
Paradyn Parallel Performance Tools

ParseAPI
Programmer’s Guide

9.0 Release
Aug 2015

Computer Sciences Department

University of Wisconsin–Madison

Madison, WI 53706

Computer Science Department

University of Maryland

College Park, MD 20742

Email dyninst-api@cs.wisc.edu
Web www.dyninst.org

Contents

1 Introduction 2

2 Abstractions 2

3 Examples 3

3.1 Control flow graph traversal . 3

3.2 Loop analysis . 5

4 The Parsing API 7

4.1 Class CodeObject . 7

4.2 Class CodeRegion . 11

4.3 Class Function . 12

4.4 Class Block . 15

4.5 Class Edge . 17

4.6 Class Loop . 17

4.7 Class LoopTreeNode . 19

4.8 Class CodeSource . 20

4.9 Class ParseCallback . 22

4.10 Class FuncExtent . 23

4.11 Edge Predicates . 23

4.12 Containers . 25

A Extending ParseAPI 26

A.1 Instruction and Code Sources . 26

A.2 CFG Object Factories . 28

B Defensive Mode Parsing 29

1

1 Introduction

A binary code parser converts the machine code representation of a program, library, or code snippet
to abstractions such as the instructions, basic blocks, functions, and loops that the binary code
represents. The ParseAPI is a multi-platform library for creating such abstractions from binary
code sources. The current incarnation uses the Dyninst SymtabAPI as the default binary code
source; all platforms and architectures handled by the SymtabAPI are supported. The ParseAPI
is designed to be easily extensible to other binary code sources. Support for parsing binary code in
memory dumps or other formats requires only implementation of a small interface as described in
this document.

This API provides the user with a control flow-oriented view of a binary code source. Each code
object such as a program binary or library is represented as a top-level collection containing the
loops, functions, basic blocks, and edges that represent the control flow graph. A simple query
interface is provided for retrieving lower level objects like functions and basic blocks through address
or other attribute lookups. These objects can be used to navigate the program structure as described
below.

2 Abstractions

The basic representation of code in this API is the control flow graph (CFG). Binary code objects
are represented as regions of contiguous bytes that, when parsed, form the nodes and edges of this
graph. The following abstractions make up this CFG-oriented representation of binary code:

◦ block: Nodes in the CFG represent basic blocks: straight line sequences of instructions Ii . . . Ij
where for each i < k ≤ j, Ik postdominates Ik−1. Importantly, on some instruction set architectures
basic blocks can overlap on the same address range—variable length instruction sets allow for
multiple interpretations of the bytes making up the basic block.

◦ edge: Typed edges between the nodes in the CFG represent execution control flow, such as con-
ditional and unconditional branches, fallthrough edges, and calls and returns. The graph therefore
represents both inter- and intraprocedural control flow: traversal of nodes and edges can cross the
boundaries of the higher level abstractions like functions.

◦ function: The function is the primary semantic grouping of code in the binary, mirroring the
familiar abstraction of procedural languages like C. Functions represent the set of all basic blocks
reachable from a function entry point through intraprocedural control flow only (that is, no calls or
returns). Function entry points are determined in a variety of ways, such as hints from debugging
symbols, recursive traversal along call edges and a machine learning based function entry point
identification process.

◦ loop: The loop represents code in the binary that may execute repeatedly, corresponding to source
language constructs like for loop or while loop. We use a formal definition of loops from “Nesting
of Reducible and Irreducible Loops" by Paul Havlak. We support identifying both natural loops
(single-entry loops) and irreducible loops (multi-entry loops).

2

◦ code object: A collection of distinct code regions are represented as a single code object, such as
an executable or library. Code objects can normally be thought of as a single, discontiguous unique
address space. However, the ParseAPI supports code objects in which the different regions have
overlapping address spaces, such as UNIX archive files containing unlinked code.

◦ instruction source: An instruction source describes a backing store containing binary code. A
binary file, a library, a memory dump, or a process’s executing memory image can all be described
as an instruction source, allowing parsing of a variety of binary code objects.

◦ code source: The code source implements the instruction source interface, exporting methods
that can access the underlying bytes of the binary code for parsing. It also exports a number of
additional helper methods that do things such as returning the location of structured exception
handling routines and function symbols. Code sources are tailored to particular binary types; the
ParseAPI provides a SymtabAPI-based code source that understands ELF, COFF and PE file
formats.

3 Examples

3.1 Control flow graph traversal

The following complete example uses the ParseAPI to parse a binary and dump its control flow graph
in the Graphviz file format. As an example, it can be built with G++ as follows: g++ -std=c++0x -o
example example.cc -L<library install path> -I<headers install path> -lparseAPI -linstructionAPI
-lsymtabAPI -lsymLite -ldynDwarf -ldynElf -lcommon -L<libelf path> -lelf -L<libdwarf path> -ldwarf.
Note: this example must be compiled with C++11x support; for G++ this is enabled with -std=c++0x,
and it is on by default for Visual Studio.

