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Abstract

This paper describes the fundamentals of the X-TREE Operating System
(X0S), a system developed to investigate the effects of the X-TREE architec-
ture on operating system design. It outlines the goals and constraints of
the project and describes the major features and modules of X0S. Two con-
cepts are of special interest: The first is demand paging across the network
of nodes and the second is separation of the global object space and the
directory structure used to reference it. Weaknesses in the model are dis-
cussed along with directions for future research.

1. INTRODUCTION

X-TREE is an architecture for the design and construction of distributed,
multiprocessor computer systems. Its major intent is to provide a model for
building powerful, low-cost systems comprised of many identical microprocessor

chips (known in previous papers as monolithic microprocessors) [Desp78,
Ditz80].

It was recognized early in the X-TREE project that it would not be sufficient
to consider only paper operating systems designs when attempting to evaluate
the feasibility of the X-TREE architecture. Therefore a project was undertaken
from April until December in 1979 to write an actual system that could run
under X-TREE. At the time, the hardware was largely hypothetical, which gave us
both an advantage and a problem. On the one hand we could have great
influence on the eventual design. On the other, we had no hardware to run on.
To solve this problem, we constructed a simulator running under UNIX on a VAX
11/780. The simulator of the hardware was both ad hoc and slow, but it gave us
an opportunity to try out our ideas without a real X-TREE.

The X-TREE Operating System (XOS) is a general purpose operating system
for X-TREE. Our major goals were to discover the aspects of the architecture that
influence the design of a distributed operating system and to suggest possible
features for the X-TREE that would aid an operating system. '

1.1. The X-TREE Architecture

While the details of the architecture are rather complicated [Pres80], only
a few are relevant to our discussion and need be presented here. They are:

Topology: Figure 1.1 depicts a possible X-TREE system. It is important to
note that all devices are connected to leaf nodes. This was a major influence in
the way the operating system was eventually divided.
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Figure 1.1

Cammunications Hardware: X-TREE has a sophisticated communications
system implemented in hardware. Points significant to the operating system
are:

1) Multiple streams of messages between nodes are routed and maintained
completely by hardware.

2) The only data needed by the hardware to route the information is the node
address of the destination. Node addresses are of variable length to permit
an expandable address space. Refer to the node numbers in Figure 1.1.

CPU flexibility: An X-TREE CPU is microprogrammed. Therefore we had the
ability to choose data structures or addressing mechanisms that were appropri-
ate.

Node memory size: Bach node has on the order of 84K bytes of private
memory. Part of the memory contains the local kernel code, and part of it is
managed as a cache for the data and capabilities being referenced by processes
on that node. This placed a restriction on the maximum kernel size of approxi-
mately 32K bytes.

1.2. Specific Goals

As we have said above, our major goal was an operating system design for a
general purpose system to investigate aspects of the X-TREE architecture. Addi-
tional goals of the design were:

Resource sharing: Since this was to be a distributed, general purpose
operating system it had to allow processes anywhere in the tree to share infor-
mation.

Effective use of the conneclion t{ree: The main reason for many of the archi-
tectural decisions in X-TREE was to reduce traffic in the tree (especially the deci-
sion on topology). Therefore one of our major goals was to minimize the traffic
due to the operating system.

Process migration: As a step toward reducing traffic caused by user
processes, we added the requirement that processes be able to migrate across
the system to nodes which would minimize traffic in the tree.
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The rest of this paper describes the XOS system and how it attempts to
meet these criteria.

2. SYSTEM STRUCTURE
XO0S is made up of five major modules (see figure 2.1):
1) the Microcoded Kernel (MK)
2) the Capability Manager (CM)
3) the Object Manager (OM)
4) the Directory System (DS)
5) the Command Interpreter (CI)

k\-—V*\r to network

Figure 2.1

We chose to implement these particular modules in order to write a complete
system that would cover the full spectrum of activity from user login to process
execution. We had little desire to offer this to a user community since the
actual hardware was not yet available.

