
Paradyn Parallel Performance
Tools

ProcControlAPI
Programmer’s Guide

Release 8.1
March 2013

Computer Science Department
University of Wisconsin-Madison
Madison, WI 53706

Computer Science Department
University of Maryland
College Park, MD 20742

Email: bugs@dyninst.org

WEB: WWW.DYNINST.ORG

1. INTRODUCTION .. 1

1.1. SIMPLE EXAMPLE .. 1

2. IMPORTANT CONCEPTS ... 4

2.1. PROCESSES AND THREADS ... 4
2.2. CALLBACKS .. 4

2.2.1. Events .. 4
2.2.2. Callback Functions .. 6
2.2.3. Callback Delivery .. 6

2.3. IRPCS ... 7
2.4. MEMORY MANAGEMENT ... 7

3. API REFERENCE ... 9

3.1. PROCESS ... 9
3.2. THREAD .. 19
3.3. LIBRARY ... 23
3.4. BREAKPOINT ... 23
3.5. IRPC... 26
3.6. THREADPOOL .. 27
3.7. LIBRARYPOOL ... 29
3.8. REGISTERPOOL .. 31
3.9. ADDRESSSET ... 32
3.10. PROCESSSET .. 35
3.11. THREADSET .. 44
3.12. EVENTNOTIFY ... 50
3.13. EVENTTYPE... 50
3.14. EVENT ... 52
3.15. EVENT CHILD CLASSES .. 55

3.15.1. EventTerminate .. 55
3.15.2. EventExit ... 56
3.15.3. EventCrash .. 56
3.15.4. EventForceTerminate ... 56
3.15.5. EventExec .. 57
3.15.6. EventStop... 57
3.15.7. EventBreakpoint .. 57
3.15.8. EventNewThread .. 58
3.15.9. EventNewUserThread .. 58
3.15.10. EventNewLWP ... 58
3.15.11. EventThreadDestroy .. 59
3.15.12. EventUserThreadDestroy ... 59
3.15.13. EventLWPDestroy .. 59
3.15.14. EventFork .. 59
3.15.15. EventSignal.. 60
3.15.16. EventRPC .. 60
3.15.17. EventSingleStep ... 60
3.15.18. EventLibrary .. 60

APPENDIX A. REGISTERS ... 62

1

1. Introduction

This document describes ProcControlAPI, an API and library for controlling processes.

ProcControlAPI runs as part of a controller process and manages one or more target processes.

It allows the controller process to perform operations on target processes, such as writing to

memory, stopping and running threads, or receiving notification when certain events occur.

ProcControlAPI presents these operations through a platform-independent API and high-level

abstractions. Users can describe what they want ProcControlAPI to do, and ProcControlAPI

handles the details.

An example use for ProcControlAPI would be as the underlying mechanism for a

debugger. A user writing a debugger could provide their own user interface and debugging

strategies, while using ProcControlAPI to perform operations such as creating processes, running

threads, and handling breakpoints.

ProcControlAPI exposes a C++ interface. This document will assume some familiarity

with several concepts from C++, such as const types, iterators, and inheritance.

The interface for ProcControlAPI can be generally divided into two parts: an interface for

managing a process (e.g., reading and writing to target process memory, stopping and running

threads), and an interface for monitoring a target process for certain events (e.g., watching the

target process for fork or thread creation events). The manager interface uses a set of C++

objects to represent a target process and its threads, libraries, registers and other interesting

aspects. Operations performed on these C++ objects in the controller process are translated into

corresponding operations on the target process. The event interface uses a callback system to

notify the ProcControlAPI user of interesting events in the target process.

1.1. Simple Example

As an example, consider the code in Figure 1 that creates a target process and prints a

message whenever that target process creates a new thread. Details on the API function used in

this example can be found in latter sections of this manual, but we will provide a high level

description of the operations here. Note that proper error handling and checking have been left

out for brevity.

1. We start by parsing the arguments passed to the controller process, turning them into

arguments that will be passed to the new target process.

2

2. We ask ProcControlAPI to create a new Process using the given arguments. ProcControlAPI

will spawn a new target process and leave it in a stopped state to prevent it from executing.

3. After creating the new target process we register a callback function. We ask

ProcControlAPI to call our function, on_thread_create, when an event of type

EventType::ThreadCreate occurs in the target process.

4. The on_thread_create function takes a pointer to an object of type Event and returns

a Process::cb_ret_t. The Event describes the target process event that triggered this

callback. In this case, it provides information about the new thread in the target process. It is

worth noting that Event::const_ptr is a not a regular pointer, but a reference counted

shared pointer. This means that we do not have to be concerned with cleaning the Event—it

will be automatically cleaned when the last reference disappears. The

Process::cb_ret_t describes what action should be taken on the process in response to

this event, which is described in more detail in section 6.

 #include "PCProcess.h"

 #include "Event.h"

 #include <iostream>

 #include <string>

 using namespace Dyninst;

 using namespace ProcControlAPI;

 using namespace std;

4. Process::cb_ret_t on_thread_create(Event::const_ptr ev) {

 //Callback when the target process creates a thread.

5. EventNewThread::const_ptr new_thrd_ev = ev->getEventNewThread();

 Thread::const_ptr new_thrd = new_thrd_ev->getNewThread();

 cout << "Got a new thread with LWP " << new_thrd->getLWP() << endl;

6. return Process::cbDefault;

 }

 int main(int argc, char *argv[]) {

 vector<string> args;

1. //Create a new target process

 string exec = argv[1];

 for (unsigned i=1; i<argc; i++)

 args.push_back(std::string(argv[i]));

2. Process::ptr proc = Process::createProcess(exec, args);

 //Tell ProcControlAPI about our callback function

3. Process::registerEventCallback(EventType::ThreadCreate, on_thread_create);

 //Run the process and wait for it to terminate.

7. proc->continueProc();

8. while (!proc->isTerminated())

 Process::handleEvents(true);

 return 0;

 }

Figure 1

3

5. The Event class has several child classes, one of which is EventNewThread. We start

by casting the Event into an EventNewThread and then extract information about the new

thread from the EventNewThread.

6. In step 6, we‟ve finished handling the new thread event and need to tell ProcControlAPI what

to do in response to this event. For example, we could choose to stop the process from

further execution by returning a value of Process::cbProcStop. Instead, we choose let

ProcControlAPI take its default action for an EventNewThread by returning

Process::cbDefault, which is to continue the process and its new thread (which were both

stopped before delivery of the callback).

7. The registering of our callback in step 3 did not actually trigger any calls to the callback

function—the target process was created in a stopped state and has not yet been able to create

any threads. We tell ProcControlAPI to continue the target process in this step, which allows

it to execute and possibly start generating new events.

8. In this step we wait for the target process to finish executing and terminate. Calling

Process::handleEvents blocks the controller process until an event occurs, allowing

us to wait for events without needing to spin the controller process on the CPU.

4

2. Important Concepts

This section focuses on some of the more important concepts in ProcControlAPI and gives

a high level overview before the detailed API is presented in Section 3.

2.1. Processes and Threads

There are two central classes to ProcControlAPI, Process and Thread. Each class

respectively represents a single target process or thread running on the system. By performing

operations on the Process and Thread objects, a ProcControlAPI user is able to control the

target process and its threads.

Each Process is guaranteed to have at least one Thread associated with it. A multi-

threaded process may have a Process object with more than one Thread. Each process has

an address space associated with it, which can be written or read through the Process object.

Each thread has a set of registers associated with it, which can be access through the Thread

object.

At any one time a Thread will be in either a stopped state or a running state. A thread in

a stopped state has had its execution paused by ProcControlAPI—the OS will not schedule the

thread to run. A thread in a running state is allowed to execute as normal. A thread in a running

state may block for other reasons, e.g. blocking on IO calls, but this does not affect

ProcControlAPI‟s view of the thread state. A thread is only in the stopped state if

ProcControlAPI has explicitly stopped it.

A Process object is not considered to have a stopped or running state—only its Thread

objects are stopped or running. A stop operation on a Process triggers a stop operation on

each of its Threads, and similarly a continue operation on a Process triggers continue

operations on each Thread.

2.2. Callbacks

In addition to controlling a target process through the Process and Thread objects, a

ProcControlAPI user can also receive notification of events that happen in that process.

Examples of these events would be a new thread being created, a breakpoint being executed, or a

process exiting.

The ProcControlAPI user receives notice of events through a callback system. The user

can register callback function that will be called by ProcControlAPI whenever a particular type

of event occurs. Details about the event are passed to the callback function via an Event object.

2.2.1. Events

Each event can be broken up into an EventType object and an Event object. The

EventType describes a type of event that can happen, and Event describes a specific instance

of an event happening. Each Event will have one and only one EventType.

Each EventType has two primary fields: its time and its code. The code field of

describes what type of event occurred, e.g. EventType::Exit represents a target process

exiting. The time field of an EventType represents whether the EventType is happening

5

before or after will have code and will have a value of EventType::Pre,

EventType::Post, or EventType::None.

For example, an EventType with time and code of EventType::Pre and

EventType::Exit will occur just before a target process exits, and a code of

EventType::Exec with a time of EventType::Post will occur after an exec system call

occurs. In this document we will abbreviate EventTypes such as these as pre-exit and post-

exec. Some EventTypes do not have a time associated with them, for example

EventType::Breakpoint does not have an associated time and thus has a time value of

EventType::none.

An Event represents an instance of an EventType occurring. In addition to an

EventType, each Event also has pointer to the Process and Thread that it occurred on.

Certain events may also have event specific information associated with them, which is

represented in a sub-class of Event. Each EventType is associated with a specific sub-class of

Event.

For example, EventType::Library is used to signify a shared library being loaded

into the target process. When an EventType::Library occurs ProcControlAPI will deliver

an object of type EventLibrary, which is a subclass of Event, to any registered callback

functions. In addition to the information inherited from Event, the EventLibrary will

contain extra information about the library that was loaded into the target process.

Table 1 shows the Event subclass that is used for each EventType. Not all

EventTypes are available on every platform—a checkmark under the specific OS column

means that the EventType is available on that OS.

EventType Event Subclass Linux FreeBSD Windows BG/Q

Stop EventStop

Breakpoint EventBreakpoint

Signal EventSignal

UserThreadCreate EventNewUserThread

LWPCreate EventNewLWP

Pre-UserThreadDestroy EventUserThreadDestroy

Post-UserThreadDestroy EventUserThreadDestroy

Pre-LWPDestroy EventLWPDestroy

Post-LWPDestroy EventLWPDestroy

Pre-Fork EventFork

Post-Fork EventFork

Pre-Exec EventExec

Post-Exec EventExec

RPC EventRPC

SingleStep EventSingleStep

Breakpoint EventBreakpoint

Library EventLibrary

Pre-Exit EventExit

Post-Exit EventExit

Crash EventCrash

ForceTerminate EventForceTerminate

6

Table 1 – EventTypes and Events

Details about specific events can be found in Section 3.14.

2.2.2. Callback Functions

Events are delivered via a callback function. A ProcControlAPI user can register callback

functions for an EventType using the Process::registerEventCallback function.

All callback functions must be declared using the signature:

Process::cb_ret_t callback_func_name(Event::ptr ev)

In order to prevent a class of race conditions, ProcControlAPI does not allow a callback

function to perform any operation that would require another callback to be recursively

delivered. At most one callback function can be running at a time.

To enforce this, the event that is passed to a callback function contains only const pointers

to the triggering Process and Thread objects. Any member function that could trigger

callbacks is not marked const, thus triggering a compilation error if they are called on an object

passed to a callback. If the ProcControlAPI user uses const_cast or global variables to get

around the const restriction it will result in a runtime error. API functions that cannot be used

from a callback are mentioned in the API entries.

Operations such as Process::stopProc, Process::continueProc,

Thread::stopThread, and Thread::continueThread are not safe to call from a

callback function, but it would still be useful to perform these operations. ProcControlAPI

allows the user to use the return value from a callback function to specify whether process or

thread that triggered the event should be stopped or continued. More details on this can be found

in the Process::cb_ret_t section of the API reference.

2.2.3. Callback Delivery

When ProcControlAPI needs to deliver a callback it must first gain control of a user visible

thread in the controller process. This thread will be used to invoke the callback function.

ProcControlAPI does not use its internal threads for delivering callbacks, as this would expose

the ProcControlAPI user to race conditions.

Unfortunately, the user thread is not always accessible to ProcControlAPI when it needs to

invoke a callback function. For example, the user visible thread may be performing network IO

or waiting for input from a GUI when an event occurs.

ProcControlAPI uses a notification system built around the EventNotify class to alert

the ProcControlAPI user that a callback is ready to be delivered. Once the user is notified then

they can call the Process::handleEvents function, under which ProcControlAPI will

invoke any pending callback functions.

The EventNotify class has two mechanisms for notifying the ProcControlAPI user that

a callback is pending: writing to a file descriptor and a light-weight callback function. The

EventNotify::getFD function returns a file descriptor that will have a byte written to it

when a callback is ready. This file descriptor can be added to a select or poll to block a

thread that handles ProcControlAPI events. Alternatively, the ProcControlAPI user can register

a light-weight callback that is invoked when a callback is ready. This light-weight callback

provides no information about the Event and may occur on another thread or from a signal

handler—the ProcControlAPI user is encouraged to keep this callback minimal.

7

It is important for a user to respond promptly to a callback notification. A target process

may remain blocked while a notification is pending. If a target process is generating many

events that need callbacks, a long delay in notification could have a significant performance

impact.

Once the ProcControlAPI user knows that a callback is ready to be delivered they can call

Process::handleEvents, which will invoke all callback functions. Alternatively, if the

ProcControlAPI user does not need to handle events outside of ProcControlAPI, they can

continue to block in Process::handleEvents without going through the notification

system.

2.3. iRPCs

An iRPC (Inferior Remote Procedure Call) is a mechanism for executing code in a target

process. Despite the name, an iRPC does not necessarily have to involve a procedure call—any

piece of code can be executed.

A ProcControlAPI user can invoke an iRPC by providing ProcControlAPI with a buffer of

machine code and specifying a Process or Thread on which to run the machine code.

ProcControlAPI will insert the machine code into the address space, save the register set, run the

machine code, and then remove the machine code after execution completes. When the iRPC

completes (but before the registers and memory are cleaned) ProcControlAPI will deliver an

EventIRPC to any registered callback function. The ProcControlAPI user may use this

callback to collect any results from the registers or memory used by the iRPC.

Note that ProcControlAPI will preserve the registers of the thread running the iRPC, and it

will preserve the memory used by the machine code. Other memory or system state changed by

the iRPC may remain visible to the target process after the iRPC completes.