1 // Example ParseAPI program; produces a graph (in DOT format) of the
// control flow graph of the provided binary.
//
// Improvements by E. Robbins (er209 at kent dot ac dot uk)
//

6

#include <stdio.h>
#include <map>
#include <vector>
#include <unordered_map>

11 #include <sstream>
#include "CodeObject.h"
#include "CFG.h"

using namespace std;
16 using namespace Dyninst;

using namespace ParseAPI;

int main(int argc, char ∗ argv[])
{

21 map<Address, bool> seen;

3

vector<Function ∗> funcs;
SymtabCodeSource ∗sts;
CodeObject ∗co;

26 // Create a new binary code object from the filename argument
sts = new SymtabCodeSource(argv[1]);
co = new CodeObject(sts);

// Parse the binary
31 co−>parse();

cout << "digraph G {" << endl;

// Print the control flow graph
const CodeObject::funclist& all = co−>funcs();

36 auto fit = all.begin();
for(int i = 0; fit != all.end(); ++fit, i++) { // i is index for clusters

Function ∗f = ∗fit;

// Make a cluster for nodes of this function
41 cout << "\t subgraph cluster_" << i

<< " { \n\t\t label=\""
<< f−>name()
<< "\"; \n\t\t color=blue;" << endl;

46 cout << "\t\t\"" << hex << f−>addr() << dec
<< "\" [shape=box";

if (f−>retstatus() == NORETURN)
cout << ",color=red";

cout << "]" << endl;
51

// Label functions by name
cout << "\t\t\"" << hex << f−>addr() << dec

<< "\" [label = \""
<< f−>name() << "\\n" << hex << f−>addr() << dec

56 << "\"];" << endl;

stringstream edgeoutput;

auto bit = f−>blocks().begin();
61 for(; bit != f−>blocks().end(); ++bit) {

Block ∗b = ∗bit;
// Don’t revisit blocks in shared code
if(seen.find(b−>start()) != seen.end())

continue;
66

seen[b−>start()] = true;

cout << "\t\t\"" << hex << b−>start() << dec <<
"\";" << endl;

71

4

auto it = b−>targets().begin();
for(; it != b−>targets().end(); ++it) {

std::string s = "";
76 if((∗it)−>type() == CALL)

s = " [color=blue]";
else if((∗it)−>type() == RET)

s = " [color=green]";

81 // Store the edges somewhere to be printed outside of the cluster
edgeoutput << "\t\""

<< hex << (∗it)−>src()−>start()
<< "\" −> \""
<< (∗it)−>trg()−>start()

86 << "\"" << s << endl;
}

}
// End cluster
cout << "\t}" << endl;

91

// Print edges
cout << edgeoutput.str() << endl;

}
cout << "}" << endl;

96 }

3.2 Loop analysis

The following code example shows how to get loop information using ParseAPI once we have an parsed
Function object.

void GetLoopInFunc(Function ∗f) {
// Get all loops in the function
vector<Loop∗> loops;

4 f−>getLoops(loops);

// Iterate over all loops
for (auto lit = loops.begin(); lit != loops.end(); ++lit) {

Loop ∗loop = ∗lit;
9

// Get all the entry blocks of the loop
vector<Block∗> entries;
loop−>getLoopEntries(entries);

14 // Get all the blocks in the loop
vector<Block∗> blocks;
loop−>getLoopBasicBlocks(blocks);

// Get all the back edges in the loop

5

19 vector<Edge∗> backEdges;
loop−>getBackEdges(backEdges);

}
}

6

4 The Parsing API

4.1 Class CodeObject

Defined in: CodeObject.h

The CodeObject class describes an individual binary code object, such as an executable or library. It is the
top-level container for parsing the object as well as accessing that parse data. The following API routines
and data types are provided to support parsing and retrieving parsing products.

typedef std::set<Function *, Function::less> funclist

Container for access to functions. Refer to Section 4.12 for details. Library users must not rely
on the underlying container type of std::set, as it is subject to change.

CodeObject(CodeSource * cs,
CFGFactory * fact = NULL,
ParseCallback * cb = NULL,
bool defensiveMode = false)

Constructs a new CodeObject from the provided CodeSource and optional object factory and
callback handlers. Any parsing hints provided by the CodeSource are processed, but the binary is
not parsed when this constructor returns.

The defensiveMode parameter optionally trades off coverage for safety; this mode is not recom-
mended for most applications as it makes very conservative assumptions about control flow transfer
instructions (see Section B).

void parse()

Recursively parses the binary represented by this CodeObject from all known function entry points
(i.e., the hints provided by the CodeSource). This method and the following parsing methods may
safely be invoked repeatedly if new information about function locations is provided through the
CodeSource. Note that these parsing methods do not automatically perform speculative gap
parsing. parseGaps should be used for this purpose.

void parse(Address target,
bool recursive)

Parses the binary starting with the instruction at the provided target address. If recursive
is true, recursive traversal parsing is used as in the default parse() method; otherwise only
instructions reachable through intraprocedural control flow are visited.

