
Paradyn Parallel Performance Tools

PatchAPI
Programmer’s Guide

8.0 Release
Nov 2012

Computer Sciences Department

University of Wisconsin–Madison

Madison, WI 53706

Computer Science Department

University of Maryland

College Park, MD 20742

Email bugs@dyninst.org
Web www.dyinst.org

Contents

1 Introduction 3

2 Abstractions 4

2.1 Public Interface . 5

2.2 Plugin Interface . 5

3 Examples 8

3.1 Using the public interface . 8

3.1.1 CFG Traversal . 8

3.1.2 Point Finding . 8

3.1.3 Code Patching . 9

3.2 Using the plugin interface . 10

3.2.1 Address Space . 10

3.2.2 Snippet Representation . 10

3.2.3 Code Parsing . 11

3.2.4 Point Making . 11

3.2.5 Instrumentation Engine . 12

3.2.6 Plugin Registration . 12

4 Public API Reference 13

4.1 CFG Interface . 13

4.1.1 PatchObject . 13

4.1.2 PatchFunction . 15

4.1.3 PatchBlock . 17

4.1.4 PatchEdge . 19

4.2 Point/Snippet Interface . 20

4.2.1 PatchMgr . 20

1

4.2.2 Point . 25

4.2.3 Instance . 29

4.3 Callback Interface . 29

4.3.1 PatchCallback . 29

5 Modification API Reference 32

6 Plugin API Reference 34

6.1 AddrSpace . 34

6.2 Snippet . 35

6.3 Command . 36

6.4 BatchCommand . 37

6.5 Instrumenter . 37

6.6 Patcher . 40

6.7 CFGMaker . 41

6.8 PointMaker . 41

6.9 Default Plugin . 42

6.10 PushFrontCommand and PushBackCommand 42

6.11 RemoveSnippetCommand . 42

6.12 RemoveCallCommand . 43

6.13 ReplaceCallCommand . 43

6.14 ReplaceFuncCommand . 43

A PatchAPI for Dyninst Programmers 44

A.1 Differences Between DyninstAPI and PatchAPI 44

A.2 PatchAPI accessor methods in Dyninst . 45

2

1 Introduction

This manual describes PatchAPI, a programming interface and library for binary code
patching. A programmer uses PatchAPI to instrument (insert code into) and modify a
binary executable or library by manipulating the binary’s control flow graph (CFG). We
allow the user to instrument a binary by annotating a CFG with snippets, or sequences of
inserted code, and to modify the binary by directly manipulating the CFG. The PatchAPI
interface, and thus tools written with PatchAPI, is designed to be flexible and extensible.
First, users may inherit from PatchAPI abstractions in order to store their own data. Sec-
ond, users may create plugins to extend PatchAPI to handle new types of instrumentation,
different binary types, or different patching techniques.

PatchAPI represents the binary as an annotatable and modifiable CFG. The CFG consists
of abstractions for binary objects, functions, basic blocks, and edges connecting basic blocks,
which are similar to the CFG abstractions used by the ParseAPI component.

Users instrument the binary by annotating this CFG using three additional high-level ab-
stractions: Point, Snippet, and Instance. A Point supports instrumentation by representing
a particular aspect of program behavior (e.g., entering a function or traversing an edge)
and containing instances of Snippets. Point lookup is performed with a single PatchAPI
manager (PatchMgr) object by Scope (e.g., a CFG object) and Type (e.g., function entry).
In addition, a user may provide an optional Filter that selects a subset of matching Points.
A Snippet represents a sequence of code to be inserted at certain points. To maximize flex-
ibility, PatchAPI does not prescribe a particular snippet form; instead, users may provide
their own (e.g., a binary buffer, a Dyninst abstract syntax tree (AST), or code written in
the DynC language). Users instrument the binary by adding Snippets to the desired Points.
An Instance represents the insertion of a particular Snippet at a particular Point.

The core PatchAPI representation of an annotatable and modifiable CFG operates in several
domains, including on a running process (dynamic instrumentation) or a file on disk (binary
rewriting). Furthermore, PatchAPI may be used both in the same address space as the
process (1st-party instrumentation) or in a different address space via the debug interface
(3rd-party instrumentation). Similarly, developers may define their own types of Snippets
to encapsulate their own code generation techniques. These capabilities are provided by a
plugin interface; by implementing a plugin a developer may extend PatchAPI’s capabilities.

This manual is structured as follows. Section 2 presents the core abstractions in the public
and plugin interface of PatchAPI. Section 3 shows several examples in C++ to illustrate
the usage of PatchAPI. Detailed API reference can be found in Section 4 and Section 6.
Finally, Appendix A provides a quick tutorial of PatchAPI to those who are already familiar
with DyninstAPI.

3

ftp://ftp.cs.wisc.edu/paradyn/releases/release7.0/doc/parseapi.pdf
ftp://ftp.cs.wisc.edu/paradyn/releases/release7.0/doc/dyninstProgGuide.pdf
ftp://ftp.cs.wisc.edu/paradyn/releases/release7.0/doc/dynC_API.pdf

2 Abstractions

LEGEND

A is a plugin class

PatchMgr

AddrSpace PointInstrumenter

Instance

Snippet

CommandPatchObject

PatchFunction

PatchBlock PatchEdge

1:1 1:1 1:n

1:n 1:n 1:n

1:11:n

1:n 1:n

A

A B1:1 Each instance of class A owns one instance of class B

A B1:n Each instance of class A owns multiple instance of class B

PointMaker

1:1

CFGMaker

1:1

A is a public classA

Figure 1: Object Ownership

PatchAPI contains two interfaces: the public interface and the plugin interface. The public
interface is used to find instrumentation points, insert or delete code snippets, and regis-
ter plugins provided by programmers. The plugin interface is used to customize different
aspects in the binary code patching. PatchAPI provides a set of default plugins for first
party code patching, which is easy to extend to meet different requirements in practice.

Figure 1 shows the ownership hierarchy for PatchAPI’s classes. Ownership is a “contains”
relationship. If one class owns another, then instances of the owner class maintain ex-
actly one or possibly more than one instances of the other, which depends on whether the
relationship is a “1:1” or a “1:n” relationship. In Figure 1, for example, each PatchMgr
instance contains exactly one instance of a AddrSpace object, while a PatchMgr instance
may contains more than one instances of a Point object.

4

The remainder of this section briefly describes the classes that make up PatchAPI’s two
interfaces. For more details, see the class descriptions in Section 4 and Section 6.

2.1 Public Interface

PatchMgr, Point, and Snippet are used to perform the main process of binary code patching:
1) find some Point; 2) insert or delete Snippet at some Point.

• PatchMgr - The PatchMgr class is the top-level class for finding instrumentation
Points, inserting or deleting Snippets, and registering user-provided plugins.

