

An In-Depth Security Assessment of Maritime Container Terminal
Software Systems

Joseph O. Eichenhofera, Elisa Heymanna*, Barton P. Millera and Arnold

Kangb

aComputer Sciences Department, University of Wisconsin-Madison, USA.

{eichenhofer, elisa, bart}@cs.wisc.edu

bTotal Soft Bank Co., Busan, Korea. arnold@tsb.co.kr

An In-Depth Security Assessment of Maritime Container Terminal
Software Systems

Attacks on software systems occur world-wide on a daily basis targeting
individuals, corporations, and governments alike. The systems that facilitate
maritime shipping are at risk of serious disruptions, and these disruptions can stem
from vulnerabilities in the software and processes used in these systems. These
vulnerabilities leave such information systems open to cyber-attack. Disruption of
these systems could have disastrous consequences on a global scale.

The assessment of the security of maritime shipping systems has faced two
significant limitations. First, existing studies have been directed at identifying risks
but have not taken the critical (and expensive) next step of actually identifying
vulnerabilities present in these systems. Second, these studies have focused on
overall port operations. While such an overview is important, and has resulted in
overall recommendations for changes in policy, they have not provided an
evaluation of security issues in the computer systems that control these ports and
their terminals.

In response, we performed a detailed analysis of the information flow involved in
the maritime shipping process. Though most of the communication is electronic,
there are still some paper documents at some steps of the process.

After understanding the relevance of the cyber components involved, we executed
a detailed, in-depth vulnerability assessment of the software that manages freight
systems. In this paper, we show in detail the flow of information involved in the
freight shipping process and explain how we performed the in-depth assessment,
summarizing our findings. Like every large software system, maritime shipping
systems have vulnerabilities.

Keywords: maritime container terminals; software systems; software security;
software assurance; vulnerability assessment; ICT (Information and
Communications Technologies)

1. Introduction

The maritime sector is crucial to the world economy, and the computer technology that
manages it is critical to its successful operation. Maritime ports in the EU handled 3.9
billion metric tons of seaborne goods in 2016, which marked an increase of 11.4% when
compared with 2009 (Eurostat 2018). In the US, maritime ports collectively handle 75%
of America’s international trade by volume (Aylward et al. 2016). Maritime shipping uses
millions of containers and employs millions of people to move billions of tons of freight
annually. The world economy is therefore critically dependent upon the maritime
movement of cargo and containers. Consequently, the economy is also dependent upon
the software systems that facilitate maritime operations.

Maritime freight transportation increasingly relies on Information and
Communications Technology (ICT) to manage and optimize its operations and services.
ICT makes the essential operations not only manageable but also cost effective. This
technology is involved in many areas, from traffic control communications to container

freight tracking to the actual movement of containers. As a consequence, there is an
increased dependency on electronic communication and processes with little human
interaction. In addition to these benefits, the freight ICT systems also introduce the risks
of being extremely vulnerable to cyber-attack. It is important to note that these ICT
systems are based largely on software that has been written specifically to support the
operations of maritime freight systems.

Freight ICT systems are large and complex, having many components used by
different principals involved in the supply chain. Some of these components are used by
the general customers, for example the Port Community System (PCS), to book and track
shipments and exchange documents and information between public and stakeholders.
Other components are intended to be used by port operators, for example the Terminal
Operating System (TOS), to control container movement and storage in the maritime port.
There is also a back-office management and integration system, which allows companies
to manage, link, and share internal processes with suppliers and customers. Attackers can
take advantage of the complexity of this diverse collection of software. For example, in
2013 drug traffickers recruited hackers to breach the ICT systems that controlled the
movement and location of containers in the Belgian port of Antwerp, managing to reroute
(for two years) containers carrying drugs, guns, and cash (Bateman 2013).

The software that manages and controls freight transportation systems must be
hardened against cyber-attacks. Disruption or unavailability of these ICT systems could
have disastrous consequences in cost and availability of goods. Attacks against
vulnerabilities in the software can lead to a wide range of consequences. These
consequences include disruption of service, shipment of cargo to unintended destinations,
threat to human lives (for example, by remotely controlling the twistlocks of a container
spreader to release it over a person), and operation of seaport machinery by unauthorized
users. Therefore, there is a critical need to ensure the robustness of the ICT systems and
to secure them against cyber-attacks.

This research represents the first in-depth analysis of a software system that
controls maritime shipping. While there have been significant efforts at assessing risk in
such transportation environments, and even external penetration tests on port facilities,
the software itself is at risk. For commodity software, like the Windows or Linux
operating systems, that risk is shared by many user communities. For maritime shipping
(as in many other transportation sectors), the user community is smaller, the risk more
focused, and the consequences of a breach substantial. It is essential that there be:

1. A global recognition of the risk of not assessing the software in depth;
2. The willingness for software providers to allow scrutiny of their software;
3. Resources available to accomplish the in-depth software assessments;
4. Transparency and reporting for the results of such assessments;
5. Training available for the transportation software practitioners to learn the skills

of building secure systems; and
6. Regulations that capture the requirements for improved software security.