The machine code for each iRPC must contain at least one trap instruction (e.g., a 0xCC

instruction on x86 family or a 0x7D821008 instruction on the PPC family). ProcControlAPI

will stop executing the iRPC upon invocation of the trap. Note that the trap instruction must fall

within the original machine code for the iRPC. If the iRPC calls or jumps to another piece of

code that executes a trap instruction then ProcControlAPI will not treat it as the end of the iRPC.

Before an iRPC can be run it must be posted to a process or thread using the

Process::postIRPC or Thread::postIRPC API functions. The

Process::postIRPC function will select a thread to post the iRPC to. Multiple iRPCs can

be posted to the same thread, but only one iRPC will run at a time—subsequent iRPCs will be

queued and run after the preceding iRPC completes. If multiple iRPCs are posted to different

threads in a multi-threaded process, then they may run in parallel.

An iRPC can be posted to a stopped or running thread. If posted to a stopped thread, then

the iRPC will run when the thread is continued. If posted to a running thread, then the iRPC will

run immediately or, if posted from a callback function, when the callback function completes.

An iRPC may be blocking or non-blocking. If a blocking iRPC is posted to any Process,

then calls to Process::handleEvents will block until the iRPC is completed.

2.4. Memory Management

ProcControlAPI manages memory using a shared pointer system provided by Boost

(http://www.boost.org). Many of the ProcControlAPI interface objects contain a ptr typedef

http://www.boost.org/

8

as part of their class (e.g, Process::ptr). This type refers to a shared pointer that points to

the object. The const_ptr type (e.g., Process::const_ptr) refers to a shared pointer

that points to a constant object.

The shared pointer system will use reference counting to decide when to clean objects.

The ProcControlAPI user should not explicitly clean any ProcControlAPI objects, instead they

should drop their references to the objects and let them be automatically cleaned.

ProcControlAPI will maintain its own references for any object that is still “live” (i.e., a process

or thread that is still running) so that these objects will not be pre-maturely cleaned.

A “NULL” value is specified by a shared pointer using the default constructor on the ptr

type. E.g., Process::ptr() represents a NULL pointer to a Process.

See the Boost web-site for more details on shared pointers.

9

3. API Reference

This section gives an API reference for all classes, functions and types in ProcControlAPI.

Everything defined in this section is under the namespaces Dyninst and ProcControlAPI.

These types can be accessed by prepending a Dyninst::ProcControlAPI:: in-front of

them (e.g., Dyninst::ProcControlAPI::Process) or by adding a using namespace

directive before the references (e.g., using namespace Dyninst; using namespace

ProcControlAPI;)

3.1. Process

The Process class is the primary handle for operating on a single target process.

Process objects may be created by calls to the static functions

Process::createProcess or Process::attachProcess, or in response to certain

types of events (e.g, fork on UNIX systems).

The static functions of the Process class serve as a central location for performing

general ProcControlAPI operations, such as handleEvents and

registerEventCallback when dealing with callbacks.

Process Declared In:

PCProcess.h

Process Types:

Process::ptr

Process::const_ptr

The Process::ptr and Process::const_ptr respectively represent a pointer and a

const pointer to a Process object. Both pointer types are reference counted and will cause

the underlying Process object to be cleaned when there are no more references.

ProcControlAPI will maintain internal references to any Process it actively controls,

relinquishing those references when the process either exits or is detached.

enum Process::cb_action_t {

 cbDefault,

 cbThreadContinue,

 cbThreadStop,

 cbProcContinue,

 cbProcStop

}

struct Process::cb_ret_t {

 cb_ret_t(cb_action_t p) : parent(p), child(cbDefault) {}

cb_ret_t(cb_action_t p, cb_action_t c) : parent(p), child(c)

 {}

cb_action_t parent;

cb_action_t child;

}

The cb_ret_t enum is used as the return type for callback functions registered through

Process::registerEventCallback(). A callback function can specify whether

10

the thread or process associated with its event should be stopped or continued by

respectively returning cbThreadContinue, cbThreadStop, cbProcContinue, or

cbProcStop. The cbDefault return value will return a Process and Thread to the

original state before the event occurred.

Some events, such as process spawn or thread create involve two processes or threads. In

this case the ProcControlAPI user can specify a cb_action_t value for both the parent

and child using the two parameter constructor for cb_ret_t.

typedef Process::cb_ret_t(*cb_func_t)(Event::const_ptr)

The cb_func_t type is a function pointer type for functions that can handle event

callbacks. The callback function gets an Event::const_ptr as input, which points to

the Event that triggered the callback. The cb_func_t function should return a

cb_ret_t describing what to do with the process after handling the event.

typedef enum {

 OSNone,

 Linux,

 FreeBSD,

 Windows

 VxWorks

 BlueGeneL

 BlueGeneP

 BlueGeneQ

} Dyninst::OSType

A value from this enum is returned from Process::getOS and signifies the current OS

on which the target process is running.

This type is used by Process, but it is declared in the Dyninst namespace in

dyntypes.h.

Process Static Member Functions:

static Process::ptr createProcess(

std::string executable,

const std::vector<std::string> &argv,

const std::vector<std::string> &envp = emptyEnv,

const std::map<int,int> &fds = emptyFDs)

This function creates a new process by launching an executable file named by

executable with the arguments specified by argv, the environment specified in envp,

and it returns a pointer to the new Process object upon success. The new process will be

created with its initial thread in the stopped state.

It is an error to call this function from a callback.

If the fds map is not empty, then the new process will be created with the file descriptors

from the fds’ first elements dup2 mapped to the file descriptors in fds’ second

elements.

If envp is empty, the environment will be inherited from the calling process.

11

ProcControlAPI may deliver callbacks when this function is called.

This function returns Process::ptr() on error, and a subsequent call to

getLastError will return details on the error.

static Process::ptr attachProcess(

Dyninst::PID pid,

std::string executable = "")

This function creates a new Process object by attaching to the PID specified by pid. The

new Process object will be returned from this function upon success. The executable

argument is optional, and can be used to assist ProcControlAPI in finding the process‟

executable on operating systems where this cannot be easily determined (currently on AIX).

The new process will be returned with all of its threads in the stopped state.

It is an error to call this function from a callback.

ProcControlAPI may deliver callbacks when this function is called.

This function return Process::ptr() on error, and a subsequent call to

getLastError will return details on the error.

static bool handleEvents(bool block)

This function causes ProcControlAPI to handle any pending debug events and deliver

callbacks. When an event requires a callback ProcControlAPI needs control of the main

thread in order to deliver the callback. This function gives control of the main thread to

ProcControlAPI for callback delivery. A user can know when to call handleEvents by

using the EventNotify interface; See Sections 2.2.3 and 0 for more details on

EventNotify.

If the block parameter is true, then handleEvents will block until at least one debug

event has been handled. If block is false then handleEvents will return immediately if

no events are ready to be handled.

This function returns true if it handled at least one event and false otherwise.

It is an error to call this function from a callback.

static bool registerEventCallback(

EventType evt,

cb_func_t cbfunc)

This function registers a new callback function with ProcControlAPI. Upon receiving an

event with type evt, ProcControlAPI will deliver a callback with that event to the cbfunc

function. Multiple functions can be registered to receive callbacks for a single

EventType, and a single function can be registered with multiple EventTypes.

If multiple callback functions are registered with a single EventType, then it is undefined

what order those callback functions will be invoked in. In this case the cb_ret_t result of

the last callback function called will be used to determine what stop or continue operations

should be performed on the process. If a single callback function is registered for the same

EventType multiple times, then ProcControlAPI will only invoke one call to the callback

function for each instance of the EventType.

12

This function will return true on success and false on error. Upon an error a subsequent call

to getLastError will return details on the error.

static bool removeEventCallback(
EventType evt,

cb_func_t cbfunc)

This function un-registers a callback that was registered with

registerEventCallback. After a successful call to this function the callback function

cbfunc will stop being called for events with EventType evt. Other callback functions

registered for evt will not be affected. Other instances of cbfunc registered for different

EventTypes will not be affected.

This function returns true if a callback was successfully removed and false otherwise. Upon

an error a subsequent call to getLastError will return details on the error.

static bool removeEventCallback(EventType evt)

This function unregisters all callback functions associated with the EventType evt.

After a successful call to this function ProcControlAPI will stop delivering callbacks for evt

until a new callback function is registered.

This function returns true if a callback was successfully removed and false otherwise. Upon

an error a subsequent call to getLastError will return details on the error.

static bool removeEventCallback(cb_func_t func)

This function unregisters all instances of callback function func from any callback with

any EventType.

This function returns true if a callback was successfully removed and false otherwise. Upon

an error a subsequent call to getLastError will return details on the error.

Process Member Functions:

Dyninst::PID getPid() const

This function returns an OS handle referencing the process. On UNIX systems this is the

pid of the process.

Dyninst::Architecture getArchitecture() const

This function returns an enum that describes the architecture of the target process. See

Appendix A for the definition of Dyninst::Architecture.

Dyninst::OSType getOS () const

This function returns an enum that describes the OS of the target process. See the beginning

of this section for the definition of Dyninst::OSType.

bool supportsLWPEvents () const

This function returns true if the target process can throw LWP create and destroy events and

false otherwise.

bool supportsUserThreadEvents () const

This function returns true if the target process can throw user thread create and destroy

events and false otherwise.

13

bool supportsFork () const

This function returns true if the fork system call is supported in the target process and false

otherwise.

bool supportsExec () const

This function returns true if the exec system call is supported in the target process and false

otherwise.

bool isTerminated() const

This function returns true if the target process has terminated (either via a crash or normal

exit) or if the ProcControlAPI has detached from the target process. It returns false

otherwise.

bool isExited() const

This function returns true of the target process exited via a normal exit (e.g, calling the

exit function or returning from main). It returns false otherwise.

int getExitCode() const

If a target process exited normally then this function will return its exit code. The return

result of this function is undefined if the Process’ isExited function returns false.

bool isCrashed() const

This function returns true if the target process exited because of a crash. It returns false

otherwise.

int getCrashSignal() const

If a target process exited because of a crash, then this function will return the signal that

caused the target process to crash. The return result of this function is undefined if the

Process’ isCrashed function returns false.

bool hasStoppedThread() const

This function will return true if the target process has at least one thread in the stopped state.

It will return false otherwise or if an error occurs. In the event of an error a call to

getLastError will return details on the error.

bool hasRunningThread() const

This function will return true if the target process has at least one thread in the running state.

It will return false otherwise or if an error occurs. In the event of an error a call to

getLastError will return details on the error.

bool allThreadsStopped() const

This function will return true if all threads in the target process are in the stopped state. It

will return false otherwise or if an error occurs. In the event of an error a call to

getLastError will return details on the error.

bool allThreadsRunning() const

This function will return true if all threads in the target process are in the running state. It

will return false otherwise or if an error occurs. In the event of an error a call to

getLastError will return details on the error.

14

bool allThreadsRunningWhenAttached() const

This function will return true if all threads were running when the controller process

attached to this process. It will return false if any threads were stopped. If the target process

was created instead of attached, this function will return true.

bool continueProc()

This function will move all threads in the target process into the running state. This function

will return true if at least one thread was continued as part of the call, and false

otherwise.

It is an error to call this function from a callback.

ProcControlAPI may deliver callbacks when this function is called.

This function return false on error, and a subsequent call to getLastError will return

details on the error.

bool stopProc()

This function will move all threads in the target process into the stopped state. This function

will return true if at least one thread was stopped as part of the call, and false otherwise.

It is an error to call this function from a callback.

ProcControlAPI may deliver callbacks when this function is called.

This function return false on error, and a subsequent call to getLastError will return

details on the error.

bool detach(bool leaveStopped = false)

This function will detach ProcControlAPI from the target process. ProcControlAPI will no

longer be able to control or receive events from the target process. All breakpoints will be

removed from the target. This function will return true on success and false on error.

Upon an error a subsequent call to getLastError will return details on the error.

If the leaveStopped parameter is set to true, and the process is in a stopped state, then

the target process will be left in a stopped state after the detach.

It is an error to call this function from a callback.

bool temporaryDetach()

This function temporarily detaches from the target process, but leaves the Process data

structure intact. This functionality is commonly called detach-on-the-fly. The target

process will not report new events nor be controllable or able to be queried by the user.

Breakpoints are removed from the process. The reAttach function will reconnect the

process after this call.

This function returns true on success and false upon error.

It is an error to call this function from a callback.

bool reAttach()

This function reconnects to the target process after a temporaryDetach call. Any

breakpoints will be re-inserted back into the function, and if threads have been created or

destroyed during the time detached new events will be thrown for them.

15

This function returns true on success and false upon error.

It is an error to call this function from a callback.

bool terminate()

This function forcefully terminated the target process. Upon a successful call to this

function the target process will end execution. The Process object will record the target

process as having crashed. This function will return true on success and false on error.

Upon an error a subsequent call to getLastError will return details on the error.

It is an error to call this function from a callback.

const ThreadPool &threads() const

ThreadPool &threads()

These functions respectively return a const reference or a reference to the Process‟

ThreadPool. The ThreadPool object can be used to iterate over and query the

Process’ Thread objects—see the Section 3.6 for more details on ThreadPool.

const LibraryPool &libraries() const

LibraryPool &libraries()

These functions respectively return a const reference or a reference to the Process‟

LibraryPool. The LibraryPool object can be used to iterate over and query the

Process’ Library objects—see the Section 3.7 for more details on LibraryPool.

bool addLibrary(std::string libname)

This function causes the specified library to be loaded into the process. It will trigger an

event (and thus a user callback) for each library loaded (including dependencies).

void *getData () const

void setData (void *p) const

These functions respectively get and set an opaque data object that can be associated with

this process. The data is not interpreted by ProcControlAPI, but remains associated with the

process.

Dyninst::Address mallocMemory(size_t long size)

Dyninst::Address mallocMemory(

size_t size,

Dyninst::Address addr)

These functions allocate a region of memory in the target process‟ address space of size

size. Upon a successful call these functions will map an area of memory in the target

process that is readable, writeable and executable. The mallocMemory(size_t)

function will allocate memory at any available address. The mallocMemory(size_t,

Dyninst::Address) function will only allocate memory at the specified address,

addr.

It is an error to call this function from a callback.

ProcControlAPI may deliver callbacks when this function is called.

Upon success these functions will return the start address of memory that was allocated and

0 otherwise. Upon an error a subsequent call to getLastError will return details on the

error.

16

bool freeMemory(Dyninst::Address addr)

This function will free a region of memory that was allocated by the mallocMemory

function. Upon a successful call to this function, the area of memory starting at addr will

be unmapped and no longer accessible to the target process. It is an error to call this

function with an address that was not returned by mallocMemory.

It is an error to call this function from a callback.

ProcControlAPI may deliver callbacks when this function is called.