• Point - The Point class represents a location on the CFG that acts as a container of
inserted snippet Instances. Points of different types are distinct even the underlying
code relocation and generation engine happens to put instrumentation from them at
the same place.

• Instance - The Instance class is a representation of a particular snippet inserted at a
particular point.

• PatchObject - The PatchObject class is a wrapper of ParseAPI’s CodeObject class,
which represents an individual binary code object, such as an executable or a library.

• PatchFunction - The PatchFunction class is a wrapper of ParseAPI’s Function class,
which represents a function.

• PatchBlock - The PatchBlock class is a wrapper of ParseAPI’s Block class, which
represents a basic block.

• PatchEdge - The PatchEdge class is a wrapper of ParseAPI’s Edge class, which join
two basic blocks in the CFG, indicating the type of control flow transfer instruction
that joins the basic blocks to each other.

2.2 Plugin Interface

The address space abstraction determines whether the code patching is 1st party, 3rd party
or binary rewriting.

• AddrSpace - The AddrSpace class represents the address space of a Mutatee (a
program that is instrumented), where it contains a collection of PatchObjects that
represent shared libraries or a binary executable. In addition, programmers implement
some memory management interfaces in the AddrSpace class to determines the type
of the code patching - 1st party, 3rd party, or binary rewriting.

5

Programmers can decide the representation of a Snippet, for example, the representation
can be in high level language (e.g., C or C++), or can simply be in binary code (e.g., 0s
and 1s).

• Snippet - The Snippet class allows programmers to easily plug in their own snippet
representation and the corresponding mini-compiler to translate the representation
into the binary code.

PatchAPI provides a thin layer on top of ParseAPI’s Control Flow Graph (CFG) layer,
which associates some useful information for the ease of binary code patching, for example,
a shared library’s load address. This layer of CFG structures include PatchObject, Patch-
Function, PatchBlock and PatchEdge classes. Programmers can extend these four CFG
classes, and use the derived class of CFGMaker to build a CFG with the augmented CFG
structures.

• CFGMaker - The CFGMaker class is a factory class that constructs the above CFG
structures. This class is used in CFG parsing.

Similar to customizing the PatchAPI layer, programmers can also customize the Point class
by extending it.

• PointMaker - The PointMaker class is a factory class that constructs a subclass of
the Point class.

The implementation of an instrumentation engine may be very sophisticated (e.g., relocat-
ing a function), or very simple (e.g., simply overwrite an instruction). Therefore, PatchAPI
provides a flexible framework for programmers to customize the instrumentation engine.
This framework is based on Command Pattern 1. The instrumentation engine has transac-
tional semantics, where all instrumentation requests should succeed or all should fail. In our
framework, the Command abstraction represents an instrumentation request or a logical
step in the code patching process. We accumulate a list of Commands, and execute them
one by one. If one Command fails, we undo all preceding finished Commands. Figure 2
illustrates the inheritance hierarchy for related classes. There is a default implementation
of instrumentation engine in PatchAPI for 1st party code patching.

• Command - The Command class represents an instrumentation request (e.g., snippet
insertion or removal), or a logical step in the code patching (e.g., install instrumen-
tation). This class provides a run() method and an undo() method, where run() will
be called for normal execution, and undo() will be called for undoing this Command.

1http://en.wikipedia.org/wiki/Command_pattern

6

LEGEND

A is a classA

A B A is a subclass that inherits some properties from B

RemoveSnippet
Command

PushBack
Command

Command

Batch
Command

Instrumenter Patcher

...

Figure 2: Inheritance Hierarchy

• BatchCommand - The BatchCommand class is a subclass of Command, and it is in
fact a container of a list of Commands to be executed atomically.

• Instrumenter - The Instrumenter class inherits BatchCommand to encapsulate the
core code patching logic, which includes binary code generation. Instrumenter would
contain several logical steps that are individual Commands.

• Patcher - The Patcher class is also a subclass of BatchCommand. It accepts instru-
mentation requests from users, where these instrumentation requests are Commands
(e.g., snippet insertion). Furthermore, Patcher implicitly adds Instrumenter to the
end of the Command list to generate binary code and install the instrumentation.

7

3 Examples

To illustrate the ideas of PatchAPI, we present some simple code examples that demonstrate
how the API can be used.

3.1 Using the public interface

The basic flow of doing code patching is to first find some points in a program, and then
to insert, delete or update a piece of code at these points.

3.1.1 CFG Traversal

Listing 1: Example of CFG traversal
1 ParseAPI::CodeObject∗ co = ...
2 PatchObject∗ obj = PatchObject::create(co, code_base);
3
4 // Find all functions in the object
5 std::vector<PatchFunction∗> all;
6 obj−>funcs(back_inserter(all));
7
8 for (std::vector<PatchFunction∗>::iterator fi = all.begin();
9 fi != all.end(); fi++) {
10 // Print out each function’s name
11 PatchFunction∗ func = ∗fi;
12 std::cout << func−>name() << std::endl;
13
14 const PatchFunction::Blockset& blks = func−>blocks();
15 for (PatchFunction::BlockSet::iterator bi = blks.begin();
16 bi != blks.end(); bi++) {
17 // Print out each block’s size
18 PatchBlock∗ blk = ∗bi;
19 std::cout << "\tBlock size:" << blk−>size() << std::endl;
20 }
21 }

In the above code, we illustrate how to traverse CFG structures in PatchAPI. First, we
construct an instance of PatchObject using an instance of ParseAPI’s CodeObject. Then,
we traverse all functions in that object, and print out each function’s name. For each
function, we also print out the size of each basic block.

3.1.2 Point Finding

8

Listing 2: Example of point finding
1 PatchFunction ∗func = ...;
2 PatchBlock ∗block = ...;
3 PatchEdge ∗edge = ...;
4
5 PatchMgr ∗mgr = ...;
6
7 std::vector<Point∗> pts;
8 mgr−>findPoints(Scope(func),
9 Point::FuncEntry |
10 Point::PreCall |
11 Point::FuncExit,
12 back_inserter(pts));
13 mgr−>findPoints(Scope(block),
14 Point::BlockEntry,
15 back_inserter(pts));
16 mgr−>findPoints(Scope(edge),
17 Point::EdgeDuring,
18 back_inserter(pts));

The above code shows how to use the PatchMgr::findPoints method to find some instru-
mentation points. There are three invocations of findPoints. For the first invocation (Line
8), it finds points only within a specific function func, and output the found points to a
vector pts. The result should include all points at this function’s entry, before all function
calls inside this function, and at the function’s exit. Similarly, for the second invocation
(Line 13), it finds points only within a specific basic block, and the result should include
the point at the block entry. Finally, for the third invocation (Line 16), it finds the point
at a specific CFG edge that connects two basic blocks.