The lowest level of the system is implemented in the microcoded kernel
(MK). The MK serves as the direct interface to the processor and provides the
rest of the system with an abstract machine which offers memory management,
communications, and scheduling.

Above the MK are two modules that work in close cooperation. The Object
Manager {OM) is called upon to handle all page faults, resolving them by retriev-
ing the requested page. The Capability Manager {CM) checks access to objects
and performs all bit level operations on capabilities. The OM and CM often send
messages to one another since each performs a function the other needs, the
OM fetching pages of C-lists for the CM and the CM resolving access rights for the
OM. Both the CM and OM exist in the kernel address space since they need
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access into the representation of objects and capabilities.

The only user processes implemented are the Directory System (DS) and
Command Interpreter (CI). These have no privileged commands and are there-
fore full-fledged user programs. The DS is a library of user routines used to pro-
vide an access structure to the object space. The Cl is a terminal interface pro-
cess used to test the system.

The remaining sections will describe these structures (except for the CI)
and the concepts important to them.

3. ADDRESSING

X-TREE is an object-based system, with capabilities used for addressing
[Fabr74]. While capabilities in X-TREE are similar to capabilities in previous sys-
tems [Wulf74, Need77], various extensions and changes have been made to work
within the X-TREE architecture.

3.1. Objects

The basic addressable unit of X-TREE is the object. Data, programs,
processes, directories, files, and ports are all types of objects, and the actions of
sending a message, starting a process, accessing a file, or storing data all involve
operations on an object.

The address space of X-TREE is a virtual object space. All objects (except
ports and processes) reside at the leaf nodes of the tree, and all processes in
the tree have equal access. This is similar to the virtual segment space in Mul-
tics [Bens72], in that Multics segments form a uniform address space, poten-
tially available to all processes. In Multics, a segment may be in main memory,
on a swapping device, or on secondary storage. In the X-TREE system, an object
may reside on secondary storage (at the leaf nodes of the tree), or in a
processor’s (internal node) local memory. Processes residing in any node of the
tree can address any object in the system, independent of their logical or physi-
cal locations. XOS maintains its segments in a uniform object space, allowing
organizational groupings such as directories to be provided by systems running
above the operating system kernel (i.e. the Directory System).

3.2. Capabilities

All addressing of objects in X-TREE is performed via capabilities [Fabr74]. A
capability is the unforgeable key that is required to access an object. It may
reside only in objects. Capabilities serve three main functions: addressing, data
abstraction, and protection. A capability consists of a triple:

<address> <access rights> <object type>

Except for the address field, the capability in XOS is almost identical to those in
HYDRA [Cohe75]. Therefore we will focus only on the address portion and refer
the reader to the HYDRA papers for a complete description of capabilities.

3.3. Addresses

The address field of a capability defines the unique address of an object.
The address is in two parts:

<global node address> <local node address>
24



The global node address is the address of the particular node of the tree on
which the object resides, and the local node address identifies the object within
the node. One of the basic goals of X-TREE is to avoid the limited addressing
range of many previous architectures. Object and node addresses are both vari-
able length; there are no intrinsic limits on either the size of the tree, or the
number of objects local to a single node. In principle, the address space is
indefinitely expandable.

A global address, which identifies a node within the tree, is encoded in the
standard X-TREE notation that is used by the message routing hardware [Sequ78].
Since all standard objects reside in the leaves of the tree, their global addresses
always name leaf nodes. For ports and processes, the global address names the
node in which the process or port was created.

It is important to note that the global address is the address of a physical
node within the tree. This means that a given object must reside on a particular
node (e.g., a particular disk drive or set of disk drives). The case where a sec-
tion of the tree fails and data must be moved (e.g., mounted on a different leaf
node’s disk drive) cannot be handled by the current structure.

