

dyninstAPI 12/16/2015

Paradyn Parallel Performance Tools

Dyninst
Programmer’s Guide

Release 9.1
December 2015

Computer Science Department
University of Wisconsin-Madison
Madison, WI 53706

Computer Science Department
University of Maryland
College Park, MD 20742

Email: dyninst-api@cs.wisc.edu

Web: www.dyninst.org

dyninstAPI

1. Introduction.. 1

2. Abstractions ... 2

3. Examples .. 4

3.1 INSTRUMENTING A FUNCTION .. 4
3.2 BINARY ANALYSIS ... 6
3.3 INSTRUMENTING MEMORY ACCESSES ... 7

4. Interface ... 8

4.1 CLASS BPATCH ... 8
4.2 CALLBACKS ... 13

4.2.1 Asynchronous Callbacks .. 14
4.2.2 Code Discovery Callbacks ... 14
4.2.3 Code Overwrite Callbacks ... 15
4.2.4 Dynamic calls ... 15
4.2.5 Dynamic libraries ... 15
4.2.6 Errors ... 16
4.2.7 Exec .. 16
4.2.8 Exit ... 16
4.2.9 Fork .. 16
4.2.10 One Time Code ... 17
4.2.11 Signal Handler ... 17
4.2.12 Stopped Threads ... 18
4.2.13 User-triggered callbacks .. 18

4.3 CLASS BPATCH_ADDRESSSPACE ... 18
4.4 CLASS BPATCH_PROCESS .. 23
4.5 CLASS BPATCH_THREAD ... 26
4.6 CLASS BPATCH_BINARYEDIT .. 27
4.7 CLASS BPATCH_SOURCEOBJ ... 28
4.8 CLASS BPATCH_FUNCTION .. 29
4.9 CLASS BPATCH_POINT .. 32
4.10 CLASS BPATCH_IMAGE ... 34
4.11 CLASS BPATCH_OBJECT .. 37
4.12 CLASS BPATCH_MODULE .. 39
4.13 CLASS BPATCH_SNIPPET ... 42
4.14 CLASS BPATCH_TYPE.. 48
4.15 CLASS BPATCH_VARIABLEEXPR ... 50
4.16 CLASS BPATCH_FLOWGRAPH ... 51
4.17 CLASS BPATCH_BASICBLOCK ... 52
4.18 CLASS BPATCH_EDGE ... 54
4.19 CLASS BPATCH_BASICBLOCKLOOP .. 55
4.20 CLASS BPATCH_LOOPTREENODE ... 57
4.21 CLASS BPATCH_REGISTER .. 58
4.22 CLASS BPATCH_SOURCEBLOCK .. 59
4.23 CLASS BPATCH_CBLOCK ... 59
4.24 CLASS BPATCH_FRAME... 59
4.25 CLASS STACKMOD .. 60
4.26 CONTAINER CLASSES... 62

4.26.1 Class std::vector ... 62
4.26.2 Class BPatch_Set ... 62

4.27 MEMORY ACCESS CLASSES ... 63
4.27.1 Class BPatch_memoryAccess ... 63

dyninstAPI

4.27.2 Class BPatch_addrSpec_NP .. 64
4.27.3 Class BPatch_countSpec_NP ... 65

4.28 TYPE SYSTEM .. 65

5. Using DyninstAPI with the component libraries .. 67

6. Using the API... 68

6.1 OVERVIEW OF MAJOR STEPS ... 68
6.2 BUILDING AND INSTALLING DYNINSTAPI .. 68

6.2.1 Quick upgrade guide for existing Dyninst users .. 68
6.2.2 New capabilities ... 69
6.2.3 Building on Windows ... 70
6.2.4 Configuration notes .. 70

6.3 CREATING A MUTATOR PROGRAM... 70
6.4 SETTING UP THE APPLICATION PROGRAM (MUTATEE) ... 71
6.5 RUNNING THE MUTATOR ... 72
6.6 OPTIMIZING DYNINST PERFORMANCE ... 72

6.6.1 Optimizing Mutator Performance .. 72
6.6.2 Optimizing Mutatee Performance .. 73

Appendix A - Complete Examples .. 76

6.1 INSTRUMENTING A FUNCTION .. 76
6.2 BINARY ANALYSIS ... 79
6.3 INSTRUMENTING MEMORY ACCESSES ... 81
6.4 RETEE .. 83

Appendix B - Running the Test Cases ... 89

Appendix C - Common pitfalls.. 93

References ... 96

 Page 1

dyninstAPI

1. INTRODUCTION

The normal cycle of developing a program is to edit the source code, compile it, and then execute

the resulting binary. However, sometimes this cycle can be too restrictive. We may wish to

change the program while it is executing or after it has been linked, thus avoiding the process of

re-compiling, re-linking, or even re-executing the program to change the binary. At first, this

may seem like a bizarre goal, however, there are several practical reasons why we may wish to

have such a system. For example, if we are measuring the performance of a program and discov-

er a performance problem, it might be necessary to insert additional instrumentation into the pro-

gram to understand the problem. Another application is performance steering; for large simula-

tions, computational scientists often find it advantageous to be able to make modifications to the

code and data while the simulation is executing.

This document describes an Application Program Interface (API) to permit the insertion of code

into a computer application that is either running or on disk. The API for inserting code into a

running application, called dynamic instrumentation, shares much of the same structure as the

API for inserting code into an executable file or library, known as static instrumentation. The

API also permits changing or removing subroutine calls from the application program. Binary

code changes are useful to support a variety of applications including debugging, performance

monitoring, and to support composing applications out of existing packages. The goal of this

API is to provide a machine independent interface to permit the creation of tools and applications

that use runtime and static code patching. The API and a simple test application are described in

[1]. This API is based on the idea of dynamic instrumentation described in [3].

The key features of this interface are the abilities to:

 Insert and change instrumentation in a running program.

 Insert instrumentation into a binary on disk and write a new copy of that binary back to

disk.

 Perform static and dynamic analysis on binaries and processes.

The goal of this API is to keep the interface small and easy to understand. At the same time, it

needs to be sufficiently expressive to be useful for a variety of applications. We accomplished

this goal by providing a simple set of abstractions and a way to specify which code to insert into

the application
1
.

1 To generate more complex code, extra (initially un-called) subroutines can be linked into the application program, and calls to

these subroutines can be inserted at runtime via this interface.

 Page 2

dyninstAPI

2. ABSTRACTIONS

The DyninstAPI library provides an interface for instrumenting and working with binaries and

processes. The user writes a mutator, which uses the DyninstAPI library to operate on the appli-

cation. The process that contains the mutator and DyninstAPI library is known as the mutator

process. The mutator process operates on other processes or on-disk binaries, which are known

as mutatees.

The API is based on abstractions of a program. For dynamic instrumentation, it can be based on

the state while in execution. The two primary abstractions in the API are points and snippets. A

point is a location in a program where instrumentation can be inserted. A snippet is a representa-

tion of some executable code to be inserted into a program at a point. For example, if we wished

to record the number of times a procedure was invoked, the point would be entry point of the

procedure, and the snippets would be a statement to increment a counter. Snippets can include

conditionals and function calls.

Mutatees are represented using an address space abstraction. For dynamic instrumentation, the

address space represents a process and includes any dynamic libraries loaded with the process.

For static instrumentation, the address space includes a disk executable and includes any dynam-

ic library files on which the executable depends. The address space abstraction is extended by

process and binary abstractions for dynamic and static instrumentation. The process abstraction

represents information about a running process such as threads or stack state. The binary ab-

straction represents information about a binary found on disk.

The code and data represented by an address space is broken up into function and variable ab-

stractions. Functions contain points, which specify locations to insert instrumentation. Func-

tions also contain a control flow graph abstraction, which contains information about basic

blocks, edges, loops, and instructions. If the mutatee contains debug information, DyninstAPI

will also provide abstractions about variable and function types, local variables, function param-

eters, and source code line information. The collection of functions and variables in a mutatee is

represented as an image.

The API includes a simple type system based on structural equivalence. If mutatee programs

have been compiled with debugging symbols and the symbols are in a format that Dyninst under-

stands, type checking is performed on code to be inserted into the mutatee. See Section 4.28 for

a complete description of the type system.

Due to language constructs or compiler optimizations, it may be possible for multiple functions

to overlap (that is, share part of the same function body) or for a single function to have multiple

entry points. In practice, it is impossible to determine the difference between multiple overlap-

ping functions and a single function with multiple entry points. The DyninstAPI uses a model

where each function (BPatch_function object) has a single entry point, and multiple functions

may overlap (share code). We guarantee that instrumentation inserted in a particular function is

 Page 3

dyninstAPI

only executed in the context of that function, even if instrumentation is inserted into a location

that exists in multiple functions.

 Page 4

dyninstAPI

3. EXAMPLES

To illustrate the ideas of the API, we present several short examples that demonstrate how the

API can be used. The full details of the interface are presented in the next section. To prevent

confusion, we refer to the application process or binary that is being modified as the mutatee, and

the program that uses the API to modify the application as the mutator. The mutator is a separate

process from the application process.

The examples in this section are simple code snippets, not complete programs. Appendix A -

Complete Examples provides several examples of complete Dyninst programs.

3.1 Instrumenting a function

A mutator program must create a single instance of the class BPatch. This object is used to ac-

cess functions and information that are global to the library. It must not be destroyed until the

mutator has completely finished using the library. For this example, we assume that the mutator

program has declared a global variable called bpatch of class BPatch.

All instrumentation is done with a BPatch_addressSpace object, which allows us to write codes

that work for both dynamic and static instrumentation. During initialization we use either

BPatch_process to attach to or create a process, or BPatch_binaryEdit to open a file on disk.

When instrumentation is completed, we will either run the BPatch_process, or write the

BPatch_binaryEdit back onto the disk.

The mutator first needs to identify the application to be modified. If the process is already in ex-

ecution, this can be done by specifying the executable file name and process id of the application

as arguments in order to create an instance of a process object:

BPatch_process *appProc = bpatch.processAttach(name, processId);

This creates a new instance of the BPatch_process class that refers to the existing process. It

had no effect on the state of the process (i.e., running or stopped). If the process has not been

started, the mutator specifies the pathname and argument list of a program it seeks to execute:

BPatch_process *appProc = bpatch.processCreate(pathname, argv);

If the mutator is opening a file for static binary rewriting, it executes:

BPatch_binaryEdit *appBin = bpatch.openBinary(pathname);

The above statements create either a BPatch_process object or BPatch_binaryEdit object, de-

pending on whether Dyninst is doing dynamic or static instrumentation. The instrumentation and

analysis code can be made agnostic towards static or dynamic modes by using a

BPatch_addressSpace object. Both BPatch_process and BPatch_binaryEdit inherit from

BPatch_addressSpace, so we can use cast operations to move between the two:

BPatch_process *appProc = static_cast<BPatch_process *>(appAddrSpace)

-or-

BPatch_binaryEdit *appBin = static_cast<BPatch_binaryEdit *>(appAddrSpace)

 Page 5

dyninstAPI

Similarly, all instrumentation commands can be performed on a BPatch_addressSpace object,

allowing similar codes to be used between dynamic instrumentation and binary rewriting:

BPatch_addressSpace *app = appProc;

-or-

BPatch_addressSpace *app = appBin;

Once the address space has been created, the mutator defines the snippet of code to be inserted

and identifies where the points should be inserted.

If the mutator wants to instrument the entry point of InterestingProcedure, it should get a

BPatch_function from the application‘s BPatch_image, and get the entry BPatch_point from

that function:

std::vector<BPatch_function *> functions;

std::vector<BPatch_point *> *points;

BPatch_image *appImage = app->getImage();

appImage->findFunction(“InterestingProcedure”, functions);

points = functions[0]->findPoint(BPatch_locEntry);

The mutator also needs to construct the instrumentation that it will insert at the BPatch_point.

It can do this by allocating an integer in the application to store instrumentation results, and then

creating a BPatch_snippet to increment that integer:

BPatch_variableExpr *intCounter =

app->malloc(*(appImage->findType("int")));

BPatch_arithExpr addOne(BPatch_assign, *intCounter,

 BPatch_arithExpr(BPatch_plus, *intCounter, BPatch_constExpr(1)));

The mutator can set the BPatch_snippet to be run at the BPatch_point by executing an in-

sertSnippet call:

app->insertSnippet(addOne, *points);

Finally, the mutator should either continue the mutate process and wait for it to finish, or write

the resulting binary onto the disk, depending on whether it is doing dynamic or static instrumen-

tation:

appProc->continueExecution();

while (!appProc->isTerminated()) {

 bpatch.waitForStatusChange();

}

-or-

appBin->writeFile(newPath);

A complete example can be found in Appendix A - Complete Examples.

 Page 6

dyninstAPI

3.2 Binary Analysis

This example will illustrate how to use Dyninst to iterate over a function‘s control flow graph

and inspect instructions. These are steps that would usually be part of a larger data flow or con-

trol flow analysis. Specifically, this example will collect every basic block in a function, iterate

over them, and count the number of instructions that access memory.

Unlike the previous instrumentation example, this example will analyze a binary file on disk.

Bear in mind, these techniques can also be applied when working with processes. This example

makes use of InstructionAPI, details of which can be found in the InstructionAPI Reference

Manual.

Similar to the above example, the mutator will start by creating a BPatch object and opening a

file to operate on:

BPatch bpatch;

BPatch_binaryEdit *binedit = bpatch.openFile(pathname);

The mutator needs to get a handle to a function to do analysis on. This example will look up a

function by name; alternatively, it could have iterated over every function in BPatch_image or

BPatch_module:

BPatch_image *appImage = binedit->getImage();

std::vector<BPatch_function *> funcs;

image->findFunction(“InterestingProcedure”, funcs);

A function‘s control flow graph is represented by the BPatch_flowGraph class. The

BPatch_flowGraph contains, among other things, a set of BPatch_basicBlock objects connect-

ed by BPatch_edge objects. This example will simply collect a list of the basic blocks in

BPatch_flowGraph and iterate over each one:

BPatch_flowGraph *fg = funcs[0]->getCFG();

std::set<BPatch_basicBlock *> blocks;

fg->getAllBasicBlocks(blocks);

Each basic block has a list of instructions. Each instruction is represented by a

Dyninst::InstructionAPI::Instruction::Ptr object.

std::set<BPatch_basicBlock *>::iterator block_iter;

for (block_iter = blocks.begin(); block_iter != blocks.end(); ++block_iter)

{

 BPatch_basicBlock *block = *block_iter;

 std::vector<Dyninst::InstructionAPI::Instruction::Ptr> insns;

 block->getInstructions(insns);

}

Given an Instruction object, which is described in the InstructionAPI Reference Manual, we

can query for properties of this instruction. InstructionAPI has numerous methods for inspecting

the memory accesses, registers, and other properties of an instruction. This example simply

checks whether this instruction accesses memory:

 Page 7

dyninstAPI

std::vector<Dyninst::InstructionAPI::Instruction::Ptr>::iterator

insn_iter;

for (insn_iter = insns.begin(); insn_iter != insns.end(); ++insn_iter)

{

Dyninst::InstructionAPI::Instruction::Ptr insn = *insn_iter;

if (insn->readsMemory() || insn->writesMemory()) {

insns_access_memory++;

}

}

3.3 Instrumenting Memory Accesses

There are two snippets useful for memory access instrumentation:

BPatch_effectiveAddressExpr and BPatch_bytesAccessedExpr. Both have nullary con-

structors; the result of the snippet depends on the instrumentation point where the snippet is in-

serted. BPatch_effectiveAddressExpr has type void*, while BPatch_bytesAccessedExpr

has type int.

These snippets may be used to instrument a given instrumentation point if and only if the point

has memory access information attached to it. In this release the only way to create instrumenta-

tion points that have memory access information attached is via

BPatch_function.findPoint(const std::set<BPatch_opCode>&). For example, to instru-

ment all the loads and stores in a function named InterestingProcedure with a call to printf,

one may write:

BPatch_addressSpace *app = ...;

BPatch_image *appImage = proc->getImage();

// We’re interested in loads and stores

std::set<BPatch_opCode> axs;

axs.insert(BPatch_opLoad);

axs.insert(BPatch_opStore);

// Scan the function InterestingProcedure and create instrumentation points

std::vector<BPatch_function*> funcs;

appImage->findFunction(“InterestingProcedure”, funcs);

std::vector<BPatch_point*>* points = funcs[0]->findPoint(axs);

// Create the printf function call snippet

std::vector<BPatch_snippet*> printfArgs;

BPatch_snippet *fmt = new BPatch_constExpr("Access at: %p.\n");

printfArgs.push_back(fmt);

BPatch_snippet *eae = new BPatch_effectiveAddressExpr();

printfArgs.push_back(eae);

// Find the printf function

std::vector<BPatch_function *> printfFuncs;

appImage->findFunction("printf", printfFuncs);

// Construct the function call snippet

BPatch_funcCallExpr printfCall(*(printfFuncs[0]), printfArgs);

// Insert the snippet at the instrumentation points

app->insertSnippet(printfCall, *points);

 Page 8

dyninstAPI

4. INTERFACE

This section describes functions in the API. The API is organized as a collection of C++ classes.

The primary classes are BPatch, Bpatch_process, BPatch_binaryEdit, BPatch_thread,

BPatch_image, BPatch_point, and BPatch_snippet. The API also uses a template class

called std::vector. This class is based on the Standard Template Library (STL) vector class.

4.1 Class BPatch

The BPatch class represents the entire Dyninst library. There can only be one instance of this

class at a time. This class is used to perform functions and obtain information that is not specific

to a particular thread or image.

std::vector<BPatch_process*> *getProcesses()

Returns the list of processes that are currently defined. This list includes processes that

were directly created by calling processCreate/processAttach, and indirectly by the UNIX

fork or the Windows CreateProcess system call. It is up to the user to delete this vec-

tor when they are done with it.

BPatch_process *processAttach(const char *path, int pid,

BPatch_hybridMode mode=BPatch_normalMode)

BPatch_process *processCreate(const char *path, const char

*argv[], const char **envp = NULL, int stdin_fd=0, int

stdout_fd=1, int stderr_fd=2, BPatch_hybridMode

mode=BPatch_normalMode)

Each of these functions returns a pointer to a new instance of the BPatch_process class.

The path parameter needed by these functions should be the pathname of the executable

file containing the process image. The processAttach function returns a

BPatch_process associated with an existing process. On Linux platforms the path pa-

rameter can be NULL since the executable image can be derived from the process pid. At-

taching to a process puts it into the stopped state. The processCreate function creates a

new process and returns a new BPatch_process associated with it. The new process is

put into a stopped state before executing any code.

The stdin_fd, stdout_fd, and stderr_fd parameters are used to set the standard in-

put, output, and error of the child process. The default values of these parameters leave

the input, output, and error to be the same as the mutator process. To change these val-

ues, an open UNIX file descriptor (see open(1)) can be passed.

The mode parameter is used to select the desired level of code analysis. Activating hybrid

code analysis causes Dyninst to augment its static analysis of the code with run-time code

discovery techniques. There are three modes: BPatch_normalMode,

 Page 9

dyninstAPI

BPatch_exploratoryMode, and BPatch_defensiveMode. Normal mode enables the regular

static analysis features of Dyninst. Exploratory mode and defensive mode enable addtion-

al dynamic features to correctly analyze programs that contain uncommon code patterns,

such as malware. Exploratory mode is primarily oriented towards analyzing dynamic con-

trol transfers, while defensive mode additionally aims to tackle code obfuscation and self-

modifying code. Both of these modes are still experimental and should be used with cau-

tion. Defensive mode is only supported on Windows.

Defensive mode has been tested on normal binaries (binaries that run correctly under

normal mode), as well as some simple, packed executables (self-decrypting or decom-

pressing). More advanced forms of code obfuscation, such as self-modifying code, have

not been tested recently. The traditional Dyninst interface may be used for instrumenta-

tion of binaries in defensive mode, but in the case of highly obfuscated code, this inter-

face may prove to be ineffective due to the lack of a complete view of control flow at any

given point. Therefore, defensive mode also includes a set of callbacks that enables in-

strumentation to be performed as new code is discovered. Due to the fact that recent ef-

forts have focused on simpler forms of obfuscation, these callbacks have not been tested

in detail. The next release of Dyninst will target more advanced uses of defensive mode.

BPatch_binaryEdit *openBinary(const char *path,

bool openDependencies = false)

This function opens the executable file or library file pointed to by path for binary rewrit-

ing. If openDependencies is true then Dyninst will also open all shared libraries that

path depends on. Upon success, this function returns a new instance of a

BPatch_binaryEdit class that represents the opened file and any dependent shared li-

braries. This function returns NULL in the event of an error.

bool pollForStatusChange()

This is useful for a mutator that needs to periodically check on the status of its managed

threads and does not want to check each process individually. It returns true if there has

been a change in the status of one or more threads that has not yet been reported by either

isStopped or isTerminated.

void setDebugParsing (bool state)

Turn on or off the parsing of debugger information. By default, the debugger information

(produced by the –g compiler option) is parsed on those platforms that support it. How-

ever, for some applications this information can be quite large. To disable parsing this in-

formation, call this method with a value of false prior to creating a process.

bool parseDebugInfo()

Return true if debugger information parsing is enabled, or false otherwise.

 Page 10

dyninstAPI

void setTrampRecursive (bool state)

Turn on or off trampoline recursion. By default, any snippets invoked while another

snippet is active will not be executed. This is the safest behavior, since recursively-

calling snippets can cause a program to take up all available system resources and die.

For example, adding instrumentation code to the start of printf, and then calling printf

from that snippet will result in infinite recursion.