3.1.3 Code Patching

Listing 3: Example of code patching
1 MySnippet::ptr snippet = MySnippet::create(new MySnippet);
2
3 Patcher patcher(mgr);
4 for (vector<Point∗>::iterator iter = pts.begin();
5 iter != pts.end(); ++iter) {
6 Point∗ pt = ∗iter;
7 patcher.add(PushBackCommand::create(pt, snippet));
8 }
9 patcher.commit();

The above code is to insert the same code snippet to all points pts found in Section 3.1.2.
We’ll explain the snippet (Line 1) in the example in Section 3.2.2. Each point maintains a

9

list of snippet instances, and the PushBackCommand is to push a snippet instance to the
end of that list. An instance of Patcher is to represent a transaction of code patching. In
this example, all snippet insertions (or all PushBackCommands) are performed atomically
when the Patcher::commit method is invoked. That is, all snippet insertions would succeed
or all would fail.

3.2 Using the plugin interface

3.2.1 Address Space

Listing 4: Example of implementing address space plugin
1 class MyAddrSpace : public AddrSpace {
2 public:
3 ...
4 virtual Address malloc(PatchObject∗ obj, size_t size, Address near) {
5 Address buffer = ...
6 // do memory allocation here
7 return buffer;
8 }
9 virtual bool write(PatchObject∗ obj, Address to_addr, Address from_addr,
10 size_t size) {
11 // copy data from the address from_addr to the address to_addr
12 return true;
13 }
14 ...
15 };

The above code is to implement the address space plugin, in which, a set of memory
management methods should be specified, including malloc, free, realloc, write and so
forth. The instrumentation engine will utilize these memory management methods during
the code patching process. For example, the instrumentation engine needs to malloc a
buffer in Mutatee’s address space, and then write the code snippet into this buffer.

3.2.2 Snippet Representation

Listing 5: Example of implementing snippet plugin
1 class MySnippet : public Snippet {
2 public:
3 virtual bool generate(Point ∗pt, Buffer &buf) {
4 // Generate and store binary code in the Buffer buf
5 return true;
6 }
7 };
8 MySnippet::ptr snippet = MySnippet::create(new MySnippet);

10

The above code illustrates how to customize a user-defined snippet MySnippet by im-
plementing the “mini-compiler” in the generate method, which will be used later in the
instrumentation engine to generate binary code.

3.2.3 Code Parsing

Listing 6: Example of customizing CFG parsing
1 class MyFunction : public PatchFunction {
2 ...
3 };
4 class MyCFGMaker : public CFGMaker {
5 public:
6 ...
7 virtual PatchFunction∗ makeFunction(ParseAPI::Function ∗f, PatchObject∗ o) {
8 return new MyFunction(f, o);
9 }
10 ...
11 };

Programmers can augment PatchAPI’s CFG structures by annotating their own data. In
this case, a factory class should be built by inheriting from the CFGMaker class, to create
the augmented CFG structures. The factory class will be used for CFG parsing.

3.2.4 Point Making

Listing 7: Example of point making
1 class MyPoint : public Point {
2 public:
3 MyPoint(Point::Type t, PatchMgrPtr m, PatchFunction ∗f);
4 ...
5 };
6
7 class MyPointMaker: public PointMaker {
8 protected:
9 virtual Point ∗mkFuncPoint(Point::Type t, PatchMgrPtr m, PatchFunction ∗f) {
10 return new MyPoint(t, m, f);
11 }
12 };

In the above example, the MyPoint class inherits from the Point class, and the MyPoint-
Maker class inherits from the PointMaker class. The mkFuncPoint method in MyPoint-
Maker simply returns a new instance of MyPoint. The mkFuncPoint method will be invoked

11

by PatchMgr::findPoint(s).

3.2.5 Instrumentation Engine

Listing 8: Example of customizing instrumentation engine
1 class MyInstrumenter : public Instrumenter {
2 public:
3 virtual bool run() {
4 // Specify how to install instrumentation
5 }
6 };

Programmers can customize the instrumentation engine by extending the Instrumenter
class, and implement the installation of instrumentation inside the method run().

3.2.6 Plugin Registration

Listing 9: Example of registering plugins
1 MyCFGMakerPtr cm = ...
2 PatchObject∗ obj = PatchObject::create(..., cm);
3
4 MyAddrSpacePtr as = ...
5 as−>loadObject(obj);
6
7 MyInstrumenter inst = ...
8 PatchMgrPtr mgr = PatchMgr::create(as, ..., inst);
9
10 MySnippet::ptr snippet = MySnippet::create(new MySnippet);

The above code shows how to register the above four types of plugins. An instance of the
factory class for creating CFG structures is registered to an PatchObject (Line 1 and 2),
which is in turn loaded into an instance of AddrSpace (Line 4 and 5). The AddrSpace (or
its subclass implemented by programmers) instance is passed to PatchMgr::create (Line 7
and 8), together with an instance of Instrumenter (or its subclass). Finally, a snippet of
custom snippet representation MySnippet is created (Line 10). Therefore, all plugins are
glued together in PatchAPI.

12

4 Public API Reference

This section describes public interfaces in PatchAPI. The API is organized as a collection of
C++ classes. The classes in PatchAPI fall under the C++ namespace Dyninst::PatchAPI.
To access them, programmers should refer to them using the “Dyninst::PatchAPI::” prefix,
e.g., Dyninst::PatchAPI::Point. Alternatively, programmers can add the C++ using key-
word above any references to PatchAPI objects, e.g.,using namespace Dyninst::PatchAPI
or using Dyninst::PatchAPI::Point.

Classes in PatchAPI use either the C++ raw pointer or the boost shared pointer (boost::shared_ptr<T>)
for memory management. A class uses a raw pointer whenever it is returning a handle to
the user that is controlled and destroyed by the PatchAPI runtime library. Classes that
use a raw pointer include the CFG objects, a Point, and various plugins, e.g., AddrSpace,
CFGMaker, PointMaker, and Instrumenter. A class uses a shared_pointer whenever it is
handing something to the user that the PatchAPI runtime library is not controlling and
destroying. Classes that use a boost shared pointer include a Snippet, PatchMgr, and In-
stance, where we typedef a class’s shared pointer by appending the Ptr to the class name,
e.g., PatchMgrPtr for PatchMgr.