7

void parse(CodeRegion * cr,
Address target,
bool recursive)

Parses the specified core region of the binary starting with the instruction at the provided target
address. If recursive is true, recursive traversal parsing is used as in the default parse()method;
otherwise only instructions reachable through intraprocedural control flow are visited.

struct NewEdgeToParse {
Block *source;
Address target;
EdgeTypeEnum type;

}
bool parseNewEdges(vector<NewEdgeToParse> & worklist)

Parses a set of newly created edges specified in the worklist supplied that were not included when
the function was originally parsed.

ParseAPI is able to speculatively parse gaps (regions of binary that has not been identified as code or data
yet) to identify function entry points and perform control flow traversal.

GapParsingType Technique description

PreambleMatching If instruction patterns are matched at an adderss, the address is a
function entry point

IdiomMatching Based on a pre-trained model, this technique calculates the probability
of an address to be a function entry point and predicts whether which
addresses are function entry points

void parseGaps(CodeRegion *cr,
GapParsingType type=IdiomMatching)

Speculatively parse the indicated region of the binary using the specified technique to find likely
function entry points, enabled on the x86 and x86-64 platforms.

Function * findFuncByEntry(CodeRegion * cr,
Address entry)

Find the function starting at address entry in the indicated CodeRegion. Returns null if no such
function exists.

int findFuncs(CodeRegion * cr,
Address addr,
std::set<Function*> & funcs)

8

Finds all functions spanning addr in the code region, adding each to funcs. The number of results
of this stabbing query are returned.

int findFuncs(CodeRegion * cr,
Address start,
Address end,
std::set<Function*> & funcs)

Finds all functions overlapping the range [start,end) in the code region, adding each to funcs.
The number of results of this stabbing query are returned.

const funclist & funcs()

Returns a const reference to a container of all functions in the binary. Refer to Section 4.12 for
container access details.

Block * findBlockByEntry(CodeRegion * cr,
Address entry)

Find the basic block starting at address entry. Returns null if no such block exists.

int findBlocks(CodeRegion * cr,
Address addr,
std::set<Block*> & blocks)

Finds all blocks spanning addr in the code region, adding each to blocks. Multiple blocks can
be returned only on platforms with variable-length instruction sets (such as IA32) for which
overlapping instructions are possible; at most one block will be returned on all other platforms.

Block * findNextBlock(CodeRegion * cr,
Address addr)

Find the next reachable basic block starting at address entry. Returns null if no such block
exists.

CodeSource * cs()

Return a reference to the underlying CodeSource.

CFGFactory * fact()

9

Return a reference to the CFG object factory.

bool defensiveMode()

Return a boolean specifying whether or not defensive mode is enabled.

bool isIATcall(Address insn,
std::string &calleeName)

Returns a boolean specifying if the address at addr is located at the call named in calleeName.

void startCallbackBatch()

Starts a batch of callbacks that have been registered.

void finishCallbackBatch()

Completes all callbacks in the current batch.

void registerCallback(ParseCallback *cb);

Register a callback cb

void unregisterCallback(ParseCallback *cb);

Unregister an existing callback cb

void finalize()

Force complete parsing of the CodeObject; parsing operations are otherwise completed only as
needed to answer queries.

void destroy(Edge *)

Destroy the edge listed.

void destroy(Block *)

Destroy the code block listed.

void destroy(Function *)

Destroy the function listed.

10

4.2 Class CodeRegion

Defined in: CodeSource.h

The CodeRegion interface is an accounting structure used to divide CodeSources into distinct regions. This
interface is mostly of interest to CodeSource implementors.

void names(Address addr,
vector<std::string> & names)

Fills the provided vector with any names associated with the function at a given address in the
region, e.g. symbol names in an ELF or PE binary.

virtual bool findCatchBlock(Address addr,
Address & catchStart)

Finds the exception handler associated with an address, if one exists. This routine is only
implemented for binary code sources that support structured exception handling, such as the
SymtabAPI-based SymtabCodeSource provided as part of the ParseAPI.

Address low()

The lower bound of the interval of address space covered by this region.

Address high()

The upper bound of the interval of address space covered by this region.

bool contains(Address addr)

Returns true if addr ∈ [low(), high()), false otherwise.

virtual bool wasUserAdded() const

Return true if this region was added by the user, false otherwise.

11

4.3 Class Function

Defined in: CFG.h

The Function class represents the portion of the program CFG that is reachable through intraprocedural
control flow transfers from the function’s entry block. Functions in the ParseAPI have only a single entry
point; multiple-entry functions such as those found in Fortran programs are represented as several functions
that “share” a subset of the CFG. Functions may be non-contiguous and may share blocks with other
functions.