This protection operates at the granularity of an instrumentation point. When snippets are

first inserted at a point, this flag determines whether code will be created with recursion

protection. Changing the flag is not retroactive, and inserting more snippets will not

change the recursion protection of the point. Recursion protection increases the overhead

of instrumentation points, so if there is no way for the snippets to call themselves, calling

this method with the parameter true will result in a performance gain. The default value

of this flag is false.

bool isTrampRecursive ()

Return whether trampoline recursion is enabled or not. True means that it is enabled.

void setTypeChecking(bool state)

Turn on or off type-checking of snippets. By default type-checking is turned on, and an

attempt to create a snippet that contains type conflicts will fail. Any snippet expressions

created with type-checking off have the type of their left operand. Turning type-checking

off, creating a snippet, and then turning type-checking back on is similar to the type cast

operation in the C programming language.

bool isTypeChecked()

Return true if type-checking of snippets is enabled, or false otherwise.

bool waitForStatusChange()

This function waits until there is a status change to some thread that has not yet been re-

ported by either isStopped or isTerminated, and then returns true. It is more efficient

to call this function than to call pollForStatusChange in a loop, because waitFor-

StatusChange blocks the mutator process while waiting.

void setDelayedParsing (bool)

Turn on or off delayed parsing. When it is activated Dyninst will initially parse only the

symbol table information in any new modules loaded by the program, and will postpone

more thorough analysis (instrumentation point analysis, variable analysis, and discovery

of new functions in stripped binaries). This analysis will automatically occur when the

information is necessary.

 Page 11

dyninstAPI

Users which require small run-time perturbation of a program should not delay parsing;

the overhead for analysis may occur at unexpected times if it is triggered by internal Dyn-

inst behavior. Users who desire instrumentation of a small number of functions will ben-

efit from delayed parsing.

bool delayedParsingOn()

Return true if delayed parsing is enabled, or false otherwise.

void setInstrStackFrame(bool)

Turn on and off stack frames in instrumentation. When on, Dyninst will create stack

frames around instrumentation. A stack frame allows Dyninst or other tools to walk a

call stack through instrumentation, but introduces overhead to instrumentation. The de-

fault is to not create stack frames.

bool getInstrStackFrames()

Return true if instrumentation will create stack frames, or false otherwise.

void setMergeTramp (bool)

Turn on or off inlined tramps. Setting this value to true will make each base trampoline

have all of its mini-trampolines inlined within it. Using inlined mini-tramps may allow

instrumentation to execute faster, but inserting and removing instrumentation may take

more time. The default setting for this is true.

bool isMergeTramp ()

This returns the current status of inlined trampolines. A value of true indicates that

trampolines are inlined.

void setSaveFPR (bool)

Turn on or off floating point saves. Setting this value to false means that floating point

registers will never be saved, which can lead to large performance improvements. The

default value is true. Setting this flag may cause incorrect program behavior if the in-

strumentation does clobber floating point registers, so it should only be used when the us-

er is positive this will never happen.

bool isSaveFPROn ()

This returns the current status of the floating point saves. True means we are saving float-

ing points based on the analysis for the given platform.

void setBaseTrampDeletion(bool)

If true, we delete the base tramp when the last corresponding minitramp is deleted. If

false, we leave the base tramp in. The default value is false.

 Page 12

dyninstAPI

bool baseTrampDeletion()

Return true if base trampolines are set to be deleted, or false otherwise.

void setLivenessAnalysis(bool)

If true, we perform register liveness analysis around an instPoint before inserting in-

strumentation, and we only save registers that are live at that point. This can lead to fast-

er run-time speeds, but at the expense of slower instrumentation time. The default value

is true.

bool livenessAnalysisOn()

Return true if liveness analysis is currently enabled.

void getBPatchVersion(int &major, int &minor, int &subminor)

Return Dyninst‘s version number. The major version number will be stored in major, the

minor version number in minor, and the subminor version in subminor. For example,

under Dyninst 5.1.0, this function will return 5 in major, 1 in minor, and 0 in subminor.

int getNotificationFD()

Returns a file descriptor that is suitable for inclusion in a call to select(). Dyninst will

write data to this file descriptor when it to signal a state change in the process.

BPatch::pollForStatusChange should then be called so that Dyninst can handle the

state change. This is useful for applications where the user does not want to block in

BPatch::waitForStatusChange. The file descriptor will reset when the user calls
BPatch::pollForStatusChange.

BPatch_type *createArray(const char *name, BPatch_type *ptr,

unsigned int low, unsigned int hi)

Create a new array type. The name of the type is name, and the type of each element is

ptr. The index of the first element of the array is low, and the last is high. The standard

rules of type compatibility, described in Section 4.28, are used with arrays created using

this function.

BPatch_type *createEnum(const char *name, std::vector<char *>

&elementNames, std::vector<int> &elementIds)

BPatch_type *createEnum(const char *name, std::vector<char *>

&elementNames)

Create a new enumerated type. There are two variations of this function. The first one is

used to create an enumerated type where the user specifies the identifier (int) for each el-

ement. In the second form, the system specifies the identifiers for each element. In both

cases, a vector of character arrays is passed to supply the names of the elements of the

enumerated type. In the first form of the function, the number of element in the ele-

mentNames and elementIds vectors must be the same, or the type will not be created and

 Page 13

dyninstAPI

this function will return NULL. The standard rules of type compatibility, described in Sec-

tion 4.28, are used with enums created using this function.

BPatch_type *createScalar(const char *name, int size)

Create a new scalar type. The name field is used to specify the name of the type, and the

size parameter is used to specify the size in bytes of each instance of the type. No addi-

tional information about this type is supplied. The type is compatible with other scalars

with the same name and size.

BPatch_type *createStruct(const char *name, std::vector<char *>

&fieldNames, std::vector<BPatch_type *> &fieldTypes)

Create a new structure type. The name of the structure is specified in the name parameter.

The fieldNames and fieldTypes vectors specify fields of the type. These two vectors

must have the same number of elements or the function will fail (and return NULL). The

standard rules of type compatibility, described in Section 4.28, are used with structures

created using this function. The size of the structure is the sum of the size of the elements

in the fieldTypes vector.

BPatch_type *createTypedef(const char *name, BPatch_type *ptr)

Create a new type called name and having the type ptr.

BPatch_type *createPointer(const char *name, BPatch_type *ptr)

BPatch_type *createPointer(const char *name, BPatch_type *ptr,

int size)

Create a new type, named name, which points to objects of type ptr. The first form cre-

ates a pointer whose size is equal to sizeof(void*)on the target platform where the mu-

tatee is running. In the second form, the size of the pointer is the value passed in the

size parameter.

BPatch_type *createUnion(const char *name, std::vector<char *>

&fieldNames, std::vector<BPatch_type *> &fieldTypes)

Create a new union type. The name of the union is specified in the name parameter. The

fieldNames and fieldTypes vectors specify fields of the type. These two vectors must

have the same number of elements or the function will fail (and return NULL). The size of

the union is the size of the largest element in the fieldTypes vector.

4.2 Callbacks

The following functions are intended as a way for API users to be informed when an error or sig-

nificant event occurs. Each function allows a user to register a handler for an event. The return

 Page 14

dyninstAPI

code for all callback registration functions is the address of the handler that was previously regis-

tered (which may be NULL if no handler was previously registered). For backwards compatibility

reasons, some callbacks may pass a BPatch_thread object when a BPatch_process may be

more appropriate. A BPatch_thread may be converted into a BPatch_process using
BPatch_thread::getProcess().

4.2.1 Asynchronous Callbacks

typedef void (*BPatchAsyncThreadEventCallback)(

BPatch_process *proc, BPatch_thread *thread)

bool registerThreadEventCallback(BPatch_asyncEventType type,

BPatchAsyncThreadEventCallback cb)

bool removeThreadEventCallback(BPatch_asyncEventType type,

 BPatch_AsyncThreadEventCallback cb)

The type parameter can be either one of BPatch_threadCreateEvent or

BPatch_threadDestroyEvent. Different callbacks can be registered for different values

of type.

4.2.2 Code Discovery Callbacks

typedef void (*BPatchCodeDiscoveryCallback)(

BPatch_Vector<BPatch_function*> &newFuncs,

BPatch_Vector<BPatch_function*> &modFuncs)

bool registerCodeDiscoveryCallback(

BPatchCodeDiscoveryCallback cb)

bool removeCodeDiscoveryCallback(BPatchCodeDiscoveryCallback cb)

This callback is invoked whenever previously un-analyzed code is discovered through

runtime analysis, and delivers a vector of functions whose analysis have been modified

and a vector of functions that are newly discovered.

 Page 15

dyninstAPI

4.2.3 Code Overwrite Callbacks

typedef void (*BPatchCodeOverwriteBeginCallback)(

BPatch_Vector<BPatch_basicBlock*> &overwriteLoopBlocks);

typedef void (*BPatchCodeOverwriteEndCallback)(

BPatch_Vector<std::pair<Dyninst::Address,int> > &deadBlocks,

BPatch_Vector<BPatch_function*> &owFuncs,

BPatch_Vector<BPatch_function*> &modFuncs,

BPatch_Vector<BPatch_function*> &newFuncs)

bool registerCodeOverwriteCallbacks(

BPatchCodeOverwriteBeginCallback cbBegin,

BPatchCodeOverwriteEndCallback cbEnd)

Register a callback at the beginning and end of overwrite events. Only invoke if Dyn-

inst's hybrid analysis mode is set to BPatch_defensiveMode.

The BPatchCodeOverwriteBeginCallback callback allows the user to remove any in-

strumentation when the program starts writing to a code page, which may be desirable as

instrumentation cannot be removed during the overwrite loop's execution, and any break-

point instrumentation will dramatically slow the loop's execution.

The BPatchCodeOverwriteEndCallback callback delivers the effects of the overwrite

loop when it is done executing. In many cases no code will have changed.

4.2.4 Dynamic calls

typedef void (*BPatchDynamicCallSiteCallback)(

BPatch_point *at_point, BPatch_function *called_function);

bool registerDynamicCallCallback(BPatchDynamicCallSiteCallback

cb);

bool removeDynamicCallCallback(BPatchDynamicCallSiteCallback cb);

4.2.5 Dynamic libraries

typedef void (*BPatchDynLibraryCallback)(BPatch_thread *thr,

BPatch_object *obj, bool loaded);

BPatchDynLibraryCallback registerDynLibraryCallback(

BPatchDynLibraryCallback func)

Note that in versions previous to 9.1, BPatchDynLibraryCallback‘s signature took a

BPatch_module instead of a BPatch_object.

 Page 16

dyninstAPI

4.2.6 Errors

enum BPatchErrorLevel { BPatchFatal, BPatchSerious,

BPatchWarning, BPatchInfo };

typedef void (*BPatchErrorCallback)(BPatchErrorLevel severity,

int number, const char * const *params)

BPatchErrorCallback registerErrorCallback(BPatchErrorCallback

func)

This function registers the error callback function with the BPatch class. The return val-

ue is the address of the previous error callback function. Dyninst users can change the er-

ror callback during program execution (e.g., one error callback before a GUI is initialized,

and a different one after). The severity field indicates how important the error is (from

fatal to information/status). The number is a unique number that identifies this error mes-

sage. Params are the parameters that describe the detail about an error, e.g., the process

id where the error occurred. The number and meaning of params depends on the error.

However, for a given error number the number of parameters returned will always be the

same.

4.2.7 Exec

typedef void (*BPatchExecCallback)(BPatch_thread *thr)

BPatchExecCallback registerExecCallback(

BPatchExecCallback func) Not implemented on Windows.

4.2.8 Exit

typedef enum BPatch_exitType { NoExit, ExitedNormally,

ExitedViaSignal };

typedef void (*BPatchExitCallback)(BPatch_thread *proc,

BPatch_exitType exit_type);

BPatchExitCallback registerExitCallback(

BPatchExitCallback func)

Register a function to be called when a process terminates. For a normal process exit, the

callback will actually be called just before the process exits, but while its process state

still exists. This allows final actions to be taken on the process before it actually exits.

The function BPatch_thread::isTerminated() will return true in this context even

though the process hasn‘t yet actually exited. In the case of an exit due to a signal, the

process will have already exited.

4.2.9 Fork

typedef void (*BPatchForkCallback)(BPatch_thread *parent,

BPatch_thread *child);

This is the prototype for the pre-fork and post-fork callbacks. The parent parameter is

the parent thread, and the child parameter is a BPatch_thread in the newly created pro-

cess. When invoked as a pre-fork callback, the child is NULL.

 Page 17

dyninstAPI

BPatchForkCallback registerPreForkCallback(

BPatchForkCallback func) not implemented on Windows

BPatchForkCallback registerPostForkCallback(

BPatchForkCallback func) not implemented on Windows

Register callbacks for pre-fork (before the child is created) and post-fork (immediately af-

ter the child is created). When a pre-fork callback is executed the child parameter will be

NULL.

4.2.10 One Time Code

typedef void (*BPatchOneTimeCodeCallback)(Bpatch_thread *thr,

void *userData, void *returnValue);

BPatchOneTimeCodeCallback registerOneTimeCodeCallback(

BPatchOneTimeCodeCallback func)

The thr field contains the thread that executed the oneTimeCode (if thread-specific) or an

unspecified thread in the process (if process-wide). The userData field contains the val-

ue passed to the oneTimeCode call. The returnValue field contains the return result of

the oneTimeCode snippet.

4.2.11 Signal Handler

typedef void (*BPatchSignalHandlerCallback)(BPatch_point

*at_point, long signum, std::vector<Dyninst::Address>

*handlers)

bool registerSignalHandlerCallback(BPatchSignalHandlerCallback

cb, std::set<long> &signal_numbers)

bool registerSignalHandlerCallback(BPatchSignalHandlerCallback

cb, BPatch_Set<long> *signal_numbers)

bool removeSignalHandlerCallback(BPatchSignalHandlerCallback cb);

This function registers the signal handler callback function with the BPatch class. The

return value indicates success or failure. The signal_numbers set contains those signal

numbers for which the callback will be invoked.

The at_point parameter indicates the point at which the signal/exception was raised,

signum is the number of the signal/exception that was raised, and the handlers vector

contains any registered handler(s) for the signal/exception. In Windows this corresponds

to the stack of Structured Exception Handlers, while for Unix systems there will be at

most one registered exception handler. This functionality is only fully implemented for

the Windows platform.

 Page 18

dyninstAPI

4.2.12 Stopped Threads

typedef void (*BPatchStopThreadCallback)(BPatch_point *at_point,

void *returnValue)

This is the prototype for the callback that is associated with the stopThreadExpr snippet

class (see Section 4.13). Unlike the other callbacks in this section, stopThreadExpr

callbacks are registered during the creation of the stopThreadExpr snippet type. When-

ever a stopThreadExpr snippet executes in a given thread, the snippet evaluates the cal-

culation snippet that stopThreadExpr takes as a parameter, stops the thread‘s execu-

tion and invokes this callback. The at_point parameter is the BPatch_point at which

the stopThreadExpr snippet was inserted, and returnValue contains the computation

made by the calculation snippet.

4.2.13 User-triggered callbacks

typedef void (*BPatchUserEventCallback)(BPatch_process *proc,

void *buf, unsigned int bufsize);

bool registerUserEventCallback(BPatchUserEventCallback cb)

bool removeUserEventCallback(BPatchUserEventCallback cb)

Register a callback that is executed when the user sends a message from the mutatee us-

ing the DYNINSTuserMessage function in the runtime library.

4.3 Class BPatch_addressSpace

The BPatch_addressSpace class is a superclass of the BPatch_process and BPatch_binaryEdit

classes. It contains functionality that is common between the two sub classes.

BPatch_image *getImage()

Return a handle to the executable file associated with this BPatch_process object.

bool getSourceLines(unsigned long addr, std::vector<

BPatch_statement > & lines)

This function returns the line information associated with the mutatee address, addr. The

vector lines contain pairs of filenames and line numbers that are associated with addr.

In many cases only one filename and line number is associated with an address, but cer-

tain compiler optimizations may lead to multiple filenames and lines at an address. This

information is only available if the mutatee was compiled with debug information.

This function returns true if it was able to find any line information at addr, or false oth-

erwise.

 Page 19

dyninstAPI

bool getAddressRanges(const char * fileName, unsigned int

lineNo, std::vector< std::pair< unsigned long, unsigned long

> > & ranges)

Given a filename and line number, fileName and lineNo, this function this function re-

turns the ranges of mutatee addresses that implement the code range in the output pa-

rameter ranges. In many cases a source code line will only have one address range im-

plementing it. However, compiler optimizations may transform this into multiple disjoint

address ranges. This information is only available if the mutatee was compiled with de-

bug information.

This function returns true if it was able to find any line information, false otherwise.

BPatch_variableExpr *malloc(int n,

std::string name = std::string(“”))

BPatch_variableExpr *malloc(const BPatch_type &type,

std::string name = std::string(“”))

These two functions allocate memory. Memory allocation is from a heap. The heap is not

necessarily the same heap used by the application. The available space in the heap may be

limited depending on the implementation. The first function, malloc(int n), allocates

n bytes of memory from the heap. The second function, malloc(const BPatch_type&

t), allocates enough memory to hold an object of the specified type. Using the second

version is strongly encouraged because it provides additional information to permit better

type checking of the passed code. If a name is specified, Dyninst will assign var_name to

the variable; otherwise, it will assign an internal name. The returned memory is persistent

and will not be released until BPatch_process::free is called or the application termi-

nates.

BPatch_variableExpr *createVariable(Dyninst::Address addr,

 BPatch_type *type,

 std::string var_name = std::string(“”),

 BPatch_module *in_module = NULL)

This method creates a new variable at the given address addr in the module in_module.

If a name is specified, Dyninst will assign var_name to the variable; otherwise, it will as-

sign an internal name. The type parameter will become the type for the new variable.

When operating in binary rewriting mode, it is an error for the in_module parameter to be

NULL; it is necessary to specify the module in which the variable will be created. Dyninst

will then write the variable back out in the file specified by in_module.

bool free(BPatch_variableExpr &ptr)

Free the memory in the passed variable ptr. The programmer is responsible for verifying

that all code that could reference this memory will not execute again (either by removing

 Page 20

dyninstAPI

all snippets that refer to it, or by analysis of the program). Return true if the free succeed-

ed.

bool getRegisters(std::vector<BPatch_register> ®s)

This function returns a vector of BPatch_register objects that represent registers avail-

able to snippet code.

BPatchSnippetHandle *insertSnippet(const BPatch_snippet &expr,

BPatch_point &point,

BPatch_callWhen when=[BPatch_callBefore| BPatch_callAfter],

BPatch_snippetOrder order = BPatch_firstSnippet)

BPatchSnippetHandle *insertSnippet(const BPatch_snippet &expr,

const std::vector<BPatch_point *> &points,

BPatch_callWhen when=[BPatch_callBefore| BPatch_callAfter],

BPatch_snippetOrder order = BPatch_firstSnippet)

Insert a snippet of code at the specified point. If a list of points is supplied, insert the

code snippet at each point in the list. The optional when argument specifies when the

snippet is to be called; a value of BPatch_callBefore indicates that the snippet should

be inserted just before the specified point or points in the code, and a value of

BPatch_callAfter indicates that it should be inserted just after them.

 The order argument specifies where the snippet is to be inserted relative to any other

snippets previously inserted at the same point. The values BPatch_firstSnippet and

BPatch_lastSnippet indicate that the snippet should be inserted before or after all snip-

pets, respectively.

It is illegal to use BPatch_callAfter with a BPatch_entry point. Use

BPatch_callBefore when instrumenting entry points, which inserts instrumentation be-

fore the first instruction in a subroutine. Likewise, it is illegal to use

BPatch_callBefore with a BPatch_exit point. Use BPatch_callAfter with exit

points. BPatch_callAfter inserts instrumentation at the last instruction in the subrou-

tine. insertSnippet will return NULL when used with an illegal pair of points.

bool deleteSnippet(BPatchSnippetHandle *handle)

Remove the snippet associated with the passed handle. If the handle is not defined for

the process, then deleteSnippet will return false.

void beginInsertionSet()

Normally, a call to insertSnippet immediately injects instrumentation into the mutatee.

However, users may wish to insert a set of snippets as a single batch operation. This pro-

vides two benefits: First, Dyninst may insert instrumentation in a more efficient manner.

 Page 21

dyninstAPI

Second, multiple snippets may be inserted at multiple points as a single operation, with

either all snippets being inserted successfully or none. This batch insertion mode is begun

with a call to beginInsertionSet; after this call, no snippets are actually inserted until

a corresponding call to finalizeInsertionSet. Dyninst accumulates all calls to in-

sertSnippet during batch mode internally, and the returned BPatchSnippetHandles are

filled in when finalizeInsertionSet is called.

Insertion sets are unnecessary when doing static binary instrumentation. Dyninst uses an

implicit insertion set around all instrumentation to a static binary.

bool finalizeInsertionSet(bool atomic)

Inserts all snippets accumulated since a call to beginInsertionSet. If the atomic pa-

rameter is true, then a failure to insert any snippet results in all snippets being removed;

effectively, the insertion is all-or-nothing. If the atomic parameter is false, then snippets

are inserted individually. This function also fills in the BPatchSnippetHandle structures

returned by the insertSnippet calls comprising this insertion set. It returns true on

success and false if there was an error inserting any snippets.