4.1 CFG Interface

4.1.1 PatchObject

Declared in: PatchObject.h

The PatchObject class is a wrapper of ParseAPI’s CodeObject class (has-a), which repre-
sents an individual binary code object, such as an executable or a library.

static PatchObject* create(ParseAPI::CodeObject* co, Address base,
CFGMaker* cm = NULL, PatchCallback *cb = NULL);

Creates an instance of PatchObject, which has co as its on-disk representation
(ParseAPI::CodeObject), and base as the base address where this object is loaded
in the memory. For binary rewriting, base should be 0. The cm and cb param-
eters are for registering plugins. If cm or cb is NULL, then we use the default
implementation of CFGMaker or PatchCallback.

static PatchObject* clone(PatchObject* par_obj, Address base,
CFGMaker* cm = NULL, PatchCallback *cb = NULL);

13

Returns a new object that is copied from the specified object par_obj at the
loaded address base in the memory. For binary rewriting, base should be 0. The
cm and cb parameters are for registering plugins. If cm or cb is NULL, then we
use the default implementation of CFGMaker or PatchCallback.

Address codeBase();

Returns the base address where this object is loaded in memory.

PatchFunction *getFunc(ParseAPI::Function *func, bool create = true);

Returns an instance of PatchFunction in this object, based on the func parameter.
PatchAPI creates a PatchFunction on-demand, so if there is not any PatchFunction
created for the ParseAPI function func, and the create parameter is false, then no
any instance of PatchFunction will be created.

It returns NULL in two cases. First, the function func is not in this PatchObject.
Second, the PatchFunction is not yet created and the create is false. Otherwise,
it returns a PatchFunction.

template <class Iter>
void funcs(Iter iter);

Outputs all instances of PatchFunction in this PatchObject to the STL inserter
iter.

PatchBlock *getBlock(ParseAPI::Block* blk, bool create = true);

Returns an instance of PatchBlock in this object, based on the blk parameter.
PatchAPI creates a PatchBlock on-demand, so if there is not any PatchBlock
created for the ParseAPI block blk, and the create parameter is false, then no any
instance of PatchBlock will be created.

It returns NULL in two cases. First, the ParseAPI block blk is not in this PatchOb-
ject. Second, the PatchBlock is not yet created and the create is false. Otherwise,
it returns a PatchBlock.

14

template <class Iter>
void blocks(Iter iter);

Outputs all instances of PatchBlock in this object to the STL inserter iter.

PatchEdge *getEdge(ParseAPI::Edge* edge, PatchBlock* src, PatchBlock* trg,
bool create = true);

Returns an instance of PatchEdge in this object, according to the parameters
ParseAPI::Edge edge, source PatchBlock src, and target PatchBlock trg. PatchAPI
creates a PatchEdge on-demand, so if there is not any PatchEdge created for
the ParseAPI edge, and the create parameter is false, then no any instance of
PatchEdge will be created.

It returns NULL in two cases. First, the ParseAPI edge is not in this PatchObject.
Second, the PatchEdge is not yet created and the create is false. Otherwise, it
returns a PatchEdge.

template <class Iter>
void edges(Iter iter);

Outputs all instances of PatchEdge in this object to the STL inserter iter.

PatchCallback *cb() const;

Returns the PatchCallback object associated with this PatchObject.

4.1.2 PatchFunction

Declared in: PatchCFG.h

The PatchFunction class is a wrapper of ParseAPI’s Function class (has-a), which represents
a function.

const string &name();

Returns the function’s mangled name.

15

Address addr() const;

Returns the address of the first instruction in this function.

ParseAPI::Function *function();

Returns the ParseAPI::Function associated with this PatchFunction.

PatchObject* obj();

Returns the PatchObject associated with this PatchFunction.

typedef std::set<PatchBlock *> PatchFunction::Blockset;

const Blockset &blocks();

Returns a set of all PatchBlocks in this PatchFunction.

PatchBlock *entry();

Returns the entry block of this PatchFunction.

const Blockset &exitBlocks();

Returns a set of exit blocks of this PatchFunction.

const Blockset &callBlocks();

Returns a set of all call blocks of this PatchFunction.

PatchCallback *cb() const;

Returns the PatchCallback object associated with this PatchFunction.

16

4.1.3 PatchBlock

Declared in: PatchCFG.h

The PatchBlock class is a wrapper of ParseAPI’s Block class (has-a), which represents a
basic block.

Address start() const;

Returns the lower bound of this block (the address of the first instruction).

Address end() const;

Returns the upper bound (open) of this block (the address immediately following
the last byte in the last instruction).

Address last() const;

Returns the address of the last instruction in this block.

Address size() const;

Returns end() - start().

bool isShared();

Indicates whether this block is contained by multiple functions.

int containingFuncs() const;

Returns the number of functions that contain this block.

typedef std::map<Address, InstructionAPI::Instruction::Ptr> Insns;
void getInsns(Insns &insns) const;

17

This function outputs Instructions that are in this block to insns.

InstructionAPI::Instruction::Ptr getInsn(Address a) const;

Returns an Instruction that has the address a as its starting address. If no any
instruction can be found in this block with the starting address a, it returns
InstructionAPI::Instruction::Ptr().

std::string disassemble() const;

Returns a string containing the disassembled code for this block. This is mainly
for debugging purpose.

bool containsCall();

Indicates whether this PatchBlock contains a function call instruction.

bool containsDynamicCall();

Indicates whether this PatchBlock contains any indirect function call, e.g., via
function pointer.

PatchFunction* getCallee();

Returns the callee function, if this PatchBlock contains a function call; otherwise,
NULL is returned.

PatchFunction *function() const;

Returns a PatchFunction that contains this PatchBlock. If there are multiple
PatchFunctions containing this PatchBlock, then a random one of them is re-
turned.

ParseAPI::Block *block() const;

18

Returns the ParseAPI::Block associated with this PatchBlock.

PatchObject* obj() const;

Returns the PatchObject that contains this block.

typedef std::vector<PatchEdge*> PatchBlock::edgelist;

const edgelist &sources();

Returns a list of the source PatchEdges. This PatchBlock is the target block of
the returned edges.

const edgelist &targets();

Returns a list of the target PatchEdges. This PatchBlock is the source block of
the returned edges.

template <class OutputIterator>
void getFuncs(OutputIterator result);

Outputs all functions containing this PatchBlock to the STL inserter result.

PatchCallback *cb() const;

Returns the PatchCallback object associated with this PatchBlock.

4.1.4 PatchEdge

Declared in: PatchCFG.h

The PatchEdge class is a wrapper of ParseAPI’s Edge class (has-a), which joins two Patch-
Blocks in the CFG, indicating the type of control flow transfer instruction that joins the
basic blocks to each other.

ParseAPI::Edge *edge() const;

19

Returns a ParseAPI::Edge associated with this PatchEdge.

PatchBlock *src();

Returns the source PatchBlock.

PatchBlock *trg();

Returns the target PatchBlock.