Our effort represents an important bridge between best practices in academia and a world
leader in container terminal software. In our experience, it takes courage and a leap of
faith to expose your commercial software to such detailed evaluation. However, the
benefits of such an evaluation can be huge, including both a significant improvement in
operational security and an increased confidence in the systems by the stakeholders
depending on the software.

In the next section, we review the most closely related research in this area. In
Section 3, we present an overview of the surprisingly intricate flow of information that

takes a container from the exporter to the importer. In Section 4, we then describe the in-
depth software vulnerability methodology, called First Principles Vulnerability
Assessment (FPVA), that we used in this effort. In Section 5, we present the results of
our FPVA assessment, including descriptions of the vulnerabilities found the
remediations strategies used.

2. Related Work

There has been an increasing awareness of port security in the past decade. Nevertheless,
assessment of the security of maritime freight systems (in both the E.U. and U.S.) has
faced two significant limitations. First, while existing studies have been directed at taking
the important first step of identifying risks, they have not taken the critical and expensive
next step of actually identifying the vulnerabilities present in the ICT systems. Second,
these studies have focused on overall port operations. While such overviews are important
and have resulted in overall recommendations for policy change, they have not provided
a detailed evaluation of security issues in the ICT systems that control these ports.

In this section, we review related work in the areas of risk assessment in container
seaports, focusing on its relationship to in-depth software assessment of maritime freight
ICT systems.

There have been several efforts to address the risk assessment of seaports. Current
efforts for risk assessment for maritime security are summarized in Figure 1.

SAURON (Sauron 2017) is an ongoing European project whose goal is to develop
a platform for port operators to have physical, cyber, and hybrid situational awareness.
SAURON is investigating the prevention, detection, response, and mitigation of physical
and cyber threats to ports.

Previous European Projects like MEDUSA and MITIGATE (Papastergiou et al.
2018, Mitigate 2015) focused on assessing risks in the maritime supply chain and
port/maritime systems. MEDUSA concentrated on the port IT infrastructure at the supply
chain level, while MITIGATE concentrated at the asset level. These approaches are
intended to quantify risk, but not whether a vulnerability in the code exists, where it exists,
or how it might affect the higher-level spheres (physical assets, networks, information
infrastructure).

Existing security standards, best practices, maritime regulation, and risk
assessment methodologies and tools fail to adequately address the specific needs of port
authorities (IMO 2002a, IMO 2002b). Researchers in the S-Port project developed a
prototype software platform consisting of a collaborative environment to host security
management services and guide commercial ports to monitor and self-manage their port
ICT security (Polemi et al. 2013). Safety standards and regulations were identified
(specifically in ISO 27001 and ISPS Code), and then actions were taken to address some
specific security management needs of port ICT systems. The architecture of the S-Port
platform incorporates various collaborative tools, which are focused on high-level risk
assessment (Ntouskas et al. 2010).

Historically, physical security has been the main emphasis when thinking about
port security; the various seaports standardization bodies did not specifically reference
ICT/Cyber-security in their memoranda (Polemi et al. 2012). Most of the existing freight
seaport security standards and methodologies concentrated only on the physical security
of the ports (i.e., safety concerns) (Ntouskas et al. 2012).

The International Maritime Organization (IMO) developed guidelines for
maritime cyber risks as the basis for future regulation in the maritime and seaport sector.
During the IMO’s Maritime Safety Committee (MSC) session held in June 2017, the

Committee approved MSC.428(98) Maritime Cyber Risk Management in Safety
Management Systems (IMO 2017a). Following MSC.1/Circ.1526, which was superseded
by MSC-FAL.1/Circ.3, the resolution affirms that approved safety management systems
should take cyber risk management into account, considering also confidentiality for
certain aspects of cyber risk management (IMO 2017b, IMO 2016). The updated
guidelines provided recommendations to safeguard shipping from current and emerging
cyber threats and vulnerabilities. That document acknowledges that vulnerabilities can
result from inadequacies in design, integration and/or maintenance of systems, as well as
lapses in cyber discipline. In particular, they describe five elements to identify and
manage cyber risks: (1) identify, (2) protect, (3) detect, (4) respond and (5) recover. Our
in-depth software vulnerability assessment activities (described in Sections 4 and 5)
directly addresses the first three of these elements by:

(1) Identifying the parts of the software that are of greatest risk.
(2) Protecting the software by removing the vulnerabilities.
(3) Detecting potential points of attack before they can be exploited.

The 2017 update to the guidelines further emphasized the importance of what is in the
2016 edition.