Insertion sets are unnecessary when doing static binary instrumentation. Dyninst uses an

implicit insertion set around all instrumentation to a static binary.

bool removeFunctionCall(BPatch_point &point)

Disable the mutatee function call at the specified location. The point specified must be a

valid call point in the image of the mutatee. The purpose of this routine is to permit tools

to alter the semantics of a program by eliminating procedure calls. The mechanism to

achieve the removal is platform dependent, but might include branching over the call or

replacing it with NOPs. This function only removes a function call; any parameters to the

function will still be evaluated.

bool replaceFunction (BPatch_function &old, BPatch_function &new)

bool revertReplaceFunction (BPatch_function &old)

Replace all calls to user function old with calls to new. This is done by inserting instru-

mentation (specifically a BPatch_funcJumpExpr) into the beginning of function old such

that a non-returning jump is made to function new. Returns true upon success, false

otherwise.

bool replaceFunctionCall(BPatch_point &point, BPatch_function &newFunc)

Change the function call at the specified point to the function indicated by newFunc. The

purpose of this routine is to permit runtime steering tools to change the behavior of pro-

grams by replacing a call to one procedure by a call to another. Point must be a function

call point. If the change was successful, the return value is true, otherwise false will be

returned.

 Page 22

dyninstAPI

WARNING: Care must be used when replacing functions. In particular if the compiler

has performed inter-procedural register allocation between the original caller/callee

pair, the replacement may not be safe since the replaced function may clobber registers

the compiler thought the callee left untouched. Also the signatures of the both the func-

tion being replaced and the new function must be compatible.

bool wrapFunction(BPatch_function *old, BPatch_function *new,

Dyninst::SymtabAPI::Symbol *sym)

bool revertWrapFunction(BPatch_function *old)

Replaces all calls to function old with calls to function new. Unlike replaceFunction

above, the old function can still be reached via the name specified by the provided symbol

sym. Function wrapping allows existing code to be extended by new code. Consider the

following code that implements a fast memory allocator for a particular size of memory

allocation, but falls back to the original memory allocator (referenced by origMalloc) for

all others.

void *origMalloc(unsigned long size);

void *fastMalloc(unsigned long size) {

 if (size == 1024) {

 unsigned long ret = fastPool;

 fastPool += 1024;

 return ret;

 }

 else {

 return origMalloc(size);

 }

}

The symbol sym is provided by the user and must exist in the program; the easiest way to

ensure it is created is to use an undefined function as shown above with the definition of

origMalloc.

The following code wraps malloc with fastMalloc, while allowing functions to still ac-

cess the original malloc function by calling origMalloc. It makes use of the new convert

interface described in Section 5.

using namespace Dyninst;

using namespace SymtabAPI;

BPatch_function *malloc = appImage->findFunction(...);

BPatch_function *fastMalloc = appImage->findFunction(...);

Symtab *symtab = SymtabAPI::convert(fastMalloc->getModule());

std::vector<Symbol *> syms;

symtab->findSymbol(syms, “origMalloc”,

 Symbol::ST_UNKNOWN, // Don’t specify type

 mangledName, // Look for raw symbol name

 false, // Not regular expression

 false, // Don’t check case

 true); // Include undefined symbols

app->wrapFunction(malloc, fastMalloc, syms[0]);

 Page 23

dyninstAPI

For a full, executable example, see Appendix A - Complete Examples.

bool replaceCode(BPatch_point *point, BPatch_snippet *snippet)

This function has been removed; users interested in replacing code should instead use the

PatchAPI code modification interface described in the PatchAPI manual. For information

on accessing PatchAPI abstractions from DyninstAPI abstractions, see Section 5.

BPatch_module * loadLibrary(const char *libname, bool

reload=false)

For dynamic rewriting, this function loads a dynamically linked library into the process‘s

address space. For static rewriting, this function adds a library as a library dependency in

the rewritten file. In both cases Dyninst creates a new BPatch_module to represent this

library.

The libname parameter identifies the file name of the library to be loaded, in the standard

way that dynamically linked libraries are specified on the operating system on which the

API is running. This function returns a handle to the loaded library. The reload parame-

ter is ignored and only remains for backwards compatibility.

bool isStaticExecutable()

This function returns true if the original file opened with this BPatch_addressSpace is

a statically linked executable, or false otherwise.

processType getType()

This function returns a processType that reflects whether this address space is a

BPatch_process or a BPatch_binaryEdit.

4.4 Class BPatch_process

The BPatch_process class represents a running process, which includes one or more threads of

execution and an address space.

bool stopExecution()

bool continueExecution()

bool terminateExecution()

These three functions change the running state of the process. stopExecution puts the

process into a stopped state. Depending on the operating system, stopping one process

may stop all threads associated with a process. continueExecution continues execution

of the process. terminateExecution terminates execution of the process and will in-

 Page 24

dyninstAPI

voke the exit callback if one is registered. Each function returns true on success, or false

for failure. Stopping or continuing a terminated thread will fail and these functions will

return false.

bool isStopped()

int stopSignal()

bool isTerminated()

These three functions query the status of a process. isStopped returns true if the process

is currently stopped. If the process is stopped (as indicated by isStopped), then stop-

Signal can be called to find out what signal caused the process to stop. isTerminated

returns true if the process has exited. Any of these functions may be called multiple times,

and calling them will not affect the state of the process.

BPatch_variableExpr *getInheritedVariable(BPatch_variableExpr

&parentVar)

Retrieve a new handle to an existing variable (such as one created by

BPatch_process::malloc) that was created in a parent process and now exists in a

forked child process. When a process forks all existing BPatch_variableExprs are cop-

ied to the child process, but the Dyninst handles for these objects are not valid in the child

BPatch_process. This function is invoked on the child process‘ BPatch_process,

parentVar is a variable from the parent process, and a handle to a variable in the child

process is returned. If parentVar was not allocated in the parent process, then NULL is

returned.

BPatchSnippetHandle *getInheritedSnippet(BPatchSnippetHandle

&parentSnippet)

This function is similar to getInheritedVariable, but operates on BPatchSnippetHan-

dles. Given a child process that was created via fork and a BPatchSnippetHandle,

parentSnippet, from the parent process, this function will return a handle to par-

entSnippet that is valid in the child process. If it is determined that parentSnippet is

not associated with the parent process, then NULL is returned.

void detach(bool cont)

Detach from the process. The process must be stopped to call this function. Instrumenta-

tion and other changes to the process will remain active in the detached copy. The cont

parameter is used to indicate if the process should be continued as a result of detaching.

Linux does not support detaching from a process while leaving it stopped. All processes

are continued after detach on Linux.

int getPid()

Return the system id for the mutatee process. On UNIX based systems this is a PID. On

Windows this is the HANDLE object for a process.

 Page 25

dyninstAPI

typedef enum BPatch_exitType { NoExit, ExitedNormally,

ExitedViaSignal };

BPatch_exitType terminationStatus()

If the process has exited, terminationStatus will indicate whether the process exited

normally or because of a signal. If the process has not exited, NoExit will be returned.

On AIX, the reason why a process exited will not be available if the process was not a

child of the Dyninst mutator; in this case, ExitedNormally will be returned in both nor-

mal and signal exit cases.

int getExitCode()

If the process exited in a normal way, getExitCode will return the associated exit code.

Prior to Dyninst 8.2, getExitCode would return the argument passed to exit or the

value returned by main; in Dyninst 8.2 and later, it returns the actual exit code as provid-

ed by the debug interface and seen by the parent process. In particular, on Linux, this

means that exit codes are normalized to the range 0-255.

int getExitSignal()

If the process exited because of a received signal, getExitSignal will return the associ-

ated signal number.

void oneTimeCode(const BPatch_snippet &expr)

Cause the snippet expr to be executed by the mutatee immediately. If the process is mul-

tithreaded, the snippet is run on a thread chosen by Dyninst. If the user requires the snip-

pet to be run on a particular thread, use the BPatch_thread version of this function in-

stead. The process must be stopped to call this function. The behavior is synchronous;

oneTimeCode will not return until after the snippet has been run in the application.

bool oneTimeCodeAsync(const BPatch_snippet &expr,

 void *userData = NULL)

This function sets up a snippet to be evaluated by the process at the next available oppor-

tunity. When the snippet finishes running Dyninst will callback any function registered

through BPatch::registerOneTimeCodeCallback, with userData passed as a parame-

ter. This function return true on success and false if it could not post the oneTime-

Code.

If the process is multithreaded, the snippet is run on a thread chosen by Dyninst. If the us-

er requires the snippet to be run on a particular thread, use the BPatch_thread version of

this function instead. The behavior is asynchronous; oneTimeCodeAsync returns before

the snippet is executed.

 Page 26

dyninstAPI

If the process is running when oneTimeCodeAsync is called, expr will be run immediate-

ly. If the process is stopped, then expr will be run when the process is continued.

void getThreads(std::vector<BPatch_thread *> &thrds)

Get the list of threads in the process.

bool isMultithreaded()

bool isMultithreadCapable()

The former returns true if the process contains multiple threads; the latter returns true if

the process can create threads (e.g., it contains a threading library) even if it has not yet.

4.5 Class BPatch_thread

The BPatch_thread class represents and controls a thread of execution that is running in a pro-

cess.

void getCallStack(std::vector<BPatch_frame>& stack)

This function fills the given vector with current information about the call stack of the

thread. Each stack frame is represented by a BPatch_frame (see section 4.24 for infor-

mation about this class).

dynthread_t getTid()

This function returns a platform-specific identifier for this thread. This is the identifier

that is used by the threading library. For example, on pthread applications this function

will return the thread‘s pthread_t value.

Dyninst::LWP getLWP()

This function returns a platform-specific identifier that the operating system uses to iden-

tify this thread. For example, on UNIX platforms this returns the LWP id. On Windows

this returns a HANDLE object for the thread.

unsigned getBPatchID()

This function returns a Dyninst-specific identifier for this thread. These ID‘s apply only

to running threads, the BPatch ID of an already terminated thread my be repeated in a

new thread.

BPatch_function *getInitialFunc()

Return the function that was used by the application to start this thread. For example, on

pthread applications this will return the initial function that was passed to
pthread_create.

 Page 27

dyninstAPI

unsigned long getStackTopAddr()

Returns the base address for this thread‘s stack.

bool isDeadOnArrival()

This function returns true if this thread terminated execution before Dyninst was able to

attach to it. Since Dyninst performs new thread detection asynchronously, it is possible

for a thread to be created and destroyed before Dyninst can attach to it. When this hap-

pens, a new BPatch_thread is created, but isDeadOnArrival always returns true for this

thread. It is illegal to perform any thread-level operations on a dead on arrival thread.

BPatch_process *getProcess()

Return the BPatch_process that contains this thread.

void *oneTimeCode(const BPatch_snippet &expr, bool *err = NULL)

Cause the snippet expr to be evaluated by the process immediately. This is similar to the

BPatch_process::oneTimeCode function, except that the snippet is guaranteed to run only

on this thread. The process must be stopped to call this function. The behavior is syn-

chronous; oneTimeCode will not return until after the snippet has been run in the applica-

tion.

bool oneTimeCodeAsync(const BPatch_snippet &expr,

 void *userData = NULL,

 BpatchOneTimeCodeCallback cb = NULL)

This function sets up the snippet expr to be evaluated by this thread at the next available

opportunity. When the snippet finishes running, Dyninst will callback any function regis-

tered through BPatch::registerOneTimeCodeCallback, with userData passed as a pa-

rameter. This function returns true if expr was posted or false otherwise.

This is similar to the BPatch_process::oneTimeCodeAsync function, except that the

snippet is guaranteed to run only on this thread. The process must be stopped to call this

function. The behavior is asynchronous; oneTimeCodeAsync returns before the snippet is

executed.

4.6 Class BPatch_binaryEdit

The BPatch_binaryEdit class represents a set of executable files and library files for binary re-

writing. BPatch_binaryEdit inherits from the BPatch_addressSpace class, where most function-

ality for binary rewriting is found.

 Page 28

dyninstAPI

bool writeFile(const char *outFile)

Rewrite a BPatch_binaryEdit to disk. The original file opened with this

BPatch_binaryEdit is written to the current working directory with the name outFile.

If any dependent libraries were also opened and have instrumentation or other modifica-

tions, then those libraries will be written to disk in the current working directory under

their original names.

A rewritten dependency library should only be used with the original file that was opened

for rewriting. For example, if the file a.out and its dependent library libfoo.so were

opened for rewriting, and both had instrumentation inserted, then the rewritten

libfoo.so should not be used without the rewritten a.out. To build a rewritten

libfoo.so that can load into any process, libfoo.so must be the original file opened by
BPatch::openBinary.

This function returns true if it successfully wrote a file, or false otherwise.

4.7 Class BPatch_sourceObj

The BPatch_sourceObj class is the C++ superclass for the BPatch_function, BPatch_module, and

BPatch_image classes. It provides a set of common methods for all three classes. In addition, it

can be used to build a ―generic‖ source navigator using the getObjParent and getSourceObj

methods to get parents and children of a given level (i.e. the parent of a module is an image, and

the children will be the functions).

enum BPatchErrorLevel { BPatchFatal, BPatchSerious,

BPatchWarning, BPatchInfo };

enum BPatch_sourceType {

BPatch_sourceUnknown,

BPatch_sourceProgram,

BPatch_sourceModule,

BPatch_sourceFunction,

BPatch_sourceOuterLoop,

BPatch_sourceLoop,

BPatch_sourceStatement };

BPatch_sourceType getSrcType()

Returns the type of the current source object.

void getSourceObj(std::vector<BPatch_sourceObj *> &objs)

Returns the child source objects of the current source object. For example, when called

on a BPatch_sourceProgram object this will return objects of type

 Page 29

dyninstAPI

BPatch_sourceFunction. When called on a BPatch_sourceFunction object it may re-

turn BPatch_sourceOuterLoop and BPatch_sourceStatement objects.

BPatch_sourceObj *getObjParent()

Return the parent source object of the current source object. The parent of a BPatch_-

image is NULL.

typedef enum BPatch_language {

 BPatch_c,

 BPatch_cPlusPlus,

 BPatch_fortran,

 BPatch_fortran77,

 BPatch_fortran90,

 BPatch_f90_demangled_stabstr,

 BPatch_fortran95,

 BPatch_assembly,

 BPatch_mixed,

 BPatch_hpf,

 BPatch_java,

 BPatch_unknownLanguage

} BPatch_language;

BPatch_language getLanguage()

Return the source language of the current BPatch_sourceObject. For programs that are

written in more than one language, BPatch_mixed will be returned. If there is insuffi-

cient information to determine the language, BPatch_unknownLanguage will be returned.

4.8 Class BPatch_function

An object of this class represents a function in the application. A BPatch_image object (see de-

scription below) can be used to retrieve a BPatch_function object representing a given func-

tion.

std::string getName();

std::string getDemangledName();

std::string getMangledName();

std::string getTypedName();

void getNames(std::vector<std::string> &names);

void getDemangledNames(std::vector<std::string> &names);

void getMangledNames(std::vector<std::string> &names);

void getTypedNames(std::vector<std::string> &names);

Return name(s) of the function. The getName functions return the primary name; this is

typically the first symbol we encounter while parsing the program; getName is an alias for

getDemangledName. The getNames functions return all known names for the function,

including any names specified by weak symbols.

 Page 30

dyninstAPI

bool getAddressRange(Dyninst::Address &start,

 Dyninst::Address &end)

Returns the bounds of the function; for non-contiguous functions, this is the lowest and

highest address of code that the function includes.

std::vector<BPatch_localVar *> *getParams()

Return a vector of BPatch_localVar snippets that refer to the parameters of this func-

tion. The position in the vector corresponds to the position in the parameter list (starting

from zero). The returned local variables can be used to check the types of functions, and

can be used in snippet expressions.

BPatch_type *getReturnType()

Return the type of the return value for this function.

BPatch_variableExpr *getFunctionRef()

For platforms with complex function pointers (e.g., 64-bit PPC) this constructs and re-

turns the appropriate descriptor.

std::vector<BPatch_localVar *> *getVars()

Returns a vector of BPatch_localVar objects that contain the local variables in this func-

tion. These BPatch_localVars can be used as parts of snippets in instrumentation. This

function requires debug information to be present in the mutatee. If Dyninst was unable

to find any local variables, this function will return an empty vector. It is up to the user to

free the vector returned by this function.

bool isInstrumentable()

Return true if the function can be instrumented, and false if it cannot. Various condi-

tions can cause a function to be uninstrumentable. For example, there exists a platform-

specific minimum function size beyond which a function cannot be instrumented.

bool isSharedLib()

This function returns true if the function is defined in a shared library.

BPatch_module *getModule()

Return the module that contains this function. Depending on whether the program was

compiled for debugging or the symbol table stripped, this information may not be availa-

ble. This function returns NULL if module information was not found.

char *getModuleName(char *name, int maxLen)

Copies the name of the module that contains this function into the buffer pointed to by

name. Copies at most maxLen characters and returns a pointer to name.

 Page 31

dyninstAPI

enum BPatch_procedureLocation {

BPatch_entry,

BPatch_exit,

BPatch_subroutine,

BPatch_locInstruction,

BPatch_locBasicBlockEntry,

BPatch_locLoopEntry,

BPatch_locLoopExit,

BPatch_locLoopStartIter,

BPatch_locLoopStartExit,

BPatch_allLocations }

const std::vector<BPatch_point *> *findPoint(const

BPatch_procedureLocation loc)

Return the BPatch_point or list of BPatch_points associated with the procedure. It is

used to select which type of points associated with the procedure will be returned.

BPatch_entry and BPatch_exit request respectively the entry and exit points of the

subroutine. BPatch_subroutine returns the list of points where the procedure calls other

procedures. If the lookup fails to locate any points of the requested type, NULL is returned.

enum BPatch_opCode { BPatch_opLoad, BPatch_opStore,

BPatch_opPrefetch }

std::vector<BPatch_point *> *findPoint(const

std::set<BPatch_opCode>& ops)

std::vector<BPatch_point *> *findPoint(const

BPatch_Set<BPatch_opCode>& ops)

Return the vector of BPatch_points corresponding to the set of machine instruction

types described by the argument. This version is used primarily for memory access in-

strumentation. The BPatch_opCode is an enumeration of instruction types that may be re-

quested: BPatch_opLoad, BPatch_opStore, and BPatch_opPrefetch. Any combination

of these may be requested by passing an appropriate argument set containing the desired

types. The instrumentation points created by this function have additional memory access

information attached to them. This allows such points to be used for memory access spe-

cific snippets (e.g. effective address). The memory access information attached is de-

scribed under Memory Access classes in section 4.27.1.

BPatch_localVar *findLocalVar(const char *name)

Search the function‘s local variable collection for name. This returns a pointer to the local

variable if a match is found. This function returns NULL if it fails to find any variables.

std::vector<BPatch_variableExpr *> *findVariable(const char *

name)

bool findVariable(const char *name,

std::vector<BPatch_variableExpr> &vars)

Return a set of variables matching name at the scope of this function. If no variables

match in the local scope, then the global scope will be searched for matches. This func-

tion returns NULL if it fails to find any variables.

 Page 32

dyninstAPI

BPatch_localVar *findLocalParam(const char *name)

Search the function‘s parameters for a given name. A BPatch_localVar * pointer is re-

turned if a match is found, and NULL is returned otherwise.

void *getBaseAddr()

Return the starting address of the function in the mutatee‘s address space.

BPatch_flowGraph *getCFG()

Return the control flow graph for the function, or NULL if this information is not available.

The BPatch_flowGraph is described in section 4.16.

bool findOverlapping(std::vector<BPatch_function *> &funcs)

Determine which functions overlap with the current function (see Section 2). Return true

if other functions overlap the current function; the overlapping functions are added to the

funcs vector. Return false if no other functions overlap the current function.

bool addMods(std::set<StackMod *> mods)

 implemented on x86 and x86-64

Apply stack modifications in mods to the current function; the StackMod class is de-

scribed in section 4.25. Perform error checking, handle stack alignment requirements, and

generate any modifications required for cleanup at function exit. addMods atomically

adds all modifications in mods; if any mod is found to be unsafe, none of the modifica-

tions in mods will be applied.

addMods can only be used in binary rewriting mode.

Returns false if the stack modifications are unsafe or if Dyninst is unable to perform

the analysis required to guarantee safety.

4.9 Class BPatch_point

An object of this class represents a location in an application‘s code at which the library can in-

sert instrumentation. A BPatch_image object (see section 4.10) is used to retrieve a

BPatch_point representing a desired point in the application.

enum BPatch_procedureLocation { BPatch_entry, BPatch_exit,

 BPatch_subroutine, BPatch_address }

BPatch_procedureLocation getPointType()

Return the type of the point.

 Page 33

dyninstAPI

BPatch_function *getCalledFunction()

Return a BPatch_function representing the function that is called at the point. If the

point is not a function call site or the target of the call cannot be determined, then this

function returns NULL.

std::string getCalledFunctionName()

Returns the name of the function called at this point. This method is similar to getCal-

ledFunction()->getName(), except in cases where DyninstAPI is running in binary re-

writing mode and the called function resides in a library or object file that DyninstAPI has

not opened. In these cases, Dyninst is able to determine the name of the called function,

but is unable to construct a BPatch_function object.

BPatch_function *getFunction()

Returns a BPatch_function representing the function in which this point is contained.