ParseAPI::EdgeTypeEnum type() const;

Returns the edge type (ParseAPI::EdgeTypeEnum, please see ParseAPI Manual).

bool sinkEdge() const;

Indicates whether this edge targets the special sink block, where a sink block is a
block to which all unresolvable control flow instructions will be linked.

bool interproc() const;

Indicates whether the edge should be interpreted as interprocedural (e.g., calls,
returns, direct branches under certain circumstances).

PatchCallback *cb() const;

Returns a Patchcallback object associated with this PatchEdge.

4.2 Point/Snippet Interface

4.2.1 PatchMgr

Declared in: PatchMgr.h

The PatchMgr class is the top-level class for finding instrumentation Points, inserting or
deleting Snippets, and registering user-provided plugins.

20

ftp://ftp.cs.wisc.edu/paradyn/releases/release7.0/doc/parseapi.pdf

static PatchMgrPtr create(AddrSpace* as, Instrumenter* inst = NULL,
PointMaker* pm = NULL);

This factory method creates a new PatchMgr object that performs binary code
patching. It takes input three plugins, including AddrSpace as, Instrumenter
inst, and PointMaker pm. PatchAPI uses default plugins for PointMaker and
Instrumenter, if pm and inst are not specified (NULL by default).

This method returns PatchMgrPtr() if it was unable to create a new PatchMgr
object.

Point *findPoint(Location loc, Point::Type type, bool create = true);

This method returns a unique Point according to a Location loc and a Type type.
The Location structure is to specify a physical location of a Point (e.g., at function
entry, at block entry, etc.), details of Location will be covered in Section 4.2.2.
PatchAPI creates Points on demand, so if a Point is not yet created, the create
parameter is to indicate whether to create this Point. If the Point we want to
find is already created, this method simply returns a pointer to this Point from a
buffer, no matter whether create is true or false. If the Point we want to find is not
yet created, and create is true, then this method constructs this Point and put it
in a buffer, and finally returns a Pointer to this Point. If the Point creation fails,
this method also returns false. If the Point we want to find is not yet created, and
create is false, this method returns NULL. The basic logic of finding a point can
be found in the Listing 10.

Listing 10: Pseudocode of finding a point
if (point is in the buffer) {
return point;

} else {
if (create == true) {
create point
if (point creation fails) return NULL;
put the point in the buffer

} else {
return NULL;

}
}

template <class OutputIterator>
bool findPoint(Location loc, Point::Type type, OutputIterator outputIter,

bool create = true);

21

This method finds a Point at a physical Location loc with a type. It adds the
found Point to outputIter that is a STL inserter. The point is created on demand.
If the Point is already created, then this method outputs a pointer to this Point
from a buffer. Otherwise, the create parameter indicates whether to create this
Point.

This method returns true if a point is found, or the create parameter is false;
otherwise, it returns false.

template <class OutputIterator>
bool findPoints(Location loc, Point::Type types, OutputIterator outputIter,

bool create = true);

This method finds Points at a physical Location loc with composite types that
are combined using the overloaded operator “|”. This function outputs Points to
the STL inserter outputIter. The point is created on demand. If the Point is
already created, then this method outputs a pointer to this Point from a buffer.
Otherwise, the create parameter indicates whether to create this Point.

This method returns true if a point is found, or the create parameter is false;
otherwise, it returns false.

template <class FilterFunc,
class FilterArgument,
class OutputIterator>

bool findPoints(Location loc, Point::Type types, FilterFunc filter_func,
FilterArgument filter_arg, OutputIterator outputIter,
bool create = true);

This method finds Points at a physical Location loc with composite types that
are combined using the overloaded operator “|”. Then, this method applies a filter
functor filter_func with an argument filter_arg on each found Point. The method
outputs Points to the inserter outputIter. The point is created on demand. If the
Point is already created, then this method returns a pointer to this Point from a
buffer. Otherwise, the create parameter indicates whether to create this Point.

If no any Point is created, then this method returns false; otherwise, true is re-
turned. The code below shows the prototype of an example functor.

Listing 11: Code template for the filter function in findPoint
template <class T>

22

class FilterFunc {
public:
bool operator()(Point::Type type, Location loc, T arg) {
// The logic to check whether this point is what we need
return true;

}
};

In the functor FilterFunc above, programmers check each candidate Point by look-
ing at the Point::Type, Location, and the user-specified parameter arg. If the
return value is true, then the Point being checked will be put in the STL inserter
outputIter ; otherwise, this Point will be discarded.

struct Scope {
Scope(PatchBlock *b);
Scope(PatchFunction *f, PatchBlock *b);
Scope(PatchFunction *f);

};

The Scope structure specifies the scope to find points, where a scope could be a
function, or a basic block. This is quite useful if programmers don’t know the
exact Location, then they can use Scope as a wildcard. A basic block can be
contained in multiple functions. The second constructor only specifies the block b
in a particular function f.

template <class FilterFunc,
class FilterArgument,
class OutputIterator>

bool findPoints(Scope scope, Point::Type types, FilterFunc filter_func,
FilterArgument filter_arg, OutputIterator output_iter,
bool create = true);

This method finds points in a scope with certain types that are combined together
by using the overloaded operator “|”. Then, this method applies the filter functor
filter_func on each found Point. It outputs Points where filter_func returns true
to the STL inserter output_iter. Points are created on demand. If some points
are already created, then this method outputs pointers to them from a buffer.
Otherwise, the create parameter indicates whether to create Points.

If no any Point is created, then this function returns false; otherwise, true is
returned.

23

template <class OutputIterator>
bool findPoints(Scope scope, Point::Type types, OutputIterator output_iter, bool create = true);

This method finds points in a scope with certain types that are combined together
by using the overloaded operator “|”. It outputs the found points to the STL
inserter output_iter. If some points are already created, then this method outputs
pointers to them from a buffer. Otherwise, the create parameter indicates whether
to create Points.

If no any Point is created, then this method returns false; otherwise, true is re-
turned.

bool removeSnippet(InstancePtr);

This method removes a snippet Instance.

It returns false if the point associated with this Instance cannot be found; other-
wise, true is returned.

template <class FilterFunc,
class FilterArgument>

bool removeSnippets(Scope scope, Point::Type types, FilterFunc filter_func,
FilterArgument filter_arg);

This method deletes ALL snippet instances at certain points in certain scope with
certain types, and those points pass the test of filter_func.

If no any point can be found, this method returns false; otherwise, true is returned.

bool removeSnippets(Scope scope, Point::Type types);

This method deletes ALL snippet instances at certain points in certain scope with
certain types.

If no any point can be found, this method returns false; otherwise, true is returned.

void destroy(Point *point);

This method is to destroy the specified Point.