3.4. Local address translation

Each node has on the order of 84K bytes of local memory. Part of the
memory contains kernel code, and part of it is managed as a cache for the data
and capabilities being referenced by the processes on that node.

c-list
current offset for
domain capability page #
OATEB

Jg U

access rights local page
frame #

Figure 3.1

Each node must keep a list of pages currently residing in the local memory,
and the objects to which they belong. Since each capability address is variable
length, and on each data or capability reference the page cache must be
searched, hardware support is provided to increase efficiency. Each capability
reference is actually an index operation (offset) into the c-list for the current
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domain (see PWO description in section 4). There is an associative memory
(called the Object Address Translation Buffer, or OATB [McCr80]) that translates
the current domain, c-list offset for the capability, and page number (from the
offset portion of the address) to the access rights and local page frame number.
This is illustrated in figure 3.1.

3.5. Pre{fetching and forwarding

Objects residing at the leaf nodes are stored on mass storage devices such
as disk. It is the responsibility of the Object Manager (OM) to access pages from
disk and transfer them to the appropriate node. When a request for a page of an
object originates from a node in the tree, the request is sent to an agent for the
OM residing in that node. The page request is then forwarded to the proper leaf
node where the OM accesses the page and sends it to the requesting node.

The OM attempts to optimize disk accesses by pre-fetching pages. Different
pre-fetching strategies are used depending on the type of access. For example,
access to an object containing executable code would typically use a working set
organization [Denn80], while access through a sequential file would always
attempt to have the next page available. The proper strategy is selected by exa-
mining an history of accesses.

For synchronization and shared access when an access request is made (at
the leaf node) to a shared page whose latest version is not currently resident at
the leaf node, the request is forwarded to the node that actually has the page.
The pages is then sent to the requesting node. Each time the latest version of
the page moves to another node, a message is sent to the leaf node that is the
home for that page, notifying it of the new location. If a request is forwarded to
a node that no longer has the page, the request is forwarded on to the node that
does have the page. After a certain number of forwardings, the request is
returned to the leaf node.

It is important to note that the OM that is resident on each node is not the
same. Non-leaf nodes contain only an agent OM which sends its requests to the
OM's on the leaf nodes containing the secondary storage devices. This greatly
decreases the size of the kernel in non-leaf nodes.

3.6. Structure of addressing an object

Revocation of access to an object once a capability has been issued has
been a problem in previous capability-based systems. A refinement of this prob-
lem is the ability to change (reduce or increase) the access rights to an object
after the capability for that object has been distributed. One solution to this
problem is to use a resource manager. Each reference to some type of object is
through this resource manager. It is up to the manager to decide whether a
given access request should be honored. Using this organization, complex cri-
teria may be used. A drawback of this approach is that for simple accesses, the
resource manager may be much too slow. A different solution to the revocation
problem was proposed by Redell [Rede74]. This method was applied in XOS as
follows.

X-TREE capabilities come in two forms: direct and indirect. Each object has,
as part of its structure, an indirect field. This field consists of a special capabil-
ity associated with the object. A direct capability ignores the indirect field, and
behaves as described previously. An indirect capability addresses the object
through the capability stored in the indirect field. It is possible then, to invali-
date the indirect field of an object and thereby revoking access to anyone with
an indirect capability for that object. The access rights of the capability in the
indirect field may be modified causing the access rights of anyone with an
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indirect capability to be changed. If the indirect field is substituted with a capa-
bility for another object, this acts as a renaming function.

4. PROCESSES

4.1. Processes and Messages

X0S uses the paradigm of processes communicating via messages and mes-
sage streams. A process exists on only one processor at a time although it may
migrate from one processor to another during its existence. The process is
described in its entirety by the Process Work Object, defined below. The same
types of communications mechanisms are used both by processes for communi-
cations and by the disk system for paging traffic. As mentioned above, all data,
instruction, and device accesses are treated as object accesses and therefore
use the same paging mechanism.