FuncSource Meaning

RT recursive traversal (default)
HINT specified in CodeSource hints
GAP speculative parsing heuristics
GAPRT recursive traversal from speculative parse
ONDEMAND dynamically discovered at runtime
MODIFICATION Added via user modification

Return status of an function, which indicates whether this function will return to its caller or not;
see description below.

FuncReturnStatus Meaning

UNSET unparsed function (default)
NORETURN will not return
UNKNOWN cannot be determined statically
RETURN may return

typedef boost::transform_iterator<selector, blockmap::iterator> bmap_iterator
typedef boost::transform_iterator<selector, blockmap::const_iterator> bmap_const_iterator
typedef boost::iterator_range<bmap_iterator> blocklist
typedef boost::iterator_range<bmap_const_iterator> const_blocklist
typedef std::set<Edge*> edgelist

Containers for block and edge access. Library users must not rely on the underlying container
type of std::set/std::vector lists, as it is subject to change.

12

Method name Return type Method description

name string Name of the function.
addr Address Entry address of the function.
entry Block * Entry block of the function.
parsed bool Whether the function has been parsed.
blocks blocklist & List of blocks contained by this function sorted by entry

address.
callEdges const edgelist & List of outgoing call edges from this function.
returnBlocks const_blocklist & List of all blocks ending in return edges.
exitBlocks const_blocklist & List of all blocks that end the function, including blocks

with no out-edges.
hasNoStackFrame bool True if the function does not create a stack frame.
savesFramePointer bool True if the function saves a frame pointer (e.g. %ebp).
cleansOwnStack bool True if the function tears down stack-passed arguments

upon return.
region CodeRegion * Code region that contains the function.
isrc InstructionSource * The InstructionSource for this function.
obj CodeObject * CodeObject that contains this function.
src FuncSrc The type of hint that identified this function’s entry

point.
restatus FuncReturnStatus * Returns the best-effort determination of whether this

function may return or not. Return status cannot always
be statically determined, and at most can guarantee that
a function may return, not that it will return.

getReturnType Type * Type representing the return type of the function.

Function(Address addr,
string name,
CodeObject * obj,
CodeRegion * region,
InstructionSource * isource)

Creates a function at addr in the code region specified. Insructions for this function are given in
isource.

LoopTreeNode* getLoopTree()

Return the nesting tree of the loops in the function. See class LoopTreeNode for more details

Loop* findLoop(const char *name)

Return the loop with the given nesting name. See class LoopTreeNode for more details about how
loop nesting names are assigned.

bool getLoops(vector<Loop*> &loops);

13

Fill loops with all the loops in the function

bool getOuterLoops(vector<Loop*> &loops);

Fill loops with all the outermost loops in the function

bool dominates(Block* A, Block *B);

Return true if block A dominates block B

Block* getImmediateDominator(Block *A);

Return the immediate dominator of block AïĳŇNULL if the block A does not have an immediate
dominator.

void getImmediateDominates(Block *A, set<Block*> &imm);

Fill imm with all the blocks immediate dominated by block A

void getAllDominates(Block *A, set<Block*> &dom);

Fill dom with all the blocks dominated by block A

bool postDominates(Block* A, Block *B);

Return true if block A post-dominates block B

Block* getImmediatePostDominator(Block *A);

Return the immediate post-dominator of block AïĳŇNULL if the block A does not have an immediate
post-dominator.

void getImmediatePostDominates(Block *A, set<Block*> &imm);

Fill imm with all the blocks immediate post-dominated by block A

void getAllPostDominates(Block *A, set<Block*> &dom);

14

Fill dom with all the blocks post-dominated by block A

std::vector<FuncExtent *> const& extents()

Returns a list of contiguous extents of binary code within the function.

void setEntryBlock(block * new_entry)

Set the entry block for this function to new_entry.

void set_retstatus(FuncReturnStatus rs)

Set the return status for the function to rs.

bool contains(Block *b)

Return true if this function contains the given block b; otherwise false.

void removeBlock(Block *)

Remove a basic block from the function.

4.4 Class Block

Defined in: CFG.h

A Block represents a basic block as defined in Section 2, and is the lowest level representation of code in
the CFG.

typedef std::vector<Edge *> edgelist

Container for edge access. Refer to Section 4.12 for details. Library users must not rely on the
underlying container type of std::vector, as it is subject to change.