24

AddrSpace* as() const;
PointMaker* pointMaker() const;
Instrumenter* instrumenter() const;

The above three functions return the corresponding plugin: AddrSpace, Point-
Maker, Instrumenter.

4.2.2 Point

Declared in: Point.h

The Point class is in essence a container of a list of snippet instances. Therefore, the Point
class has methods similar to those in STL.

struct Location {
static Location Function(PatchFunction *f);
static Location Block(PatchBlock *b);
static Location BlockInstance(PatchFunction *f, PatchBlock *b, bool trusted = false);
static Location Edge(PatchEdge *e);
static Location EdgeInstance(PatchFunction *f, PatchEdge *e);
static Location Instruction(PatchBlock *b, Address a);
static Location InstructionInstance(PatchFunction *f, PatchBlock *b, Address a);
static Location InstructionInstance(PatchFunction *f, PatchBlock *b, Address a,

InstructionAPI::Instruction::Ptr i,
bool trusted = false);

static Location EntrySite(PatchFunction *f, PatchBlock *b, bool trusted = false);
static Location CallSite(PatchFunction *f, PatchBlock *b);
static Location ExitSite(PatchFunction *f, PatchBlock *b);

};

The Location structure uniquely identifies the physical location of a point. A Lo-
cation object plus a Point::Type value uniquely identifies a point, because multiple
Points with different types can exist at the same physical location. The Location
structure provides a set of static functions to create an object of Location, where
each function takes the corresponding CFG structures to identify a physical lo-
cation. In addition, some functions above (e.g., InstructionInstance) takes input
the trusted parameter that is to indicate PatchAPI whether the CFG structures
passed in is trusted. If the trusted parameter is false, then PatchAPI would have
additional checking to verify the CFG structures passed by users, which causes
nontrivial overhead.

25

enum Point::Type {
PreInsn,
PostInsn,
BlockEntry,
BlockExit,
BlockDuring,
FuncEntry,
FuncExit,
FuncDuring,
EdgeDuring,
PreCall,
PostCall,
OtherPoint,
None,
InsnTypes = PreInsn | PostInsn,
BlockTypes = BlockEntry | BlockExit | BlockDuring,
FuncTypes = FuncEntry | FuncExit | FuncDuring,
EdgeTypes = EdgeDuring,
CallTypes = PreCall | PostCall

};

The enum Point::Type specifies the logical point type. Multiple enum values can
be OR-ed to form a composite type. For example, the composite type of “PreCall
| BlockEntry | FuncExit” is to specify a set of points with the type PreCall, or
BlockEntry, or FuncExit.

typedef std::list<InstancePtr>::iterator instance_iter;
instance_iter begin();
instance_iter end();

The method begin() returns an iterator pointing to the beginning of the container
storing snippet Instances, while the method end() returns an iterator pointing to
the end of the container (past the last element).

InstancePtr pushBack(SnippetPtr);
InstancePtr pushFront(SnippetPtr);

Multiple instances can be inserted at the same Point. We maintain the instances
in an ordered list. The pushBack method is to push the specified Snippet to the
end of the list, while the pushFront method is to push to the front of the list.

Both methods return the Instance that uniquely identifies the inserted snippet.

26

bool remove(InstancePtr instance);

This method removes the given snippet instance from this Point.

void clear();

This method removes all snippet instances inserted to this Point.

size_t size();

Returns the number of snippet instances inserted at this Point.

Address addr() const;

Returns the address associated with this point, if it has one; otherwise, it returns
0.

Type type() const;

Returns the Point type of this point.

bool empty() const;

Indicates whether the container of instances at this Point is empty or not.

PatchFunction* getCallee();

Returns the function that is invoked at this Point, which should have Point::Type
of Point::PreCall or Point::PostCall. It there is not a function invoked at this
point, it returns NULL.

const PatchObject* obj() const;

27

Returns the PatchObject where the Point resides.

const InstructionAPI::Instruction::Ptr insn() const;

Returns the Instruction where the Point resides.

PatchFunction* func() const;

Returns the function where the Point resides.

PatchBlock* block() const;

Returns the PatchBlock where the Point resides.

PatchEdge* edge() const;

Returns the Edge where the Point resides.

PatchCallback *cb() const;

Returns the PatchCallback object that is associated with this Point.

static bool TestType(Point::Type types, Point::Type type);

This static method tests whether a set of types contains a specific type.

static void AddType(Point::Type& types, Point::Type type);

This static method adds a specific type to a set of types.

static void RemoveType(Point::Type& types, Point::Type trg);

This static method removes a specific type from a set of types.

28

4.2.3 Instance

Declared in: Point.h

The Instance class is a representation of a particular snippet inserted at a particular point.
If a Snippet is inserted to N points or to the same point for N times (N > 1), then there
will be N Instances.

bool destroy();

This method destroys the snippet Instance itself.

Point* point() const;

Returns the Point where the Instance is inserted.

SnippetPtr snippet() const;

Returns the Snippet. Please note that, the same Snippet may have multiple
instances inserted at different Points or the same Point.

4.3 Callback Interface

4.3.1 PatchCallback

Declared in: PatchCallback.h

The PatchAPI CFG layer may change at runtime due to program events (e.g., a program
loading additional code or overwriting its own code with new code). The PatchCallback
interface allows users to specify callbacks they wish to occur whenever the PatchAPI CFG
changes.

virtual void destroy_cb(PatchBlock *);
virtual void destroy_cb(PatchEdge *);
virtual void destroy_cb(PatchFunction *);
virtual void destroy_cb(PatchObject *);

29

Programmers implement the above virtual methods to handle the event of destroy-
ing a PatchBlock, a PatchEdge, a PatchFunction, or a PatchObject respectively.
All the above methods will be called before corresponding object destructors are
called.

virtual void create_cb(PatchBlock *);
virtual void create_cb(PatchEdge *);
virtual void create_cb(PatchFunction *);
virtual void create_cb(PatchObject *);

Programmers implement the above virtual methods to handle the event of creating
a PatchBlock, a PatchEdge, a PatchFunction, or a PatchObject respectively. All
the above methods will be called after the objects are created.

virtual void split_block_cb(PatchBlock *first, PatchBlock *second);

Programmers implement the above virtual method to handle the event of splitting
a PatchBlock as a result of a new edge being discovered. The above method will
be called after the block is split.

virtual void remove_edge_cb(PatchBlock *, PatchEdge *, edge_type_t);
virtual void add_edge_cb(PatchBlock *, PatchEdge *, edge_type_t);

Programmers implement the above virtual methods to handle the events of re-
moving or adding an PatchEdge respectively. The method remove_edge_cb will
be called before the event triggers, while the method add_edge_cb will be called
after the event triggers.

virtual void remove_block_cb(PatchFunction *, PatchBlock *);
virtual void add_block_cb(PatchFunction *, PatchBlock *);

Programmers implement the above virtual methods to handle the events of re-
moving or adding a PatchBlock respectively. The method remove_block_cb will
be called before the event triggers, while the method add_block_cb will be called
after the event triggers.