BPatch_basicBlockLoop *getLoop()

Returns the containing BPatch_basicBlockLoop if this point is part of loop instrumenta-

tion. Returns NULL otherwise.

void *getAddress()

Return the address of the first instruction at this point.

bool usesTrap_NP()

Return true if inserting instrumentation at this point requires using a trap. On the x86

architecture, because instructions are of variable size, the instruction at a point may be too

small for Dyninst to replace it with the normal code sequence used to call instrumenta-

tion. Also, when instrumentation is placed at points other than subroutine entry, exit, or

call points, traps may be used to ensure the instrumentation fits. In this case, Dyninst re-

places the instruction with a single-byte instruction that generates a trap. A trap handler

then calls the appropriate instrumentation code. Since this technique is used only on

some platforms, on other platforms this function always returns false.

const BPatch_memoryAccess* getMemoryAccess()

Returns the memory access object associated with this point. Memory access points are

described in section 4.27.1.

const std::vector<BPatchSnippetHandle *> getCurrentSnippets()

const std::vector<BPatchSnippetHandle *>

 getCurrentSnippets(BPatch_callWhen when)

Return the BPatchSnippetHandles for the BPatch_snippets that are associated with

the point. If argument when is BPatch_callBefore, then BPatchSnippetHandles for

snippets installed immediately before this point will be returned. Alternatively, if when is

 Page 34

dyninstAPI

BPatch_callAfter, then BPatchSnippetHandles for snippets installed immediately af-

ter this point will be returned.

bool getLiveRegisters(std::vector<BPatch_register> ®s)

Fill regs with the registers that are live before this point (e.g., BPatch_callBefore).

Currently returns only general purpose registers (GPRs).

bool isDynamic()

This call returns true if this is a dynamic call site (e.g. a call site where the function call

is made via a function pointer).

Dyninst::InstructionAPI::Instruction::Ptr getInstructionAtPoint()

On implemented platforms, this function returns a shared pointer to an InstructionAPI In-

struction object representing the first machine instruction at this point‘s address. On un-

implemented platforms, returns a NULL shared pointer.

4.10 Class BPatch_image

This class defines a program image (the executable associated with a process). The only way to

get a handle to a BPatch_image is via the BPatch_process member function getImage.

const BPatch_point *createInstPointAtAddr (caddr_t address)

This function has been removed because it is not safe to use. Instead, use findPoints:

bool findPoints(Dyninst::Address addr,

std::vector<BPatch_point *> &points);

Returns a vector of BPatch_points that correspond with the provided address, one per

function that includes an instruction at that address. There will be one element if there is

not overlapping code.

std::vector<BPatch_variableExpr *> *getGlobalVariables()

Return a vector of global variables that are defined in this image.

BPatch_process *getProcess()

Returns the BPatch_process associated with this image.

char *getProgramFileName(char *name, unsigned int len)

Fills provided buffer name with the program‘s file name up to len characters. The file-

name may include path information.

 Page 35

dyninstAPI

bool getSourceObj(std::vector<BPatch_sourceObj *> &sources)

Fill sources with the source objects (see section 4.6) that belong to this image. If there

are no source objects, the function returns false. Otherwise, it returns true.

std::vector<BPatch_function *> *getProcedures(

bool incUninstrumentable = false)

Return a vector of the functions in the image. If the incUninstrumentable flag is set, the

returned table of procedures will include uninstrumentable functions. The default behav-

ior is to omit these functions.

void getObjects(std::vector<BPatch_object *> &objs)

Fill in a vector of objects in the image.

std::vector<BPatch_module *> *getModules()

Return a vector of the modules in the image.

bool getVariables(std::vector<BPatch_variableExpr *> &vars)

Fills vars with the global variables defined in this image. If there are no variable, the

function returns false. Otherwise, it returns true.

std::vector<BPatch_function*> *findFunction(

const char *name,

std::vector<BPatch_function*> &funcs,

bool showError = true,

bool regex_case_sensitive = true,

bool incUninstrumentable = false)

Return a vector of BPatch_functions corresponding to name, or NULL if the function

does not exist. If name contains a POSIX-extended regular expression, and

dont_use_regex is false, a regular expression search will be performed on function

names and matching BPatch_functions returned. If showError is true, then Dyninst

will report an error via the BPatch::registerErrorCallback if no function is found.

If the incUninstrumentable flag is set, the returned table of procedures will include un-

instrumentable functions. The default behavior is to omit these functions.

[NOTE: If name is not found to match any demangled function names in the module, the

search is repeated as if name is a mangled function name. If this second search succeeds,

functions with mangled names matching name are returned instead.]

 Page 36

dyninstAPI

std::vector<BPatch_function*> *findFunction(

std::vector<BPatch_function*> &funcs,

BPatchFunctionNameSieve bpsieve,

void *sieve_data = NULL,

int showError = 0,

bool incUninstrumentable = false)

Return a vector of BPatch_functions according to the generalized user-specified filter

function bpsieve. This permits users to easily build sets of functions according to their

own specific criteria. Internally, for each BPatch_function f in the image, this method

makes a call to bpsieve(f.getName(), sieve_data). The user-specified function

bpsieve is responsible for taking the name argument and determining if it belongs in the

output vector, possibly by using extra user-provided information stored in sieve_data.

If the name argument matches the desired criteria, bpsieve should return true. If it does

not, bpsieve should return false.

The function bpsieve should be defined in accordance with the typedef:

 bool (*BPatchFunctionNameSieve) (const char *name, void* sieve_data);

If the incUninstrumentable flag is set, the returned table of procedures will include un-

instrumentable functions. The default behavior is to omit these functions.

bool findFunction(Dyninst::Address addr,

std::vector<BPatch_function *> &funcs)

Find all functions that have code at the given address, addr. Dyninst supports functions

that share code, so this method may return more than one BPatch_function. These

functions are returned via the funcs output parameter. This function returns true if it

finds any functions, false otherwise.

BPatch_variableExpr *findVariable(const char *name,

 bool showError = true)

BPatch_variableExpr *findVariable(BPatch_point &scope,

const char *name) second form of this method is not implemented on Windows.

Performs a lookup and returns a handle to the named variable. The first form of the func-

tion looks up only variables of global scope, and the second form uses the passed

BPatch_point as the scope of the variable. The returned BPatch_variableExpr can be

used to create references (uses) of the variable in subsequent snippets. The scoping rules

used will be those of the source language. If the image was not compiled with debugging

symbols, this function will fail even if the variable is defined in the passed scope.

 Page 37

dyninstAPI

BPatch_type *findType(const char *name)

Performs a lookup and returns a handle to the named type. The handle can be used as an

argument to BPatch_addressSpace::malloc to create new variables of the correspond-

ing type.

BPatch_module *findModule(const char *name,

bool substring_match = false)

Returns a module named name if present in the image. If the match fails, NULL is re-

turned. If substring_match is true, the first module that has name as a substring of its

name is returned (e.g. to find libpthread.so.1, search for libpthread with sub-

string_match set to true).

bool getSourceLines(unsigned long addr,

 std::vector<BPatch_statement> & lines)

Given an address addr, this function returns a vector of pairs of filenames and line num-

bers at that address. This function is an alias for BPatch_process::getSourceLines

(see section 4.4).

bool getAddressRanges(const char * fileName, unsigned int

lineNo, std::vector< std::pair< unsigned long, unsigned long

> > & ranges)

Given a file name and line number, fileName and lineNo, this function returns a list of

address ranges that this source line was compiled into. This function is an alias for

BPatch_process::getAddressRanges (see section 4.4).

bool parseNewFunctions(std::vector<BPatch_module*> &newModules,

const std::vector<Dyninst::Address> &funcEntryAddrs)

This function takes as input a list of function entry points indicated by the funcEn-

tryAddrs vector, which are used to seed parsing in whatever modules they are found.

All affected modules are placed in the newModules vector, which includes any existing

modules in which new functions are found, as well as modules corresponding to new re-

gions of the binary, for which new BPatch_modules are created. The return value is

true in the event that at least one previously unknown function was identified, or false

otherwise.

4.11 Class BPatch_object

An object of this class represents the original executable or a library. It serves as a container of

BPatch_module objects.

std::string name()

std::string pathName()

Return the name of this file; either just the file name or the fully path-qualified name.

 Page 38

dyninstAPI

Dyninst::Address fileOffsetToAddr(Dyninst::Offset offset)

Convert the provided offset into the file into a full address in memory.

struct Region {

 typedef enum { UNKNOWN, CODE, DATA } type_t;

 Dyninst::Address base;

 unsigned long size;

 type_t type;

};

void regions(std::vector<Region> ®ions)

Returns information about the address ranges occupied by this object in memory.

void modules(std::vector<BPatch_module *> &modules)

Returns the modules contained in this object.

std::vector<BPatch_function*> *findFunction(

const char *name,

std::vector<BPatch_function*> &funcs,

bool showError = true,

bool regex_case_sensitive = true,

bool incUninstrumentable = false)

Return a vector of BPatch_functions corresponding to name, or NULL if the function

does not exist. If name contains a POSIX-extended regular expression, and

dont_use_regex is false, a regular expression search will be performed on function

names and matching BPatch_functions returned. If showError is true, then Dyninst

will report an error via the BPatch::registerErrorCallback if no function is found.

If the incUninstrumentable flag is set, the returned table of procedures will include un-

instrumentable functions. The default behavior is to omit these functions.

[NOTE: If name is not found to match any demangled function names in the module, the

search is repeated as if name is a mangled function name. If this second search succeeds,

functions with mangled names matching name are returned instead.]

bool findPoints(Dyninst::Address addr,

std::vector<BPatch_point *> &points);

Return a vector of BPatch_points that correspond with the provided address, one per

function that includes an instruction at that address. There will be one element if there is

not overlapping code.

 Page 39

dyninstAPI

std::vector<BPatch_function*> *findFunction(

const char *name,

std::vector<BPatch_function*> &funcs,

bool notify_on_failure = true,

bool regex_case_sensitive = true,

bool incUninstrumentable = false)

Return a vector of BPatch_functions matching name, or NULL if the function does not

exist. If name contains a POSIX-extended regular expression, a regex search will be per-

formed on function names, and matching BPatch_functions returned. [NOTE: The

std::vector argument funcs must be declared fully by the user before calling this func-

tion. Passing in an uninitialized reference will result in undefined behavior.]

If the incUninstrumentable flag is set, the returned table of procedures will include un-

instrumentable functions. The default behavior is to omit these functions.

[NOTE: If name is not found to match any demangled function names in the

BPatch_object, the search is repeated as if name is a mangled function name. If this se-

cond search succeeds, functions with mangled names matching name are returned in-

stead.]

4.12 Class BPatch_module

An object of this class represents a program module, which is part of a program‘s executable im-

age. A BPatch_module represents a source file in either an executable or a shared library. Dyn-

inst automatically creates a module called DEFAULT_MODULE in each executable to hold any

objects that it cannot match to a source file. BPatch_module objects are obtained by calling the

BPatch_image member function getModules.

std::vector<BPatch_function*> *findFunction(

const char *name,

std::vector<BPatch_function*> &funcs,

bool notify_on_failure = true,

bool regex_case_sensitive = true,

bool incUninstrumentable = false)

Return a vector of BPatch_functions matching name, or NULL if the function does not

exist. If name contains a POSIX-extended regular expression, a regex search will be per-

formed on function names, and matching BPatch_functions returned. [NOTE: The

std::vector argument funcs must be declared fully by the user before calling this func-

tion. Passing in an uninitialized reference will result in undefined behavior.]

If the incUninstrumentable flag is set, the returned table of procedures will include un-

instrumentable functions. The default behavior is to omit these functions.

 Page 40

dyninstAPI

[NOTE: If name is not found to match any demangled function names in the module, the

search is repeated as if name is a mangled function name. If this second search succeeds,

functions with mangled names matching name are returned instead.]

BPatch_Vector<BPatch_function *> *findFunctionByAddress(

void *addr,

BPatch_Vector<BPatch_function *> &funcs,

bool notify_on_failure = true,

bool incUninstrumentable = false)

Return a vector of BPatch_functions that contains addr, or NULL if the function does

not exist. [NOTE: The std::vector argument funcs must be declared fully by the user

before calling this function. Passing in an uninitialized reference will result in undefined

behavior.]

If the incUninstrumentable flag is set, the returned table of procedures will include un-

instrumentable functions. The default behavior is to omit these functions.

BPatch_function *findFunctionByEntry(Dyninst::Address addr)

Returns the function that begins at the specified address addr.

BPatch_function *findFunctionByMangled(

const char *mangled_name,

bool incUninstrumentable = false)

Return a BPatch_function for the mangled function name defined in the module corre-

sponding to the invoking BPatch_module, or NULL if it does not define the function.

If the incUninstrumentable flag is set, the functions searched will include uninstrumen-

table functions. The default behavior is to omit these functions.

bool getAddressRanges(char * fileName, unsigned int lineNo,

std::vector< std::pair< unsigned long, unsigned long > > &

ranges)

Given a filename and line number, fileName and lineNo, this function this function re-

turns the ranges of mutatee addresses that implement the code range in the output pa-

rameter ranges. In many cases a source code line will only have one address range im-

plementing it. However, compiler optimizations may turn this into multiple, disjoint ad-

dress ranges. This information is only available if the mutatee was compiled with debug

information.

This function may be more efficient than the BPatch_process version of this function.

Calling BPatch_process::getAddressRange will cause Dyninst to parse line infor-

mation for all modules in a process. If BPatch_module::getAddressRange is called

then only the debug information in this module will be parsed.

 Page 41

dyninstAPI

This function returns true if it was able to find any line information, false otherwise.

size_t getAddressWidth()

Return the size (in bytes) of a pointer in this module. On 32-bit systems this function will

return 4, and on 64-bit systems this function will return 8.

void *getBaseAddr()

Return the base address of the module. This address is defined as the start of the first

function in the module.

std::vector<BPatch_function *>

*getProcedures(bool incUninstrumentable = false)

Return a vector containing the functions in the module.

char *getFullName(char *buffer, int length)

Fills buffer with the full path name of a module, up to length characters when this in-

formation is available.

BPatch_hybridMode getHybridMode()

Return the mutator‘s analysis mode for the mutate; the default mode is the normal mode.

char *getName(char *buffer, int len)

This function copies the filename of the module into buffer, up to len characters. It re-

turns the value of the buffer parameter.

unsigned long getSize()

Return the size of the module. The size is defined as the end of the last function minus

the start of the first function.

bool getSourceLines(unsigned long addr,

std::vector<BPatch_statement> & lines)

This function returns the line information associated with the mutatee address addr. The

vector lines contain pairs of filenames and line numbers that are associated with addr.

In many cases only one filename and line number is associated with an address, but cer-

tain compiler optimizations may lead to multiple filenames and lines at an address. This

information is only available if the mutatee was compiled with debug information.

This function may be more efficient than the BPatch_process version of this function.

Calling BPatch_process::getSourceLines will cause Dyninst to parse line information

for all modules in a process. If BPatch_module::getSourceLines is called then only

the debug information in this module will be parsed.

 Page 42

dyninstAPI

This function returns true if it was able to find any line information at addr, or false

otherwise.

char *getUniqueString(char *buffer, int length)

Performs a lookup and returns a unique string for this image. Returns a string the can be

compared (via strcmp) to indicate if two images refer to the same underlying object file

(i.e., executable or library). The contents of the string are implementation specific and

defined to have no semantic meaning.

bool getVariables(std::vector<BPatch_variableExpr *> &vars)

Fill the vector vars with the global variables that are specified in this module. Returns

false if no results are found and true otherwise.

BpatchSnippetHandle* insertInitCallback(Bpatch_snippet& callback)

This function inserts the snippet callback at the entry point of this module‘s init func-

tion (creating a new init function/section if necessary).

BpatchSnippetHandle* insertFiniCallback(Bpatch_snippet& callback)

This function inserts the snippet callback at the exit point of this module‘s fini func-

tion (creating a new fini function/section if necessary).

bool isExploratoryModeOn()

This function returns true if the mutator‘s analysis mode sets to the defensive mode or

the exploratory mode.

bool isMutatee()

This function returns true if the module is the mutatee.

bool isSharedLib()

This function returns true if the module is part of a shared library.

4.13 Class BPatch_snippet

A snippet is an abstract representation of code to insert into a program. Snippets are defined by

creating a new instance of the correct subclass of a snippet. For example, to create a snippet to

call a function, create a new instance of the class BPatch_funcCallExpr. Creating a snippet

does not result in code being inserted into an application. Code is generated when a request is

 Page 43

dyninstAPI

made to insert a snippet at a specific point in a program. Sub-snippets may be shared by different

snippets (i.e, a handle to a snippet may be passed as an argument to create two different snip-

pets), but whether the generated code is shared (or replicated) between two snippets is implemen-

tation dependent.

BPatch_type *getType()

Return the type of the snippet. The BPatch_type system is described in section 4.14.

float getCost()

Returns an estimate of the number of seconds it would take to execute the snippet. The

problems with accurately estimating the cost of executing code are numerous and out of

the scope of this document[2]. It is important to realize that the returned cost value is, at

best, an estimate.

The rest of the classes are derived classes of the class BPatch_snippet.

BPatch_actualAddressExpr()

This snippet results in an expression that evaluates to the actual address of the instrumen-

tation. To access the original address where instrumentation was inserted, use

BPatch_originalAddressExpr. Note that this actual address is highly dependent on a

number of internal variables and has no relation to the original address.

BPatch_arithExpr(BPatch_binOp op, const BPatch_snippet &lOperand,

const BPatch_snippet &rOperand)

 Perform the required binary operation. The available binary operators are:

Operator Description

BPatch_assign assign the value of rOperand to lOperand

BPatch_plus add lOperand and rOperand

BPatch_minus subtract rOperand from lOperand

BPatch_divide divide rOperand by lOperand

BPatch_times multiply rOperand by lOperand

BPatch_ref Array reference of the form lOperand[rOperand]

BPatch_seq Define a sequence of two expressions (similar to comma in C)

BPatch_arithExpr(BPatch_unOp, const BPatch_snippet &operand)

Define a snippet consisting of a unary operator. The unary operators are:

 Page 44

dyninstAPI

Operator Description

BPatch_negate Returns the negation of an integer

BPatch_addr Returns a pointer to a BPatch_variableExpr

BPatch_deref Dereferences a pointer

BPatch_boolExpr(BPatch_relOp op, const BPatch_snippet &lOperand,

const BPatch_snippet &rOperand)

Define a relational snippet. The available operators are:

Operator Function

BPatch_lt Return lOperand < rOperand

BPatch_eq Return lOperand == rOperand

BPatch_gt Return lOperand > rOperand

BPatch_le Return lOperand <= rOperand

BPatch_ne Return lOperand != rOperand

BPatch_ge Return lOperand >= rOperand

BPatch_and Return lOperand && rOperand (Boolean and)

BPatch_or Return lOperand || rOperand (Boolean or)

The type of the returned snippet is boolean, and the operands are type checked.

BPatch_breakPointExpr()

Define a snippet that stops a process when executed by it. The stop can be detected using

the isStopped member function of BPatch_process, and the program‘s execution can

be resumed by calling the continueExecution member function of BPatch_process.

BPatch_bytesAccessedExpr()

This expression returns the number of bytes accessed by a memory operation. For most

load/store architecture machines it is a constant expression returning the number of bytes

for the particular style of load or store. This snippet is only valid at a memory operation

instrumentation point.

BPatch_constExpr(signed int value)

BPatch_constExpr(unsigned int value)

BPatch_constExpr(signed long value)

BPatch_constExpr(unsigned long value)

BPatch_constExpr(const char *value)

BPatch_constExpr(const void *value)

BPatch_constExpr(long long value)

Define a constant snippet of the appropriate type. The char* form of the constructor cre-

ates a constant string; the null-terminated string beginning at the location pointed to by

the parameter is copied into the application‘s address space, and the BPatch_constExpr

that is created refers to the location to which the string was copied.

 Page 45

dyninstAPI

BPatch_dynamicTargetExpr()

This snippet calculates the target of a control flow instruction with a dynamically deter-

mined target. It can handle dynamic calls, jumps, and return statements.

BPatch_effectiveAddressExpr()

Define an expression that contains the effective address of a memory operation. For a

multi-word memory operation (i.e. more than the ―natural‖ operation size of the ma-

chine), the effective address is the base address of the operation.

BPatch_funcCallExpr(const BPatch_function& func,

const std::vector<BPatch_snippet*> &args)

Define a call to a function. The passed function must be valid for the current code region.

Args is a list of arguments to pass to the function; the maximum number of arguments

varies by platform and is summarized below. If type checking is enabled, the types of the

passed arguments are checked against the function to be called. Availability of type

checking depends on the source language of the application and program being compiled

for debugging.

Platform Maximum number of arguments

AMD64/EMT-

64

No limit

IA-32 No limit

POWER 8 arguments

BPatch_funcJumpExpr (const BPatch_function &func)

This snippet has been removed; use BPatch_addressSpace::wrapFunction instead.

BPatch_ifExpr(const BPatch_boolExpr &conditional,

const BPatch_snippet &tClause,

const BPatch_snippet &fClause)

BPatch_ifExpr(const BPatch_boolExpr &conditional,

const BPatch_snippet &tClause)

This constructor creates an if statement. The first argument, conditional, should be a

Boolean expression that will be evaluated to decide which clause should be executed. The

second argument, tClause, is the snippet to execute if the conditional evaluates to

true. The third argument, fClause, is the snippet to execute if the conditional evalu-

ates to false. This third argument is optional. Else-if statements, can be constructed by

making the fClause of an if statement another if statement.

 Page 46

dyninstAPI

BPatch_insnExpr(BPatch_instruction *insn) implemented on x86-64

This constructor creates a snippet that allows the user to mimic the effect of an existing

instruction. In effect, the snippet ―wraps‖ the instruction and provides a handle to particu-

lar components of instruction behavior. This is currently implemented for memory opera-

tions, and provides two override methods: overrideLoadAddress and overrideStore-

Address. Both methods take a BPatch_snippet as an argument. Unlike other snippets,

this snippet should be installed via a call to BPatch_process::replaceCode (to replace

the original instruction). For example:

// Assume that access is of type BPatch_memoryAccess, as

// provided by a call to BPatch_point->getMemoryAccess. A

// BPatch_memoryAccess is a child of BPatch_instruction, and

// is a valid source of a BPatch_insnExpr.