Upon success this function will return true, otherwise it will return false. Upon an error

a subsequent call to getLastError will return details on the error.

bool writeMemory(

Dyninst::Address addr,

void *buffer,

size_t size) const

This function writes to the target process‟s memory. The addr parameter specifies an

address in the target process to which ProcControlAPI should write. The buffer and

size parameters specify a region of controller process memory that will be copied into the

target process.

It is an error to call this function on a Process that does not have at least one Thread in a

stopped state.

This function will return true on success and false on error. Upon an error a subsequent

call to getLastError will return details on the error.

bool readMemory(

 void *buffer,

 Dyninst::Address addr,

 size_t size) const

This function reads from the target process‟ memory. The addr and size parameters

specify an address in the target process from which ProcControlAPI should read. The

buffer parameter specifies an address in the controller process where ProcControlAPI

should write the copied bytes.

It is an error to call this function on a Process that does not have at least one Thread in a

stopped state.

This function will return true on success and false on error. Upon an error a subsequent

call to getLastError will return details on the error.

bool addBreakpoint(

Dyninst::Address addr,

Breakpoint::ptr bp) const

This function will insert the Breakpoint specified by bp into the target process at address

addr. See the Section 3.4 for more details on Breakpoint.

It is an error to call this function on a Process that does not have at least one Thread in a

stopped state.

17

This function will return true on success and false on error. Upon an error a subsequent

call to getLastError will return details on the error.

bool rmBreakpoint(

 Dyninst::Address addr,

 Breakpoint::ptr bp) const

This function will remove the Breakpoint specified by bp at address addr from the

target process. See the section 3.4 on Breakpoint for more details.

This function will return true on success and false on error. Upon an error a subsequent

call to getLastError will return details on the error.

bool postIRPC(IRPC::ptr irpc) const

This function posts the given irpc to the Process. ProcControlAPI will select a

Thread from the Process to run the iRPC and put irpc into that Thread‟s queue of

posted IRPCs. See Sections 2.3 and 3.5 for more information on iRPCs.

Each instance of an IRPC object can be posted at most once. It is an error to attempt to post

a single IRPC object multiple times.

This function will return true on success and false on error. Upon an error a subsequent

call to getLastError will return details on the error.

bool runIRPCSync(IRPC::ptr irpc)

This function posts an irpc, similar to Process::postIRPC; continues the thread the

irpc was posted to; and returns when the irpc has completed running. The thread will be

returned to its original running state when this function returns.

This function returns true if the irpc was successfully run, and false otherwise. Note that

stopping the thread that is running the irpc while this function waits for irpc completion

causes this function to return an error.

It is an error to call this function from a callback.

bool runIRPCAsync(IRPC::ptr irpc)

This function posts an irpc, similar to Process::postIRPC, and then continues the

thread the irpc was posted to.

This function returns true if the irpc was successfully posted and run, and false otherwise.

It is an error to call this function from a callback.

bool getPostedIRPCs(std::vector<IRPC::ptr> &rpcs) const

This function returns all IRPCs posted to this Process in the rpcs vector. This list does

not include any IRPCs currently running—see Thread::getRunningIRPC() for this

functionality.

This function will return true on success and false on error. Upon an error a subsequent

call to getLastError will return details on the error.

18

3.1.1. mem_perm

The mem_perm nested class, which defined within Process class, represents general

memory page permission for the given memory page in the process.

mem_perm Declared In:

PCProcess.h

mem_perm Types:

Process::mem_perm::read

Process::mem_perm::write

Process::mem_perm::execute

The Process::mem_perm::read, Process::mem_perm::write, and

Process::mem_perm::execute, just as their names imply, respectively represent read, write,

and execution permission of given memory page.

mem_perm Member Functions:

mem_perm() : read(false), write(false), execute(false) {}

mem_perm(const mem_perm& p) : read(p.read), write(p.write),

execute(p.execute) {}

mem_perm(bool r, bool w, bool x) : read(r), write(w), execute(x)

{}

These constructors provide a convenient way to create the specific memory permission for

the given page.

bool getR() const

bool getW() const

bool getX() const

These functions return true if the given memory page has read, write, and execution

permission, respectively, and false otherwise.

bool isNone() const

bool isR() const

bool isX() const

bool isRW() const

bool isRX() const

bool isRWX() const

These functions return true if the permission of given memory page is NO_ACCESS,

READ_ONLY, EXECUTE, READ_WRITE, READ_EXECUTE, and

READ_WRITE_EXECUTE, respectively, and false otherwise.

Process::mem_perm& setR()

Process::mem_perm& setW()

Process::mem_perm& setX()

These functions enable read, write, and execution permission for the given page,

respectively, and return this mem_perm.

19

Process::mem_perm& clrR()

Process::mem_perm& clrW()

Process::mem_perm& clrX()

These functions disable read, write, and execution permission for the given page,

respectively, and return this mem_perm.

bool operator==(const mem_perm& p) const

This function returns true if memory permission p is the same as this mem_perm and false

otherwise.

bool operator!=(const mem_perm& p) const

This function returns true if memory permission p is different from this mem_perm and

false otherwise.

bool operator<(const mem_perm& p) const

This function returns true if this mem_perm is less than p according to the notation that

read permission encodes to 4, write, 2, and execute, 1, and false otherwise.

std::string getPermName()

Return the memory permission name for this mem_perm.

3.2. Thread

The Thread class represents a single thread of execution in the target process. Any

Process will have at least one Thread, and multi-threaded target processes may have more.

Each Thread will have an associated integral value known as its LWP, which serves as a

handle for communicating with the OS about the thread (e.g., a PID value on Linux). On some

systems, depending on availability, a Thread may have information from the user space

threading library.

Thread Declared In:

PCProcess.h

Thread Types:

Thread::ptr

Thread::const_ptr

The Thread::ptr and Thread::const_ptr respectively represent a pointer and a

const pointer to a Thread object. Both pointer types are reference counted and will cause

the underlying Thread object to be cleaned when there are no more references.

ProcControlAPI will maintain internal references to any Thread it actively controls,

relinquishing those references when the thread exits or is detached.

Thread Member Functions:

Dyninst::LWP getLWP() const

This function returns an OS handle for this thread. On Linux this returns a pid_t for this

thread. On FreeBSD, this returns a lwpid_t.

20

Process::ptr getProcess()

Process::const_ptr getProcess() const

These functions return a pointer to the Process object that contains this thread.

bool isStopped() const

This function returns true if this thread is in a stopped state and false otherwise.

bool isRunning() const

This function returns true if this thread is in a running state and false otherwise.

bool isLive() const

This function returns true if this thread is alive, and it returns false if this thread has been

destroyed.

bool isDetached() const

This function returns true if this thread has been detached via

Process::temporaryDetach and false otherwise.

bool isInitialThread() const

This function returns true if this thread is the initial thread for the process and false

otherwise.

bool stopThread()

This function moves the thread to into a stopped state. Upon a successful call to this

function the Thread object will be paused and will not resume execution until the Thread

is continued. It is an error to call this function from a callback. Instead of calling this

function, a callback can stop a thread by returning Process::cbThreadStop or

Process::cbProcStop.

ProcControlAPI may deliver callbacks when this function is called.

Upon success this function will return true, otherwise it will return false. Upon an error

a subsequent call to getLastError will return details on the error.

bool continueThread()

This function moves the thread into a running state. It is an error to call this function from a

callback. Instead of calling this function, a callback can stop a thread by returning

Process::cbThreadContinue or Process::cbProcContinue.

ProcControlAPI may deliver callbacks when this function is called.

Upon success this function will return true, otherwise it will return false. Upon an error

a subsequent call to getLastError will return details on the error.

bool getRegister(

Dyninst::MachRegister reg,

Dyninst::MachRegisterVal &val) const

This function gets the value of a single register from this thread. The register is specified by

the reg parameter, and the value of the register is returned by the val parameter. See

Appendix A for an explanation of the MachRegister class.

It is an error to call this function on a thread that is not in the stopped state.

21

Upon success this function will return true, otherwise it will return false. Upon an error

a subsequent call to getLastError will return details on the error.

bool getAllRegisters(RegisterPool pool) const

This function reads the values of every register in the thread and returns them as part of the

RegisterPool object pool. Depending on the OS, this call may be more efficient that

calling Thread::getRegister multiple times. See Section 3.8 for a discussion of the

RegisterPool class.

It is an error to call this function on a thread that is not in the stopped state.

Upon success this function will return true, otherwise it will return false. Upon an error

a subsequent call to getLastError will return details on the error.

bool setRegister(

 Dyninst::MachRegister reg,

 Dyninst::MachRegisterVal val) const

This function writes the value of a single register in this thread. The register is specified by

the reg parameter, and the value that should be written is specified by the val parameter.

See Appendix A for an explanation of the MachRegister class.

It is an error to call this function on a thread that is not in the stopped state.

Upon success this function will return true, otherwise it will return false. Upon an error

a subsequent call to getLastError will return details on the error.

bool setAllRegisters(RegisterPool &pool) const

This function sets the values of every register in this thread to the values specified in the

RegisterPool object pool. Depending on the OS, this call may be more efficient that

calling Thread::setRegister multiple times. See Section 3.8 for a discussion of the

RegisterPool class.

It is an error to call this function on a thread that is not in the stopped state.

Upon success this function will return true, otherwise it will return false. Upon an error

a subsequent call to getLastError will return details on the error.

bool haveUserThreadInfo() const;

This function returns true if information about this Thread’s underlying user-level thread

is available.

Dyninst::THR_ID getTID() const;

This function returns the unique identifier for the user-level thread. This value is only valid

if haveUserThreadInfo returns true.

Dyninst::Address getStartFunction() const;

This function returns the address of the initial function for the user-level thread. This value

is only valid if haveUserThreadInfo returns true.

Dyninst::Address getStackBase() const;

This function returns the address of the bottom of the user-level thread‟s stack. This value is

only valid if haveUserThreadInfo returns true.

22

unsigned long getStackSize() const;

This function returns the size in bytes of the user-level thread‟s allocated stack. This value is

only valid if haveUserThreadInfo returns true.

Dyninst::Address getTLS() const;

This function returns the address of the user-level thread‟s thread local storage area. This

value is only valid if haveUserThreadInfo returns true.l

bool postIRPC(IRPC::ptr irpc) const

This function posts the given irpc to the Thread. The IRPC is put irpc into the

Thread’s queue of posted IRPCs and will be run when ready. See Section 0 for more

information on posting IRPCs.

Each instance of an IRPC object can be posted at most once. It is an error to attempt to post

a single IRPC object multiple times.

This function will return true on success and false on error. Upon an error a subsequent

call to getLastError will return details on the error.

bool getPostedIRPCs(std::vector<IRPC::ptr> &rpcs) const

This function returns all IRPCs posted to this Thread in the vector rpcs. This does not

include any running IRPC.

This function will return true on success and false on error. Upon an error a subsequent

call to getLastError will return details on the error.

IRPC::const_ptr getRunningIRPC() const

This function returns a const pointer to any IRPC that is actively running on this Thread.

If there is no IRPC actively running, then this function returns IRPC::const_ptr().

void setSingleStepMode(bool mode) const

This function sets whether a Thread is in single-step mode. If called with a mode of

true, then the Thread is put in single-step mode. If called with a mode of false, then

the Thread is taken out of single-step mode.

A Thread in single-step mode will pause execution at each instruction and trigger an

EventSingleStep event. After each EventSingleStep is handled (and presuming

the Thread is still running and in single-step mode) the Thread will execute one more

instruction and trigger another EventSingleStep.

bool getSingleStepMode() const

This function returns true if the Thread is in single-step mode and false otherwise.

void *getData() const

void setData(void *p) const

These functions respectively get and set an opaque data object that can be associated with

this Thread. The data is not interpreted by ProcControlAPI, but remains associated with

the Thread.

23

3.3. Library

A Library represents a single shared library (frequently referred to as a DLL or DSO,

depending on the OS) that has been loaded into the target process. In addition, a Library will

be used to represent the process‟ executable. Process‟ with statically linked executables will

only contain the single Library that represents the executable.

Each Library contains a load address and a file name. The load address is the address at

which the OS loaded the library, and the file name is the path to the library‟s file. Note that on

some operating systems (Linux, Solaris, BlueGene, FreeBSD) the load address does not

necessarily represent the beginning of the library in memory; instead it is a value that can be

added to a library‟s symbol offsets to compute the dynamic address of a symbol.

Libraries may be loaded and unloaded by the process during execution. A library load or

unload can trigger a callback with an EventLibrary parameter. The current list of libraries loaded

into a process can be accessed via a Process‟ LibraryPool object (see Section 3.7).

Library Types

Library::ptr

Library::const_ptr

The Library::ptr and Library::const_ptr types are respective typedefs for a

pointer and a const pointer to a library.

These pointers are not shared pointers—ProcControl will automatically clean a Library

object when it is unloaded. It is not recommended that the user maintains copies of pointers

to Library objects after an EventLibrary delivers notice of a library unload.

Library Member Functions

std::string getName() const

Returns the file name for this Library.

Dyninst::Address getLoadAddress() const

Returns the load address for this Library.

Dyninst::Address getDataLoadAddress() const

The AIX operating system can have two load addresses for a library: one for the code region

and one for the data region. On AIX Library::getLoadAddress will return the load

address of the code region and Library::getDataLoadAddress will return the load

address of the data region. On non-AIX systems this function returns 0.

3.4. Breakpoint

A breakpoint is a point in the code region of a target process that, when executed, stops the

process execution and notifies ProcControlAPI. Upon being continued the process will resume

execution at the point. A Breakpoint object is a handle that can represents one or more

breakpoints in one or more processes. Upon receiving notification that a breakpoint has

executed, ProcControlAPI will deliver a callback with an EventBreakpoint, (see section

3.15.7).

24

Some Breakpoint objects can be created as control-transfer breakpoints. When a

process is continued after executing a control-transfer the process will resume at an alternate

location, rather than at the breakpoint‟s installation point.

A single Breakpoint can be inserted into multiple locations within a target process.

This can be useful when a user has wants to perform a single action at multiple locations in a

target process. For example, if a user wants to insert a breakpoint at the entry to function foo,

and foo has multiple instantiations in a process, then a single Breakpoint can be inserted at

each instance of foo.

A single Breakpoint object can be inserted into multiple target processes at the same

time. When a process does an operation that copies an address space, such as fork on UNIX, the

child process will receive all Breakpoint objects that were installed in the parent process.

Multiple Breakpoint objects can be inserted into the same location with-in the same

process. When this location is executed in the target process a single callback will be delivered,

and the EventBreakpoint object will contain a reference to each Breakpoint inserted at the

location. At most one control-transfer breakpoint can be inserted at any one point in a process.

Due to the many-to-many nature of Breakpoints and Processes, a single

installation of a Breakpoint can be identified by a Breakpoint, Process, Address

triple. The functions for inserting and removing breakpoints (Process::addBreakpoint

and Process::rmBreakpoint) need all three pieces of information.