30

virtual void create_cb(Point *pt);
virtual void destroy_cb(Point *pt);

Programmers implement the create_cb method above, which will be called after
the Point pt is created. And, programmers implement the destroy_cb method,
which will be called before the point pt is deleted.

virtual void change_cb(Point *pt, PatchBlock *first, PatchBlock *second);

Programmers implement this method, which is to be invoked after a block is split.
The provided Point belonged to the first block and is being moved to the second.

31

5 Modification API Reference

This section describes the modification interface of PatchAPI. While PatchAPI’s main goal
is to allow users to insert new code into a program, a secondary goal is to allow safe
modification of the original program code as well.

To modify the binary, a user interacts with the PatchModifier class to manipulate a PatchAPI
CFG. CFG modifications are then instantiated as new code by the PatchAPI. For example, if
PatchAPI is being used as part of Dyninst, executing a finalizeInsertionSet will generate mod-
ified code.

The three key benefits of the PatchAPI modification interface are abstraction, safety, and inter-
activity. We use the CFG as a mechanism for transforming binaries in a platform-independent
way that requires no instruction-level knowledge by the user. These transformations are limited
to ensure that the CFG can always be used to instantiate code, and thus the user can avoid unin-
tended side-effects of modification. Finally, modifications to the CFG are represented in that CFG,
allowing users to iteratively combine multiple CFG transformations to achieve their goals.

Since modification can modify the CFG, it may invalidate any analyses the user has performed over
the CFG. We suggest that users take advantage of the callback interface described in Section 4.3.1
to update any such analysis information.

The PatchAPI modification capabilities are currently in beta; if you experience any problems or
bugs, please contact bugs@dyninst.org.

Many of these methods return a boolean type; true indicates a successful operation, and false
indicates a failure. For methods that return a pointer, a NULL return value indicates a failure.

bool redirect(PatchEdge *edge, PatchBlock *target);

Redirects the edge specified by edge to a new target specified by target. In the current
implementation, the edge may not be indirect.

PatchBlock *split(PatchBlock *orig, Address addr,
bool trust = false,
Address newlast = (Address) -1);

Splits the block specified by orig, creating a new block starting at addr. If trust is true,
we do not verify that addr is a valid instruction address; this may be useful to reduce
overhead. If newlast is not -1, we use it as the last instruction address of the first block.
All Points are updated to belong to the appropriate block. The second block is returned.

bool remove(std::vector<PatchBlock *> &blocks, bool force = true)

32

Removes the blocks specified by blocks from the CFG. If force is true, blocks are removed
even if they have incoming edges; this may leave the CFG in an unsafe state but may be
useful for reducing overhead.

bool remove(PatchFunction *func)

Removes func and all of its non-shared blocks from the CFG; any shared blocks remain.

class InsertedCode {
typedef boost::shared_ptr<...> Ptr;
PatchBlock *entry();
const std::vector<PatchEdge *> &exits();
const std::set<PatchBlock *> &blocks();

}

InsertedCode::Ptr insert(PatchObject *obj, SnippetPtr snip, Point *point);
InsertedCode::Ptr insert(PatchObject *obj, void *start, unsigned size);

Methods for inserting new code into a CFG. The InsertedCode structure represents a CFG
subgraph generated by inserting new code; the graph has a single entry point and multiple
exits, represented by edges to the sink node. The first insert call takes a PatchAPI
Snippet structure and a Point that is used to generate that Snippet; the point is only
passed through to the snippet code generator and thus may be NULL if the snippet does
not use Point information. The second insert call takes a raw code buffer.

33

6 Plugin API Reference

This section describes the various plugin interfaces for extending PatchAPI. We expect that most
users should not have to ever explicitly use an interface from this section; instead, they will use
plugins previously implemented by PatchAPI developers.

As with the public interface, all objects and methods in this section are in the “Dyninst::PatchAPI”
namespace.

6.1 AddrSpace

Declared in: AddrSpace.h

The AddrSpace class represents the address space of a Mutatee, where it contains a collection of
PatchObjects that represent shared libraries or a binary executable. In addition, programmers
implement some memory management interfaces in the AddrSpace class to determine the type of
the code patching - 1st party, 3rd party, or binary rewriting.

virtual bool write(PatchObject* obj, Address to, Address from, size_t size);

This method copies size-byte data stored at the address from on the Mutator side to
the address to on the Mutatee side. The parameter to is the relative offset for the
PatchObject obj, if the instrumentation is for binary rewriting; otherwise to is an absolute
address.

If the write operation succeeds, this method returns true; otherwise, false.

virtual Address malloc(PatchObject* obj, size_t size, Address near);

This method allocates a buffer of size bytes on the Mutatee side. The address near is a
relative address in the object obj, if the instrumentation is for binary rewriting; otherwise,
near is an absolute address, where this method tries to allocate a buffer near the address
near.

If this method succeeds, it returns a non-zero address; otherwise, it returns 0.

virtual Address realloc(PatchObject* obj, Address orig, size_t size);

This method reallocates a buffer of size bytes on the Mutatee side. The original buffer
is at the address orig. This method tries to reallocate the buffer near the address orig,
where orig is a relative address in the PatchObject obj if the instrumentation is for binary
rewriting; otherwise, orig is an absolute address.

If this method succeeds, it returns a non-zero address; otherwise, it returns 0.

34

virtual bool free(PatchObject* obj, Address orig);

This method deallocates a buffer on the Mutatee side at the address orig. If the in-
strumentation is for binary rewriting, then the parameter orig is a relative address in the
object obj ; otherwise, orig is an absolute address.

If this method succeeds, it returns true; otherwise, it returns false.

virtual bool loadObject(PatchObject* obj);

This method loads a PatchObject into the address space. If this method succeeds, it
returns true; otherwise, it returns false.

typedef std::map<const ParseAPI::CodeObject*, PatchObject*> AddrSpace::ObjMap;

ObjMap& objMap();

Returns a set of mappings from ParseAPI::CodeObjects to PatchObjects, where PatchOb-
jects in all mappings represent all binary objects (either executable or libraries loaded) in
this address space.

PatchObject* executable();

Returns the PatchObject of the executable of the Mutatee.

PatchMgrPtr mgr();

Returns the PatchMgr’s pointer, where the PatchMgr contains this address space.

6.2 Snippet

Declared in: Snippet.h

The Snippet class allows programmers to customize their own snippet representation and the cor-
responding mini-compiler to translate the representation into the binary code.

static Ptr create(Snippet* a);

35

Creates an object of the Snippet.

virtual bool generate(Point *pt, Buffer &buf);

Users should implement this virtual function for generating binary code for the snippet.