15

Method name Return type Method description

start Address Address of the first instruction in the block.
end Address Address immediately following the last instruction in the

block.
last Address Address of the last instruction in the block.
lastInsnAddr Address Alias of last.
size Address Size of the block; end - start.
parsed bool Whether the block has been parsed.
obj CodeObject * CodeObject containing this block.
region CodeRegion * CodeRegion containing this block.
sources const edgelist & List of all in-edges to the block.
targets const edgelist & List of all out-edges from the block.
containingFuncs int Number of Functions that contain this block.

bool consistent(Address addr,
Address & prev_insn)

Check whether address addr is consistent with this basic block. An address is consistent if it is the
boundary between two instructions in the block. As long as addr is within the range of the block,
prev_insn will contain the address of the previous instruction boundary before addr, regardless
of whether addr is consistent or not.

void getFuncs(std::vector<Function *> & funcs)

Fills in the provided vector with all functions that share this basic block.

template <class OutputIterator>
void getFuncs(OutputIterator result)

Generic version of the above; adds each Function that contains this block to the provided Out-
putIterator. For example:

std::set<Function ∗> funcs;
block−>getFuncs(std::inserter(funcs, funcs.begin()));

typedef std::map<Offset, InstructionAPI::Instruction::Ptr> Insns
void getInsns(Insns &insns) const

Disassembles the block and stores the result in Insns.

InstructionAPI::Instruction::Ptr getInsn(Offset o) const

Returns the instruction starting at offset o within the block. Returns InstructionAPI::Instruction::Ptr()
if o is outside the block, or if an instruction does not begin at o.

16

4.5 Class Edge

Defined in: CFG.h

Typed Edges join two blocks in the CFG, indicating the type of control flow transfer instruction that joins
the blocks to each other. Edges may not correspond to a control flow transfer instruction at all, as in the
case of the fallthrough edge that indicates where straight-line control flow is split by incoming transfers
from another location, such as a branch. While not all blocks end in a control transfer instruction, all
control transfer instructions end basic blocks and have outgoing edges; in the case of unresolvable control
flow, the edge will target a special “sink” block (see sinkEdge(), below).

EdgeTypeEnum Meaning

CALL call edge
COND_TAKEN conditional branch–taken
COND_NOT_TAKEN conditional branch–not taken
INDIRECT branch indirect
DIRECT branch direct
FALLTHROUGH direct fallthrough (no branch)
CATCH exception handler
CALL_FT post-call fallthrough
RET return

Method name Return type Method description

src Block * Source of the edge.
trg Block * Target of the edge.
type EdgeTypeEnum Type of the edge.
sinkEdge bool True if the target is the sink block.
interproc bool True if the edge should be interpreted as interprocedu-

ral (e.g. calls, returns, unconditional or conditional tail
calls).

4.6 Class Loop

Defined in: CFG.h

The Loop class represents code that may execute repeatedly. We detect both natural loops (loops that have
a single entry block) and irreducible loops (loops that have multiple entry blocks). A back edge is defined
as an edge that has its source in the loop and has its target being an entry block of the loop. It represents
the end of an iteration of the loop. For all the loops detected in a function, we also build a loop nesting
tree to represent the nesting relations between the loops. See class LoopTreeNode for more details.

Loop* parent

Returns the loop which directly encloses this loop. NULL if no such loop.

17

bool containsAddress(Address addr)

Returns true if the given address is within the range of this loop’s basic blocks.

bool containsAddressInclusive(Address addr)

Returns true if the given address is within the range of this loop’s basic blocks or its children.

int getLoopEntries(vector<Block*>& entries);

Fills entries with the set of entry basic blocks of the loop. Return the number of the entries that
this loop has

int getBackEdges(vector<Edge*> &edges)

Sets edges to the set of back edges in this loop. It returns the number of back edges that are in
this loop.

bool getContainedLoops(vector<Loop*> &loops)

Returns a vector of loops that are nested under this loop.

bool getOuterLoops(vector<Loop*> &loops)

Returns a vector of loops that are directly nested under this loop.

bool getLoopBasicBlocks(vector<Block*> &blocks)

Fills blocks with all basic blocks in the loop

bool getLoopBasicBlocksExclusive(vector<Block*> &blocks)

Fills blocks with all basic blocks in this loop, excluding the blocks of its sub loops.

bool hasBlock(Block *b);

Returns true if this loop contains basic block b.

18

bool hasBlockExclusive(Block *b);

Returns true if this loop contains basic block b and b is not in its sub loops.

bool hasAncestor(Loop *loop)

Returns true if this loop is a descendant of the given loop.

Function * getFunction();

Returns the function that this loop is in.

4.7 Class LoopTreeNode

Defined in: CFG.h The LoopTreeNode class provides a tree interface to a collection of instances of class
Loop contained in a function. The structure of the tree follows the nesting relationship of the loops in a
function. Each LoopTreeNode contains a pointer to a loop (represented by Loop), and a set of sub-loops
(represented by other LoopTreeNode objects). The loop field at the root node is always NULL since a
function may contain multiple outer loops. The loop field is never NULL at any other node since it always
corresponds to a real loop. Therefore, the outer most loops in the function are contained in the vector of
children of the root.