Since port ICT systems face combined physical and cyber threats, a holistic risk
assessment methodology for these infrastructures should combine the analysis of physical
and ICT aspects. For example, using MSRAM (Downs 2007) and CMA (Kang et al.
2009) for physical risk assessment, and using CRAMM (Yazar 2002), OCTAVE (Alberts
et al. 2001), or current standards such as ISO27005 and ISO27032 (ISO 2011, ISO 2012)
and NIST-SP 800-30 (Joint Task Force Transformation Initiative Working Group 2012)
for ICT risk assessment.

While awareness of cyber risks is steadily increasing in the maritime sector, we
need to go beyond risk assessment to the actual evaluation of software systems that
operate in this environment. The first step to an in-depth assessment of the software that
controls maritime freight shipping consists of understanding the software involved. There
cannot be a serious cybersecurity analysis without taking into account the software. For
that purpose, we investigated the maritime shipping process and documented all the
transactions (both electronic and in paper) involved. This documentation is detailed in the
next section.

3. Understanding Shipping Logistics

The process by which a shipping container carries goods from an exporter in one country
to an importer in another can be viewed as a series of document and communication
transactions. To begin our evaluation of these transactions, we used documentation
prepared by the Port of Valencia, Spain (Montfort et al. 2012).

Figure 2 shows the communications/transactions involved in shipping logistics.
Due to the large and complex nature of freight logistics, it is beneficial to approach the
process in stages. For the purposes of this paper, there are six such stages: booking,
forwarding, outbound customs, outbound shipping, inbound shipping, and delivery. To
better visualize these stages, the transactions involved in each stage are shown in Figure
3 through Figure 8. Each arrow represents a transaction of paper document (green), digital
document (red), container movement (blue), or unspecified communication (black).
Transactions are chronologically numbered. Simultaneous transactions in the same figure
share the same number and are identified by letter.

3.1. Booking

Several booking-related documents must be created and exchanged before the container
can be moved. In this section, parenthesized numbers refer to edges in Figure 3. The
importer and exporter first agree on the goods to be purchased and shipped (1.1). For the
sake of simplicity, we do not show the importer in this figure. The exporter contacts the
freight forwarder (1.2a) who will negotiate shipment with the consignee that operates in
the desired seaport (1.3, 1.4, and 1.5). A Bill of Lading is created by the consignee and
given to the cargo ship, forwarder, exporter, and importer (1.6a, 1.6b, 1.7, and 1.8). When
the exporter is ready to ship, it sends an advance ship notice to the forwarder who sends
it to the consignee (1.9 and 1.10a). The consignee sends delivery and acceptance orders
to the forwarder (1.11b) who sends them to the inland carrier and railway (1.12d and
1.12c). If the shipment is to contain any dangerous goods, the consignee reports them to
the port authority (1.10b). When the port authority and harbor master approve the goods,
authorization is recorded and given to the consignee (1.11a, 1.12a, and1.12b).

3.2. Forwarding

Once booking documents are in place, the goods will be forwarded to the seaport.
Parenthesized numbers in this section refer to edges in Figure 4. The inland carrier first
takes the delivery order to the depot at the seaport to receive the consignee’s container
and takes the empty container to the exporter (2.1 - 2.2). The container is packed and
sealed in the presence of a representative of the exporter who signs a delivery note and
gives it to the carrier (2.3b). The carrier takes the full container and an acceptance order
to the railway terminal (2.3a and 2.3c). The carrier is given a transfer note to document
the exchange (2.4b). The railway operator loads and sends the container to the port
terminal along with an unloading list that documents the goods (2.4a and 2.4c). The
consignee sends to the terminal an acceptance order, and the terminal sends the consignee
a transfer note to document the interchange (2.5a and 2.5b).

3.3. Outbound Customs

Many containers are subject to customs clearance and/or inspection once they arrive at
the seaport. Edges in Figure 5 are referenced by parenthetical numbers in this section.
The container is taken to a checkpoint run by the customs office (3.1a). Customs
declarations are sent by the consignee in the form of a “Single Administrative Document”
to the customs office at the port (3.1b). If the container is to be inspected, a “red circuit”
is initiated (3.2). The container is moved to the inspection site (3.3), certified, and
returned to the customs office and port terminal (3.4a, 3.4b, and 3.4c). Clearance
documentation is sent to the consignee (3.5a). If the container contains any dangerous
goods, they are reported to and tracked by the port authority (3.5b).