BPatch_insnExpr insn(access);

// This example will modify a store by increasing the target

// address by 16.

BPatch_arithExpr newStoreAddr(BPatch_plus,

 BPatch_effectiveAddressExpr(),

 BPatch_constExpr(16));

// now override the original store address

insn.overrideStoreAddress(newStoreAddr)

// now replace the original instruction with the new one.

// Point is a BPatch_point corresponding to the desired location, and

// process is a BPatch_process.

process.replaceCode(point, insn);

BPatch_nullExpr()

Define a null snippet. This snippet contains no executable statements.

BPatch_originalAddressExpr()

This snippet results in an expression that evaluates to the original address of the point

where the snippet was inserted. To access the actual address where instrumentation is ex-

ecuted, use BPatch_actualAddressExpr.

BPatch_paramExpr(int paramNum)

This constructor creates an expression whose value is a parameter being passed to a func-

tion. ParamNum specifies the number of the parameter to return, starting at 0. Since the

contents of parameters may change during subroutine execution, this snippet type is only

valid at points that are entries to subroutines, or when inserted at a call point with the

when parameter set to BPatch_callBefore.

 Page 47

dyninstAPI

BPatch_registerExpr(BPatch_register reg)

BPatch_registerExpr(Dyninst::MachRegister reg)

This snippet results in an expression whose value is the value in the register at the point

of instrumentation.

BPatch_retExpr()

This snippet results in an expression that evaluates to the return value of a subroutine.

This snippet type is only valid at BPatch_exit points, or at a call point with the when pa-

rameter set to BPatch_callAfter.

BPatch_scrambleRegistersExpr()

This snippet sets all General Purpose Registers to the flag value.

BPatch_sequence(const std::vector<BPatch_snippet*> &items)

Define a sequence of snippets. The passed snippets will be executed in the order in which

they appear in items.

BPatch_shadowExpr(bool entry,

const BPatchStopThreadCallback &cb,

const BPatch_snippet &calculation,

bool useCache = false,

BPatch_stInterpret interp = BPatch_noInterp)

This snippet creates a shadow copy of the snippet BPatch_stopThreadExpr.

BPatch_stopThreadExpr(const BPatchStopThreadCallback &cb,

const BPatch_snippet &calculation,

bool useCache = false,

BPatch_stInterpret interp = BPatch_noInterp)

This snippet stops the thread that executes it. It evaluates a calculation snippet and trig-

gers a callback to the user program with the result of the calculation and a pointer to the

BPatch_point at which the snippet was inserted.

BPatch_threadIndexExpr()

This snippet returns an integer expression that contains the thread index of the thread that

is executing this snippet. The thread index is the same value that is returned on the muta-

tor side by BPatch_thread::getBPatchID.

 Page 48

dyninstAPI

BPatch_tidExpr(BPatch_process *proc)

This snippet results in an integer expression that contains the tid of the thread that is exe-

cuting this snippet. This can be used to record the threadId, or to filter instrumentation so

that it only executes for a specific thread.

BPatch_variableExpr(char *in_name,

BPatch_addressSpace *in_addSpace,

AddressSpace *as,

AstNodePtr ast_wrapper_,

BPatch_type *type, void* in_address)

BPatch_variableExpr(BPatch_addressSpace *in_addSpace,

AddressSpace *as,

void *in_address,

int in_register,

BPatch_type *type,

BPatch_storageClass storage = BPatch_storageAddr,

BPatch_point *scp = NULL)

BPatch_variableExpr(BPatch_addressSpace *in_addSpace,

AddressSpace *as,

BPatch_localVar *lv,

BPatch_type *type,

BPatch_point *scp)

BPatch_variableExpr(BPatch_addressSpace *in_addSpace,

AddressSpace *ll_addSpace,

int_variable *iv,

BPatch_type *type)

Define a variable snippet of the appropriate type. The first constructor is used to get

function pointers; the second is used to get forked copies of variable expression, used by

malloc; the third is used for local variables; and the last is used by

BPatch_addressSpace::findOrCreateVariable().

BPatch_whileExpr(const BPatch_snippet &condition,

const BPatch_snippet &body)

This constructor creates a while statement. The first argument, condition, should be a

Boolean expression that will be evaluated to decide whether body should be executed.

The second argument, body, is the snippet to execute if the condition evaluates to true.

4.14 Class BPatch_type

The class BPatch_type is used to describe the types of variables, parameters, return values, and

functions. Instances of the class can represent language predefined types (e.g. int, float), mutatee

defined types (e.g., structures compiled into the mutatee application), or mutator defined types

(created using the create* methods of the BPatch class).

 Page 49

dyninstAPI

std::vector<BPatch_field *> *getComponents()

Return a vector of the types of the fields in a BPatch_struct or BPatch_union. If this

method is invoked on a type whose BPatch_dataClass is not BPatch_struct or

BPatch_union, NULL is returned.

std::vector<BPatch_cblock *> *getCblocks()

Return the common block classes for the type. The methods of the BPatch_cblock can

be used to access information about the member of a common block. Since the same

named (or anonymous) common block can be defined with different members in different

functions, a given common block may have multiple definitions. The vector returned by

this function contains one instance of BPatch_cblock for each unique definition of the

common block. If this method is invoked on a type whose BPatch_dataClass is not

BPatch_common, NULL will be returned.

BPatch_type *getConstituentType()

Return the type of the base type. For a BPatch_array this is the type of each element, for

a BPatch_pointer this is the type of the object the pointer points to. For

BPatch_typedef types, this is the original type. For all other types, NULL is returned.

enum BPatch_dataClass {

 BPatch_dataScalar, BPatch_dataEnumerated,

 BPatch_dataTypeClass, BPatch_dataStructure,

 BPatch_dataUnion, BPatch_dataArray,

 BPatch_dataPointer, BPatch_dataReference,

 BPatch_dataFunction, BPatch_dataTypeAttrib,

 BPatch_dataUnknownType, BPatch_dataMethod,

 BPatch_dataCommon, BPatch_dataPrimitive,

 BPatch_dataTypeNumber, BPatch_dataTypeDefine,

 BPatch_dataNullType }

BPatch_dataClass getDataClass()

Return one of the above data classes for this type.

unsigned long getLow()

unsigned long getHigh()

Return the upper and lower bound of an array. Calling these two methods on non-array

types produces an undefined result.

const char *getName()

Return the name of the type.

bool isCompatible(const BPatch_type &otype)

Return true if otype is type compatible with this type. The rules for type compatibility

are given in Section 4.28. If the two types are not type compatible, the error reporting

 Page 50

dyninstAPI

callback function will be invoked one or more times with additional information about

why the types are not compatible.

4.15 Class BPatch_variableExpr

The BPatch_variableExpr class is another class derived from BPatch_snippet. It represents a

variable or area of memory in a process‘s address space. A BPatch_variableExpr can be ob-

tained from a BPatch_process using the malloc member function, or from a BPatch_image

using the findVariable member function.

Some BPatch_variableExpr have an associated BPatch_type, which can be accessed by func-

tions inherited from BPatch_snippet. BPatch_variableExpr objects will have an associated

BPatch_type if they originate from binaries with sufficient debug information that describes

types, or if they were provided with a BPatch_type when created by Dyninst.

BPatch_variableExpr provides several member functions not provided by other types of snip-

pets:

void readValue(void *dst)

void readValue(void *dst, int size)

Read the value of the variable in an application‘s address space that is represented by this

BPatch_variableExpr. The dst parameter is assumed to point to a buffer large enough

to hold a value of the variable‘s type. If the size parameter is supplied, then the number

of bytes it specifies will be read. For the first version of this method, if the size of the var-

iable is unknown (i.e., no type information), no data is copied and the method returns

false.

void writeValue(void *src)

void writeValue(void *src, int size)

Change the value of the variable in an application‘s address space that is represented by

this BPatch_variableExpr. The src parameter should point to a value of the variable‘s

type. If the size parameter is supplied, then the number of bytes it specifies will be writ-

ten. For the first version of this method, if the size of the variable is unknown (i.e., no

type information), no data is copied and the method returns false.

void *getBaseAddr()

Return the base address of the variable. This is designed to let users who wish to access

elements of arrays or fields in structures do so. It can also be used to obtain the address of

a variable to pass a point to that variable as a parameter to a procedure call. It is similar

to the ampersand (&) operator in C.

 Page 51

dyninstAPI

std::vector<BPatch_variableExpr *> *getComponents()

Return a pointer to a vector containing the components of a struct or union. Each element

of the vector is one field of the composite type, and contains a variable expression for ac-

cessing it.

4.16 Class BPatch_flowGraph

The BPatch_flowGraph class represents the control flow graph of a function. It provides meth-

ods for discovering the basic blocks and loops within the function (using which a caller can navi-

gate the graph). A BPatch_flowGraph object can be obtained by calling the getCFG method of a

BPatch_function object.

bool containsDynamicCallsites()

Return true if the control flow graph contains any dynamic call sites (e.g., calls through a

function pointer).

void getAllBasicBlocks(std::set<BPatch_basicBlock*>&)

void getAllBasicBlocks(BPatch_Set<BPatch_basicBlock*>&)

Fill the given set with pointers to all basic blocks in the control flow graph.

BPatch_basicBlock is described in section 4.17.

void getEntryBasicBlock(std::vector<BPatch_basicBlock*>&)

Fill the given vector with pointers to all basic blocks that are entry points to the function.

BPatch_basicBlock is described in section 4.17.

void getExitBasicBlock(std::vector<BPatch_basicBlock*>&)

Fill the given vector with pointers to all basic blocks that are exit points of the function.

BPatch_basicBlock is described in section 4.17.

void getLoops(std::vector<BPatch_basicBlockLoop*>&)

Fill the given vector with a list of all natural (single entry) loops in the control flow

graph.

void getOuterLoops(std::vector<BPatch_basicBlockLoop*>&)

Fill the given vector with a list of all natural (single entry) outer loops in the control flow

graph.

BPatch_loopTreeNode *getLoopTree()

Return the root node of the tree of loops in this flow graph.

 Page 52

dyninstAPI

enum BPatch_procedureLocation { BPatch_locLoopEntry,

BPatch_locLoopExit, BPatch_locLoopStartIter,

BPatch_locLoopEndIter }

std::vector<BPatch_point*> *findLoopInstPoints(const

BPatch_procedureLocation loc, BPatch_basicBlockLoop *loop);

Find instrumentation points for the given loop that correspond to the given location: loop

entry, loop exit, the start of a loop iteration and the end of a loop iteration.

BPatch_locLoopEntry and BPatch_locLoopExit instrumentation points respectively

execute once before the first iteration of a loop and after the last iteration.

BPatch_locLoopStartIter and BPatch_locLoopEndIter respectively execute at the

beginning and end of each loop iteration.

BPatch_basicBlock* findBlockByAddr(Dyninst::Address addr);

Find the basic block within this flow graph that contains addr. Returns NULL on failure.

This method is inefficient but guaranteed to succeed if addr is present in any block in this

CFG.

 [NOTE: Dyninst is not always able to generate a correct flow graph in the presence of indirect

jumps. If a function has a case statement or indirect jump instructions, the targets of the jumps

are found by searching instruction patterns (peep-hole). The instruction patterns generated are

compiler specific and the control flow graph analyses include only the ones we have seen. During

the control flow graph generation, if a pattern that is not handled is used for case statement or

multi-jump instructions in the function address space, the generated control flow graph may not

be complete.]

4.17 Class BPatch_basicBlock

The BPatch_basicBlock class represents a basic block in the application being instrumented.

Objects of this class representing the blocks within a function can be obtained using the

BPatch_flowGraph object for the function. BPatch_basicBlock includes methods for navi-

gating through the control flow graph of the containing function.

void getSources(std::vector<BPatch_basicBlock*>&)

Fills the given vector with the list of predecessors for this basic block (i.e, basic blocks

that have an outgoing edge in the control flow graph leading to this block).

void getTargets(std::vector<BPatch_basicBlock*>&)

Fills the given vector with the list of successors for this basic block (i.e, basic blocks that

are the destinations of outgoing edges from this block in the control flow graph).

 Page 53

dyninstAPI

void getOutgoingEdges(std::vector<BPatch_edge *> &out)

Fill out with all of the control flow edges that leave this basic block.

void getIncomingEdges(std::vector<BPatch_edge *> &inc)

Fills inc with all of the control flow edges that point to this basic block.

bool getInstructions(std::vector

<Dyninst::InstructionAPI::Instruction>&)

bool getInstructions(std::vector <

std::pair<Dyninst::InstructionAPI::Instruction,

Address> >&)

Fills the given vector with InstructionAPI Instruction objects representing the instruc-

tions in this basic block, and returns true if successful. See the InstructionAPI Program-

mer‘s Guide for details. The second call also returns the address each instruction starts at.

bool dominates(BPatch_basicBlock*)

This function returns true if the argument is pre-dominated in the control flow graph by

this block, and false if it is not.

BPatch_basicBlock* getImmediateDominator()

Return the basic block that immediately pre-dominates this block in the control flow

graph.

void getImmediateDominates(std::vector<BPatch_basicBlock*>&)

Fill the given vector with a list of pointers to the basic blocks that are immediately domi-

nated by this basic block in the control flow graph.

void getAllDominates(std::set<BPatch_basicBlock*>&)

void getAllDominates(BPatch_Set<BPatch_basicBlock*>&)

Fill the given set with pointers to all basic blocks that are dominated by this basic block

in the control flow graph.

bool getSourceBlocks(std::vector<BPatch_sourceBlock*>&)

Fill the given vector with pointers to the source blocks contributing to this basic block‘s

instruction sequence.

int getBlockNumber()

Return the ID number of this basic block. The ID numbers are consecutive from 0 to n-1,

where n is the number of basic blocks in the flow graph to which this basic block belongs.

 Page 54

dyninstAPI

std::vector<BPatch_point *> findPoint(const

std::set<BPatch_opCode> &ops)

std::vector<BPatch_point *> findPoint(const

BPatch_Set<BPatch_opCode> &ops)

Find all points in the basic block that match the given operation.

BPatch_point *findEntryPoint()

BPatch_point *findExitPoint()

Find the entry or exit point of the block.

unsigned long getStartAddress()

This function returns the starting address of the basic block. The address returned is an

absolute address.

unsigned long getEndAddress()

This function returns the end address of the basic block. The address returned is an abso-

lute address.

unsigned long getLastInsnAddress()

Return the address of the last instruction in a basic block.

bool isEntryBlock()

This function returns true if this basic block is an entry block into a function.

bool isExitBlock()

This function returns true if this basic block is an exit block of a function.

unsigned size()

Return the size of a basic block. The size is defined as the difference between the end

address and the start address of the basic block.

4.18 Class BPatch_edge

The BPatch_edge class represents a control flow edge in a BPatch_flowGraph.

BPatch_point *getPoint()

Return an instrumentation point for this edge. This point can be passed to

BPatch_process::insertSnippet to instrument the edge.

enum BPatch_edgeType { CondJumpTaken, CondJumpNottaken,

 UncondJump, NonJump }

 Page 55

dyninstAPI

BPatch_edgeType getType()

Return a type describing this edge. A CondJumpTaken edge is found after a conditional

branch, along the edge that is taken when the condition is true. A CondJumpNottaken

edge follows the path when the condition is not taken. UncondJump is used along an edge

that flows out of an unconditional branch that is always taken. NonJump is an edge that

flows out of a basic block that does not end in a jump, but falls through into the next

basic block.

BPatch_basicBlock *getSource()

 Return the source BPatch_basicBlock that this edge flows from.

BPatch_basicBlock *getTarget()

 Return the target BPatch_basicBlock that this edge flows to.

BPatch_flowGraph *getFlowGraph()

Returns the CFG that contains the edge.

4.19 Class BPatch_basicBlockLoop

An object of this class represents a loop in the code of the application being instrumented. We

detect both natural loops (single-entry loops) and irreducible loops (multi-entry loops). For a nat-

ural loop, it has only one entry block and this entry block dominates all blocks in the loop; thus

the entry block is also called the head or the header of the loop. However, for an irreducible loop,

it has multiple entry blocks and none of them dominates all blocks in the loop; thus there is no

head or header for an irreducible loop. The following figure illustrates the difference:

Entry

2

1

3

Exit

(a) An example of natural loop

Entry

2

1

3

Exit

(b) An example of irreducible loop

 Page 56

dyninstAPI

Figure (a) above shows a natural loop, where block 1 represents the single entry and block 1 is

the head of the loop. Block 1 dominates block 2 and block 3. Figure (b) above shows an irreduci-

ble loop, where block 1 and block 2 are the entries of the loop. Neither block 1 nor block 2 domi-

antes block 3.

bool containsAddress(unsigned long addr)

Return true if addr is contained within any of the basic blocks that compose this loop,

excluding the block of any of its sub-loops.

bool containsAddressInclusive(unsigned long addr)

Return true if addr is contained within any of the basic blocks that compose this loop, or

in the blocks of any of its sub-loops.

int getBackEdges(std::vector<BPatch_edge *> &edges)

Returns the number of back edges in this loop and adds those edges to the edges vector.

An edge is a back edge if it is from a block in the loop to an entry block of the loop.

int getLoopEntries(std::vector<BPatch_basicBlock *> &entries)

Returns the number of entry blocks of this loop and adds those blocks to the entries

vector. An irreducible loop can have multiple entry blocks.

bool getContainedLoops(std::vector<BPatch_basicBlockLoop*>&)

Fill the given vector with a list of the loops nested within this loop.

BPatch_flowGraph *getFlowGraph()

Return a pointer to the control flow graph that contains this loop.

bool getOuterLoops(std::vector<BPatch_basicBlockLoop*>&)

Fill the given vector with a list of the outer loops nested within this loop.

bool getLoopBasicBlocks(std::vector<BPatch_basicBlock*>&)

Fill the given vector with a list of all basic blocks that are part of this loop.

bool getLoopBasicBlocksExclusive(

std::vector<BPatch_basicBlock*>&)

Fill the given vector with a list of all basic blocks that are part of this loop but not its sub-

loops.

 Page 57

dyninstAPI

bool hasAncestor(BPatch_basicBlockLoop*)

Return true if this loop is nested within the given loop (the given loop is one of its ances-

tors in the tree of loops).

bool hasBlock(BPatch_basicBlock *b)

Return true if this loop or any of its sub-loops contain b, false otherwise.

bool hasBlockExclusive(BPatch_basicBlock *b)

Return true if this loop, excluding its sub-loops, contains b, false otherwise.

4.20 Class BPatch_loopTreeNode

The BPatch_loopTreeNode class provides a tree interface to a collection of instances of class

BPatch_basicBlockLoop contained in a BPatch_flowGraph. The structure of the tree

follows the nesting relationship of the loops in a function‘s flow graph. Each BPatch_-

loopTreeNode contains a pointer to a loop (represented by BPatch_basicBlockLoop), and a set

of sub-loops (represented by other BPatch_loopTreeNode objects). The root BPatch_-

loopTreeNode instance has a null loop member since a function may contain multiple outer

loops. The outer loops are contained in the root instance‘s vector of children.

Each instance of BPatch_loopTreeNode is given a name that indicates its position in the hierar-

chy of loops. The name of each root loop takes the form of loop_x, where x is an integer from 1

to n, where n is the number of outer loops in the function. Each sub-loop has the name of its par-

ent, followed by a .y, where y is 1 to m, where m is the number of sub-loops under the outer loop.

For example, consider the following C function:

 void foo() {

 int x, y, z, i;

 for (x=0; x<10; x++) {

 for (y = 0; y<10; y++)

 ...

 for (z = 0; z<10; z++)

 ...

 }

 for (i = 0; i<10; i++) {

 ...

 }

 }

 Page 58

dyninstAPI

The foo function will have a root BPatch_loopTreeNode, containing a NULL loop entry and

two BPatch_loopTreeNode children representing the functions outer loops. These children

would have names loop_1 and loop_2, respectively representing the x and i loops. loop_2 has

no children. loop_1 has two child BPatch_loopTreeNode objects, named loop_1.1 and

loop_1.2, respectively representing the y and z loops.

BPatch_basicBlockLoop *loop

A node in the tree that represents a single BPatch_basicBlockLoop instance.

std::vector<BPatch_loopTreeNode *> children

The tree nodes for the loops nested under this loop.

const char *name()

Return a name for this loop that indicates its position in the hierarchy of loops.

bool getCallees(std::vector<BPatch_function *> &v,

BPatch_addressSpace *p)

This function fills the vector v with the list of functions that are called by this loop.

const char *getCalleeName(unsigned int i)

This function return the name of the i
th

 function called in the loop‘s body.

unsigned int numCallees()

Returns the number of callees contained in this loop‘s body.

BPatch_basicBlockLoop *findLoop(const char *name)

Finds the loop object for the given canonical loop name.

4.21 Class BPatch_register

A BPatch_register represents a single register of the mutatee. The list of BPatch_registers

can be retrieved with the BPatch_addressSpace::getRegisters method.

std::string name()

 This function returns the canonical name of the register.