Each instance of LoopTreeNode is given a name that indicates its position in the hierarchy of loops. The
name of each outermost loop takes the form of loop_x, where x is an integer from 1 to n, where n is the
number of outer loops in the function. Each sub-loop has the name of its parent, followed by a .y, where
y is 1 to m, where m is the number of sub-loops under the outer loop. For example, consider the following
C function:

void foo() {
int x, y, z, i;
for (x=0; x<10; x++) {
for (y = 0; y<10; y++)
...

for (z = 0; z<10; z++)
...

}
for (i = 0; i<10; i++) {

...
}

}

The foo function will have a root LoopTreeNode, containing a NULL loop entry and two LoopTreeNode
children representing the functions outermost loops. These children would have names loop_1 and loop_2,
respectively representing the x and i loops. loop_2 has no children. loop_1 has two child LoopTreeNode
objects, named loop_1.1 and loop_1.2, respectively representing the y and z loops.

19

Loop *loop;

The Loop instance it points to.

std::vector<LoopTreeNode *> children;

The LoopTreeNode instances nested within this loop.

const char * name();

Returns the hierarchical name of this loop.

const char * getCalleeName(unsigned int i)

Returns the function name of the ith callee.

unsigned int numCallees()

Returns the number of callees contained in this loop’s body.

bool getCallees(vector<Function *> &v);

Fills v with a vector of the functions called inside this loop.

Loop * findLoop(const char *name);

Looks up a loop by the hierarchical name

4.8 Class CodeSource

Defined in: CodeSource.h

The CodeSource interface is used by the ParseAPI to retrieve binary code from an executable, library,
or other binary code object; it also can provide hints of function entry points (such as those derived
from debugging symbols) to seed the parser. The ParseAPI provides a default implementation based
on the SymtabAPI that supports many common binary formats. For details on implementing a custom
CodeSource, see Appendix A.

virtual bool nonReturning(Address func_entry)
virtual bool nonReturning(std::string func_name)

20

Looks up whether a function returns (by name or location). This information may be statically
known for some code sources, and can lead to better parsing accuracy.

virtual bool nonReturningSyscall(int /*number*/)

Looks up whether a system call returns (by system call number). This information may be
statically known for some code sources, and can lead to better parsing accuracy.

virtual Address baseAddress()
virtual Address loadAddress()

If the binary file type supplies non-zero base or load addresses (e.g. Windows PE), implementations
should override these functions.

std::map< Address, std::string > & linkage()

Returns a reference to the external linkage map, which may or may not be filled in for a particular
CodeSource implementation.

struct Hint {
Address addr;
CodeRegion *region;
std::string name;
Hint(Addr, CodeRegion *, std::string);

}
std::vector< Hint > const& hints()

Returns a vector of the currently defined function entry hints.

std::vector<CodeRegion *> const& regions()

Returns a read-only vector of code regions within the binary represented by this code source.

int findRegions(Address addr,
set<CodeRegion *> & ret)

Finds all CodeRegion objects that overlap the provided address. Some code sources (e.g. archive
files) may have several regions with overlapping address ranges; others (e.g. ELF binaries) do not.

bool regionsOverlap()

Indicates whether the CodeSource contains overlapping regions.

21

4.9 Class ParseCallback

Defined in: ParseCallback.h

The ParseCallback class allows ParseAPI users to be notified of various events during parsing. For most
users this notification is unnecessary, and an instantiation of the default ParseCallback can be passed to
the CodeObject during initialization. Users who wish to be notified must implement a class that inherits
from ParseCallback, and implement one or more of the methods described below to receive notification of
those events.

struct default_details {
default_details(unsigned char * b,size_t s, bool ib);
unsigned char * ibuf;
size_t isize;
bool isbranch;

}

Details used in the unresolved_cf and abruptEnd_cf callbacks.

virtual void instruction_cb(Function *,
Block *,
Address,
insn_details *)

Invoked for each instruction decoded during parsing. Implementing this callback may incur sig-
nificant overhead.

struct insn_details {
InsnAdapter::InstructionAdapter * insn;

}

void interproc_cf(Function *,
Address,
interproc_details *)

Invoked for each interprocedural control flow instruction.

struct interproc_details {
typedef enum {

ret,
call,
branch_interproc, // tail calls, branches to plts
syscall

} type_t;
unsigned char * ibuf;

22

size_t isize;
type_t type;
union {

struct {
Address target;
bool absolute_address;
bool dynamic_call;

} call;
} data;

}

Details used in the interproc_cf callback.

void overlapping_blocks(Block *,
Block *)

Noification of inconsistent parse data (overlapping blocks).

4.10 Class FuncExtent

Defined in: CFG.h

Function Extents are used internally for accounting and lookup purposes. They may be useful for users
who wish to precisely identify the ranges of the address space spanned by functions (functions are often
discontiguous, particularly on architectures with variable length instruction sets).

Method name Return type Method description

func Function * Function linked to this extent.
start Address Start of the extent.
end Address End of the extent (exclusive).