3.4. Outbound Shipping

With the container certified and available at the terminal, arrangements must be made for
its loading and shipment out of the port. In this section, parenthetical numbers are
references to single edges in Figure 6. After sending shipment instructions to the terminal
(4.1), the consignee sends and receives authorizing documents to the port authority for
the cargo ship to dock (4.2, 4.3a, 4.4, and 4.5a), some of which are sent to the harbor
master for record and reference (4.3b and 4.5b). The consignee must also report to the

customs office a loading list for record of the goods (4.6). The docked ship then sends its
bayplan to the terminal (4.7), where arrangements are made for the ship to be unloaded
and loaded by stevedores (4.8, 4.9, and 4.10). If any dangerous goods are loaded, they are
reported to maritime rescue authorities for tracking (4.11). Once loading is complete, the
consignee makes a request to the port authority to embark (4.12), and notifies the ship
after it is authorized by the port authority and harbor master (4.13, 4.14, and 4.15). The
consignee sends a cargo manifest to the port authority (4.16a), which reviews it with the
customs office before documenting its acceptance (4.16b, 4.17a, and 4.17b). An updated
bayplan is sent back to the ship as it departs (4.18).

3.5. Inbound Shipping

The process of shipment into the receiving port begins as the cargo ship nears it.
Parenthetical numbers in this section refer to edges in Figure 7. When the cargo ship
approaches the receiving port, the consignee arranges for authorization from the port
authority to dock (5.1, 5.2a, 5.3, and 5.4a). The port call number and mooring
authorization are sent to the harbor master for record (5.2b and 5.4b). Dangerous goods
must be reported to and authorized by the port authority and recorded by the harbor master
(5.6, 5.7, and 5.8). The consignee sends an entry summary declaration to the port authority
which forwards it to the customs office (5.9a and 5.9b). The customs office accepts the
declaration (5.10a), and the consignee is notified (5.10b). A Single Administrative
Document is sent to the customs office along with an unloading list (5.11a and 5.11b).
Once customs clearance is granted (5.12), the port terminal arranges for stevedores to
unload and load the ship (5.13, 5.14, and 5.15). Locations of dangerous goods are reported
to the port authority (5.16), and a manifest of them are sent to the consignee (5.17).

3.6. Delivery

The final stage of the process is to move the full container from the port, deliver the goods
to the importer, and return the empty container to the depot. Parenthetical numbers in this
stage are references to edges in Figure 8. The consignee sends its customs clearance and
delivery order to the terminal (6.1) and a transfer order to the railway terminal that will
take the container (6.2). The railway terminal sends a loading/unloading list to the port
terminal (6.3), where internal transportation unloads and loads the appropriate containers.
The container and an acceptance document are sent to the railway terminal (6.4a and
6.4c), and a departure notice is sent back to the consignee (6.4b). The consignee sends
the required carriage documents to the inland carrier (6.5) which brings the consignee’s
delivery order to the railway terminal in order to take the container (6.6). The railway
terminal gives the carrier a transfer note documenting the interchange (6.7b). The carrier
delivers the container to the importer, where it is unloaded (6.7a). The empty container is
then brought with the consignee’s acceptance order to the depot where it is stored until a
new shipment is ready (6.8a and 6.8b).

4. In-Depth Vulnerability Assessment

In the previous section, we showed a transactional view of shipping logistics. In this
section, we describe the methodology for performing an in-depth vulnerability
assessment of two of the modules of the software that controls the transactions previously
described. This assessment includes a deep analysis of the software including a low-level
code review that goes beyond the use of automated assessment tools. The ultimate goal

is to find critical vulnerabilities so that the software providers could remediate them
before attackers are able to exploit them.
The modules assessed were:

(1) A web system that facilitates port status and management access for external
stakeholders. It also includes services for processing and storing information
including ship schedules and location, container locations, gate access status,
dangerous goods locations, and loading/discharge lists. External stakeholders,
including shippers and consignees, can check the status of this information
through this module. This module is 315,000 lines of code.

(2) A web application that communicates yard tractor jobs to the operators in
those vehicles. Tractor operators log into the web application from a mobile
device. The clients to this module can view the yard tractor jobs and update
the status of them as they arrive and are completed. This module is 7,000 lines
of code.

The overall effort took 7 person-months. The vulnerabilities found were reported to the
head of the development team, followed by several interactions with the development
team as to how to fix the vulnerabilities. The patched code was then re-assessed by our
team.

Until recently, there was no structured methodology for in-depth assessment of
software systems at the code level. Simply trying to examine all the code in a complex
system such as these would be an overwhelming task, a task beyond any reasonable cost
or staffing. Based on our previous experience with analyzing code for security flaws, we
developed the First Principle Vulnerability Assessment (FPVA) methodology (Kupsch et
al. 2010). FPVA was developed primarily as an analyst-centric approach to assessment,
the aim of which is to focus the analyst’s attention on the parts of the software system
and its resources that are mostly likely to contain vulnerabilities related to high-value
assets. FPVA has been used to evaluate many well-known systems, including Google
Chrome (Miller et al. 2013), HTCondor (HTCondor), and Wireshark (Miller et al. 2013).