A Breakpoint can be a hardware breakpoint or a software breakpoint. A hardware

breakpoint is typically implemented by setting special debug register in the process and can

trigger on code execution, data reads or data write. A software breakpoint is typically

implemented by writing a special instruction into a code sequence and can only be triggered by

code execution. There are typically a limited number of hardware breakpoints available at the

same time.

Breakpoint Types

Breakpoint::ptr

Breakpoint::const_ptr

The Breakpoint::ptr and Breakpoint::const_ptr types are respectively a

pointer and a const pointer to a Breakpoint object. These pointers are shared pointers,

and the underlying Breakpoint object will be automatically clean when there are no more

references to it. ProcControlAPI will automatically maintain at least one reference to any

Breakpoint that is installed in a target process.

Breakpoint Constant Values

static const int BP_X = 1

static const int BP_W = 2

static const int BP_R = 4

These constant values are used to set execute, write and read bits on hardware breakpoints.

25

Breakpoint Static Functions

Breakpoint::ptr newBreakpoint()

This function creates a new software Breakpoint object and returns it. The

Breakpoint is not inserted into a Process until it is passed to

Process::addBreakpoint().

Breakpoint::ptr newTransferBreakpoint(Dyninst::Address ctrl_to)

This function creates a new control transfer software breakpoint. Upon resumption after

executing this Breakpoint, control will resume at the address specified by the ctrl_to

parameter.

Breakpoint::ptr newHardwareBreakpoint(unsigned int mode,

 unsigned int size)

This function creates a new hardware breakpoint. The mode parameter is a bitfield that

contains an OR combination the values BP_X, BP_W and BP_R. These control whether the

breakpoint will trigger when its target address is executed, written or read.

The size parameter specifies a range of memory that this breakpoint monitors. If memory

is accessed between the target address and target address + size, then the breakpoint will

trigger.

Breakpoint Member Functions

bool isCtrlTransfer() const

This function returns true if the Breakpoint is a control transfer breakpoint, and

false if it is a regular Breakpoint.

Dyninst::Address getToAddress() const

If this Breakpoint is a control transfer breakpoint, then this function returns the address

to which it transfers control. If this Breakpoint is not a control transfer breakpoint, then

this function returns 0.

void setData(void *data) const

This function sets the value of an opaque handle that is associated with each Breakpoint.

The opaque handle can be any value, and it can be retrieved with the getData function.

void *getData() const

This function returns the value of the opaque handled that is associated with this

Breakpoint.

void setSuppressCallbacks(bool val)

This function can be used to suppress callbacks stemming from a specific breakpoint when

called with val set to true value. All other effects from this breakpoint will still occur,

but it will not generate a callback. By default callbacks occur from every breakpoint.

bool suppressCallbacks() const

This function returns true if callbacks have been suppressed for this breakpoint from

Breakpoint::setSuppressCallbacks and false otherwise.

26

3.5. IRPC

IRPC is a class representing an Inferior Remote Procedure Call that can be run in a target

process. See Section 2.3 for a high level discussion of iRPCs. Also see

Process::postIRPC and Thread::postIRPC for information about posting an IRPC.

IRPC Declared In:

PCProcess.h

IRPC Types:

IRPC::ptr

IRPC::const_ptr

The IRPC::ptr and IRPC::const_ptr respectively represent a pointer and a const

pointer to an IRPC object. Both pointer types are reference counted and will cause the

underlying IRPC object to be cleaned when there are no more references. ProcControlAPI

will maintain internal references to any IRPC currently posted or executing.

IRPC Static Member Functions:

IRPC::ptr createIRPC(

void *binary_blob,

unsigned int size,

bool non_blocking = false)

IRPC::ptr createIRPC(

 void *binary_blob,

 unsigned int size,

 Dyninst::Address addr,

 bool non_blocking = false)

The createIRPC static function creates and returns a new IRPC object. The

binary_blob and size parameters specify a buffer of machine code bytes that this

IRPC should execute when invoked. ProcControlAPI will maintain its own copy of the

binary_blob buffer, the ProcControlAPI user can free the buffer once this function

completes.

If the non_blocking parameter is true then calls to Process::handleEvents will

block until this IRPC is completed.

If the addr parameter is given, then ProcControlAPI will write and run the binary code at

addr. Otherwise ProcControlAPI will select a location at which to run the IRPC.

IRPC Member Functions:

Dyninst::Address getAddress() const

The getAddress function returns the address at which the IRPC will be run. If the IRPC

was not given an address at construction and has not yet started running, then this function

may return 0.

27

void *getBinaryCodeBlob() const

The getBinaryCodeBlob will return a pointer to memory that contains the binary code

for this IRPC.

unsigned int getBinaryCodeSize() const

The getBinaryCodeSize function returns the size of the binary code blob buffer.

unsigned long getID() const

The getID function returns an integer identifier that uniquely identifies this IRPC.

void setStartOffset(unsigned long off)

By default an IRPC will start executing its code blob at the beginning of the blob. This

function can be used to tell ProcControlAPI to start execution of the code blob at some byte

offset, off, into the blob.

This function should be called before the IRPC is posted.

unsigned long getStartOffset() const

If a start offset has been set for this IRPC, then getStartOffset will return it.

Otherwise this function returns 0.

3.6. ThreadPool

A ThreadPool object is a collection for holding the Threads that make up a

Process. Each Process object has one ThreadPool object, and each ThreadPool

object has one or more Thread objects. A ThreadPool is typically used to iterate over or

search the set of Threads.

Note that it is not safe to make assumptions about having consistent contents of a

ThreadPool for a running target process. As the target process runs Thread objects may be

inserted or removed from the ThreadPool. It is generally safer to stop a Process before

operating on its ThreadPool. When used on a running process the ThreadPool iterator

methods guarantee that they will not return invalid Thread objects (e.g, nothing that would lead

to a segfault), but they do not guarantee that the Thread objects will refer to live threads or that

they will return all Threads.

28

ThreadPool Declared In:

PCProcess.h

ThreadPool Types:

class iterator {
public:

 iterator();

 ~iterator();

 Thread::ptr operator*() const;

bool operator==(const iterator &i);

bool operator!=(const iterator &i);

ThreadPool::iterator operator++();

ThreadPool::iterator operator++(int);

};

class const_iterator {
public:

 const_iterator();

 ~const_iterator();

 Thread::const_ptr operator*() const;

 bool operator==(const const_interator &i);

 bool operator!=(const const_iterator &i);

 ThreadPool::const_iterator operator++();

 ThreadPool::const_iterator operator++(int);

};

The iterator and const_iterator types of ThreadPool are respectively C++

iterators and const iterators over the set of threads represented by the ThreadPool. The

behavior of operator*, operator==, operator!=, operator++, and

operator++(int) match the standard behavior of C++ iterators.

ThreadPool Member Functions:

ThreadPool::iterator begin()

ThreadPool::const_iterator begin() const

These functions respectively return an iterator and a const_iterator that point to

the beginning of the set of Thread objects.

ThreadPool::iterator end()

ThreadPool::const_iterator end() const

These functions respectively return an iterator and a const_iterator that point to

the iterator element after the end of the set of Thread objects.

ThreadPool::iterator find(Dyninst::LWP lwp)

ThreadPool::const_iterator find(Dyninst::LWP lwp) const

The functions respectively return an iterator and a const_iterator that points to

the Thread with a LWP of lwp. If lwp is not found in the thread list, then this function

returns end().

29

size_t size() const

This function returns the number of Threads in the Process.

Process::ptr getProcess()

Process::const_ptr getProcess() const

These functions respectively return a pointer or a const pointer to the Process that owns

this ThreadPool.

Thread::ptr getInitialThread()

Thread::const_ptr getInitialThread() const

These functions respectively return a pointer or a const pointer to the initial Thread in a

Process. The initial thread is the thread that started execution of the process (i.e., the

thread that called main).

3.7. LibraryPool

A LibraryPool is a container representing the executable and set shared libraries (e.g., .dll

and .so libraries) loaded into the target process‟ address space. A statically linked target process

will only have a single executable, while a dynamically linked target process will have an

executable and zero or more shared libraries.

The LibraryPool class contains iterators and search functions for operating on the set of

libraries.

30

LibraryPool Declared In:

PCProcess.h

LibraryPool Types:

class iterator {
public:

iterator();

~iterator();

Library::ptr operator*() const;

bool operator==(const iterator &i);

bool operator!=(const iterator &i);

LibraryPool::iterator operator++();

LibraryPool::iterator operator++(int);

};

class const_iterator {
const_iterator();

~const_iterator();

Library::const_ptr operator*() const;

bool operator==(const const_interator &i);

bool operator!=(const const_iterator &i);

LibraryPool::const_iterator operator++();

LibraryPool::const_iterator operator++(int);

};

The iterator and const_iterator types of LibraryPool are respectively C++

iterators and const iterators over the set of libraries represented by the LibraryPool.

The behavior of operator*, operator==, operator!=, operator++, and

operator++(int) match the standard behavior of C++ iterators.

LibraryPool Member Functions:

LibraryPool::iterator begin()

LibraryPool::const_iterator begin() const

These functions respectively return an iterator and a const_iterator that point to

the beginning of the set of Library objects.

LibraryPool::iterator end()

LibraryPool::const_iterator end() const

These functions respectively return an iterator and a const_iterator that point to

the iterator element after the end of the set of Library objects.

size_t size() const

This function returns the number of elements in the library set.

Library::ptr getExecutable()

Library::const_ptr getExecutable() const

These functions respectively return a pointer or a const pointer to the Library object that

represents the target process‟ executable.

31

Library::ptr getLibraryByName(std::string name)

Library::const_ptr getLibraryByName(std::string name) const

These functions respectively return a pointer or a const pointer to the Library object that

with a file name equal to name. If no library is found then these functions respectively

return Library::ptr() or Library::const_ptr().

3.8. RegisterPool

The RegisterPool object represents a set of registers. It can be used to get or set all

registers in a Thread at once. See the Thread::getAllRegisters and

Thread::setAllRegisters functions. See Appendix A for more information about

MachRegister and MachRegisterVal.

RegisterPool Declared In:

PCProcess.h

RegisterPool Types:

class iterator {
public:

iterator();

~iterator();

std::pair<MachRegister, MachRegisterVal> operator*() const;

bool operator==(const iterator &i);

bool operator!=(const iterator &i);

RegisterPool::iterator operator++();

RegisterPool::iterator operator++(int);

};

This is a C++ iterator over the set of registers contained in the registerPool. The

behavior of operator*, operator==, operator!=, operator++, and

operator++(int) match the standard behavior of C++ iterators.

RegisterPool Member Functions:

LibraryPool::iterator begin()

This function returns an iterator that points to the beginning of the set of registers.

LibraryPool::iterator end()

This function returns an iterator that points element after the end of the set of registers.

LibraryPool::iterator find(Dyninst::MachRegister r)

This function returns an iterator that points to the element in the register pool that equals

register r. If r is not found, then this function returns end().

size_t size() const

This function returns the number of elements in the register set.

32

Dyninst::MachRegisterVal& operator[](Dyninst::MachRegister r)

This function returns a reference to the value associated with the register r in this register

pool. It can be used to efficiently get and set the values of registers in this pool, or to fill the

pool with new MachRegister objects.

3.9. AddressSet

The AddressSet class is a set container of Process and Dyninst::Address

tuples, with each set element a std::pair<Address, Process::ptr>. AddressSet

is used by the ProcessSet and ThreadSet classes for performing group operations on

large numbers of processes. An AddressSet might, for example, represent the location of a

symbol across numerous processes, or the location of a buffer in each process where data can be

written or read.

The iteration interfaces of AddressSet resemble a C++ STL

std::multimap<Address, Process::ptr>. When iterating all Addresses will

appear in sequential order from smallest to largest.

AddressSet Declared In:

ProcessSet.h

AddressSet Types:

AddressSet::ptr

AddressSet::const_ptr

The AddressSet::ptr and AddressSet::const_ptr respectively represent a

pointer and a const pointer to an AddressSet object. Both pointer types are reference

counted and will cause the underlying AddressSet object to be cleaned when there are no

more references.

33

typedef std::pair<Dyninst::Address, Process::ptr> value_type

class iterator {

public:

iterator();

~iterator();

value_type operator*() const;

bool operator==(const iterator &i);

bool operator!=(const iterator &i);

AddressSet::iterator operator++();

AddressSet::iterator operator++(int);

};

class const_iterator {

public:

const_iterator();

~const_iterator();

value_type operator*() const;

bool operator==(const const_interator &i);

bool operator!=(const const_iterator &i);

AddressSet::const_iterator operator++();

AddressSet::const_iterator operator++(int);

};

These are C++ iterators over the Address and Process pairs contained in the AddressSet.

The behavior of operator*, operator==, operator!=, operator++, and

operator++(int) match the standard behavior of C++ iterators.

AddressSet Static Member Functions:

static AddressSet::ptr newAddressSet()

This function returns a new AddressSet that is empty.

static AddressSet::ptr newAddressSet(ProcessSet::const_ptr ps,

 Dyninst::Address addr)

This function returns a new AddressSet initialized with the elements from ps paired

with the Address addr.

static AddressSet::ptr newAddressSet(ProcessSet::const_ptr ps,

 std::string library_name,

 Dyninst::Offset off)

This function returns a new AddressSet initialized with the elements from ps. The

Address element for each process is calculated by looking up the load address of

library_name in each Process and adding it to off.

AddressSet Member Functions

iterator begin()

const_iterator begin() const

These functions return an iterator that points to the first element in the AddressSet,

or end() if the AddressSet is empty.

34

iterator end()

const_iterator end() const

These functions return an iterator that points to the element that comes after the final

element in the AddressSet.

iterator find(Dyninst::Address addr)

const_iterator find(Dyninst::Address addr) const

These functions return an iterator that points to the first element in the AddressSet

with an address of addr. They return end() if no element matches addr.

iterator find(Dyninst::Address addr, Process::const_ptr proc)

const_iterator find(Dyninst::Address addr,

 Process::const_ptr proc) const

These functions return an iterator that points to any element that has a process and

address of proc and addr. It returns end() if no element matches.

size_t count(Dyninst::Address addr) const

This function returns the number of elements with address addr.

size_t size() const

This function returns the number of elements in the AddressSet.

bool empty() const

This function returns true if the AddressSet has zero elements and false otherwise.

std::pair<iterator, bool> insert(Dyninst::Address addr,

 Process::const_ptr proc)

This function inserts a new element into the AddressSet with addr and proc as its

values. If another element with those values already exists, then no new element will be

inserted. It returns an iterator that points to the new or existing element and a boolean

value that is true if a new element was inserted and false otherwise.

size_t insert(Dyninst::Address addr, ProcessSet::const_ptr ps)

For every element in ps, this function inserts it and addr into the AddressSet. It returns

the number of new elements created.

void erase(iterator pos)

This function removes the element pointed to by pos from the AddressSet.

size_t erase(Process::const_ptr proc)

This function removes every element with a process of proc from the AddressSet. It

returns the number of elements removed.

size_t erase(Dyninst::Address addr, Process::const_ptr proc)

This function removes any element that has and address and process of addr and proc

from the AddressSet. It returns the number of elements removed.

void clear()

This function erases all elements from the AddressSet leaving an AddressSet of size

zero.