4.11 Edge Predicates

Defined in: CFG.h

Edge predicates control iteration over edges. For example, the provided Intraproc edge predicate can
be used with filter iterators and standard algorithms, ensuring that only intraprocedural edges are visited
during iteration. Two other examples of edge predicates are provided: SingleContext only visits edges
that stay in a single function context, and NoSinkPredicate does not visit edges to the sink block. The
following code traverses all of the basic blocks within a function:

#include <boost/filter_iterator.hpp>
2 using boost::make_filter_iterator;

struct target_block
{
Block∗ operator()(Edge∗ e) { return e−>trg(); }

23

};
7

vector<Block∗> work;
Intraproc epred; // ignore calls, returns

12 work.push_back(func−>entry()); // assuming ‘func’ is a Function∗

// do_stuff is a functor taking a Block∗ as its argument
while(!work.empty()) {

Block ∗ b = work.back();
17 work.pop_back();

Block::edgelist & targets = block−>targets();
// Do stuff for each out edge
std::for_each(make_filter_iterator(targets.begin(), epred),

22 make_filter_iterator(targets.end(), epred),
do_stuff());

std::transform(make_filter_iterator(targets.begin(), epred),
make_filter_iterator(targets.end(), epred),
std::back_inserter(work),

27 std::mem_fun(Edge::trg));
Block::edgelist::const_iterator found_interproc =

std::find_if(targets.begin(), targets.end(), Interproc());
if(interproc != targets.end()) {

// do something with the interprocedural edge you found
32 }

}

Anything that can be treated as a function from Edge* to a bool can be used in this manner. This replaces
the beta interface where all EdgePredicates needed to descend from a common parent class. Code that
previously constructed iterators from an edge predicate should be replaced with equivalent code using filter
iterators as follows:

1 // OLD
for(Block::edgelist::iterator i = targets.begin(epred);

i != targets.end(epred);
i++)

{
6 // ...

}
// NEW
for_each(make_filter_iterator(epred, targets.begin(), targets.end()),

make_filter_iterator(epred, targets.end(), targets,end()),
11 loop_body_as_function);

// NEW (C++11)
for(auto i = make_filter_iterator(epred, targets.begin(), targets.end());

i != make_filter_iterator(epred, targets.end(), targets.end());
i++)

16 {
// ...

24

}

4.12 Containers

Several of the ParseAPI data structures export containers of CFG objects; the CodeObject provides a
list of functions in the binary, for example, while functions provide lists of blocks and so on. To avoid
tying the internal storage for these structures to any particular container type, ParseAPI objects export
a ContainerWrapper that provides an iterator interface to the internal containers. These wrappers and
predicate interfaces are designed to add minimal overhead while protecting ParseAPI users from exposure
to internal container storage details. Users must not rely on properties of the underlying container type
(e.g. storage order) unless that property is explicity stated in this manual.

ContainerWrapper containers export the following interface (iterator types vary depending on the tem-
plate parameters of the ContainerWrapper, but are always instantiations of the PredicateIterator described
below):

iterator begin()
iterator begin(predicate *)

Return an iterator pointing to the beginning of the container, with or without a filtering predicate
implementation (see Section 4.11 for details on filter predicates).

iterator const& end()

Return the iterator pointing to the end of the container (past the last element).

size_t size()

Returns the number of elements in the container. Execution cost may vary depending on the
underlying container type.

bool empty()

Indicates whether the container is empty or not.

The elements in ParseAPI containers can be accessed by iteration using an instantiation of the PredicateIt-
erator. These iterators can optionally act as filters, evaluating a boolean predicate for each element and
only returning those elements for which the predicate returns true. Iterators with non-null predicates
may return fewer elements during iteration than their size() method indicates. Currently PredicateItera-
tors only support forward iteration. The operators ++ (prefix and postfix), ==, !=, and * (dereference) are
supported.

25

A Extending ParseAPI

The ParseAPI is design to be a low level toolkit for binary analysis tools. Users can extend the ParseAPI
in two ways: by extending the control flow structures (Functions, Blocks, and Edges) to incorporate ad-
ditional data to support various analysis applications, and by adding additional binary code sources that
are unsupported by the default SymtabAPI-based code source. For example, a code source that represents
a program image in memory could be implemented by fulfilling the CodeSource and InstructionSource in-
terfaces described in Section 4.8 and below. Implementations that extend the CFG structures need only
provide a custom allocation factory in order for these objects to be allocated during parsing.

A.1 Instruction and Code Sources

A CodeSource, as described above, exports its own and the InstructionSource interface for access to binary
code and other details. In addition to implementing the virtual methods in the CodeSource base class
(Section 4.8), the methods in the pure-virtual InstructionSource class must be implemented:

virtual bool isValidAddress(const Address)

Returns true if the address is a valid code location.

virtual void* getPtrToInstruction(const Address)

Returns pointer to raw memory in the binary at the provided address.

virtual void* getPtrToData(const Address)

Returns pointer to raw memory in the binary at the provided address. The address need not
correspond to an executable code region.

virtual unsigned int getAddressWidth()

Returns the address width (e.g. four or eight bytes) for the represented binary.

virtual bool isCode(const Address)

Indicates whether the location is in a code region.

virtual bool isData(const Address)

Indicates whether the location is in a data region.