Rather than working from known vulnerabilities, the starting point for FPVA is
to identify high value assets in a system: those components (for example, processes or
parts of processes that run with high privilege) and resources (for example, configuration
files, databases, connections, devices) whose exploitation offer the greatest potential for
damage by an intruder. From these components and resources, we work outward to
discover execution paths through the code that might exploit them. This approach has two
immediate advantages. First, it allows us to find new vulnerabilities, not just exploits
based on those that were previously discovered. Second, when a vulnerability is
discovered, it is likely to be a serious one whose remediation is of high priority.

FPVA starts with an architectural analysis of the code, identifying the key
components in a distributed system. It then goes on to identify the resources associated
with each component, the privilege level of each component, the value of each resource,
the interaction between components, and the delegation of trust. The results of these steps
are documented in clear diagrams that provide a roadmap for the last stage of the analysis,
which is the manual code inspection. Additionally, the results of this step can also form
the basis for a risk assessment of the system, identifying which parts of the system are
most immediately in need of evaluation. After these steps, we then use code inspection
techniques on the critical parts of the code. Our analysis strategy targets the high value
assets in a system and focuses attention on the parts of the system that are vulnerable to
not just unauthorized entry but specifically unauthorized entry that can be exploited.

After we know where to focus the search, which means after we understand what
are the high value assets, we can apply a variety of tools and techniques to the actual

analysis of the code. It is worth noting that automated tools complement the manual
inspection of the code but never replace it.

In the FPVA of freight ICT systems, we followed the following steps:

(1) Architectural analysis: Identify the different software components

(processes and threads) running on the different hosts, the communication
amongst those components, and the points where the different users interact
with the system. Both TOS and PSC are complex, with many components
facilitating the interaction among the seaport stakeholders including the port
authority, the container terminal, the consignee, and the forwarder.

(2) Resource identification: Identify the different resources (logical and
physical) accessed by the components in step 1. For example, relevant
resources include the bill of lading, bayplan, the list of containers with
dangerous goods, and the database containing information on the containers
on the yard. An attacker gaining access to these critical resources would result
in severe damage.

(3) Privilege analysis and trust delegation: Identify the resource protections,
the privilege levels at which each component runs, and the delegation of trust.
Authentication and authorization of access to resources are also identified in
this step. We analyze the trust relationships between key entities such as
terminal stations, port operators, forwarders, and shipping companies.

(4) Component evaluation: Perform a fine-grain evaluation of the critical
components and resources identified in step one and two. This step is the most
time consuming and involves the identification of vulnerabilities as well as
the construction of proof-of-concept exploits. The process of this step is
described below.

It is important to emphasize that FPVA helps us to identify vulnerabilities that are not
commonly known or described, in addition to common traditional weaknesses. As we
mentioned above, steps 1-3 of FPVA identify those parts of the software that would have
the highest security impact if they were to be successfully exploited, the high value assets.
This identification allows us to focus our analyst resources on the parts of the system that
are most critical. Through this approach, we identified both common vulnerabilities and
vulnerabilities specific to the system we analyzed. Examples of vulnerabilities that we
found when assessing the TOS are described in the next section, but before that it is worth
mentioning examples of common code weaknesses (OWASP) we look when performing
a vulnerability analysis:

• Improper or insufficient data validation: refers to accepting and trusting the input
supplied by a user without performing validity checks, and is the cause of many
types of serious vulnerabilities.

• Improper error handling: can allow many types of vulnerabilities, including
privilege escalation, disclosing information, or denial of service.

• Buffer overflows: allows a program to overflow the boundary of a memory buffer,
either for reading or writing of the member. As a consequence, an attacker can
change the behavior of the program or expose sensitive information.

• Numeric errors: where an arithmetic operation results in a numeric value that is
outside of the range that can be represented with a given number of bits, causing
the program to make inappropriate decisions that can affect access or modification
of the system and data.

• Injection attacks: these include command injection, SQL injection, and XML
injection. Injection attacks occur where a program constructs a string that contains

user input (such as their name or address), and then this string is interpreted by
the system (such as making a database request). If the program does not limit the
use of the user data, it can allow an attacker inappropriate control of the system.

• Web attacks: cross-site scripting (XSS), cross-site request forgery (CSRF),
session hijacking, and open redirect. These attacks can allow an attacker to control
or forge access to a website.

• Directory traversal: a defect where an attacker accesses files and directories that
are stored outside their authorized directory in the file system. Such access can
expose private information or allow inappropriate access to a system.

In this research, we applied the FPVA methodology for the first time in the maritime
domain with the goal of making its software less vulnerable to cyber-attack. We applied
FPVA to modules of the TOS and PCS provided by a well-known software provider in
maritime freight shipping. The next section summarizes our findings.

5. FPVA Vulnerability Assessment Results

In this section, we summarize the results of performing an in-depth vulnerability
assessment on some modules of a TOS and PCS from a well-known software provider in
the domain of maritime freight shipping. A thorough report and discussion of
vulnerability results is not within the scope of this paper. It is worth noting that our results
were reported to the software developers in full, including close collaboration to remedy
the discovered vulnerabilities, and that our team re-assessed the patched software.