 Page 59

dyninstAPI

4.22 Class BPatch_sourceBlock

An object of this class represents a source code level block. Each source block objects consists of

a source file and a set of source lines in that source file. This class is used to fill source line in-

formation for each basic block in the control flow graph. For each basic block in the control flow

graph there is one or more source block object(s) that correspond to the source files and their

lines contributing to the instruction sequence of the basic block.

const char* getSourceFile()

Returns a pointer to the name of the source file in which this source block occurs.

void getSourceLines(std::vector<unsigned short>&)

Fill the given vector with a list of the lines contained within this source block.

4.23 Class BPatch_cblock

This class is used to access information about a common block.

std::vector<BPatch_field *> *getComponents()

Return a vector containing the individual variables of the common block.

std::vector<BPatch_function *> *getFunctions()

Return a vector of the functions that can see this common block with the set of fields de-

scribed in getComponents. However, other functions that define this common block with

a different set of variables (or sizes of any variable) will not be returned.

4.24 Class BPatch_frame

A BPatch_frame object represents a stack frame. The getCallStack member function of

BPatch_thread returns a vector of BPatch_frame objects representing the frames currently on

the stack.

BPatch_frameType getFrameType()

Return the type of the stack frame. Possible types are:

 Page 60

dyninstAPI

Frame Type Meaning

BPatch_frameNormal A normal stack frame.

BPatch_frameSignal A frame that represents a signal invocation.

BPatch_frameTrampoline A frame the represents a call into instrumentation code.

void *getFP()

Return the frame pointer for the stack frame.

void *getPC()

Returns the program counter associated with the stack frame.

BPatch_function *findFunction()

Returns the function associated with the stack frame.

BPatch_thread *getThread()

Returns the thread associated with the stack frame.

BPatch_point *getPoint()

BPatch_point *findPoint()

For stack frames corresponding to inserted instrumentation, returns the instrumentation

point where that instrumentation was inserted. For other frames, returns NULL.

bool isSynthesized()

Returns true if this frame was artificially created, false otherwise.

4.25 Class StackMod

This class defines modifications to the stack frame layout of a function. Stack modifications are

basd on the abstraction of stack locations, not the contents of these locations. All stack offsets are

with respect to the original stack frame, even if BPatch_fuction::addMods is called mul-

tiple times for a single function.
implemented on x86 and x86-64

Insert(int low, int high)

This constructor creates a stack modification that inserts stack space in the range

[low, high), where low and high are stack offsets.

BPatch_function::addMods will find this modification unsafe if any instructions

in the function access memory that will be non-contiguous after [low,high) is insert-

ed.

 Page 61

dyninstAPI

Remove(int low, int high)

This constructor creates a stack modification that removes stack space in the range

[low, high), where low and high are stack offsets.

BPatch_function::addMods will find this modification unsafe if any instructions

in the function access stack memory in [low,high).

Move(int sLow, int sHigh, int dLow)

This constructor creates a stack modification that moves stack space [sLow, sHigh) to

[dLow, dLow+(sHigh-sLow)).

BPatch_function::addMods will find this modification unsafe if

Insert(dLow, dLow+(sHigh-sLow)) or Remove(sLow, sHigh) are unsafe.

Canary()implemented on Linux, GCC only

Canary(BPatch_function* failFunc) implemented on Linux, GCC only

This constructor creates a stack modification that inserts a stack canary at function entry

and a corresponding canary check at function exit(s).

This uses the same canary as GCC‘s –fstack-protector. If the canary check at

function exit fails, failFunc is called. failFunc must be non-returning and take no

arguments. If no failFunc is provided, __stack_chk_fail from libc is called; libc

must be open in the corresponding BPatch_addressSpace.

This modification will have no effect on functions in which the entry and exit point(s) are

the same.

BPatch_function::addMods will find this modification unsafe if another Canary

has already been added to the function. Note, however, that this modification can be ap-

plied to code compiled with –fstack-protector.

Randomize()

Randomize(int seed)

This constructor creates a stack modification that rearranges the stack-stored local varia-

bles of a function. This modification requires symbol information (e.g., DWARF), and

only local variables specified by the symbols will be randomized. If DyninstAPI finds a

stack access that is not consistent with a symbol-specified local, that local will not be

randomized. Contiguous ranges of local variables are randomized; if there are two or

more contiguous ranges of locals within the stack frame, each is randomized separately.

More than one local variable is required for randomization.

 Page 62

dyninstAPI

BPatch_function::addMods will return false if Randomize is added to a function

without local variable information, without local variables on the stack, or with only a

single local variable.

srand is used to generate a new ordering of local variables; if seed is provided, this

value is provided to srand as its seed.

BPatch_function::addMods will find this modification unsafe if any other modi-

fications have been applied.

4.26 Container Classes

4.26.1 Class std::vector

The std::vector class is a container used to hold other objects used by the API. As of Dyninst

5.0, std::vector is an alias for the C++ Standard Template Library (STL) std::vector.

4.26.2 Class BPatch_Set

BPatch_Set is another container class, similar to the set class in the STL. THIS CLASS HAS

BEEN DEPRECATED AND WILL BE REMOVED IN THE NEXT RELEASE. In addition the

methods provided by std::set, it provides the following compatibility methods:

BPatch_Set()

A constructor that creates an empty set with the default comparison function.

BPatch_Set(const BPatch_Set<T,Compare>& newBPatch_Set)

Copy constructor.

void remove(const T&)

Remove the given element from the set.

bool contains(const T&)

Return true if the argument is a member of the set, otherwise returns false.

T* elements(T*)

void elements(std::vector<T> &)

Fill an array (or vector) with a list of the elements in the set that are sorted in ascending

order according to the comparison function. The input argument should point to an array

large enough to hold the elements. This function returns its input argument, unless the set

is empty, in which case it returns NULL.

 Page 63

dyninstAPI

T minimum()

Return the minimum element in the set, as determined by the comparison function. For an

empty set, the result is undefined.

T maximum()

Return the maximum element in the set, as determined by the comparison function. For

an empty set, the result is undefined.

BPatch_Set<T,Compare>& operator+= (const T&)

Add the given object to the set.

BPatch_Set<T,Compare>& operator|= (const BPatch_Set<T,Compare>&)

Set union operator. Assign the result of the union to the set on the left hand side.

BPatch_Set<T,Compare>& operator&= (const BPatch_Set<T,Compare>&)

Set intersection operator. Assign the result of the intersection to the set on the left hand

side.

BPatch_Set<T,Compare>& operator-= (const BPatch_Set<T,Compare>&)

Set difference operator. Assign the difference of the sets to the set on the left hand side.

BPatch_Set<T,Compare> operator| (const BPatch_Set<T,Compare>&)

Set union operator.

BPatch_Set<T,Compare> operator& (const BPatch_Set<T,Compare>&)

Set intersection operator.

BPatch_Set<T,Compare> operator- (const BPatch_Set<T,Compare>&)

Set difference operator.

4.27 Memory Access Classes

Instrumentation points created through findPoint(const std::set<BPatch_opCode>& ops) get

memory access information attached to them. This information is used by the memory access

snippets, but is also available to the API user. The classes that encapsulate memory access infor-

mation are contained in the BPatch_memoryAccess_NP.h header.

4.27.1 Class BPatch_memoryAccess

This class encapsulates a memory access abstraction. It contains information that describes the

memory access type: read, write, read/write, or prefetch. It also contains information that allows

the effective address and the number of bytes transferred to be determined.

 Page 64

dyninstAPI

bool isALoad_NP()

Return true if the memory access is a load (memory is read into a register).

bool isAStore_NP()

Return true if the memory access is write. Some machine instructions may both load and

store.

bool isAPrefetch_NP()

Return true if memory access is a prefetch (i.e, it has no observable effect on user regis-

ters). It this returns true, the instruction is considered neither load nor store. Prefetches are

detected only on IA32.

short prefetchType_NP()

If the memory access is a prefetch, this method returns a platform specific prefetch type.

BPatch_addrSpec_NP getStartAddr_NP()

Return an address specification that allows the effective address of a memory reference to

be computed. For example, on the x86 platform a memory access instruction operand

may contain a base register, an index register, a scaling value, and a constant base. The

BPatch_addrSpec_NP describes each of these values.

BPatch_countSpec_NP getByteCount_NP()

Return a specification that describes the number of bytes transferred by the memory ac-

cess.

4.27.2 Class BPatch_addrSpec_NP

This class encapsulates the information required to determine an effective address at runtime.

The general representation for an address is a sum of two registers and a constant; this may

change in future releases. Some architectures use only certain bits of a register (e.g. bits 25:31 of

XER register on the Power chip family); these are represented as pseudo-registers. The number-

ing scheme for registers and pseudo-registers is implementation dependent and should not be re-

lied upon; it may change in future releases.

int getImm()

Return the constant offset. This may be positive or negative.

int getReg(unsigned i)

Return the register number for the i
th

register in the sum, where 0 ≤ i ≤ 2. Register num-

bers are positive; a value of -1 means no register.

 Page 65

dyninstAPI

int getScale()

 Returns any scaling factor used in the memory address computation.

4.27.3 Class BPatch_countSpec_NP

This class encapsulates the information required to determine the number of bytes transferred by

a memory access.

4.28 Type System

The Dyninst type system is based on the notion of structural equivalence. Structural equivalence

was selected to allow the system the greatest flexibility in allowing users to write mutators that

work with applications compiled both with and without debugging symbols enabled. Using the

create* methods of the BPatch class, a mutator can construct type definitions for existing mu-

tatee structures. This information allows a mutator to read and write complex types even if the

application program has been compiled without debugging information. However, if the applica-

tion has been compiled with debugging information, Dyninst will verify the type compatibility of

the operations performed by the mutator.

The rules for type computability are that two types must be of the same storage class (i.e. arrays

are only compatible with other arrays) to be type compatible. For each storage class, the follow-

ing additional requirements must be met for two types to be compatible:

Bpatch_dataScalar

Scalars are compatible if their names are the same (as defined by strcmp) and their sizes

are the same.

BPatch_dataPointer

Pointers are compatible if the types they point to are compatible.

BPatch_dataFunc

Functions are compatible if their return types are compatible, they have same number of

parameters, and position by position each element of the parameter list is type compati-

ble.

BPatch_dataArray

Arrays are compatible if they have the same number of elements (regardless of their lower

and upper bounds) and the base element types are type compatible.

BPatch_dataEnumerated

Enumerated types are compatible if they have the same number of elements and the iden-

tifiers of the elements are the same.

 Page 66

dyninstAPI

BPatch_dataStructure

BPatch_dataUnion

Structures and unions are compatible if they have the same number of constituent parts

(fields) and item by item each field is type compatible with the corresponds field of the

other type.

In addition, if either of the types is the type BPatch_unknownType, then the two types are com-

patible. Variables in mutatee programs that have not been compiled with debugging symbols (or

in the symbols are in a format that the Dyninst library does not recognize) will be of type

BPatch_unknownType.

 Page 67

dyninstAPI

5. USING DYNINSTAPI WITH THE COMPONENT LIBRARIES

In this section, we describe how to access the underlying component library abstractions from

corresponding Dyninst abstractions. The component libraries (SymtabAPI, InstructionAPI, Par-

seAPI, and PatchAPI) often provide greater functionality and cleaner interfaces than Dyninst, and

thus users may wish to use a mix of abstractions. In general, users may access component library

abstractions via a convert function, which is overloaded and namespaced to give consistent be-

havior. The definitions of all component library abstractions are located in the appropriate docu-

mentation.

PatchAPI::PatchMgrPtr PatchAPI::convert(BPatch_addressSpace *);

PatchAPI::PatchObject *PatchAPI::convert(BPatch_object *);

ParseAPI::CodeObject *ParseAPI::convert(BPatch_object *);

SymtabAPI::Symtab *SymtabAPI::convert(BPatch_object *);

SymtabAPI::Module *SymtabAPI::convert(BPatch_module *);

PatchAPI::PatchFunction *PatchAPI::convert(BPatch_function *);

ParseAPI::Function *ParseAPI::convert(BPatch_function *);

PatchAPI::PatchBlock *PatchAPI::convert(BPatch_basicBlock *);

ParseAPI::Block *ParseAPI::convert(BPatch_basicBlock *);

PatchAPI::PatchEdge *PatchAPI::convert(BPatch_edge *);

ParseAPI::Edge *ParseAPI::convert(BPatch_edge *);

PatchAPI::Point *PatchAPI::convert(BPatch_point *, BPatch_callWhen);

PatchAPI::SnippetPtr PatchAPI::convert(BPatch_snippet *);

SymtabAPI::Type *SymtabAPI::convert(BPatch_type *);

 Page 68

dyninstAPI

6. USING THE API

In this section, we describe the steps needed to compile your mutator and mutatee programs and

to run them. First we give you an overview of the major steps and then we explain each one in

detail.

6.1 Overview of Major Steps

To use Dyninst, you have to:

(1) Build and install DyninstAPI (Section 6.2): You will need to build and install the DyninstAPI

library.

(2) Create a mutator program (Section 6.2.3): You need to create a program that will modify

some other program. For an example, see the mutator shown in Appendix A.

(3) Set up the mutatee (Section 6.4): On some platforms, you need to link your application with

Dyninst‘s run time instrumentation library. [NOTE: This step is only needed in the current

release of the API. Future releases will eliminate this restriction.]

(4) Run the mutator (Section 6.5): The mutator will either create a new process or attach to an

existing one (depending on the whether createProcess or attachProcess is used).

Sections 6.2 through 6.5 explain these steps in more detail.

6.2 Building and Installing DyninstAPI

This section describes how to build and install Dyninst, which can be downloaded from

http://www.dyninst.org. You may either download source code or an installation package; if you

choose to use an installation package, you should run the installation package and then skip to

section 6.2.3. We strongly recommend, however, that you build Dyninst from source; this en-

sures that your mutators and Dyninst itself are built with compatible toolchains.

Dyninst and its components are no longer built with autotools, but with CMake. For a complete

guide to using CMake, see the CMake documentation at http://www.cmake.org.

6.2.1 Quick upgrade guide for existing Dyninst users

In your desired build directory, invoke the following:

cmake /path/to/dyninst/source -Dfoo=bar …

make

make install

in place of:

configure --with-foo=bar

make

make install

http://www.dyninst.org/
http://www.cmake.org/

 Page 69

dyninstAPI

Note that CMake does support out-of-source builds, and does not provide a ―distclean‖ target.

Building in a separate build directory is highly recommended. The PLATFORM environment varia-

ble will be automatically set to our best guess of your platform; you may manually override this if

necessary. For most users, it is best not to set a platform directory. Valid values are in

cmake/platforms-unix.cmake and cmake/platforms-win.cmake.

The GNU, Intel, and Microsoft compiler suites are known to build Dyninst successfully. Other

compilers will need some modifications within the cmake directory to be properly detected and to

have proper flags passed.

The most common configuration options are:

BOOST_ROOT: base directory of your boost installation

CMAKE_CXX_COMPILER: C++ compiler to use.

CMAKE_C_COMPILER: C compiler to use

LIBELF_INCLUDE_DIR: location of elf.h and libelf.h

LIBELF_LIBRARIES: full path of libelf.so

LIBDWARF_INCLUDE_DIR: location of libdwarf.h

LIBDWARF_LIBRARIES: full path of libdwarf.so

IBERTY_LIBRARIES: full path of libiberty.[a|so]; libiberty.a must be built with -fPIC

CMAKE_[C|CXX]_COMPILER_FLAGS: additional C/C++ compiler flags to use

CMAKE_BUILD_TYPE: may be set to Debug, Release, or RelWithDebInfo for unoptimized, opti-

mized, and optimized with debug information builds respectively. This replaces the

NO_OPT_FLAG environment variable previously used by Dyninst.

CMAKE_INSTALL_PREFIX: like PREFIX for autotools-based systems. Where to install things.

BUILD_RTLIB_32: enable building a 32-bit runtime library on 64-bit systems. Only enable if you

have a fully functional 32-bit build environment.

RT_C_COMPILER: compiler to use for the runtime library. Ordinarily this will be the compiler you

use for the rest of Dyninst, but on systems like BlueGene, this needs to be the compiler for the

mutatee environment.

For a full list of options, the curses-based ccmake or the GUI-based cmake-gui are the best

choices. Note that, unlike with autotools-based systems, the COMPILER variables and the FLAGS

variables are wholly separate; setting CMAKE_C_COMPILER=”/usr/bin/gcc -m32” will not be-

have correctly.

6.2.2 New capabilities

CMake allows Dyninst to be built out-of-source; simply invoke CMake in your desired build lo-

cation. In-source builds are still fully supported as well.

Each component of Dyninst may be built independently: make $component[-install]. Stand-

ard make options will work; there is limited support for make -jN. Setting VERBOSE=1 will re-

place the beautified CMake output with raw commands and their output, which can be useful for

troubleshooting.

 Page 70

dyninstAPI

Libelf, libdwarf, and libiberty will be automatically downloaded and used in the build provided

that they are needed, they cannot be found, and your CMake version is at least 2.8.11. With older

versions of CMake, you will be required to specify the location of these libraries if they are not

present in system default paths.

Dyninst now requires the boost thread libraries in order to build proccontrolAPI. These are avail-

able from boost.org, and should be available as prebuilt packages on most Linux distributions.

6.2.3 Building on Windows

You will not need libdwarf or libelf in order to build Dyninst on Windows, but you will need the

Debug Information Access (DIA) SDK. This is available through MSDN or with a paid version

of Visual Studio; check Microsoft‘s website for current licensing information and availability.

Dyninst has been tested with both the Visual Studio project file generators and the NMake make-

file generators; it has not been tested using gcc/Cygwin and is unlikely to work out of the box in

that environment.

6.2.4 Configuration notes

The Dyninst runtime library must be built based on the mutatee‘s environment, not the mutator‘s

environment. For most use cases, these are identical, but there are two common cases where they

are not: mixed 32 and 64 bit systems, and binary rewriting for heterogeneous systems (e.g. Blue-

Gene).

The runtime library accepts a user-specified compiler (RT_C_COMPILER). If you are building

both a 32-bit and a 64-bit runtime library on a 64-bit system, the assembler used must be able to

accept an .S file and the ―-m32‖ flag.

6.3 Creating a Mutator Program

The first step in using Dyninst is to create a mutator program. The mutator program specifies the

mutatee (either by naming an executable to start or by supplying a process ID for an existing pro-

cess). In addition, your mutator will include the calls to the API library to modify the mutatee.

For the rest of this section, we assume that the mutator is the sample program given in Appendix

A - Complete Examples.

The following fragment of a Makefile shows how to link your mutator program with the Dyninst

library on most platforms:

DYNINST_INCLUDE and DYNINST_LIB should be set to locations

where Dyninst header and library files were installed, respectively

retee.o: retee.c

$(CC) -c $(CFLAGS) -I$(DYNINST_INCLUDE) retee.c –std=c++0x

retee: retee.o

http://boost.org/

 Page 71

dyninstAPI

 $(CC) retee.o -L$(DYNINST_LIB) -ldyninstAPI -o retee –std=c++0x

On Linux, the options -lelf and -ldwarf may be required at the link step. You will also need

to make sure that the LD_LIBRARY_PATH environment variable includes the directory that con-

tains the Dyninst shared library. If libdwarf was specified as a static library, you will need to add

the following link options:

 ld: -export-dynamic --whole-archive -ldwarf --no-whole-archive

 g++: -rdynamic -Wl,--whole-archive –ldwarf -Wl,--no-whole-archive

Since Dyninst uses the C++11x standard, you will also need to enable this option for your com-

piler. For GCC versions 4.3 and later, this is done by specifying -std=c++0x. For GCC versions

4.7 and later, this is done by specifying -std=c++11. Some of these libraries, such as libdwarf

and libelf, may not be standard on various platforms. Check the README file in dyn-

inst/dyninstAPI for more information on where to find these libraries.

Under Windows NT, the mutator also needs to be linked with the dbghelp library, which is

included in the Microsoft Platform SDK. Below is a fragment from a Makefile for Windows

NT:

DYNINST_INCLUDE and DYNINST_LIB should be set to locations

where Dyninst header and library files were installed, respectively

CC = cl

retee.obj: retee.c

$(CC) -c $(CFLAGS) -I$(DYNINST_INCLUDE)/h

retee.exe: retee.obj

 link -out:retee.exe retee.obj $(DYNINST_LIB)\libdyninstAPI.lib \

 dbghelp.lib

6.4 Setting Up the Application Program (mutatee)

On most platforms, any additional code that your mutator might need to call in the mutatee (for

example files containing instrumentation functions that were too complex to write directly using

the API) can be put into a dynamically loaded shared library, which your mutator program can

load into the mutatee at runtime using the loadLibrary member function of BPatch_process.

To locate the runtime library that Dyninst needs to load into your program, an additional envi-

ronment variable must be set. The variable DYNINSTAPI_RT_LIB should be set to the full path-

name of the run time instrumentation library, which should be:

 Page 72

dyninstAPI

NOTE: DYNINST_LIB should be set to the location where Dyninst library

files were installed

$(DYNINST_LIB)/libdyninstAPI_RT.so (UNIX)

%DYNINST_LIB/libdyninstAPI_RT.dll (Windows)

6.5 Running the Mutator

At this point, you should be ready to run your application program with your mutator. For exam-

ple, to start the sample program shown in Appendix A - Complete Examples:

% retee foo <pid>

6.6 Optimizing Dyninst Performance

This section describes how to tune Dyninst for optimum performance. During the course of a

run, Dyninst will perform several types of analysis on the binary, make safety assumptions about

instrumentation that is inserted, and rewrite the binary (perhaps several times). Given some

guidance from the user, Dyninst can make assumptions about what work it needs to do and can

deliver significant performance improvements.