26

virtual Address offset()

The start of the region covered by this instruction source.

virtual Address length()

The size of the region.

virtual Architecture getArch()

The architecture of the instruction source. See the Dyninst manual for details on architecture
differences.

virtual bool isAligned(const Address)

For fixed-width instruction architectures, must return true if the address is a valid instruction
boundary and false otherwise; otherwise returns true. This method has a default implementation
that should be sufficient.

CodeSource implementors need to fill in several data structures in the base CodeSource class:

std::map<Address, std::string> _linkage

Entries in the linkage map represent external linkage, e.g. the PLT in ELF binaries. Filling in
this map is optional.

Address _table_of_contents

Many binary format have “table of contents” structures for position independant references. If
such a structure exists, its address should be filled in.

std::vector<CodeRegion *> _regions
Dyninst::IBSTree<CodeRegion> _region_tree

One or more contiguous regions of code or data in the binary object must be registered with the
base class. Keeping these structures in sync is the responsibility of the implementing class.

std::vector<Hint> _hints

CodeSource implementors can supply a set of Hint objects describing where functions are known
to start in the binary. These hints are used to seed the parsing algorithm. Refer to the CodeSource
header file for implementation details.

27

A.2 CFG Object Factories

Users who which to incorporate the ParseAPI into large projects may need to store additional information
about CFG objects like Functions, Blocks, and Edges. The simplest way to associate the ParseAPI-level
CFG representation with higher-level implementation is to extend the CFG classes provided as part of the
ParseAPI. Because the parser itself does not know how to construct such extended types, implementors must
provide an implementation of the CFGFactory that is specialized for their CFG classes. The CFGFactory
exports the following simple interface:

virtual Function * mkfunc(Address addr,
FuncSource src,
std::string name,
CodeObject * obj,
CodeRegion * region,
Dyninst::InstructionSource * isrc)

Returns an object derived from Function as though the provided parameters had been passed to
the Function constructor. The ParseAPI parser will never invoke mkfunc() twice with identical
addr, and region parameters—that is, Functions are guaranteed to be unique by address within
a region.

virtual Block * mkblock(Function * func,
CodeRegion * region,
Address addr)

Returns an object derived from Block as though the provided parameters had been passed to
the Block constructor. The parser will never invoke mkblock() with identical addr and region
parameters.

virtual Edge * mkedge(Block * src,
Block * trg,
EdgeTypeEnum type)

Returns an object derived from Edge as though the provided parameters had been passed to the
Edge constructor. The parser may invoke mkedge() multiple times with identical parameters.

virtual Block * mksink(CodeObject *obj,
CodeRegion *r)

Returns a “sink” block derived from Block to which all unresolvable control flow instructions will
be linked. Implementors may return a unique sink block per CodeObject or a single global sink.

Implementors of extended CFG classes are required to override the default implementations of the mk*
functions to allocate and return the appropriate derived types statically cast to the base type. Implementors
must also add all allocated objects to the following internal lists:

28

fact_list<Edge> edges_
fact_list<Block> blocks_
fact_list<Function> funcs_

O(1) allocation lists for CFG types. See the CFG.h header file for list insertion and removal
operations.

Implementors may but are not required to override the deallocation following deallocation routines. The
primary reason to override these routines is if additional action or cleanup is necessary upon CFG object
release; the default routines simply remove the objects from the allocation list and invoke their destructors.

virtual void free_func(Function * f)
virtual void free_block(Block * b)
virtual void free_edge(Edge * e)
virtual void free_all()

CFG objects should be freed using these functions, rather than delete, to avoid leaking memory.

B Defensive Mode Parsing

Binary code that defends itself against analysis may violate the assumptions made by the the ParseAPI’s
standard parsing algorithm. Enabling defensive mode parsing activates more conservative assumptions that
substantially reduce the percentage of code that is analyzed by the ParseAPI. For this reason, defensive
mode parsing is best-suited for use of ParseAPI in conjunction with dynamic analysis techniques that can
compensate for its limited coverage of the binary code.

29

	Introduction
	Abstractions
	Examples
	Control flow graph traversal
	Loop analysis

	The Parsing API
	Class CodeObject
	Class CodeRegion
	Class Function
	Class Block
	Class Edge
	Class Loop
	Class LoopTreeNode
	Class CodeSource
	Class ParseCallback
	Class FuncExtent
	Edge Predicates
	Containers

	Extending ParseAPI
	Instruction and Code Sources
	CFG Object Factories

	Defensive Mode Parsing