We first show an example (Figure 9) of the artifacts resulting from the first three
steps, namely architectural, resource, and privilege analyses, for one of the modules that
we assessed. We then briefly describe the vulnerabilities found.

Figure 9 shows that that module is composed of processes running on three
different hosts, each with a different functionality. In orange, we show a process running
as user “SYSTEM” (the system privileged user), and the resources that are accessed by
that process. In green, we show the processes running as user “Admin” (the application
administrator), and the resources accessed by those processes, such as log files. During
our analysis we produced detailed low-level diagrams. We do not include them here due
to space constraints.

In our code assessment, we found several high-impact vulnerabilities. Some of
the vulnerabilities we found and reported include the following weaknesses:

1. Improper authorization and authentication design allowed illegal access to the

system’s database. Therefore, the following issues arose:
• Any user could change any other user’s password. By circumventing client-

side validation, an attacker could request a password change for another user
without providing a correct current password. This vulnerability was a result of
faulty validation logic on the server.

• Users could access unauthorized services by tampering with client-supplied
request metadata. For example, an attacker could craft a request for Service A
with metadata that indicated Service B. The server would authorize the request
based on the metadata indicating Service B, but then invoke Service A. This is an
example of a trust boundary violation; the server is trusting that the metadata from
the client is consistent with the service request’s destination. Since client
applications can easily be replaced or compromised, the server must assume it is
untrusted. For this reason, any validation, authorization, or authentication
performed by the client must also be rechecked by the server.

Design issues such as these are often the most expensive and time-consuming to fix.
Some design problems could be detected early in the software development life cycle
by using Microsoft’s Threat Modelling tool (Microsoft). Nevertheless, at this point
is it worth quoting “security systems design is making promises which poor software
development practises cannot keep." (Beer 2018). And complex design problems are
only detectable by an expert analyst.

2. Improper validation in custom file services allowed any user to modify or delete files
throughout the server’s filesystem. An attacker could generate a legitimate file
download request using the client’s user interface and then modify it to specify
deleting, downloading, or overwriting any specific file on the server. This
vulnerability was a result of both improper sanitation of the filename to prevent path
traversal and lenient access control for the i/o services. Note that the combination of
this weakness along with the password compromise vulnerability in weakness 6
would allow an attacker to steal the username and password for every user of the
system.
This vulnerability was challenging to find, and it is unlikely to have been found either
by automated assessment tools or by penetration testing. The code actually tried to
sanitize the input, but it did not cover the specific case that we used for the attack.

3. A web server did not check client authorization on all requests. Therefore, many
operations were vulnerable to unauthorized access, once the user submitted a correct
username and password. By not tracking any login state, the server trusts the client
to ensure that unauthorized requests are not made. This is a violation of the trust
boundary between client and server.
This vulnerability was challenging to find and required a careful inspection of the
code. Neither automated assessment tools nor penetration testers are likely to have
discovered it.

4. An attacker could arbitrarily add log entries to log files. By doing that, the attacker
could erase log file history in 2 minutes, as when a threshold was met, the oldest log
file was deleted. This vulnerability alone is not severe; however, it may allow an
attacker to hide other dangerous activities by overwriting the log.
The effort to find this type of vulnerability is medium: it will not be found by
automated assessment tools, but it might be found by penetration testers.

5. HTTP traffic was not encrypted. As a consequence, the system was vulnerable to:
• Session hijacking: HTTP sessions are tracked using session ID cookies. The

server determines client identity and state by associating data with a particular
session. If traffic is unencrypted, the value of this session ID can be recorded by
an attacker. The attacker can then send requests using that session ID to effectively
impersonate the victim, gaining access to all resources available to the victim
whose session was hijacked.

• Password sniffing: A user’s username and password is transmitted in plain text
when logging into the system. Any devices connected to the same physical (or
virtual) network as a client or server will be able to read the username and
password of any user that logs into the system via that network.

• Sensitive information exposure: Because all system traffic is unencrypted, an
attacker can observe all of the transactions and requests made to the system
without directly accessing the system. For example, if a port administrator
requested a schedule of dangerous goods while connected to a public network,
then any device on that public network could also view that schedule.

This vulnerability might have been found by automated assessment tools, or network
monitoring tools.

6. Password compromise: Instead of using a computationally-expensive, salted, one-
way hash function, the system stores passwords using an insecure form of two-way
encryption. The function uses the decryption key as a password's initialization vector,
storing this key in both the database and configuration files. The server also writes
the encryption key to the general server log every time a password is checked or
updated. In the case of a stolen or compromised database file (which was made
possible by weakness 2), an attacker could trivially decrypt the passwords stored in
the database. This would lead to full compromise of all accounts and disclosure of
users’ (potentially reused) passwords.