35

iterator lower_bound(Dyninst::Address addr)

This function returns an iterator pointing to the first element in the AddressSet that

has an address greater than or equal to addr.

iterator upper_bound(Dyninst::Address addr)

This function returns an iterator pointing to the first element in the AddressSet that

has an address greater than addr.

std::pair<iterator, iterator> equal_range(Address addr) const

This function returns a pair of iterators. The first iterator has the same value as the

return of lower_bound(addr) and the second iterator has the same value as the return

of upper_bound(addr).

AddressSet::ptr set_union(AddressSet::const_ptr aset)

This function returns a new AddressSet whose elements are the set union of this

AddressSet and aset.

AddressSet::ptr set_intersection(AddressSet::const_ptr aset)

This function returns a new AddressSet whose elements are the set intersection of this

AddressSet and aset.

AddressSet::ptr set_difference(AddressSet::const_ptr aset)

This function returns a new AddressSet whose elements are the set difference of this

AddressSet minus aset.

3.10. ProcessSet

The ProcessSet class is a set container for multiple Process objects. It shares many

of the same operations as the Process class, but when an operation is performed on a

ProcessSet it is done on every Process in the ProcessSet. On some systems, such as Blue

Gene/Q, a ProcessSet can achieve better performance when repeating an operation across

many target processes.

ProcessSet Declared In:

ProcessSet.h

ProcessSet Types

ProcessSet::ptr

ProcessSet::const_ptr

The ptr and const_ptr types are smart pointers to a ProcessSet object. When the

last smart pointer to the ProcessSet is cleaned, then the underlying ProcessSet is

cleaned.

ProcessSet::weak_ptr

ProcessSet::const_weak_ptr

The weak_ptr and const_weak_ptr are weak smart pointers to a ProcessSet

object. Unlike regular smart pointers, weak pointers are not counted as references when

determining whether to clean the ProcessSet object.

36

struct CreateInfo {

 std::string executable;

 std::vector<std::string> argv;

 std::vector<std::string> envp;

 std::map<int, int> fds;

 ProcControlAPI::err_t error_ret;

 Process::ptr proc;

}

struct AttachInfo {

 Dyninst::PID pid;

 std::string executable;

 ProcControlAPI::err_t error_ret;

 Process::ptr proc;

}

The CreateInfo and AttachInfo types are used by the

ProcessSet::createProcessSet and ProcessSet::attachProcessSet

functions when creating groups of processes.

class iterator {

public:

 iterator()

 ~iterator()

 Process::ptr operator*() const

 bool operator==(const iterator &i) const

 bool operator!=(const iterator &i) const

 ProcessSet::iterator operator++();

 ProcessSet::iterator operator++(int);

}

class const_iterator {

public:

 const_iterator()

 ~const_iterator()

 Process::const_ptr operator*() const

 bool operator==(const const_iterator &i) const

 bool operator!=(const const_iterator &i) const

 ProcessSet::const_iterator operator++();

 ProcessSet::const_iterator operator++(int);

}

These are C++ iterators over the Process pointers contained in the ProcessSet. The

behavior of operator*, operator==, operator!=, operator++, and

operator++(int) match the standard behavior of C++ iterators.

37

struct write_t {

 void *buffer

 Dyninst::Address addr

 size_t size

 err_t err

 bool operator<(const write_t &w)

}

struct read_t {

 Dyninst::Address addr

 void *buffer

 size_t size

 err_t err

 bool operator<(const read_t &r)

}

The write_t and read_t types are used by ProcessSet::readMemory and

ProcessSet::writeMemory.

ProcessSet Static Member Functions

static ProcessSet::ptr newProcessSet()

This function creates a new ProcessSet that is empty.

static ProcessSet::ptr newProcessSet(Process::const_ptr proc)

This function creates a new ProcessSet containing proc.

static ProcessSet::ptr newProcessSet(ProcessSet::const_ptr pset)

This function creates a new ProcessSet that is a copy of pset.

static ProcessSet::ptr newProcessSet(

 const std::set<Process::const_ptr> &procs)

This function creates a new ProcessSet containing every element from procs.

static ProcessSet newProcessSet(AddressSet::const_iterator ab,

 AddressSet::const_iterator ae)

This function creates a new ProcessSet containing the processes that are found within

[ab, ae) of an AddressSet.

static ProcessSet::ptr createProcessSet(

 std::vector<CreateInfo> &cinfo)

This function creates a new ProcessSet by launching new processes. Each element in

cinfo specifies an executable, arguments, environment and file descriptor mappings (with

similar semantics to Process::createProcess), which are used to launch a new

process.

Every successfully created Process will be added to a new ProcessSet that is returned

by this function.

In addition, the cinfo vector will be updated so that each entry‟s proc field points to the

Process created by that entry, and the error_ret entry will contain an error code for

any process launch that failed.

38

static ProcessSet::ptr attachProcessSet(

 std::vector<AttachInfo> &ainfo)

This function creates a new ProcessSet by attaching to existing processes. Each element

in ainfo specifies a PID and executable (with similar semantics to

Process::attachProcess), which are used to attach to the processes.

Every successfully attached Process will be added to a new ProcessSet that is

returned by this function.

In addition, the ainfo vector will be updated so that each entry‟s proc field points to the

Process attached by that entry, and the error_ret entry will contain an error code any

process attach that failed.

ProcessSet Member Functions

ProcessSet::ptr set_union(ProcessSet::ptr pset) const

This function returns a new ProcessSet whose elements are a set union of this

ProcessSet and pset.

ProcessSet::ptr set_intersection(ProcessSet::ptr pset) const

This function returns a new ProcessSet whose elements are a set intersection of this

ProcessSet and pset.

ProcessSet::ptr set_difference(ProcessSet::ptr pset) const

This function returns a new ProcessSet whose elements are a set difference of this

ProcessSet minus pset.

iterator begin()

const_iterator begin() const

These functions return iterators to the first element in the ProcessSet.

iterator end()

const_iterator end() const

These functions return iterators that come after the last element in the ProcessSet.

iterator find(Process::const_ptr proc)

const_iterator find(Process::const_ptr proc) const

These functions search a ProcessSet for the Process pointed to by proc and returns

an iterator that points to that element. It returns ProcessSet::end() if no element is

found.

iterator find(Dyninst::PID pid)

const_iterator find(Dyninst::PID pid) const

These functions search a ProcessSet for the Process pointed to by proc and returns

an iterator that points to that element. It returns ProcessSet::end() if no element is

found.

bool empty() const

This function returns true if the ProcessSet has zero elements, false otherwise.

size_t size() const

This function returns the number of elements in the ProcessSet.

39

std::pair<iterator, bool> insert(Process::const_ptr proc)

This function inserts proc into the ProcessSet. If proc already exists in the

ProcessSet, then no change will occur. This function returns an iterator pointing to

either the new or existing element and a boolean that is true if an insert happened and false

otherwise.

void erase(iterator pos)

This function removes the element pointed to by pos from the ProcessSet.

size_t erase(Process::const_ptr proc)

This function searches the ProcessSet for proc, then erases that element from the

ProcessSet. It returns 1 if it erased an element and 0 otherwise.

void clear()

This function erases all elements in the ProcessSet.

ProcessSet::ptr getErrorSubset() const

This function returns a new ProcessSet containing every Process from this

ProcessSet that has a non-zero error code. Error codes are reset upon every

ProcessSet API call, so this function shows which Processes had an error on the last

ProcessSet operation.

void getErrorSubsets(std::map<ProcControlAPI::err_t,

 ProcessSet::ptr> &err_sets) const

This function returns a set of new ProcessSets containing every Process from this

ProcessSet that has non-zero error codes, and grouped by error code. For each error

code generated by the last ProcessSet API operation an element will be added to

err_sets, and every Process that has the same error code will be added to the new

ProcessSet associated with that error code.

bool anyTerminated() const;

bool allTerminated() const;

These functions respectively return true if any or all processes in this ProcessSet are

terminated, and false otherwise.

bool anyExited() const;

bool allExited() const;

These functions respectively return true if any or all processes in this ProcessSet have

exited normally, and false otherwise.

bool anyCrashed() const

bool allCrashed() const

These functions respectively return true if any or all processes in this ProcessSet have

crashed normally, and false otherwise.

bool anyDetached();

bool allDetached();

These functions respectively return true if any or all processes in this ProcessSet have

been detached, and false otherwise.

40

bool anyThreadStopped();

bool allThreadStopped();

These functions respectively return true if any or all threads in this ProcessSet are

stopped, and false otherwise.

bool anyThreadRunning();

bool allThreadRunning();

These functions respectively return true if any or all threads in this ProcessSet are

running, and false otherwise.

ProcessSet::ptr getTerminatedSubset() const

This function returns a new ProcessSet, which is a subset of this ProcessSet, and

contains every Process that is terminated.

ProcessSet::ptr getExitedSubset() const

This function returns a new ProcessSet, which is a subset of this ProcessSet, and

contains every Process that has exited normally.

ProcessSet::ptr getCrashedSubset() const

This function returns a new ProcessSet, which is a subset of this ProcessSet, and

contains every Process that has crashed.

ProcessSet::ptr getDetachedSubset() const

This function returns a new ProcessSet, which is a subset of this ProcessSet, and

contains every Process that is detached.

ProcessSet::ptr getAllThreadRunningSubset() const

ProcessSet::ptr getAnyThreadRunningSubset() const

This function returns a new ProcessSet, which is a subset of this ProcessSet, and

contains every Process that respectively has any or all threads running.

ProcessSet::ptr getAllThreadStoppedSubset() const

ProcessSet::ptr getAnyThreadStoppedSubset() const

This function returns a new ProcessSet, which is a subset of this ProcessSet, and

contains every Process that respectively has any or all threads stopped.

bool continueProcs()

This function continues every thread in every process of this ProcessSet, similar to

Process::continueProc. It returns true if every process was successfully continued

and false otherwise.

bool stopProcs()

This function stops every thread in every process of this ProcessSet, similar to

Process::stopProc. It returns true if every process was successfully stopped and false

otherwise.

bool detach(bool leaveStopped = true)

This function detaches from every process in this ProcessSet, similar to

Process::detach. It returns true if every process detach was successful and false

otherwise.

41

If the leaveStopped parameter is set to true, and the processes in this ProcessSet

are stopped, then the processes will be left in a stopped state after the detach.

bool terminate()

This function terminates every process in this ProcessSet, similar to

Process::terminate. It returns true if every process was successfully terminated and

false otherwise.

bool temporaryDetach()

This function does a temporary detach from every process in this ProcessSet, similar to

Process::temporaryDetach. It returns true if every process was successfully

detached and false otherwise.

bool reAttach()

This function reattaches to every process in this ProcessSet, similar to

Process::reAttach. It returns true if every process was successfully reAttached and

false otherwise.

AddressSet::ptr mallocMemory(size_t sz) const

This function allocates a block of memory of size sz in each process in this ProcessSet.

The addresses of the allocations are returned in a new AddressSet object.

bool mallocMemory(size_t size, AddressSet::ptr location)

This function allocates a block of memory of size sz in each process in this ProcessSet.

The memory will be allocated in each process based on the Process/Address pairs in

location.

This function‟s behavior is undefined if location contains processes not included in this

ProcessSet.

This function returns true if every allocation happened without error and false otherwise.

bool freeMemory(AddressSet::ptr addrs) const

This function frees memory allocated by Process::mallocMemory or

ProcessSet::mallocMemory. The AddressSet addrs should contain a list of

Process/Address pairs that point to the memory that should be freed.

This function‟s behavior is undefined if addrs contains processes not included in this

ProcessSet.

This function returns true if every free happened without error and false otherwise.

bool readMemory(AddressSet::ptr addrs,

 std::multimap<Process::ptr, void *> &result,

 size_t size) const

This function reads memory from processes in this ProcessSet. addrs should contain

the addresses to read memory from. size should be the amount of memory read from each

process. The results of the memory reads will be returned by filling in the result

multimap. Each process that is read from will have an entry in result along with a

malloc allocated buffer containing the results of the read.

42

It is the ProcControlAPI user‟s responsibility to free the memory buffers returned by this

function.

This function‟s behavior is undefined if addrs contains processes not included in this

ProcessSet.

This function returns true if every read happened without error, and false otherwise.

bool readMemory(AddressSet::ptr addrs,

 std::map<void *, ProcessSet::ptr> &result,

 size_t size)

This function reads memory from processes in this ProcessSet. addrs should contain

the addresses to read memory from. size should be the amount of memory to read from

each process. The results of the memory reads will be aggregated together into the result

map. If any two processes read equivalent byte-for-byte data, then those processes are

grouped together in a new ProcessSet associated with a common malloc allocated

buffer containing their memory contents.

It is the ProcControlAPI user‟s responsibility to free the memory buffers returned by this

function.

This function‟s behavior is undefined if addrs contains processes not included in this

ProcessSet.

This function returns true if every read happened without error, and false otherwise.

bool readMemory(std::multimap<Process::const_ptr, read_t> &addr)

This function reads memory from processes in this ProcessSet. The processes to read

from are specified in the indexes of addr. The remote address, read size and local buffer

are specified in the read_t elements of addr.

This function‟s behavior is undefined if addr contains processes not included in this

ProcessSet.

This function returns true if every read happened without error, and false otherwise. If any

read results in an error, then the error_ret field of the associated addr element will be

set.

bool writMemory(AddressSet::ptr addrs,

 const void *buffer,

 size_t sz) const

This function will write the contents of buffer of size sz into the memory of each process

at addrs.

This function‟s behavior is undefined if addrs contains processes not included in this

ProcessSet.

This function returns true if every write happened without error, and false otherwise.

43

bool writeMemory(

 std::multimap<Process::const_ptr, write_t> &addrs) const

This function writes to the memory of each process in addrs. The processes to write to are

specified as the indexes of addrs. The local memory buffer, buffer size, and target

location are specified in the write_t element of addrs.

This function‟s behavior is undefined if addrs contains processes not included in this

ProcessSet.

This function returns true if every write happened without error, and false otherwise. If any

write results in an error, then the error_ret field of the associated addr element will be

set.

bool addBreakpoint(AddressSet::ptr as, Breakpoint::ptr bp) const

This function inserts the Breakpoint bp into every process and address specified by as.

