e m s e l v e s . T h e r e is no c o n c e p t of o p e n i n g or c los ing a file. This c o u l d
be bu i l t as a n o t h e r s u b s y s t e m wh ich m a k e s u s e of t h e DS.

29

5.2. Directory structures as a forest

A capability for a directory object might be contained in some other
directory-type object. This forms a s~ubclirectorpj structure. Access to subdirec-
tories and files in subdirectories is as in MULTICS or UNIX [Salt74, Rite78]. It is
possible to build directory structures that form arbitrary directed graphs, but
this is not desirable for maintenance purposes, and so is prevented. All direc-
tory structures are restricted to trees.

For each DS function, the user may supply a "starting directory", which
forms the root of the tree for that particular operation. This allows the user to
have a number of totally independent directory structures, or a forest of struc-
tures.

5.3. Directories as a collection of objects.

A major role of the DS is that of providing a name mapping mechanism.
Associated with each capability (file) in a directory is a symbolic name for that
object. The naming function, incorporated with a systom directory (one to
which each user has access), provides a mechanism for allowing objects to be
available throughout the system. Accessing such facilities as editors and com-
pilers, or establishing initial connections for communications is done through
the directory system. In this role, it similar to the "switch board" in DEMOS
[Bask77].

6. CONCLUSION

We have presented an operating system for the X-TREE architecture. X0S is
a capability-based system because the communications structure easily facili-
tated capability addressing. A number of structures, among them the 0ATB and
PW0, have been proposed to assist an architecture running a capability-based
operating system.

The uniform, global address space simplified the structure of the operating
system over multiple processors. Each processor had a consistent and
equivalent view of the address space. The ability to influence the CPU design
(microcode) allowed an efficient implementation of many of the 0.S. primitives.

Communications channels were used for both message and paging traffic.
This allowed common usage of a single mechanism, thus simplifying the overall
structure.

It was also demonstrated that the directory structure is easily separated
from the object name space allowing the possibility of several separate access
structures to be implemented on the same system.

The X-TREE structure facilitated the rapid construction of the 0.S., but the
system proved larger and more complex than may be appropriate for the VLS]
implementation (24,000 lines of high-level language code). The system was con-
structed by 6 people in eight months, at which time the basic system, a com-
mand interpreter (shell) and directory system were working.

A number of problems still exist in the system. The physical dependency of
object names makes it difficult to move objects to different locations in the tree.
This can prove to be awkward when expanding the tree or when parts of the tree
fail. A number of solutions have been proposed during our initial implementa-
tion and may be tried out in the future. The migration of processes has been
made possible and even easy. However no attempt has been made to formulate
an algorithm for determining to where to migrate them. This is also a topic for
future research.

30

7. A cknowledgement s
This repor t reflects the work of a n u m b e r of people besides the authors. In

part icular , we would like to acknowledge John Lisowski for his work on the Capa-
bility Manager, Edie Merritt for her work on the Object Manager, Gordon Spencer
for his work on the Command In te rpre te r , and Tim McCreery for his work on the
Kernel.

We would like to thank A1 Despain for his guidance during the course of the
project, and Michael Powell for his help during the prepara t ion of this report .

8. REFERENCES

[Bask76] F. Baskett, J.H. Howard, & J.T. Montague, "Task Communication in
DEMOS," Proc. Sixth Sympos ium on Operating Sys tems Principles,
appearing as Operating Sys tems Review 11, 5 (November 1977), pp.
23-3 i.

[Bens72] A. Bensoussan, C.T. Clingen, & R.C Daley, "The MULTICS Virtual
Memory: Concepts and Design", Comm ACM, 15, 5 (May 1972), 308-
318.

[Cohe75] E. Cohen, D. Jefferson, "Protection in the HYDRA operating system",
Proc. of the Fifth Sympos ium on Operating Sys t ems Principles,
November, 1975, 141-160.

[DEC78] VAX 11/780 Hardware Manual, Digital Equipment Corp., '1978.

[Denn80] P.J. Denning, "Working Sets Past and Presen t" , IEEE Transactions on
Software Engineering SE-6, 1 (Jan. 1980), pp. 64-84.

[DespB0] A.M. Despain, "The Archi tec ture of Multiple Microcomputer Sys-
t ems" , Proceedings of the National Communications Forum of the
National Electronics Co~sortiurn, 1980.

[DitzS0] D.R. Ditzel, "Invest igation of a High Level Language Oriented Com-
puter for X-TREE", Masters Thesis, University of California, Berkeley,
1980.

[Fabr74] R.S. Fabry, "Capability-Based Addressing," Comm ACM, 17, 7 (July
1974), 403-412.

[McCr80] T. McCreery, "The Development and Simulation of the X0S Kernel",
Masters Thesis, University of California, Berkeley, 1980.

[Mi1179] B.P. Miller, "X-TREE Operating System: The Directory System and the
Role of User Processes" , Masters Thesis, University of California,
Berkeley, 1979.

[Need77] R.M. Needham, A.D. Birreel, "The Cambridge CAP Computer and its
Protec t ion System", Proc. Sixth Sympos ium on Operating Sys t ems

~ , [~ ~ _ _ t ~ i n c i p l e s , West-Lafayette, No-vemser: i977 . . ~,.

D.A. Pat terson, E.S. Fehr, & C.H. Sequin, "Design Considerations for"~
the VLSI Processor of X-TREE' , Proc. of the Sixth Ar~nual Sympos ium. /

• on Computer_Architecture, April _!97_9._ . "

[Pres79] D.L. Presotto, "X-TREE Operating System: Simulation, Disk Con-
sistency, and Communicat ion", Masters Thesis, University of Califor-
nia, Berkeley, 1979.

[PresS0] D.L Presotto, "X-TREE: The Node, Network, and Operating System
Archi tec tures" , Proceedings of the National Communications Forum
of the National Electronics Consortium, 1980.

31

[Rede74]

[Ritc78]

[Salt74]

[Sequ78]

D.D. RedeD, "Naming and protect ion in extensible operating sys-
tems" , Ph.D. Thesis, University of California, Berkeley, 1974.

Ritchie, D.M., and Thompson, K., "The UNIX Time-Sharing System,"
The Bell Sy s t em Technical Journal 57, 6, Part 2, pp. 1905-1929.

J.H. Saltzer, "Pro tec t ion and Control of Information Sharing in MUIr
TICS", Cornm ACM, 17, 7 (July 1974), 388-402.
C.H. Sequin, A.M. Despain, & D.A. Patterson, "Communicat ion in X-
TREE, a Modular Multiprocessor System", Prec. of the ACM 1978
Conference, December 1978.

32