7. Use of vulnerable versions of third-party software components exposed the system to
existing exploits for those components. In any modern software system, third-party
components such as framework libraries, operating systems, compilers, and protocols
make up a large part of the software supply chain. Many of these components contain
dangerous vulnerabilities that may compromise the systems depending on them. The
presence of dynamic dependencies and non-standard update channels make it difficult
to track vulnerable components.

6. Conclusions

In this paper For this project, we formed a key collaboration between an experience
academic cybersecurity team and a well-known commercial software provider that
manages maritime shipping. We started with we a detailed studiedy the electronic (and
paper) information flow involved in maritime freight shipping, with the goal of
understanding the relevance ofhighlighting the cyber components involved in this
domain. From this study, it was clear that electronic information dominated these
processes, and that the ICT systems involved are critical to safe and timely deliveries of
shipments.

In addition, we showed a critical gap in the evaluation of the security of these ICT
systems. While Tthere have been manyuseful risk assessments of ports, including
identifying cybersecurity as a key area of risk, these assessments did not go on to evaluate
the software for actual vulnerabilities. but fFor what we believe it is the first time, we
conducted a deep dive software vulnerability assessmentd inof some of the critical
modules of the TOS and PCS provided by Total Soft Bank, a well-known software
company that manages maritime freight shipping. To do that, we applied the First
Principles Vulnerability Assessment (FPVA) methodology to those systems and found
several significant vulnerabilities in the code. Most of Tthoese vulnerabilities (some of
them critical) arewould not have beening found by the state of the art practicesmore
common practices of using software scanning tools or black-box penetration testing. .

Based on these findings, we claim thatOur study provided strong evidence that
the shipping the domain would benefit from more in-depth software vulnerability
assessments, whether it is motivated by regulation, stakeholder trust, or other means.

Total Soft Bank, who allowed their software to be used for this assessment, has
taken a significant step forward in providing the maritime shipping industry with a model
for more secure ICT infrastructure. This is only a first step, and we hope to see this work
extended to other vendors and other aspects of maritime shipping. The goal is to address
this problem in a global way.

We believe that this work could provide the foundation for recommendations and
guidelines for the maritime freight shipping sector on securing the code of their ICT
systems.

ACKNOWLEDGMENTS

This work is supported in part by National Science Foundation Cyber Infrastructure grant
ACI-1547272, the Department of Homeland Security under AFRL Contract FA8750-12-
2-0289, and the University of Wisconsin-Madison.

References

Eurostat 2018, "Freight Transport Statistics - Statistics Explained”. [Online].
Available:http://ec.europa.eu/eurostat/statistics-
explained/index.php/Freight_transport_statistics. [Accessed 16 August 2018].

A. Aylward, A. Fine, K. Mulder, L. Rainville, D. Hackett and D. Smith, 2016 "Port
Performance Freight Statistics Program - Annual Report to Congress", U.S.
Department of Transportation - Bureau of Transportation Statistics, Washington, DC.

T. Bateman, 2013, "Police warning after drug traffickers' cyber-attack". [Online].
Available: http://www.bbc.com/news/world-europe-24539417. [Accessed 15 August
2018].

"Sauron Project", 2017. [Online]. Available: https://sauronproject.eu/. [Accessed 16
August 2018].

S. Papastergiou, N. Polemi, P. Kotzanikolaou, 2018, “Design and validation of the
Medusa supply chain risk assessment methodology and system”, International
Journal of Critical Infrastructures (IJCIS), Vol. 14, No. 1, pp 1-39.

"Project Mitigate", 2015 European Commission Community Research and Development
Information Service (CORDIS). [Online]. Available: www.mitigateproject.eu.
[Accessed 16 August 2018].

IMO (International Maritime Organization), 2002a, "International Ship and Port Facility
Security (ISPS) Code," in Conference of Contracting Governments to the International
Convention for the Safety of Life at Sea.

IMO (International Maritime Organization), 2002b, "Consideration and Adoption of
Amendments to the International Convention for the Safety of Life at Sea," in
Conference of Contracting Governments to the International Convention for the Safety
of Life at Sea.

D. Polemi, T. Ntouskas, E. Georgakakis, C. Douligeris, M. Theoharidou and D. Gritzalis,
2013, "S-Port: Collaborative Security Management of Port Information Sysems," in
2013 Fourth International Conference on Information, Intelligence, Systems and
Applications (IISA), Piraeus, Greece.

T. Ntouskas and N. Polemi, 2010, "S-PORT: "A Secure, Collaborative Environment for
the Security Management of Port Information Systems"," in 2010 Fifth International
Conference on Internet and Web Applications and Services (ICIW), Barcelona, Spain.