4.2. Process Work Object (PWO)

The PWO contains all information for defining an object including stack
pointers and registers. A single capability (pointing to the PWQ) describes a pro-
cess. There are two reasons for this compact representation. One is to provide
an object understood by the prncessor that can be used to provide fast context
switches (similar to the VAX's System Control Block [DEC78]). The other reason
is to facilitate the migration of processes. The act of swapping the PWO to disk
and then back up to another node (or directly to the other node) is sufficient to
migrate the process to another processor.

Like other objects, the PWO contains both a data part and a c-list. This is
necessary since the program counter (PC), the current frame, and execution
stack all are made up of a capability section and a data section. For the PC, the
capability points to the current program object and the data part is the offset
into the object of the current instruction.

Figure 4.1 depicts the PWO. The beginning of the data part contains:
. 8 32-bit general purpose registers
. the offset to the top of the data part of the execution stack
. the offset to the top of the capability part of the execution stack

. the offset to the beginning of the data part of the current routine frame

. the offset to the beginning of the capability part of the current routine
frame

. the offset into the current program object of the current instruction

The first capability in the c-list is that of the current program object. These
locations are actually shadows of physical registers resident in the processor.
Whenever a PWO is written out, these shadows are filled in by the processor
microcode with the values of the corresponding registers.

Starting a process is performed by loading the process pointer (PP) with
the capability for its PWO. The microcode then loads the registers from the sha-
dows. The actual loading of the PP is performed by the dispatching hardware,
which is described in the scheduling section.

4.3. Inter-Process Communication (IPC)

Communication in X0S is similar to DEMOS [Bask78]. It is message-based,
unidirectional, and capability accessed. Remote and local communication

appear the same to processes.
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All messages are sent to a special object called a port. Ports are owned by
processes. When a process wishes to receive messages it creates a port object
and passes send capabilities for that port to other processes. It can do this
either by saving the capabilities in commonly accessible objects or by handing
them off to a switchboard process with whom every process can communicate.
If two-way communications are to be established, the other process can send
back a port capability with which to talk. The actual port object exists in the
global space and contains the node location of the process that created the port.

Messages contain both data and capabilities. This allows the transfer of
capabilities between processes. Messages can be sent either in datagram or vir-
tual circuit mode. The receiver has no idea in which mode the messages are
being sent. Wirtual circuifs provide sequenced data streams with routing per-
formed only once for the whole stream. A process may set up sequenced com-
munications by sandwiching the message stream between two special system
calls which open (set-up) and close (tear-down) a wvirtual circuit.

Remote process to process communication corresponds directly to physical
circuits. Virtual channels comprise a uni-directional message stream traveling
over a physical circuit, with a return stream in another physical circuit provid-
ing acknowledgments for the messages. Software is used to guarantee sequen-
tiality and to make circuit time-outs invisible to the processes. When a circuit
times out, a special tear-down message is sent by the communications software
to free the circuit. Datagrams are messages enveloped by set-up and tear-down
messages. Again a return path is provided for acknowledges. Time-outs are not
a factor since a tear-down follows the message. Protocols in the virfual circuit
case are negative acknowledge. In the case of datagrams every message must
be acknowledged. 28



Since the number of possible physical connections is finite, communications
may become saturated despite the availability of time-out tear-downs. A Statist-
ical Time-division Multiplex (STDM) channel is reserved in each node to allow
message flow in the case where the channels become saturated. By convention,
only datagrams are sent over this channel.

4.4, Process Scheduling

XOS process scheduling is very primitive, dealing only with a priority micro-
coded scheduler. All processes are allowed to run until either they complete,
they block awaiting resources, or a higher priority process preempts. This sim-
ple scheme is felt to be sufficient since the expected number of processes per
node is small — on the order of three or four.

The kernel microcode implements instructions for linking and unlinking
processes on 8 priority levels. The processes run round robin at each level, each
running until it blocks. The highest priority process always runs. The priority
queues are linked lists, each element containing a pointer to a PWO resident in
the node's memory.