There are two areas of Dyninst performance users typically care about. First, the time it takes

Dyninst to parse and instrument a program. This is typically the time it takes Dyninst to start and

analyze a program, and the time it takes to modify the program when putting in instrumentation.

Second, many users care about the time instrumentation takes in the modified mutatee. This time

is highly dependent on both the amount and type of instrumentation put it, but it is still possible

to eliminate some of the Dyninst overhead around the instrumentation.

The following subsections describe techniques for improving the performance of these two areas.

6.6.1 Optimizing Mutator Performance

CPU time in the Dyninst mutator is usually consumed by either parsing or instrumenting bina-

ries. When a new binary is loaded, Dyninst will analyze the code looking for instrumentation

points, global variables, and attempting to identify functions in areas of code that may not have

symbols. Upon user request, Dyninst will also parse debug information from the binary, which

includes local variable, line, and type information.

All of these items are parsed lazily, that is Dyninst won‘t try to generate this information until it

is requested. Information is parsed on a per-library basis, so a request for information about a

specific library function will cause Dyninst to parse information about all functions in that li-

brary. Much of the Dyninst parsing performance problems can be removed, or mitigated, by

structuring the mutator application so that it only requests information from Dyninst if and when

it needs it.

 Page 73

dyninstAPI

Not all operations require Dyninst to trigger parsing. Some common operations that lead to pars-

ing are:

 Requesting a BPatch_point object

 Any operation on a BPatch_function other than getting its name

Debugging information is lazily parsed separately from the rest of the binary parsing. Accessing

line, type, or local variable information will cause Dyninst to parse the debug information for all

three of these.

Another common source of mutator time is spent re-writing the mutatee to add instrumentation.

When instrumentation is inserted into a function, Dyninst may need to rewrite some or all of the

function to fit the instrumentation in. If multiple pieces of instrumentation are being inserted into

a function, Dyninst may need to rewrite that function multiple times.

If the user knows that they will be inserting multiple pieces of instrumentation into one function,

they can batch the instrumentation into one bundle, so that the function will only be re-written

once, using the BPatch_process::beginInsertionSet and BPatch_process::endInser-

tionSet functions (see section 4.4). Using these functions can result in a significant perfor-

mance win when inserting instrumentation in many locations.

To use the insertion set functions, add a call to beginInsertionSet before inserting instrumen-

tation. Dyninst will start buffering up all instrumentation insertions. After the last piece of in-

strumentation is inserted, call finalizeInsertionSet, and all instrumentation will be atomical-

ly inserted into the mutatee, with each function being rewritten at most once.

6.6.2 Optimizing Mutatee Performance

As instrumentation is inserted into a mutatee, it will start to run slower. The slowdown is heavily

influenced by three factors: the number of points being instrumented, the instrumentation itself,

and the Dyninst overhead around each piece of instrumentation. The Dyninst overhead comes

from pieces of protection code (described in more detail below) that do things such as sav-

ing/restoring registers around instrumentation, checking for instrumentation recursion, and per-

forming thread safety checks.

The factor by which Dyninst overhead influences mutatee run-time depends on the type of in-

strumentation being inserted. When inserting instrumentation that runs a memory cache simula-

tor, the Dyninst overhead may be negligible. On the other-hand, when inserting instrumentation

that increments a counter, the Dyninst overhead will dominate the time spent in instrumentation.

Remember, optimizing the instrumentation being inserted may sometimes be more important

than optimizing the Dyninst overhead. Many users have had success writing tools that make use

of Dyninst‘s ability to dynamically remove instrumentation as a performance improvement.

The instrumentation overhead results from safety and correctness checks inserted by Dyninst

around instrumentation. Dyninst will automatically attempt to remove as much of this overhead

 Page 74

dyninstAPI

as possible, however it sometimes must make a conservative decision to leave the overhead in.

Given additional, user-provided information Dyninst can make better choices about what safety

checks to leave in. An unoptimized post-Dyninst 5.0 instrumentation snippet looks like the fol-

lowing:

Save General Purpose Registers
In order to ensure that instrumentation doesn‘t

corrupt the program, Dyninst saves all live

general purpose registers.

Save Floating Point Registers
Dyninst may decide to separately save any

floating point registers that may be corrupted

by instrumentation.

Generate A Stack Frame

Dyninst builds a stack frame for instrumenta-

tion to run under. This provides the illusion to

instrumentation that it is running as its own

function.

Calculate Thread Index
Calculate an index value that identifies the cur-

rent thread. This is primarily used as input to

the Trampoline Guard.

Test and Set Trampoline Guard
Test to see if we are already recursively execut-

ing under instrumentation, and skip the user

instrumentation if we are.

Execute User Instrumentation Execute any BPatch_snippet code.

Unset Trampoline Guard
Marks the this thread as no longer being in in-

strumentation

Clean Stack Frame
Clean the stack frame that was generated for

instrumentation.

Restore Floating Point Registers
Restore the floating point registers to their

original state.

Restore General Purpose Registers
Restore the general purpose registers to their

original state.

Dyninst will attempt to eliminate as much of its overhead as is possible. The Dyninst user can

assist Dyninst by doing the following:

 Write BPatch_snippet code that avoids making function calls. Dyninst will attempt to

perform analysis on the user written instrumentation to determine which general purpose and

floating point registers can be saved. It is difficult to analyze function calls that may be nest-

ed arbitrarily deep. Dyninst will not analyze any deeper than two levels of function calls be-

fore assuming that the instrumentation clobbers all registers and it needs to save everything.

In addition, not making function calls from instrumentation allows Dyninst to elimi-

nate its tramp guard and thread index calculation. Instrumentation that does not make

a function call cannot recursively execute more instrumentation.

 Call BPatch::setTrampRecursive(true) if instrumentation cannot execute re-

cursively. If instrumentation must make a function call, but will not execute recursively,

then enable trampoline recursion. This will cause Dyninst to stop generating a trampoline

guard and thread index calculation on all future pieces of instrumentation. An example of in-

 Page 75

dyninstAPI

strumentation recursion would be instrumenting a call to write with instrumentation that

calls printf—write will start calling printf printf will re-call write.

 Call BPatch::setSaveFPR(false) if instrumentation will not clobber floating

point registers. This will cause Dyninst to stop saving floating point registers, which can

be a significant win on some platforms.

 Use simple BPatch_snippet objects when possible. Dyninst will attempt to recognize,

peep-hole optimize, and simplify frequently used code snippets when it finds them. For ex-

ample, on x86 based platforms Dyninst will recognize snippets that do operations like ‗var =

constant‘ or ‗var++‘ and turn these into optimized assembly instructions that take advantage

of CISC machine instructions.

 Call BPatch::setInstrStackFrames(false) before inserting instrumentation

that does not need to set up stack frames. Dyninst allows you to force stack frames to be

generated for all instrumentation. This is useful for some applications (e.g., debugging your

instrumentation code) but allowing Dyninst to omit stack frames wherever possible will im-

prove performance. This flag is false by default; it should be enabled for as little instrumen-

tation as possible in order to maximize the benefit from optimizing away stack frames.

 Avoid conditional instrumentation wherever possible. Conditional logic in your instru-

mentation makes it more difficult to avoid saving the state of the flags.

 Avoid unnecessary instrumentation. Dyninst provides you with all kinds of information

that you can use to select only the points of actual interest for instrumentation. Use this in-

formation to instrument as selectively as possible. The best way to optimize your instrumen-

tation, ultimately, is to know a priori that it was unnecessary and not insert it.

 Page 76

dyninstAPI

APPENDIX A - COMPLETE EXAMPLES

In this section we show two complete examples: the programs from Section 3 and a complete

Dyninst program, retee.

6.1 Instrumenting a function

#include <stdio.h>

#include "BPatch.h"

#include "BPatch_addressSpace.h"

#include "BPatch_process.h"

#include "BPatch_binaryEdit.h"

#include "BPatch_point.h"

#include "BPatch_function.h"

using namespace std;

using namespace Dyninst;

// Create an instance of class BPatch

BPatch bpatch;

// Different ways to perform instrumentation

typedef enum {

 create,

 attach,

 open

} accessType_t;

// Attach, create, or open a file for rewriting

BPatch_addressSpace* startInstrumenting(accessType_t accessType,

 const char* name,

 int pid,

 const char* argv[]) {

 BPatch_addressSpace* handle = NULL;

 switch(accessType) {

 case create:

 handle = bpatch.processCreate(name, argv);

 if (!handle) { fprintf(stderr, "processCreate failed\n"); }

 break;

 case attach:

 handle = bpatch.processAttach(name, pid);

 if (!handle) { fprintf(stderr, "processAttach failed\n"); }

 break;

 case open:

 // Open the binary file and all dependencies

 handle = bpatch.openBinary(name, true);

 if (!handle) { fprintf(stderr, "openBinary failed\n"); }

 break;

 }

 return handle;

}

 Page 77

dyninstAPI

// Find a point at which to insert instrumentation

std::vector<BPatch_point*>* findPoint(BPatch_addressSpace* app,

 const char* name,

 BPatch_procedureLocation loc) {

 std::vector<BPatch_function*> functions;

 std::vector<BPatch_point*>* points;

 // Scan for functions named "name"

 BPatch_image* appImage = app->getImage();

 appImage->findFunction(name, functions);

 if (functions.size() == 0) {

 fprintf(stderr, "No function %s\n", name);

 return points;

 } else if (functions.size() > 1) {

 fprintf(stderr, "More than one %s; using the first one\n", name);

 }

 // Locate the relevant points

 points = functions[0]->findPoint(loc);

 return points;

}

// Create and insert an increment snippet

bool createAndInsertSnippet(BPatch_addressSpace* app,

 std::vector<BPatch_point*>* points) {

 BPatch_image* appImage = app->getImage();

 // Create an increment snippet

 BPatch_variableExpr* intCounter =

 app->malloc(*(appImage->findType("int")), "myCounter");

 BPatch_arithExpr addOne(BPatch_assign,

 *intCounter,

 BPatch_arithExpr(BPatch_plus,

 *intCounter,

 BPatch_constExpr(1)));

 // Insert the snippet

 if (!app->insertSnippet(addOne, *points)) {

 fprintf(stderr, "insertSnippet failed\n");

 return false;

 }

 return true;

}

// Create and insert a printf snippet

bool createAndInsertSnippet2(BPatch_addressSpace* app,

 std::vector<BPatch_point*>* points) {

 BPatch_image* appImage = app->getImage();

 // Create the printf function call snippet

 std::vector<BPatch_snippet*> printfArgs;

 BPatch_snippet* fmt =

 new BPatch_constExpr("InterestingProcedure called %d times\n");

 printfArgs.push_back(fmt);

 BPatch_variableExpr* var = appImage->findVariable("myCounter");

 if (!var) {

 fprintf(stderr, "Could not find 'myCounter' variable\n");

 return false;

 } else {

 printfArgs.push_back(var);

 Page 78

dyninstAPI

 }

 // Find the printf function

 std::vector<BPatch_function*> printfFuncs;

 appImage->findFunction("printf", printfFuncs);

 if (printfFuncs.size() == 0) {

 fprintf(stderr, "Could not find printf\n");

 return false;

 }

 // Construct a function call snippet

 BPatch_funcCallExpr printfCall(*(printfFuncs[0]), printfArgs);

 // Insert the snippet

 if (!app->insertSnippet(printfCall, *points)) {

 fprintf(stderr, "insertSnippet failed\n");

 return false;

 }

 return true;

}

void finishInstrumenting(BPatch_addressSpace* app, const char* newName)

{

 BPatch_process* appProc = dynamic_cast<BPatch_process*>(app);

 BPatch_binaryEdit* appBin = dynamic_cast<BPatch_binaryEdit*>(app);

 if (appProc) {

 if (!appProc->continueExecution()) {

 fprintf(stderr, "continueExecution failed\n");

 }

 while (!appProc->isTerminated()) {

 bpatch.waitForStatusChange();

 }

 } else if (appBin) {

 if (!appBin->writeFile(newName)) {

 fprintf(stderr, "writeFile failed\n");

 }

 }

}

int main() {

 // Set up information about the program to be instrumented

 const char* progName = "InterestingProgram";

 int progPID = 42;

 const char* progArgv[] = {"InterestingProgram", "-h", NULL};

 accessType_t mode = create;

 // Create/attach/open a binary

 BPatch_addressSpace* app =

 startInstrumenting(mode, progName, progPID, progArgv);

 if (!app) {

 fprintf(stderr, "startInstrumenting failed\n");

 exit(1);

 }

 // Find the entry point for function InterestingProcedure

 const char* interestingFuncName = "InterestingProcedure";

 std::vector<BPatch_point*>* entryPoint =

 findPoint(app, interestingFuncName, BPatch_entry);

 if (!entryPoint || entryPoint->size() == 0) {

 fprintf(stderr, "No entry points for %s\n", interestingFuncName);

 Page 79

dyninstAPI

 exit(1);

 }

 // Create and insert instrumentation snippet

 if (!createAndInsertSnippet(app, entryPoint)) {

 fprintf(stderr, "createAndInsertSnippet failed\n");

 exit(1);

 }

 // Find the exit point of main

 std::vector<BPatch_point*>* exitPoint =

 findPoint(app, "main", BPatch_exit);

 if (!exitPoint || exitPoint->size() == 0) {

 fprintf(stderr, "No exit points for main\n");

 exit(1);

 }

 // Create and insert instrumentation snippet 2

 if (!createAndInsertSnippet2(app, exitPoint)) {

 fprintf(stderr, "createAndInsertSnippet2 failed\n");

 exit(1);

 }

 // Finish instrumentation

 const char* progName2 = "InterestingProgram-rewritten";

 finishInstrumenting(app, progName2);

}

6.2 Binary Analysis

#include <stdio.h>

#include "BPatch.h"

#include "BPatch_addressSpace.h"

#include "BPatch_process.h"

#include "BPatch_binaryEdit.h"

#include "BPatch_function.h"

#include "BPatch_flowGraph.h"

using namespace std;

using namespace Dyninst;

// Create an instance of class BPatch

BPatch bpatch;

// Different ways to perform instrumentation

typedef enum {

 create,

 attach,

 open

} accessType_t;

BPatch_addressSpace* startInstrumenting(accessType_t accessType,

 const char* name,

 int pid,

 const char* argv[]) {

 BPatch_addressSpace* handle = NULL;

 switch(accessType) {

 case create:

 handle = bpatch.processCreate(name, argv);

 if (!handle) { fprintf(stderr, "processCreate failed\n"); }

 Page 80

dyninstAPI

 break;

 case attach:

 handle = bpatch.processAttach(name, pid);

 if (!handle) { fprintf(stderr, "processAttach failed\n"); }

 break;

 case open:

 // Open the binary file and all dependencies

 handle = bpatch.openBinary(name, true);

 if (!handle) { fprintf(stderr, "openBinary failed\n"); }

 break;

 }

 return handle;

}

int binaryAnalysis(BPatch_addressSpace* app) {

 BPatch_image* appImage = app->getImage();

 int insns_access_memory = 0;

 std::vector<BPatch_function*> functions;

 appImage->findFunction("InterestingProcedure", functions);

 if (functions.size() == 0) {

 fprintf(stderr, "No function InterestingProcedure\n");

 return insns_access_memory;

 } else if (functions.size() > 1) {

 fprintf(stderr, "More than one InterestingProcedure; using the

first one\n");

 }

 BPatch_flowGraph* fg = functions[0]->getCFG();

 std::set<BPatch_basicBlock*> blocks;

 fg->getAllBasicBlocks(blocks);

 for (auto block_iter = blocks.begin();

 block_iter != blocks.end();

 ++block_iter) {

 BPatch_basicBlock* block = *block_iter;

 std::vector<InstructionAPI::Instruction::Ptr> insns;

 block->getInstructions(insns);

 for (auto insn_iter = insns.begin();

 insn_iter != insns.end();

 ++insn_iter) {

 InstructionAPI::Instruction::Ptr insn = *insn_iter;

 if (insn->readsMemory() || insn->writesMemory()) {

 insns_access_memory++;

 }

 }

 }

 return insns_access_memory;

}

 Page 81

dyninstAPI

int main() {

 // Set up information about the program to be instrumented

 const char* progName = "InterestingProgram";

 int progPID = 42;

 const char* progArgv[] = {"InterestingProgram", "-h", NULL};

 accessType_t mode = create;

 // Create/attach/open a binary

 BPatch_addressSpace* app =

 startInstrumenting(mode, progName, progPID, progArgv);

 if (!app) {

 fprintf(stderr, "startInstrumenting failed\n");

 exit(1);

 }

 int memAccesses = binaryAnalysis(app);

 fprintf(stderr, "Found %d memory accesses\n", memAccesses);

}

6.3 Instrumenting Memory Accesses

#include <stdio.h>

#include "BPatch.h"

#include "BPatch_addressSpace.h"

#include "BPatch_process.h"

#include "BPatch_binaryEdit.h"

#include "BPatch_point.h"

#include "BPatch_function.h"

using namespace std;

using namespace Dyninst;

// Create an instance of class BPatch

BPatch bpatch;

// Different ways to perform instrumentation

typedef enum {

 create,

 attach,

 open

} accessType_t;

// Attach, create, or open a file for rewriting

BPatch_addressSpace* startInstrumenting(accessType_t accessType,

 const char* name,

 int pid,

 const char* argv[]) {

 BPatch_addressSpace* handle = NULL;

 switch(accessType) {

 case create:

 handle = bpatch.processCreate(name, argv);

 if (!handle) { fprintf(stderr, "processCreate failed\n"); }

 break;

 case attach:

 handle = bpatch.processAttach(name, pid);

 if (!handle) { fprintf(stderr, "processAttach failed\n"); }

 break;

 Page 82

dyninstAPI

case open:

 // Open the binary file; do not open dependencies

 handle = bpatch.openBinary(name, false);

 if (!handle) { fprintf(stderr, "openBinary failed\n"); }

 break;

 }

 return handle;

}

bool instrumentMemoryAccesses(BPatch_addressSpace* app) {

 BPatch_image* appImage = app->getImage();

 // We're interested in loads and stores

 BPatch_Set<BPatch_opCode> axs;

 axs.insert(BPatch_opLoad);

 axs.insert(BPatch_opStore);

 // Scan the function InterestingProcedure

 // and create instrumentation points

 std::vector<BPatch_function*> functions;

 appImage->findFunction("InterestingProcedure", functions);

 std::vector<BPatch_point*>* points =

 functions[0]->findPoint(axs);

 if (!points) {

 fprintf(stderr, "No load/store points found\n");

 return false;

 }

 // Create the printf function call snippet

 std::vector<BPatch_snippet*> printfArgs;

 BPatch_snippet* fmt = new BPatch_constExpr("Access at: 0x%lx\n");

 printfArgs.push_back(fmt);

 BPatch_snippet* eae = new BPatch_effectiveAddressExpr();

 printfArgs.push_back(eae);

 // Find the printf function

 std::vector<BPatch_function*> printfFuncs;

 appImage->findFunction("printf", printfFuncs);

 if (printfFuncs.size() == 0) {

 fprintf(stderr, "Could not find printf\n");

 return false;

 }

 // Construct a function call snippet

 BPatch_funcCallExpr printfCall(*(printfFuncs[0]), printfArgs);

 // Insert the snippet at the instrumentation points

 if (!app->insertSnippet(printfCall, *points)) {

 fprintf(stderr, "insertSnippet failed\n");

 return false;

 }

 return true;

}

void finishInstrumenting(BPatch_addressSpace* app, const char* newName) {

 BPatch_process* appProc = dynamic_cast<BPatch_process*>(app);

 BPatch_binaryEdit* appBin = dynamic_cast<BPatch_binaryEdit*>(app);

 if (appProc) {

 if (!appProc->continueExecution()) {

 Page 83

dyninstAPI

 fprintf(stderr, "continueExecution failed\n");

 }

 while (!appProc->isTerminated()) {

 bpatch.waitForStatusChange();

 }

 } else if (appBin) {

 if (!appBin->writeFile(newName)) {

 fprintf(stderr, "writeFile failed\n");

 }

 }

}

int main() {

 // Set up information about the program to be instrumented

 const char* progName = "InterestingProgram";

 int progPID = 42;

 const char* progArgv[] = {"InterestingProgram", "-h", NULL};

 accessType_t mode = create;

 // Create/attach/open a binary

 BPatch_addressSpace* app =

 startInstrumenting(mode, progName, progPID, progArgv);

 if (!app) {

 fprintf(stderr, "startInstrumenting failed\n");

 exit(1);

 }

 // Instrument memory accesses

 if (!instrumentMemoryAccesses(app)) {

 fprintf(stderr, "instrumentMemoryAccesses failed\n");

 exit(1);

 }

 // Finish instrumentation

 const char* progName2 = "InterestingProgram-rewritten";

 finishInstrumenting(app, progName2);

}

6.4 retee

The final example is a program called ―re-tee.‖ It takes three arguments: the pathname of an ex-

ecutable program, the process id of a running instance of the same program, and a file name. It

adds code to the running program that copies to the named file all output that the program writes

to its standard output file descriptor. In this way it works like ―tee,‖ which passes output along to

its own standard out while also saving it in a file. The motivation for the example program is

that you run a program, and it starts to print copious lines of output to your screen, and you wish

to save that output in a file without having to re-run the program.

#include <stdio.h>

#include <fcntl.h>

#include <vector>

#include "BPatch.h"

#include "BPatch_point.h"

#include "BPatch_process.h"

#include "BPatch_function.h"

#include "BPatch_thread.h"

 Page 84

dyninstAPI

/*

 * retee.C

 *

 * This program (mutator) provides an example of several facets of

 * Dyninst's behavior, and is a good basis for many Dyninst

 * mutators. We want to intercept all output from a target application

 * (the mutatee), duplicating output to a file as well as the

 * original destination (e.g., stdout).