N. Polemi and T. Ntouskas, 2012, "Open Issues and Proposals in the IT Security
Management of Commercial Ports: The S-PORT National Case," in 27th Information
Security and Privacy Conference, Crete, Greece.

T. Ntouskas and N. Polemi, 2012, "Collaborative Security Management for Port
Information Systems," in International Conference on e-Business, Rome.

IMO (International Maritime Organization) 2017a, "Maritime Cyber Risk Management
in Safety Management Systems", US Coast Guard; The Maritime Safety Committee.

IMO (International Maritime Organization) 2017b, “Guidelines on Maritime Cyber Risk
Management”. [Online]. Available:
http://www.imo.org/en/OurWork/Security/Guide_to_Maritime_Security/Documents/
MSC-FAL.1-Circ.3%20-
%20Guidelines%20On%20Maritime%20Cyber%20Risk%20Management%20(Secre
tariat).pdf . [Accessed 17 August 2018].

IMO (International Maritime Organization), 2016, "Interim Guidelines on Maritime
Cyber Risk Management”. [Online]. Available:
http://www.gard.no/Content/21323229/MSC.1-Circ.1526.pdf. [Accessed 16 August
2018].

B. Downs, 2017, "The Maritime Security Risk Analysis Model: Applying the Latest Risk
Assessment Techniques to Maritime Security", in Proceedings of the Marine Safety &
Security Council Vol. 64.

M. H. Kang, M. Li, B. Montrose, A. Khashnobish, S. Elliott, M. Bell and S. Pieper, 2009,
"Overview of the Security Architecture of the Comprehensive Maritime Awareness
System", in 2009 IEEE Military Communications Conference, Boston.

Z. Yazar, 2002, "A Qualitative Risk Analysis and Management Tool - CRAMM," SANS
InfoSec Reading Room.

C. J. Alberts and A. J. Dorofee, 2001, "OCTAVE Method Implementation Guide Version
2.0".[Online].Available:
https://resources.sei.cmu.edu/asset_files/UsersGuide/2001_012_001_51572.pdf.
[Accessed 16 August 2018].

ISO, 2011, “ISO/IEC 27005:2011 Information Technology -- Security Techniques --
Information Security Risk Management", International Organization for
Standardization.

ISO, 2012, “ISO/IEC 27032:2012 Information technology -- Security techniques --
Guidelines for cybersecurity”, International Organization for Standardization.

Joint Task Force Transformation Initiative Working Group, 2012, "NIST SP 800-30:
Guide for Conducting Risk Assessments", [Online]. Available:
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf.
[Accessed 16 August 2018].

A. Montfort, N. Monterde, R. Sapiña, A. M. Martin, D. Calduch and P. Vieira, 2012, “La
Terminal Portuaria de Contendedores como sistema nodal en la cadena logística”,
Valencia: Fundación Valenciaport.

J. A. Kupsch, B. P. Miller, E. Heymann and E. César, 2010, "First Principles
Vulnerability Assessment," in Proceedings of the 2010 ACM Workshop on Cloud
Computing Security, Chicago.

B. P. Miller, 2013, "Vulnerability Assessment of Open Source Wireshark and Chrome
Browser," Defense Technical Information Center, Fort Belvoir, Virginia.

"HTCondor," University of Wisconsin - Madison, [Online]. Available:
https://research.cs.wisc.edu/htcondor/index.html.

"OWASP," [Online]. Available: https://www.owasp.org/index.php/Main_Page.
[Accessed 5 December 2017].

Microsoft, 2016. Microsoft Thread Modelling Tool. [Online]. Available:
]https://www.microsoft.com/en-us/download/details.aspx?id=49168. [Accessed 16
August 2018].

Beer, 2018, “the path to EL1 in iOS 11”, Back Hat USA. [Online]. Available:
https://docs.google.com/presentation/d/16LZ6T-
tcjgp3T8_N3m0pa5kNA1DwIsuMcQYDhpMU7uU/edit#slide=id.p. [Accessed 16
August 2018].

List of Figures

Figure 1. Cyber-Physical security efforts.

Figure 2. Shipping logistic data flow.

Figure 3. Booking logistic data flow.

Figure 4. Outbound forwarding logistic data flow.

Figure 5. Outbound customs logistic data flow.

Figure 6. Outbound shipping logistic data flow.

Figure 7. Inbound shipping logistic data flow.

Figure 8. Delivery logistic data flow.

Figure 9. High-level architectural diagram for one of the modules assessed.

Figure 1. Cyber-Physical security efforts.

Figure 2. Shipping logistic data flow.

Figure 3. Booking logistic data flow.

Figure 4. Outbound forwarding logistic data flow.

Figure 5. Outbound customs logistic data flow.

Figure 6. Outbound shipping logistic data flow.

Figure 7. Inbound shipping logistic data flow.

Figure 8. Delivery logistic data flow.

Figure 9. High-level architectural diagram for one of the modules assessed.