4.5. Process Migration

One of X0S's objectives was to undertake investigations of process migra-
tion from node to node in the system. Process migration could be used in
attempting to dynamically move processes closer to its data in order to reduce
message traffic. To facilitate process migration, the representation of a process
(its state) was designed to be easily transported from one processor to another.
A process can be completely represented by its PWO. Since the PWO is an
object, it can be moved between processors, thereby moving the process to
another node. The problem is more complex when port objects are involved.
When a process moves, all processes communicating with it are now pointing to
the old node. However, in X08S, all such pointers are treated as hints. If a mes-
sage send arrives at the wrong node, a special negative acknowledge is sent to
the sender. The sending node’'s kernel then retrieves the actual location of the
port by reading the port object itself, a copy of which is kept on disk. After get-
ting the new hint it tries the send again. This process continues until the mes-
sage catches up with the roving process.

5. DIRECTORY SYSTEM

The XOS Directory System [Mill79] is included in the XOS design for a
number of reasons. First, it is an example of a user-level (non-kernel) protected
subsystem. This provided an application to test the low-level parts of the
operating system. Second, the Directory System supplied a name mapping
mechanism. And last, the Directory System provided a data organization facil-
ity.

5.1. Directory System as a non-unique, user subsystem.

The DS is an example of a user-level, protected subsystem. Operations on
objects of type directory are control by the DS. It should be noted that the DS is
a ‘‘non-file system'. A directory is merely a list of capabilities for some objects,
and any object whose capability is contained in a directory is termed a file. The
directory system only provides access control to the capabilities for files; not to
the files themselves. There is no concept of opening or closing a file. This could
be built as another subsystem which makes use of the DS.
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5.2. Directory structures as a forest

A capability for a directory object might be contained in some other
directory-type object. This forms a subdirectory structure. Access to subdirec-
tories and files in subdirectories is as in MULTICS or UNIX [Salt74, Ritc78]. It is
possible to build directory structures that form arbitrary directed graphs, but
this is not desirable for maintenance purposes, and so is prevented. All direc-
tory structures are restricted to trees.

For each DS function, the user may supply a "'starting directory”, which
forms the root of the tree for that particular operation. This allows the user to
have a number of totally independent directory structures, or a forest of strue-
tures.

5.3. Directories as a collection of objects.

A major role of the DS is that of providing a name mapping mechanism.
Associated with each capability (file) in a directory is a symbolic name for that
object. The naming function, incorporated with a syst~m directory (one to
which each user has access), provides a mechanism for allowing objects to be
available throughout the system. Accessing such facilities as editors and com-
pilers, or establishing initial connections for communications is done through
the directory system. In this role, it similar to the *‘switch board” in DEMOS
[Bask77].

6. CONCLUSION

We have presented an operating system for the X-TREE architecture. XOS is
a capability-based system because the communications structure easily facili-
tated capability addressing. A number of structures, among them the OATB and
PWO0, have been proposed to assist an architecture running a capability-based
operating system.

The uniform, global address space simplified the structure of the operating
system over multiple processors. FEach processor had a consistent and
equivalent view of the address space. The ability to influence the CPU design
(microcode) allowed an efficient implementation of many of the 0.S. primitives.

Communications channels were used for both message and paging traffic.
This allowed common usage of a single mechanism, thus simplifying the overall
structure.

It was also demonstrated that the directory structure.is easily separated
from the object name space allowing the possibility of several separate access
structures to be implemented on the same system.

The X-TREE structure facilitated the rapid construction of the 0.5., but the
system proved larger and more complex than may be appropriate for the VL3I
implementation (24,000 lines of high-level language code). The system was con-
structed by 6 people in eight months, at which time the basic system, a com-
mand interpreter (shell) and directory system were working.

A number of problems still exist in the system. The physical dependency of
object names makes it difficult to move objects to different locations in the tree.
This can prove to be awkward when expanding the tree or when parts of the tree
fail. A number of solutions have been proposed during our initial implementa-
tion and may be tried out in the future. The migration of processes has been
made possible and even easy. However no attempt has been made to formulate
an algorithm for determining to where to migrate them. This is also a topic for

future research.
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