It is similar to Process::addBreakpoint.

This function‟s behavior is undefined if addrs contains processes not included in this

ProcessSet.

This function returns true if every breakpoint add happened without error, and false

otherwise.

bool rmBreakpoint(AddressSet::ptr as, Breakpoint::ptr bp) const

The function removes the Breakpoint bp from each process at the locations specified in

as. It is similar to Process::rmBreakpoint.

This function‟s behavior is undefined if as contains processes not included in this

ProcessSet.

This function returns true if every breakpoint remove happened without error, and false

otherwise.

bool postIRPC(const std::multimap<Process::const_ptr, IRPC::ptr>

 &rpcs) const

This function posts the IRPC objects specified in rpcs to their associated processes in the

multimap. It is similar to Process::postIRPC.

This function‟s behavior is undefined if rpcs contains processes not included in this

ProcessSet.

This function returns true if every post happened without error, and false otherwise.

bool postIRPC(IRPC::ptr irpc,

 std::multimap<Process::ptr, IRPC::ptr> *result = NULL)

This function makes a copy of irpc for each Process in this ProcessSet and posts it

to that Process. If result is non-NULL, then the multimap will be filled with each

newly created IRPC and the Process to which it was posted. It is similar to

Process::postIRPC.

This function returns true if every post happened without error, and false otherwise.

44

bool postIRPC(IRPC::ptr irpc

 AddressSet::ptr addrs,

 std::multimap<Process::ptr, IRPC::ptr> *result = NULL)

This function makes a copy of irpc and posts it to each Process in addrs at the given

Address. If result is non-NULL, then the multimap will be filled with each newly

created IRPC and the Process to which it was posted. It is similar to

Process::postIRPC.

This function‟s behavior is undefined if rpcs contains processes not included in this

ProcessSet.

This function returns true if every post happened without error, and false otherwise.

3.11. ThreadSet

The ThreadSet class is a set container for Thread pointers. It has similar operations as

Thread, and operations done on a ThreadSet affect every Thread in that

ThreadSet. One some system, such as Blue Gene Q, using a ThreadSet is more

efficient when doing the same operation across a large number of Threads.

ThreadSet Declared In:

ProcessSet.h

ThreadSet Types:

ThreadSet::ptr

ThreadSet::const_ptr

The ptr and const_ptr types are smart pointers to a ThreadSet object. When the last

smart pointer to the ThreadSet is cleaned, then the underlying ThreadSet is cleaned.

The const_ptr type is a const smart pointer.

ThreadSet::weak_ptr

ThreadSet::const_weak_ptr

The weak_ptr and const_weak_ptr are weak smart pointers to a ThreadSet object.

Unlike regular smart pointers, weak pointers are not counted as references when determining

whether to clean the ThreadSet object. The const_weak_ptr type is a const weak

smart pointer.

45

class iterator {

public:

 iterator()

 ~iterator()

 Thread::ptr operator*() const

 bool operator==(const iterator &i) const

 bool operator!=(const iterator &i) const

 ThreadSet::iterator operator++();

 ThreadSet::iterator operator++(int);

}

class const_iterator {

public:

 const_iterator()

 ~const_iterator()

 Thread::const_ptr operator*() const

 bool operator==(const const_iterator &i) const

 bool operator!=(const const_iterator &i) const

 ThreadSet::const_iterator operator++();

 ThreadSet::const_iterator operator++(int);

}

These are C++ iterators over the Thread pointers contained in the ThreadSet. The

behavior of operator*, operator==, operator!=, operator++, and

operator++(int) match the standard behavior of C++ iterators.

ThreadSet Static Member Functions

static ThreadSet::ptr newThreadSet()

This function creates a new ThreadSet that is empty.

static ThreadSet::ptr newThreadSet(Thread::ptr thr)

This function creates a new ThreadSet that contains thr.

static ThreadSet::ptr newThreadSet(const ThreadPool &threadp)

This function creates a new ThreadSet that contains all of the Threads currently in

threadp.

static ThreadSet::ptr newThreadSet (

 const std::set<Thread::const_ptr> &thrds)

This function creates a new ThreadSet that contains all of the threads in thrds.

static ThreadSet::ptr newThreadSet(ProcessSet::ptr pset)

This function creates a new ThreadSet that contains every live thread currently in every

process in pset.

ThreadSet Member Functions

ThreadSet::ptr set_union(ThreadSet::ptr tset) const

This function returns a new ThreadSet whose elements are a set union of this

ThreadSet and tset.

46

ThreadSet::ptr set_intersection(ThreadSet::ptr tset) const

This function returns a new ThreadSet whose elements are a set intersection of this

ThreadSet and tset.

ThreadSet::ptr set_difference(ThreadSet::ptr tset) const

This function returns a new ThreadSet whose elements are a set difference of this

ThreadSet minus tset.

iterator begin()

const_iterator begin() const

These functions return iterators to the first element in the ThreadSet.

iterator end()

const_iterator end() const

These functions return iterators that come after the last element in the ThreadSet.

iterator find(Thread::const_ptr thr)

const_iterator find(Thread::const_ptr thr) const

These functions search a ThreadSet for thr and returns an iterator pointing to that

element. It returns ThreadSet::end() if no element is found

bool empty() const

This function returns true if the ThreadSet has zero elements and false otherwise.

size_t size() const

This function returns the number of elements in the ThreadSet.

std::pair<iterator, bool> insert(Thread::const_ptr thr)

This function inserts thr into the ThreadSet. If thr already exists in the ThreadSet,

then no change will occur. This function returns an iterator pointing to either the new or

existing element and a boolean that is true if an insert happened and false otherwise.

void erase(iterator pos)

This function removes the element pointed to by pos from the ThreadSet.

size_t erase(Thread::const_ptr thr)

This function searches the ThreadSet for thr, then erases that element from the

ThreadSet. It returns 1 if it erased an element and 0 otherwise.

void clear()

This function erases all elements in the ThreadSet.

ThreadSet::ptr getErrorSubset() const

This function returns a new ThreadSet containing every Thread from this ThreadSet

that has a non-zero error code. Error codes are reset upon every ThreadSet API call, so

this function shows which Threads had an error on the last ThreadSet operation.

void getErrorSubsets(

 std::map<ProcControlAPI::err_t, ThreadSet::ptr> &err) const

This function returns a set of new ThreadSets containing every Thread from this

ThreadSet that has non-zero error codes, and grouped by error code. For each error code

generated by the last ThreadSet API operation an element will be added to err, and

47

every Thread that has that error code will be added to the new ThreadSet associated

with that error code.

bool allStopped() const

bool anyStopped() const

These functions respectively return true if any or all threads in this ThreadSet are stopped

and false otherwise.

bool allRunning() const

bool anyRunning() const

These functions respectively return true if any or all threads in this ThreadSet are running

and false otherwise.

bool allTerminated() const

bool anyTerminated() const

These functions respectively return true if any or all threads in this ThreadSet are

terminated and false otherwise.

bool allSingleStepMode() const

bool anySingleStepMode() const

These functions respectively return true if any or all threads in this ThreadSet are running

in single step mode, and false otherwise.

bool allHaveUserThreadInfo() const

bool anyHaveUserThreadInfo() const

These functions respectively return true if any or all threads in this ThreadSet have user

thread information available and false otherwise.

ThreadSet::ptr getStoppedSubset() const

This function returns a new ThreadSet, which is a subset of this ThreadSet, and

contains every Thread that is stopped.

ThreadSet::ptr getRunningSubset() const

This function returns a new ThreadSet, which is a subset of this ThreadSet, and

contains every Thread that is running.

ThreadSet::ptr getTerminatedSubset() const

This function returns a new ThreadSet, which is a subset of this ThreadSet, and

contains every Thread that is terminated.

ThreadSet::ptr getSingleStepSubset() const

This function returns a new ThreadSet, which is a subset of this ThreadSet, and

contains every Thread that is in single step mode.

ThreadSet::ptr getHaveUserThreadInfoSubset() const

This function returns a new ThreadSet, which is a subset of this ThreadSet, and

contains every Thread that has user thread information available.

bool getStartFunctions(AddressSet::ptr result) const

This function fills in the AddressSet pointed to by result with the address of every

start function of each Thread in this ThreadSet. This information is only available on

threads that have user thread information available.

48

This function return true if it succeeded for every Thread, and false otherwise.

bool getStackBases(AddressSet::ptr result) const

This function fills in the AddressSet pointed to by result with the address of every

stack base of each Thread in this ThreadSet. This information is only available on

threads that have user thread information available.

This function return true if it succeeded for every Thread, and false otherwise.

bool getTLSs(AddressSet::ptr result) const

This function fills in the AddressSet pointed to by result with the address of every

thread-local storage region of each Thread in this ThreadSet. This information is only

available on threads that have user thread information available.

This function return true if it succeeded for every Thread, and false otherwise.

bool stopThreads() const

This function stops every Thread in this ThreadSet. It is similar to

Thread::stopThread.

 This function return true if it succeeded for every Thread, and false otherwise.

bool continueThreads() const

This function stops every Thread in this ThreadSet. It is similar to

Thread::continueThread.

 This function return true if it succeeded for every Thread, and false otherwise.

bool setSingleStepMode(bool v) const

This function puts every Thread in this ThreadSet into single step mode if v is true. It

clears single step mode if v is false. It is similar to Thread::setSingleStepMode.

 This function return true if it succeeded for every Thread, and false otherwise.

bool getRegister(Dyninst::MachRegister reg,

 std::map<Thread::ptr, Dyninst::MachRegisterVal> &res) const

This function gets the value of register reg in every Thread in this ThreadSet. The

collected values are returned in the res map, with each Thread mapped to the value of

reg in that thread. It is similar to Thread::getRegister.

This function return true if it succeeded for every Thread, and false otherwise.

bool getRegister(Dyninst::MachRegister reg,

std::map<Dyninst::MachRegisterVal, ThreadSet::ptr> &res)

const

This function gets the value of register reg in every Thread in this ThreadSet and then

aggregates all identical values together. The res map will contain an entry for each unique

register value, and map that value to a new ThreadSet that contains every Thread that

produced that register value. It is similar to Thread::getRegister.

This function return true if it succeeded for every Thread, and false otherwise.

49

bool setRegister(Dyninst::MachRegister reg,

 const std::map<ThreadSet::const_ptr,

 Dyninst::MachRegisterVal> &vals) const

This function sets the value of register reg in each Thread in this ThreadSet. The

value set in each thread is looked up in the vals map. It is similar to

Thread::setRegister.

This function‟s behavior is undefined if it is passed a Thread that is not in this

ThreadSet.

This function return true if it succeeded for every Thread, and false otherwise.

bool setRegister(Dyninst::MachRegister reg,

 Dyninst::MachRegisterVal val) const

This function sets the register reg to val in each Thread in this ThreadSet. It is

similar to Thread::setRegister.

This function return true if it succeeded for every Thread, and false otherwise.

bool getAllRegisters(

 std::map<Thread::ptr, RegisterPool> &results) const

This function gets the values of every register in each Thread in this ThreadSet. The

register values are returned as RegisterPools in the results map, with each Thread

mapped to its RegisterPool. It is similar to Thread::getAllRegisters.

This function return true if it succeeded for every Thread, and false otherwise.

bool setAllRegisters(

 const std::map<Thread::const_ptr, RegisterPool> &val) const

This function sets the values of every register in each Thread in this ThreadSet. The

register values are extracted from the val map, with each Thread specifying its register

values via the map. This function is similar to Thread::setAllRegisters.

This function‟s behavior is undefined if it is passed a Thread that is not in this

ThreadSet.

This function return true if it succeeded for every Thread, and false otherwise.

bool postIRPC(const std::multimap<Thread::const_ptr,

 IRPC::ptr> &rpcs) const

This function posts an IRPC to every Thread in this ThreadSet. The IRPC to post to

each Thread is specified in the rpcs multimap. This function is similar to

Thread::postIRPC.

This function return true if it succeeded for every Thread, and false otherwise.

bool postIRPC(IRPC::ptr irpc,

 std::multimap<Thread::ptr, IRPC::ptr> *result = NULL)

This function posts a copy of irpc to every Thread in this ThreadSet. If result is

non-NULL, then the new IRPC objects are returned in the result multimap, with the

Thread mapped to the IRPC that was posted there. This function is similar to

Thread::postIRPC.

50

This function return true if it succeeded for every Thread, and false otherwise.

3.12. EventNotify

The EventNotify class is used to notify the user when ProcControlAPI is ready to deliver a

callback function. EventNotify is a singleton class, which means only one instance of it is ever

instantiated. See Section 2.2.3 for a high level description of notification.

EventNotify Declared In:

PCProcess.h

EventNotify Types:

typedef void (*notify_cb_t)()

This function signature is used for light-weight notification callback.

EventNotify Related Global Functions:

EventNotify *evNotify()

This function returns the singleton instance of the EventNotify class.

EventNotify Member Functions:

int getFD()

This function returns a file descriptor. ProcControlAPI will write a byte that will be

available for reading on this file descriptor when a callback function is ready to be invoked.

Upon seeing that a byte has been written to this file descriptor (likely via select or poll)

the user should call the Process::handleEvents function. The user should never

actually read the byte from this file descriptor; ProcControlAPI will handle clearing the byte

after the callback function is invoked.

This function will return -1 on error. Upon an error a subsequent call to getLastError

will return details on the error.

void registerCB(notify_cb_t cb)

This function registers a light-weight callback function that will be invoked when a

ProcControlAPI wishes to notify the user when a callback function is ready to be invoked.

This light-weight callback may be called by a ProcControlAPI internal thread or from a

signal handler; the user is encouraged to keep its implementation appropriately safe for these

circumstances.

void removeCB(notify_cb_t cb)

This function removes a light-weight callback that was previously registered with

EventNotify::registerCB. ProcControlAPI will no longer invoke the cb function

after this function completes.

3.13. EventType

The EventType class represents a type of event. Each instance of an Event happening

has one associated EventType, and callback functions can be registered against

EventTypes. All EventTypes have an associate code—an integral value that identifies the

EventType. Some EventTypes also have a time associated with them (Pre, Post, or

51

None)—describing when an Event may occur relative to the Code. For example, an

EventType with a code of Exit and a time of Pre (written as pre-exit) would be associated

with an Event that occurs just before a process exits and its address space is cleaned. An

EventType with code Exit and a time of Post would be associated with an Event that

occurs after the process exits and the address space is cleaned.

When using EventTypes to register for callback functions a special time value of Any

can be used. This signifies that the callback function should trigger for both Pre and Post time

events. ProcControlAPI will never deliver an Event that has an EventType with time

code Any.

More details on Events and EventTypes can be found in Section 2.2.1.