 *

 * This mutator operates in several phases. In brief:

 * 1) Attach to the running process and get a handle (BPatch_process

 * object)

 * 2) Get a handle for the parsed image of the mutatee for function

 * lookup (BPatch_image object)

 * 3) Open a file for output

 * 3a) Look up the "open" function

 * 3b) Build a code snippet to call open with the file name.

 * 3c) Run that code snippet via a oneTimeCode, saving the returned

 * file descriptor

 * 4) Write the returned file descriptor into a memory variable for

 * mutatee-side use

 * 5) Build a snippet that copies output to the file

 * 5a) Locate the "write" library call

 * 5b) Access its parameters

 * 5c) Build a snippet calling write(fd, parameters)

 * 5d) Insert the snippet at write

 * 6) Add a hook to exit to ensure that we close the file (using

 * a callback at exit and another oneTimeCode)

 */

void usage() {

 fprintf(stderr, "Usage: retee <process pid> <filename>\n");

 fprintf(stderr, " note: <filename> is relative to the application pro-

cess.\n");

}

// We need to use a callback, and so the things that callback requires

// are made global - this includes the file descriptor snippet (see below)

BPatch_variableExpr *fdVar = NULL;

// Before we add instrumentation, we need to open the file for

// writing. We can do this with a oneTimeCode - a piece of code run at

// a particular time, rather than at a particular location.

int openFileForWrite(BPatch_process *app, BPatch_image *appImage, char

*fileName) {

 // The code to be generated is:

 // fd = open(argv[2], O_WRONLY|O_CREAT, 0666);

 // (1) Find the open function

 std::vector<BPatch_function *>openFuncs;

 appImage->findFunction("open", openFuncs);

 if (openFuncs.size() == 0) {

 fprintf(stderr, "ERROR: Unable to find function for open()\n");

 return -1;

 }

 // (2) Allocate a vector of snippets for the parameters to open

 std::vector<BPatch_snippet *> openArgs;

 // (3) Create a string constant expression from argv[3]

 Page 85

dyninstAPI

 BPatch_constExpr fileNameExpr(fileName);

 // (4) Create two more constant expressions _WRONLY|O_CREAT and 0666

 BPatch_constExpr fileFlagsExpr(O_WRONLY|O_CREAT);

 BPatch_constExpr fileModeExpr(0666);

 // (5) Push 3 & 4 onto the list from step 2, push first to last parameter.

 openArgs.push_back(&fileNameExpr);

 openArgs.push_back(&fileFlagsExpr);

 openArgs.push_back(&fileModeExpr);

 // (6) create a procedure call using function found at 1 and

 // parameters from step 5.

 BPatch_funcCallExpr openCall(*openFuncs[0], openArgs);

 // (7) The oneTimeCode returns whatever the return result from

 // the BPatch_snippet is. In this case, the return result of

 // open -> the file descriptor.

 void *openFD = app->oneTimeCode(openCall);

 // oneTimeCode returns a void *, and we want an int file handle

 return (int) (long) openFD;

}

// We have used a oneTimeCode to open the file descriptor. However,

// this returns the file descriptor to the mutator - the mutatee has

// no idea what the descriptor is. We need to allocate a variable in

// the mutatee to hold this value for future use and copy the

// (mutator-side) value into the mutatee variable.

// Note: there are alternatives to this technique. We could have

// allocated the variable before the oneTimeCode and augmented the

// snippet to do the assignment. We could also write the file

// descriptor as a constant into any inserted instrumentation.

BPatch_variableExpr *writeFileDescIntoMutatee(BPatch_process *app,

 BPatch_image *appImage,

 int fileDescriptor) {

 // (1) Allocate a variable in the mutatee of size (and type) int

 BPatch_variableExpr *fdVar = app->malloc(*appImage->findType("int"));

 if (fdVar == NULL) return NULL;

 // (2) Write the value into the variable

 // Like memcpy, writeValue takes a pointer

 // The third parameter is for functionality called "saveTheWorld",

 // which we don't worry about here (and so is false)

 bool ret = fdVar->writeValue((void *) &fileDescriptor, sizeof(int),

 false);

 if (ret == false) return NULL;

 return fdVar;

}

// We now have an open file descriptor in the mutatee. We want to

// instrument write to intercept and copy the output. That happens

// here.

bool interceptAndCloneWrite(BPatch_process *app,

 BPatch_image *appImage,

 BPatch_variableExpr *fdVar) {

 // (1) Locate the write call

 Page 86

dyninstAPI

 std::vector<BPatch_function *> writeFuncs;

 appImage->findFunction("write",

 writeFuncs);

 if(writeFuncs.size() == 0) {

 fprintf(stderr, "ERROR: Unable to find function for write()\n");

 return false;

 }

 // (2) Build the call to (our) write. Arguments are:

 // ours: fdVar (file descriptor)

 // parameter: buffer

 // parameter: buffer size

 // Declare a vector to hold these.

 std::vector<BPatch_snippet *> writeArgs;

 // Push on the file descriptor

 writeArgs.push_back(fdVar);

 // Well, we need the buffer... but that's a parameter to the

 // function we're implementing. That's not a problem - we can grab

 // it out with a BPatch_paramExpr.

 BPatch_paramExpr buffer(1); // Second (0, 1, 2) argument

 BPatch_paramExpr bufferSize(2);

 writeArgs.push_back(&buffer);

 writeArgs.push_back(&bufferSize);

 // And build the write call

 BPatch_funcCallExpr writeCall(*writeFuncs[0], writeArgs);

 // (3) Identify the BPatch_point for the entry of write. We're

 // instrumenting the function with itself; normally the findPoint

 // call would operate off a different function than the snippet.

 std::vector<BPatch_point *> *points;

 points = writeFuncs[0]->findPoint(BPatch_entry);

 if ((*points).size() == 0) {

 return false;

 }

 // (4) Insert the snippet at the start of write

 return app->insertSnippet(writeCall, *points);

 // Note: we have just instrumented write() with a call to

 // write(). This would ordinarily be a _bad thing_, as there is

 // nothing to stop infinite recursion - write -> instrumentation

 // -> write -> instrumentation....

 // However, Dyninst uses a feature called a "tramp guard" to

 // prevent this, and it's on by default.

}

// This function is called as an exit callback (that is, called

// immediately before the process exits when we can still affect it)

// and thus must match the exit callback signature:

//

// typedef void (*BPatchExitCallback) (BPatch_thread *, BPatch_exitType)

//

// Note that the callback gives us a thread, and we want a process - but

// each thread has an up pointer.

void closeFile(BPatch_thread *thread, BPatch_exitType) {

 Page 87

dyninstAPI

 fprintf(stderr, "Exit callback called for process...\n");

 // (1) Get the BPatch_process and BPatch_images

 BPatch_process *app = thread->getProcess();

 BPatch_image *appImage = app->getImage();

 // The code to be generated is:

 // close(fd);

 // (2) Find close

 std::vector<BPatch_function *> closeFuncs;

 appImage->findFunction("close", closeFuncs);

 if (closeFuncs.size() == 0) {

 fprintf(stderr, "ERROR: Unable to find function for close()\n");

 return;

 }

 // (3) Allocate a vector of snippets for the parameters to open

 std::vector<BPatch_snippet *> closeArgs;

 // (4) Add the fd snippet - fdVar is global since we can't

 // get it via the callback

 closeArgs.push_back(fdVar);

 // (5) create a procedure call using function found at 1 and

 // parameters from step 3.

 BPatch_funcCallExpr closeCall(*closeFuncs[0], closeArgs);

 // (6) Use a oneTimeCode to close the file

 app->oneTimeCode(closeCall);

 // (7) Tell the app to continue to finish it off.

 app->continueExecution();

 return;

}

BPatch bpatch;

// In main we perform the following operations.

// 1) Attach to the process and get BPatch_process and BPatch_image

// handles

// 2) Open a file descriptor

// 3) Instrument write

// 4) Continue the process and wait for it to terminate

int main(int argc, char *argv[]) {

 int pid;

 if (argc != 3) {

 usage();

 exit(1);

 }

 pid = atoi(argv[1]);

 // Attach to the program - we can attach with just a pid; the

 // program name is no longer necessary

 fprintf(stderr, "Attaching to process %d...\n", pid);

 BPatch_process *app = bpatch.processAttach(NULL, pid);

 if (!app) return -1;

 Page 88

dyninstAPI

 // Read the program's image and get an associated image object

 BPatch_image *appImage = app->getImage();

 std::vector<BPatch_function*> writeFuncs;

 fprintf(stderr, "Opening file %s for write...\n", argv[2]);

 int fileDescriptor = openFileForWrite(app, appImage, argv[2]);

 if (fileDescriptor == -1) {

 fprintf(stderr, "ERROR: opening file %s for write failed\n",

 argv[2]);

 exit(1);

 }

 fprintf(stderr, "Writing returned file descriptor %d into"

 "mutatee...\n", fileDescriptor);

 // This was defined globally as the exit callback needs it.

 fdVar = writeFileDescIntoMutatee(app, appImage, fileDescriptor);

 if (fdVar == NULL) {

 fprintf(stderr, "ERROR: failed to write mutatee-side variable\n");

 exit(1);

 }

 fprintf(stderr, "Instrumenting write...\n");

 bool ret = interceptAndCloneWrite(app, appImage, fdVar);

 if (!ret) {

 fprintf(stderr, "ERROR: failed to instrument mutatee\n");

 exit(1);

 }

 fprintf(stderr, "Adding exit callback...\n");

 bpatch.registerExitCallback(closeFile);

 // Continue the execution...

 fprintf(stderr, "Continuing execution and waiting for termination\n");

 app->continueExecution();

 while (!app->isTerminated())

 bpatch.waitForStatusChange();

 printf("Done.\n");

 return 0;

}

 Page 89

dyninstAPI

APPENDIX B - RUNNING THE TEST CASES

This section describes how to run the Dyninst test cases. The primary purpose of the test cases is

to verify that the API has been installed correctly (and for use in regression testing by the devel-

opers of the Dyninst library). The code may also be of use to others since it provides a fairly

complete example of how to call most of the API methods. The test suite consists of mutator

programs and their associated mutatee programs.

To compile the test suite, type make in the appropriate platform specific directory under dyn-

inst/testsuite. To run, execute runTests. Each test will be executed and the result

(PASSED/FAILED/CRASHED) printed.

Test mutators are run by the test_driver executable (test_driver.exe on Windows).

The test_driver loads a mutator test from a shared object and runs it on a test mutatee. A single

run of the test_driver may execute multiple tests (depending on parameters passed), and each test

may execute multiple times with different parameters and on different mutatees.

Dyninst‘s test space can be very large. Each mutatee can be run under different tests, compiled

by different compilers, and run with different parameters. For example, one point in this space

would be the test1 mutatee being run under under test1_13, when compiled with the g++ compil-

er, and in attach mode. When run without any options, the test_driver will run all test

combinations that are valid on the current platform. Many of the options that are passed to

test_driver can be used to limit the test space that it runs in.

In order to prevent a crashing test from stopping the test_driver from running subsequent

tests, test_driver can be run under a wrapper application, runTests. The runTests

wrapper invokes the test_driver with the any arguments that were passed to runTests. It

will watch the test_driver process, and if test_driver exits with a fault it will print an

appropriate error message and restart the test_driver on the next test.

It is generally recommended that runTests be used when running a large sequence of tests,

and test_driver be used when debugging issues with a single test.

The test_driver and runTests applications can be invoked with the following list of ar-

guments. Most arguments are used to limit the space of tests that the testsuite will run. For ex-

ample, to run the above test1_13 example, you could use the following command line:

 test_driver –run test1_13 –mutatee test1.mutatee_g++ -attach

 Page 90

dyninstAPI

-attach

Only run tests that attach to the mutatees.

-create

Only run tests that create mutatees.

-rewriter

Only run tests that rewrite mutatees.

-staticlink

Run rewriter tests that use statically linked mutatees.

-dynamiclink

Run rewriter tests that use dynamically linked mutatees.

-allmode

Run tests for all modes (create, attach, rewriter on statically linked binaries, rewriter on

dynamically linked binaries).

-gcc, -g++, -pgcc, -pgCC, -icc, -icpc

Run tests on mutatees built with the specified compiler.

-noclean

Don‘t remove rewritten mutatees after running rewriter tests.

-all

Run tests for all possible combinations of unoptimized mutatees.

-none, -low, -high, -max

Only run tests for mutatees of the given optimization level.

-allopt

Run tests for all mutatee optimization levels.

-full

Run tests for all possible combinations of mutatees, including all optimization levels.

Requires make all to build the optimized mutatees.

-dyninst, -symtab, -instruction, -proccontrol, -stackwalker

Only run tests for the specified component.

 Page 91

dyninstAPI

-allcomp

Run tests for all components.

-32, -64

Only run tests for 32-bit or 64-bit mutatees. This option is only valid on platforms such

as AMD64/Linux and PowerPC/Linux where both 32-bit and 64-bit build environments

are available.

-pic

Only run tests for mutatees compiled as position-independent code. Default is non-PIC

mutatees. –all and –full include both.

-sp, -mp, -st, -mt

ProcControl-specific: run tests in single process, multiprocess, single thread, multithread

modes, respectively.

-j n

This option spawns up to n test_driver instances from a given runTests invocation. This

option is highly recommended for large test runs.

-hosts host1 [host2 ... hostn]

In conjunction with the –j option above, will distribute tests over the hosts host1…hostn.

The hosts must share a filesystem with the machine from which runTests is being run,

and ssh must be configured to allow password-less authentication to those hosts. Note

that –j controls the total number of test_driver instances, not the number per host, so you

will need to use a –j N at least equal to the number of hosts you wish to use.

-mutatee <mutatee_name>

 Only run tests that use the specified mutatee name. Only certain mutatees can be run with

certain tests. The primary test number specifies which mutatees it can be run with. For

example, all of the test1_* tests can be run with the test1.mutatee_* mutatees, and all of

the test2_* tests can be run with the test2.mutatee_* mutatees.

-run <subtest> <subtest> …

Only runs the specific sub-tests listed. For example, to run sub-test case 4 of test2 you

would enter test_driver –run test2_4.

-test

Alias for –run.

 Page 92

dyninstAPI

-log

Print more detailed output, including messages generated by the tests. Without this op-

tion the testsuite will capture and hide any messages printed by the test, only showing a

summary of whether the test passed or failed. By default, output is sent to stdout.

-logfile <filename>

Send output from the –log option to the given filename rather than to stdout.

-verbose

Enables test suite debugging output. This is useful when trying to track down issues in

the test suite or tests.

 Page 93

dyninstAPI

APPENDIX C - COMMON PITFALLS

This appendix is designed to point out some common pitfalls that users have reported when using

the Dyninst system. Many of these are either due to limitations in the current implementations,

or reflect design decisions that may not produce the expected behavior from the system.

Attach followed by detach

If a mutator attaches to a mutatee, and immediately exits, the current behavior is that the

mutatee is left suspended. To make sure the application continues, call detach with the

appropriate flags.

Attaching to a program that has already been modified by Dyninst

If a mutator attaches to a program that has already been modified by a previous mutator, a

warning message will be issued. We are working to fix this problem, but the correct se-

mantics are still being specified. Currently, a message is printed to indicate that this has

been attempted, and the attach will fail.

Dyninst is event-driven

Dyninst must sometimes handle events that take place in the mutatee, for instance when a

new shared library is loaded, or when the mutatee executes a fork or exec. Dyninst han-

dles events when it checks the status of the mutatee, so to allow this the mutator should

periodically call one of the functions BPatch::pollForStatusChange, BPatch::wait-

ForStatusChange, BPatch_thread::isStopped, or BPatch_thread::isTerminated.

Missing or out-of-date DbgHelp DLL (Windows)

 Dyninst requires an up-to-date DbgHelp library on Windows. See the section on Win-

dows-specific architectural issues for details.

Portland Compiler Group – missing debug symbols

 The Portland Group compiler (pgcc) on Linux produces debug symbols that are not read

correctly by Dyninst. The binaries produced by the compiler do not contain the source

file information necessary for Dyninst to assign the debug symbols to the correct module.

 Page 94

dyninstAPI

A

attachProcess · 12

B

BPatch_addrSpec_NP · 65

BPatch_arithExpr · 46

BPatch_basicBlockLoop · 58

BPatch_boolExpr · 47

BPatch_breakPointExpr · 47

BPatch_bytesAccessedExpr · 10, 47

BPatch_cblock · 62

BPatch_constExpr · 47

BPatch_countSpec_NP · 66

BPatch_effectiveAddressesExpr · 48

BPatch_flowGraph · 54

BPatch_funcCallExpr · 48

BPatch_function · 33

BPatch_ifExpr · 48

BPatch_image · 38

BPatch_memoryAccess · 64

BPatch_module · 43

Bpatch_nullExpr · 49, 50, 51

BPatch_opCode · 35

Bpatch_paramExpr · 49

BPatch_point · 36

BPatch_retExpr · 46, 48, 49, 50

BPatch_sequence · 50

BPatch_Set · 63

BPatch_snippet · 45

BPatch_sourceBlock · 61

BPatch_sourceObj · 32

BPatch_tidExpr · 51

BPatch_type · 52

BPatch_variableExpr · 53

BPatch_Vector · 63

BPatchErrorCallback · 18, 19, 21

BPatchErrorLevel · 18, 20, 28, 32

BPatchPostForkCallback · 19

BPatchThreadEventCallback · 19, 20

C

Class BPatch_basicBlock · 55, 60

continueExecution · 27

createArray · 16

createEnum · 16

createInstPointAtAddr · 38

createPointer · 17

createProcess · 12

createScalar · 16

createStruct · 17

createTypedef · 17

createUnion · 17

D

deleteSnippet · 24

detach · 26, 28

dominates · 56

dumpCore · 31

F

findFunction · 39, 40, 42, 43, 63

findPoint · 35

findType · 41

findVariable · 40

free · 23

funcJumpExpr · 48

G

getAddress · 37

getAllBasicBlocks · 54

getAllDominates · 57

getBaseAddr · 36, 54

getBlockNumber · 57

getByteCount_NP · 65

getCalledFunction · 36

getCallStack · 30, 31

getCblocks · 52

getCFG · 36

getComponents · 52, 54, 62

getConstituentType · 52

getContainedLoops · 59

getCost · 46

getCurrentSnippets · 37

getDataClass · 52

getEntryBasicBlock · 54

getExitBasicBlock · 54

getFP · 62

getFrameType · 62

getFunctions · 62

getHigh · 52

getImage · 22, 41, 44

getImm · 65

getImmediateDominates · 56

getImmediateDominator · 56

getInheritedVariable · 27

getLanguage · 33

getLoopBasicBlocks · 59

getLoopHead · 60

getLoops · 55

getLow · 52

getMemoryAccess · 37, 38, 56

getModule · 34

getModuleName · 34

getModules · 39

 Page 95

dyninstAPI

getName · 44, 53

getObjParent · 32

getParams · 34

getPC · 63

getPointType · 36

getProcedures · 39, 44

getReg · 65

getReturnType · 34

getSourceBlock · 57

getSourceFile · 62

getSourceLines · 62

getSourceObj · 32

getSources · 56, 58, 61

getSrcType · 32

getStartAddr_NP · 65

getTargets · 56

getThreads · 12

getType · 46

getUniqueString · 45

I

insertSnippet · 23

isALoad_NP · 64

isAPrefetch_NP · 65

isAStore_NP · 65

isCompatible · 53

isInstrumentable · 34

isSharedLib · 34, 45

isStopped · 27

isTerminated · 27

M

malloc · 22

Memory Access Classes · 64

Memory Access Snippets · 10

O

oneTimeCode · 28, 29, 31

P

pollForStatusChange · 13, 14

prefetchType_NP · 65

R

readValue · 53

registerDynamicLinkCallback · 21

registerErrorCallback · 18, 19

registerExecCallback · 19

registerExitCallback · 20

registerPostForkCallback · 20

registerPreForkCallback · 20

removeFunctionCall · 25

replaceFunction · 25

replaceFunctionCall · 25

S

setDebugParsing · 13

setInheritSnippets · 26

setTrampRecursive · 13

setTypeChecking · 14

stopExecution · 27

stopSignal · 27

T

terminateExecution · 27

Type Checking · 66

U

usesTrap_NP · 37

W

writeValue · 53

 Page 96

dyninstAPI

REFERENCES

1. B. Buck and J. K. Hollingsworth, "An API for Runtime Code Patching," Journal of Supercomputing Appli-

cations (to appear), 2000.

2. J. K. Hollingsworth and B. P. Miller, "Using Cost to Control Instrumentation Overhead," Theoretical Com-

puter Science, 196(1-2), 1998, pp. 241-258.

3. J. K. Hollingsworth, B. P. Miller, and J. Cargille, "Dynamic Program Instrumentation for Scalable Perfor-

mance Tools," 1994 Scalable High-Performance Computing Conf., Knoxville, Tenn., pp. 841-850.

4. J. K. Hollingsworth, B. P. Miller, M. J. R. Goncalves, O. Naim, Z. Xu, and L. Zheng, "MDL: A Language

and Compiler for Dynamic Program Instrumentation," International Conference on Parallel Architectures

and Compilation Techniques (PACT). Nov. 1997, San Francisco, pp. 201-212.

5. J. R. Larus and E. Schnarr, "EEL: Machine-Independent Executable Editing," PLDI. June 18-21, 1995, La

Jolla, CA, ACM, pp. 291-300.