EventType Types:

typedef enum {

 Pre = 0,

 Post,

 None,

 Any

} Time;

typedef int Code;

The Time and Code types are respectively used to describe the time and code values of an

EventType.

EventType Constants:

static const int Error = -1

static const int Unset = 0

static const int Exit = 1

static const int Crash = 2

static const int Fork = 3

static const int Exec = 4

static const int ThreadCreate = 5

static const int ThreadDestroy = 6

static const int Stop = 7

static const int Signal = 8

static const int LibraryLoad = 9

static const int LibraryUnload = 10

static const int Bootstrap = 11

static const int Breakpoint = 12

static const int RPC = 13

static const int SingleStep = 14

static const int Library = 15

static const int MaxProcCtrlEvent = 1000

These constants describe possible values for an EventType’s code. The Error and

Unset codes are for handling error cases and should not be used for callback functions or

be associated with Events.

52

The EventType codes were implemented as an integer (rather than an enum) to allow

users to create custom EventTypes. Any custom EventType should begin at the

MaxProcCtrlEvent value, all smaller values are reserved by ProcControlAPI.

EventType Related Types:

struct eventtype_cmp {

 bool operator()(const EventType &a, const EventType &b);

}

This type defines a less-than comparison function for EventTypes. While a comparison

of EventTypes does not have a semantic meaning, this can be useful for inserting

EventTypes into maps or other STL data structures.

EventType Member Functions:

EventType(Code e)

Constructs an EventType with the given code and a time of Any.

EventType(Time t, Code e)

Constructs an EventType with the given time and code values.

EventType()

Constructs an EventType with an Unset code and None time value.

Code code() const

Returns the code value of the EventType.

Time time() const

Returns the time value of the EventType.

std::string name() const

Returns a human readable name for this EventType.

3.14. Event

The Event class represents an instance of an event happening. Each Event has an

EventType that describes the event and pointers to the Process and Thread that the event

occurred on.

The Event class is an abstract class that is never instantiated. Instead, ProcControlAPI

will instantiate children of the Event class, each of which add information specific to the

EventType. For example, an Event representing a thread creation will have an EventType

of ThreadCreate and can be cast into an EventNewThread for specific information about

the new thread. The specific events that are instantiated from Event are described in the

Section 3.15.

An event that occurs on a running thread may cause the process, thread, or neither to stop

running until the event has been handled. The specifics of what is stopped can change between

different event types and operating systems. Each Event describes whether it stopped the

associated process or thread with a SyncType field. The values of this field can be async (the

event stopped neither the process nor thread), sync_thread (the event stopped its thread), or

53

sync_process (the event stopped all threads in the process). A callback function can choose

how to resume or stop a process or thread using its return value (see Section 2.2.2).

More details on Event can be found in Section 2.2.1.

Event Declared In:

Event.h

Event Types:

typedef enum {

 unset,

 async,

 sync_thread,

 sync_process

} SyncType

The SyncType type is used to describe how a process or thread is stopped by an Event.

See the above explanation for more details.

Event Member Functions:

Thread::const_ptr getThread() const

This function returns a const pointer to the Thread object that represents the thread this

event occurred on.

Process::const_ptr getProcess() const

This function returns a const pointer to the Process object that represents the process this

event occurred on.

EventType getEventType() const

This function returns the EventType associated with this Event.

SyncType getSyncType() const

This function returns the SyncType associated with this Event.

std::string name() const

This function returns a human readable name for this Event.

54

EventTerminate::ptr getEventTerminate()

EventTerminate::const_ptr getEventTerminate() const

EventExit::ptr getEventExit()

EventExit::const_ptr getEventExit() const

EventCrash::ptr getEventCrash()

EventCrash::const_ptr getEventCrash() const

EventForceTerminate::ptr getEventForceTerminate()

EventForceTerminate::const_ptr getEventForceTerminate() const

EventExec::ptr getEventExec()

EventExec::const_ptr getEventExec() const

EventStop::ptr getEventStop()

EventStop::const_ptr getEventStop() const

EventBreakpoint::ptr getEventBreakpoint()

EventBreakpoint::const_ptr getEventBreakpoint() const

EventNewThread::ptr getEventNewThread()

EventNewThread::const_ptr getEventNewThread() const

EventNewUserThread::ptr getEventNewUserThread()

EventNewUserThread::const_tr getEventNewUserThread() const

EventNewLWP::ptr getEventNewLWP()

EventNewLWP::const_ptr getEventNewLWP() const

EventThreadDestroy::ptr getEventThreadDestroy()

EventThreadDestroy::const_ptr getEventThreadDestroy() const

EventUserThreadDestroy::ptr getEventUserThreadDestroy()

EventUserThreadDestroy::const_ptr getEventUserThreadDestroy()

const

EventLWPDestroy::ptr getEventLWPDestroy()

EventLWPDestroy::const_ptr getEventLWPDestroy() const

EventFork::ptr getEventFork()

EventFork::const_ptr getEventFor() const

EventSignal::ptr getEventSignal()

EventSignal::const_ptr getEventSignal() const

55

EventRPC::ptr getEventRPC()

EventRPC::const_ptr getEventRPC() const

EventSingleStep::ptr getEventSingleStep()

EventSingleStep::const_ptr getEventSingleStep() const

EventLibrary::ptr getEventLibrary()

EventLibrary::const_ptr getEventLibrary() const

These functions serve as a form of dynamic_cast. They cast the Event into a child

type and return the result of that cast. If the Event object is not of the appropriate type for

the given function, then they return a shared pointer NULL equivalent (ptr() or

const_ptr()).

For example, if an Event was an instance of an EventRPC, then the getEventRPC()

function would cast it to EventRPC and return the resulting value.

3.15. Event Child Classes

The Event class is an abstract parent class, while the classes listed in this section are the

child classes that are actually instantiated. Given an Event object passed to a callback function,

a ProcControlAPI user can inspect the Event‟s EventType and cast it to the appropriate child

class listed below.

Note that each child class inherits the member functions described in the Event class in

Section 3.14.

Common Types:

<EventChildClassHere>::ptr

<EventChildClassHere>::const_ptr

These types are common to all Event children classes. Rather than repeat them for each

class, they are listed once here for brevity.

The ptr and const_ptr respectively represent a pointer and a const pointer to an Event

child class. Both pointer types are reference counted and will cause the underlying object

will be cleaned when there are no more references.

3.15.1. EventTerminate

The EventTerminate class is a parent class for EventExit and EventCrash. It is

never instantiated by ProcControlAPI and simply serves as a place-holder type for a user to deal

with process termination without dealing with the specifics of whether a process exited properly

or crashed.

56

Associated EventType Codes:

Exit, Crash and ForceTerminate

3.15.2. EventExit

An EventExit triggers when a process performs a normal exit (e.g., calling the exit

function or returning from main). The process that exited is referenced with Event‟s

getProcess function.

An EventExit may be associated with an EventType of pre-exit or post-exit. Pre-exit

means the process has not yet cleaned up its address space, and thus memory can still be read or

written. Post-exit means the process has cleaned up its address space, memory is no longer

accessible.

Associated EventType Code:

Exit

EventExit Member Functions:

int getExitCode() const

This function returns the process‟ exit code.

3.15.3. EventCrash

An EventCrash triggers when a process performs an abnormal exit (e.g., crashing on a

memory violation). The process that crashed is referenced with Event‟s getProcess

function.

An EventCrash may be associated with an EventType of pre-crash or post-crash.

Pre-crash means the process has not yet cleaned up its address space, and thus memory can still

be read or written. Post-crash means the process has cleaned up its address space, memory is no

longer accessible.

Associated EventType Code:

Crash

EventCrash Member Functions:

int getTermSignal() const

This function returns the signal that caused the process to crash.

3.15.4. EventForceTerminate

An EventForceTerminate triggers when a process is forcefully terminated via the

Process::terminate function. When the callback is delivered for this event, the address

space of the corresponding process will no longer be available.

Associated EventType Code:

ForceTerminate

EventForceTerminate Member Functions:

int getTermSignal() const

This function returns the signal that was used to terminate the process.

57

3.15.5. EventExec

An EventExec triggers when a process performs a UNIX-style exec operation. An

EventType of post-Exec means the process has completed the exec and setup its new address

space. An EventType of pre-Exec means the process has not yet torn down its old address space.

Associated EventType Code:

Exec

EventExec Member Functions:

std::string getExecPath() const

This function returns the file path to the process‟ new executable.

3.15.6. EventStop

An EventStop is triggered when a process is stopped by a non-ProcControlAPI source.

On UNIX based systems, this is triggered by receipt of a SIGSTOP signal.

Unlike most other events, an EventStop will explicitly move the associated thread or

process (see the Event‟s SyncType to tell which) to a stopped state. Returning cbDefault

from a callback function that has received EventStop will leave the target process in a stopped

state rather than restore it to the pre-event state.

Associated EventType Code:

Stop

3.15.7. EventBreakpoint

An EventBreakpoint triggers when the target process encounters a breakpoint

inserted by the ProcControlAPI (see Section 3.4).

Similar to EventStop, EventBreakpoint will explicitly move the thread or process to a

stopped state. Returning cbDefault from a callback function that has received

EventBreakpoint will leave the target process in a stopped state rather than restore it to the

pre-event state.

Associated EventType Code:

Breakpoint

EventBreakpoint Member Functions:

Dyninst::Address getAddress() const

This function returns the address at which the breakpoint was hit.

void getBreakpoints(std::vector<Breakpoint::const_ptr> &b) const

This function returns a vector of pointers to the Breakpoints that were hit. Since it is

possible to insert multiple Breakpoints at the same location, it is possible for this

function to return more than one Breakpoint.

58

3.15.8. EventNewThread

An EventNewThread triggers when a process spawns a new thread. The Event class‟

getThread function will return the original Thread that performed the spawn operation,

while EventNewThread‟s getNewThread will return the newly created Thread.

This event is never instantiated by ProcControlAPI and simply serves as a place-holder

type for a user to deal with thread creation without having to deal with the specifics of LWP and

user thread creation.

A callback function that receives an EventNewThread can use the two field form of

Process::cb_ret_t (see Sections 2.2.2 and 3.1) to control the parent and child thread.

Associated EventType Codes:

ThreadCreate, UserThreadCreate, LWPCreate

EventNewThread Member Functions:

Thread::const_ptr getNewThread() const

This function returns a const pointer to the Thread object that represents the newly

spawned thread.

3.15.9. EventNewUserThread

An EventNewUserThread triggers when a process spawns a new user-level thread.

The Event class‟ getThread function will return the original Thread that performed the

spawn operation. This thread may have already been created if the platform supports the

EventNewLWP event. If not, the getNewThread function will return the newly created

Thread.

A callback function that receives an EventNewThread can use the two field form of

Process::cb_ret_t (see Sections 2.2.2 and 3.1) to control the parent and child thread.

Associated EventType Code:

UserThreadCreate

EventNewThread Member Functions:

Thread::const_ptr getNewThread() const

This function returns a const pointer to the Thread object that represents the newly

spawned thread or the corresponding thread, if the thread has already been created.

3.15.10. EventNewLWP

An EventNewLWP triggers when a process spawns a new LWP. The Event class‟

getThread function will return the original Thread that performed the spawn operation,

while EventNewThread‟s getNewThread will return the newly created Thread.

A callback function that receives an EventNewThread can use the two field form of

Process::cb_ret_t (see Sections 2.2.2 and 3.1) to control the parent and child thread.

59

Associated EventType Code:

LWPCreate

EventNewThread Member Functions:

Thread::const_ptr getNewThread() const

This function returns a const pointer to the Thread object that represents the newly

spawned thread.

3.15.11. EventThreadDestroy

An EventThreadDestroy triggers when a thread exits. Event‟s getThread member

function will return the thread that exited.

This event is never instantiated by ProcControlAPI and simply serves as a place-holder

type for a user to deal with thread destruction without having to deal with the specifics of LWP

and user thread destruction.

Associated EventType Codes:

ThreadDestroy, UserThreadDestroy, LWPDestroy

3.15.12. EventUserThreadDestroy

An EventUserThreadDestroy triggers when a thread exits. Event‟s getThread

member function will return the thread that exited.

If the platform also supports EventLWPDestroy events, this event will precede an

EventLWPDestroy event.

Associated EventType Code:

UserThreadDestroy

3.15.13. EventLWPDestroy

An LWPThreadDestroy triggers when a thread exits. Event‟s getThread member

function will return the thread that exited.

Associated EventType Code:

LWPDestroy

3.15.14. EventFork

An EventFork triggers when a process performs a UNIX-style fork operation. The

process that performed the initial fork is returned via Event‟s getProcess member function,

while the newly created process can be found via EventFork‟s getChildProcess member

function.

60

Associated EventType Code:

Fork

EventFork Member Functions:

Process::const_ptr getChildProcess() const

This function returns a pointer to the Process object that represents the newly created

child process.

3.15.15. EventSignal

An EventSignal triggers when a process receives a UNIX style signal.

Associated EventType Code:

Signal

EventSignal Member Functions:

int getSignal() const

This function returns the signal number that triggered the EventSignal.

3.15.16. EventRPC

An EventRPC triggers when a process or thread completes a ProcControlAPI iRPC (see

Sections 2.3 and 3.5). When a callback function receives an EventRPC, the memory and

registers that were used by the iRPC can still be found in the address space and thread that the

iRPC ran on. Once the callback function completes, the registers and memory are restored to

their original state.

Associated EventType Code:

RPC

EventRPC Member Functions:

IRPC::const_ptr getIRPC() const

This function returns a const pointer to the IRPC object that completed.

3.15.17. EventSingleStep

An EventSingleStep triggers when a thread, which was put in single-step mode by

Thread::setSingleStep, completes a single step operation. The Thread will remain in

single-step mode after completion of this event (presuming it has not be explicitly disabled by

Thread::setSingleStep).

Associated EventType Code:

SingleStep

3.15.18. EventLibrary

An EventLibrary triggers when the process either loads or unloads a shared library.

ProcControlAPI will not trigger an EventLibrary for library unloads associated with a

61

Process being terminated, and it will not trigger EventLibrary for library loads that

happened before a ProcControlAPI attach operation.

It is possible for multiple libraries to be loaded or unloaded at the same time. In this case,

an EventLibrary will contain multiple libraries in its load and unload sets.

Associated EventType Code:

Library

EventLibrary Member Functions:

const std::set<Library::ptr> &libsAdded() const

This function returns the set of Library objects that were loaded into the target process‟

address space. The set will be empty if no libraries were loaded.

const std::set<Library::ptr> &libsRemoved() const

This function returns the set of libraries that were unloaded from the target process‟ address

space. The set will be empty if no libraries were unloaded.

62

Appendix A. Registers

This appendix describes the MachRegister interface, which is used for accessing

registers in ProcControlAPI. The entire definition of MachRegister contains more register

names than are listed here; this appendix only lists the registers that can be accessed through

ProcControlAPI.

An instance of MachRegister is defined for each register ProcControlAPI can name.

These instances live inside a namespace that represents the register‟s architecture. For example,

we can name a register from an AMD64 machine with Dyninst::x86_64::rax or a

register from a Power machine with Dyninst::ppc32::r1.

All functions, types, and objects listed below are part of the C++ namespace Dyninst.

Declared In:

dyn_regs.h

Related Types:

typedef unsigned long MachRegisterVal

The MachRegisterVal type is used to represent the contents of a register. If a register‟s

contents are smaller than MachRegisterVal, then it will be up cast into a

MachRegisterVal.

typedef enum {

 Arch_none,

 Arch_x86,

 Arch_x86_64,

 Arch_ppc32,

 Arch_ppc64

} Architecture

The Architecture enum represents a system‟s architecture.

Related Global Functions

unsigned int getArchAddressWidth(Architecture arch)

Returns the size of a pointer, in bytes, on the given architecture, arch.

MachRegister Static Member Functions

MachRegister getPC(Dyninst::Architecture arch)

MachRegister getFramePointer(Dyninst::Architecture arch)

MachRegister getStackPointer(Dyninst::Architecture arch)

These functions respectively return the register that represents the program counter, frame

pointer, or stack pointer for the given architecture. If an architecture does not support a

frame pointer (ppc32 and ppc64) then getFramePointer returns an invalid register.

MachRegister Member Functions

MachRegister getBaseRegister() const
This function returns the largest register that may alias with the given register. For example,

getBaseRegister on x86_64::ah will return x86_64::rax.

63

Architecture getArchitecture() const

This function returns the Architecture for this register.

bool isValid() const

This function returns true if this register is valid. Some API functions may return invalid

registers upon error.

MachRegisterVal getSubRegVal(

 MachRegister subreg,

 MachRegisterVal orig)

Given a value for this register, orig, and a smaller aliased register, subreg, then this

function returns the value of the aliased register. For example, if this function were called

on x86::eax with subreg as x86::al and an orig value of 0x11223344, then it

would return 0x44.

const char *name() const

This function returns a human readable name that identifies this register.

unsigned int size() const

This function returns the size of the register in bytes.

signed int val() const

This function returns a unique integer that represents this register. This can be useful for

writing switch statements that take a MachRegister. The unique integers for a MachRegister

can be found by preceding the register object name with an „i'. For example, a switch

statement for MachRegister, reg, could be written as:

switch (reg.val()) {

 case x86_64::irax:

 case x86_64::irbx:

 case x86_64::ircx:

 …

}

bool isPC() const

bool isFramePointer() const

bool isStackPointer() const

These functions respectively return true if the register is the program counter, frame pointer,

or stack pointer for its architecture. They return false otherwise.

MachRegister Objects

The following list describes instances of MachRegister that can be passed to

ProcControlAPI. These can be named by prepending the namespace to the listed names, e.g.,

x86::eax.

namespace x86

eax

ebx

ecx

edx

ebp

esp

esi

edi

oeax

eip

flags

cs

ds

es

fs

64

gs

ss

fsbase

gsbase

namespace x86_64

rax

rbx

rcx

rdx

rbp

rsp

rsi

rdi

r8

r9

r10

r11

r12

r13

r14

r15

orax

rip

flags

cs

ds

es

fs

gs

ss

fsbase

gsbase

namespace ppc32

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30

r31

fpscw

lr

cr

xer

ctr

pc

msr

namespace ppc64

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30

r31

fpscw

lr

cr

xer

ctr

pc

msr

65

addBreakpoint, Process 16, 41

addBreakpoint, ProcessSet 41

AddressSet 30, 35, 39, 40, 45, 46

allCrashed, ProcessSet 37

allDetached, ProcessSet............................ 37

allExited, ProcessSet 37

allHaveUserThreadInfo, ThreadSet 45

allRunning, ThreadSet 45

allSingleStepMode, ThreadSet 45

allStopped, ThreadSet 45

allTerminated, ProcessSet 37

allTerminated, ThreadSet 45

allThreadRunning, ProcessSet 38

allThreadsRunning, Process 13

allThreadsStopped, Process 13

allThreadStopped, ProcessSet................... 38

anyCrashed, ProcessSet 37

anyDetached, ProcessSet 37

anyExited, ProcessSet 37

anyHaveUserThreadInfo, ThreadSet......... 45

anyRunning, ThreadSet 45

anySingleStepMode, ThreadSet................ 45

anyStopped, ThreadSet 45

anyTerminated, ProcessSet 37

anyTerminated, ThreadSet 45

anyThreadRunning, ProcessSet 38

anyThreadStopped, ProcessSet 38

Architecture ... 60

AttachInfo, ProcessSet 34, 36

attachProcess, Process 9, 11, 36

attachProcessSet, ProcessSet 34, 36

begin, AddressSet 31

begin, LibraryPool 28

begin, ProcessSet 36

begin, RegisterPool 29

begin, ThreadPool 26

begin, ThreadSet 44

Breakpoint 16, 17, 22, 41, 55

Breakpoint, Hardware 22

Breakpoint, Software................................ 22

callback function2, 4, 6, 11, 48

cb_func_t, Process 11

cb_ret_t, Process 2, 6, 9

clear, AddressSet...................................... 32

clear, ProcessSet 37

clear, ThreadSet 44

code, EventType 50

const_iterator, AddressSet 31

const_iterator, LibraryPool 28

const_iterator, ProcessSet 34

const_iterator, ThreadPool 26

const_iterator, ThreadSet 43

const_ptr ..8

continueProc, Process 6, 14, 38

continueProcs, ProcessSet 38

continueThread, Thread 6, 19, 46

continueThreads, ThreadSet 46

controller process1

control-transfer breakpoints 22

count, AddressSet 32

CreateInfo, ProcessSet 34, 35

createIRPC, IRPC 24

createProcess, Process 9, 10, 35

createProcessSet, ProcessSet 34, 35

detach, Process 14, 38

detach, ProcessSet 38

empty, AddressSet 32

empty, ProcessSet 36

empty, ThreadSet 44

end, AddressSet .. 32

end, LibraryPool 28

end, ProcessSet... 36

end, RegisterPool 29

end, ThreadPool 26

end, ThreadSet ... 44

equal_range, AddressSet 33

erase, AddressSet 32

erase, ProcessSet 37

erase, ThreadSet 44

err_t ... 37, 44

Event .. 2, 4, 6, 50

EventBreakpoint 55

EventCrash ... 54

EventExec .. 55

EventExit ... 54

EventFork .. 57

EventIRPC ...7

EventLibrary .. 58

EventNewThread...................................... 56

EventNotify .. 6, 48

EventRPC .. 58

EventSignal .. 58

66

EventSingleStep 58

EventStop .. 55

EventTerminate .. 53

EventThreadDestroy 57

EventType 4, 11, 48, 50

EventType constructor 50

EventType, Code.................................. 6, 49

EventType, Time...................................... 49

eventtype_cmp ... 50

evNotify ... 48

find, AddressSet 32

find, ProcessSet .. 36

find, ThreadSet... 44

find,ThreadPool 26

freeMemory, Process................................ 15

freeMemory, ProcessSet 39

getAddress, EventBreakpoint 55

getAddress, IRPC 25

getAllRegisters, Thread 19, 47

getAllRegisters, ThreadSet 47

getAllThreadRunningSubset, ProcessSet .. 38

getAllThreadStoppedSubset, ProcessSet... 38

getAnyThreadRunningSubset, ProcessSet 38

getAnyThreadStoppedSubset, ProcessSet . 38

getArchAddressWidth 60

getArchitecture, MachRegister 61

getArchitecture, Process 12

getBaseRegister, MachRegister 60

getBinaryCodeBlob, IRPC 25

getBinaryCodeSize, IRPC 25

getBreakpoints, EventBreakpoint 55

getChildProcess, EventFork 58

getCrashedSubset, ProcessSet 38

getCrashSignal, Process 13

getData, Breakpoint 24

getData, Process 15

getData, Thread .. 21

getDataLoadAddress, Library................... 22

getDetachedSubset, ProcessSet 38

getErrorSubset, ProcessSet 37

getErrorSubset, ThreadSet 44

getErrorSubsets, ProcessSet 37

getErrorSubsets, ThreadSet 44

getEventBreakpoint, Event 52

getEventCrash, Event 52

getEventDestroy, Event 52

getEventExec, Event 52

getEventExit, Event 52

getEventFork, Event 52

getEventLibrary, Event 53

getEventNewThread, Event 52

getEventRPC, Event 53

getEventSignal, Event 52

getEventSingleStep, Event 53

getEventStop, Event 52

getEventTerminate, Event 52

getEventType, Event 51

getExecPath, EventExec 55

getExecutable, LibraryPool 28

getExitCode, EventExit 54

getExitCode, Process 13

getExitedSubset, ProcessSet 38

getFD, EventNotify 6, 48

getFramePointer, MachRegister................ 60

getHaveUserThreadInfoSubset, ThreadSet45

getID .. 25

getInitialThread,ThreadPool 27

getIRPC, EventRPC 58

getLibraryByName, LibraryPool 29

getLoadAddress, Library 22

getLWP, Thread 18

getName, Library 21

getNewThread, EventNewThread 56, 57

getOS, Process ... 12

getPC, MachRegister 60

getPid, Process ... 12

getPostedIRPCs, Process 17

getPostedIRPCs, Thread 20

getProcess, Event 51

getProcess, Thread 18

getProcess,ThreadPool 27

getRegister, Thread 19, 46

getRegister, ThreadSet 46

getRunningIRPC, Thread 20

getRunningSubset, ThreadSet 45

getSignal, EventSignal 58

getSingleStepMode, Thread...................... 21

getSingleStepSubset, ThreadSet 45

getStackBases, ThreadSet 46

getStackPointer, MachRegister 60

getStartFunctions, ThreadSet 45

getStartOffset, IRPC 25

67

getStoppedSubset, ThreadSet 45

getSubRegVal, MachRegister................... 61

getSyncType, Event 51

getTerminatedSubset, ProcessSet 38

getTerminatedSubset, ThreadSet 45

getTermSignal, EventCrash 54

getThread, Event 51

getTLSs, ThreadSet 46

getToAddress, Breakpoint 23

handleEvents .. 25

handleEvents, Process 3, 7, 11, 48

hasRunningThread, Process...................... 13

hasStoppedThread, Process 13

insert, AddressSet 32

insert, ProcessSet 37

insert, ThreadSet 44

IRPC 7, 17, 24, 41, 42, 47, 58

isCrashed, Process 13

isCtrlTransfer, Breakpoint 23

isDetached, Thread................................... 18

isExited, Process 13

isFramePointer, MachRegister 61

isInitialThread, Thread 18

isLive, Thread .. 18

isPC, MachRegister 61

isRunning, Thread 18

isStackPointer, MachRegister 61

isStopped, Thread 18

isTerminated, Process............................... 13

isValid, MachRegister 61

iterator, AddressSet 31

iterator, Library .. 28

iterator, ProcessSet 34

iterator, RegisterPool................................ 29

iterator, ThreadPool 26

iterator, ThreadSet 43

libraries, Process 15

Library ... 21

LibraryPool .. 15

libsAdded, EventLibrary 59

libsRemoved, EventLibrary 59

load address ... 21

lower_bound, AddressSet 33

MachRegister19, 46, 47, 60

MachRegisterVal19, 46, 47, 60

mallocMemory, Process 15, 39

mallocMemory, ProcessSet 39

name, Event ... 51

name, EventType...................................... 50

name, MachRegister 61

namespaces ..9

newAddressSet, AddressSet 31

newBreakpoint, Breakpoint 23

newHardwareBreakpoint, Breakpoint 23

newProcessSet, ProcessSet 35

newThreadSet .. 43

newThreadSet, ThreadSet 43

newTransferBreakpoint, Breakpoint 23

notify_cb_t, EventNotify 48

OSType .. 10

postIRPC, Process 7, 17, 41, 42

postIRPC, ProcessSet 41, 42

postIRPC, Thread 7, 20, 47

postIRPC, ThreadSet 47

ppc32 registers ... 62

ppc64 registers ... 62

Process 2, 4, 9, 27, 36, 37, 41, 42

ProcessSet 30, 33, 43

ptr ..8

read_t, ProcessSet 35, 40

readMemory, Process 16

readMemory, ProcessSet 35, 39, 40

reAttach, Process 14, 39

reAttach, ProcessSet 39

registerCB, EventNotify 48

registerEventCallback, Process 11

RegisterPool 19, 47

removeCB, EventNotify 48

removeEventCallback, Process 12

rmBreakpoint, Process 17, 41

rmBreakpoint, ProcessSet 41

runIRPCAsync, Process............................ 17

runIRPCSync, Process 17

running state ... 4, 14

set_difference, AddressSet 33

set_difference, ProcessSet 36

set_difference, ThreadSet 44

set_intersection, AddressSet 33

set_intersection, ProcessSet 36

set_intersection, ThreadSet 44

set_union, AddressSet 33

set_union, ProcessSet 36

68

set_union, ThreadSet 43

setAllRegisters, Thread 19

setAllRegisters, ThreadSet 47

setData, Breakpoint 24

setData, Process 15

setData, Thread .. 21

setRegister, Thread............................. 19, 47

setRegister, ThreadSet 47

setSingleStep, Thread 58

setSingleStepMode, Thread 21, 46

setSingleStepMode, ThreadSet 46

setStartOffset, IRPC 25

setSuppressCallbacks, Breakpoint 24

size, AddressSet 32

size, LibraryPool 28

size, MachRegister 61

size, ProcessSet .. 36

size, RegisterPool 29

size, ThreadSet ... 44

size,ThreadPool .. 27

stopped state .. 4, 14

stopProc, Process 6, 14, 38

stopProcs, ProcessSet 38

stopThread, Thread 6, 18, 46

stopThreads, ThreadSet 46

supportsExec, Process 13

supportsFork, Process 13

supportsLWPEvents, Process 12

supportsUserThreadEvents, Process 12

suppressCallbacks, Breakpoint 24

SyncType, Event 51

target process ... 1, 2

temporaryDetach, Process 14, 18, 39

temporaryDetach, ProcessSet 39

terminate, Process............................... 15, 39

terminate, ProcessSet 39

Thread 4, 17, 25, 43, 44

ThreadPool 15, 25, 43

threads, Process .. 15

ThreadSet ... 30

time, EventType 50

upper_bound, AddressSet 33

val, MachRegister..................................... 61

write_t, ProcessSet 35, 41

writeMemory, Process 16

writeMemory, ProcessSet 35, 41

writMemory, ProcessSet 40

x86 registers ... 61

x86_64 registers 62