Returns false if code generation failed catastrophically. Point pt is an in-param that
identifies where the snippet is being generated. Buffer buf is an out-param that holds the
generated code.

6.3 Command

Declared in: Command.h

The Command class represents an instrumentation request (e.g., snippet insertion or removal), or
an internal logical step in the code patching (e.g., install instrumentation).

virtual bool run() = 0;

Executes the normal operation of this Command.

It returns true on success; otherwise, it returns false.

virtual bool undo() = 0;

Undoes the operation of this Command.

virtual bool commit();

Implements the transactional semantics: all succeed, or all fail. Basically, it performs such
logic:

if (run()) {
return true;

} else {
undo();
return false;

}

36

6.4 BatchCommand

Declared in: Command.h

The BatchCommand class inherits from the Command class. It is actually a container of a list of
Commands that will be executed in a transaction: all Commands will succeed, or all will fail.

typedef std::list<CommandPtr> CommandList;

CommandList to_do_;
CommandList done_;

This class has two protected members to_do_ and done_, where to_do_ is a list of
Commands to execute, and done_ is a list of Commands that are executed.

virtual bool run();
virtual bool undo();

The method run() of BatchCommand invokes the run() method of each Command in
to_do_ in order, and puts the finished Commands in done_. The method undo() of
BatchCommand invokes the undo() method of each Command in done _ in order.

void add(CommandPtr command);

This method adds a Command into to_do_.

void remove(CommandList::iterator iter);

This method removes a Command from to_do_.

6.5 Instrumenter

Declared in: Command.h

The Instrumenter class inherits BatchCommand to encapsulate the core code patching logic, which
includes binary code generation. Instrumenter would contain several logical steps that are individual
Commands.

CommandList user_commands_;

37

This class has a protected data member user_commands_ that contains all Commands
issued by users, e.g., snippet insertion. This is to facilitate the implementation of the
instrumentation engine.

static InstrumenterPtr create(AddrSpacePtr as);

Returns an instance of Instrumenter, and it takes input the address space as that is going
to be instrumented.

virtual bool replaceFunction(PatchFunction* oldfunc, PatchFunction* newfunc);

Replaces a function oldfunc with a new function newfunc.

It returns true on success; otherwise, it returns false.

virtual bool revertReplacedFunction(PatchFunction* oldfunc);

Undoes the function replacement for oldfunc.

It returns true on success; otherwise, it returns false.

typedef std::map<PatchFunction*, PatchFunction*> FuncModMap;

The type FuncModMap contains mappings from an PatchFunction to another PatchFunc-
tion.

virtual FuncModMap& funcRepMap();

Returns the FuncModMap that contains a set of mappings from an old function to a new
function, where the old function is replaced by the new function.

virtual bool wrapFunction(PatchFunction* oldfunc, PatchFunction* newfunc, string name);

Replaces all calls to oldfunc with calls to wrapper newfunc (similar to function replace-
ment). However, we create a copy of original using the name that can be used to call the
original. The wrapper code would look like follows:

38

void ∗malloc_wrapper(int size) {
// do stuff
void ∗ret = malloc_clone(size);
// do more stuff
return ret;

}

This interface requires the user to give us a name (as represented by clone) for the original
function. This matches current techniques and allows users to use indirect calls (function
pointers).

virtual bool revertWrappedFunction(PatchFunction* oldfunc);

Undoes the function wrapping for oldfunc.

It returns true on success; otherwise, it returns false.

virtual FuncModMap& funcWrapMap();

The type FuncModMap contains mappings from the original PatchFunction to the wrapper
PatchFunction.

bool modifyCall(PatchBlock *callBlock, PatchFunction *newCallee,
PatchFunction *context = NULL);

Replaces the function that is invoked in the basic block callBlock with the function new-
Callee. There may be multiple functions containing the same callBlock, so the context
parameter specifies in which function the callBlock should be modified. If context is
NULL, then the callBlock would be modified in all PatchFunctions that contain it. If the
newCallee is NULL, then the callBlock is removed.

It returns true on success; otherwise, it returns false.

bool revertModifiedCall(PatchBlock *callBlock, PatchFunction *context = NULL);

Undoes the function call modification for oldfunc. There may be multiple functions con-
taining the same callBlock, so the context parameter specifies in which function the call-
Block should be modified. If context is NULL, then the callBlock would be modified in all
PatchFunctions that contain it.

It returns true on success; otherwise, it returns false.

39

bool removeCall(PatchBlock *callBlock, PatchFunction *context = NULL);

Removes the callBlock, where a function is invoked. There may be multiple functions
containing the same callBlock, so the context parameter specifies in which function the
callBlock should be modified. If context is NULL, then the callBlock would be modified
in all PatchFunctions that contain it.

It returns true on success; otherwise, it returns false.

typedef map<PatchBlock*, // B : A call block
map<PatchFunction*, // F_c: Function context

PatchFunction*> // F : The function to be replaced
> CallModMap;

The type CallModMap maps from B -> Fc -> F, where B identifies a call block, and Fc

identifies an (optional) function context for the replacement. If Fc is not specified, we use
NULL. F specifies the replacement callee; if we want to remove the call entirely, we use
NULL.

CallModMap& callModMap();

Returns the CallModMap for function call replacement / removal.

AddrSpacePtr as() const;

Returns the address space associated with this Instrumenter.

6.6 Patcher

Declared in: Command.h

The class Patcher inherits from the class BatchCommand. It accepts instrumentation requests from
users, where these instrumentation requests are Commands (e.g., snippet insertion). Furthermore,
Patcher implicitly adds an instance of Instrumenter to the end of the Command list to generate
binary code and install the instrumentation.

Patcher(PatchMgrPtr mgr)

The constructor of Patcher takes input the relevant PatchMgr mgr.

40

virtual bool run();

Performs the same logic as BatchCommand::run(), except that this function implicitly
adds an internal Command – Instrumenter, which is executed after all other Commands
in the to_do_.

6.7 CFGMaker

Declared in: CFGMaker.h

The CFGMaker class is a factory class that constructs the above CFG structures (PatchFunction,
PatchBlock, and PatchEdge). The methods in this class are used by PatchObject. Programmers
can extend PatchFunction, PatchBlock and PatchEdge by annotating their own data, and then use
this class to instantiate these CFG structures.

virtual PatchFunction* makeFunction(ParseAPI::Function* func, PatchObject* obj);
virtual PatchFunction* copyFunction(PatchFunction* func, PatchObject* obj);

virtual PatchBlock* makeBlock(ParseAPI::Block* blk, PatchObject* obj);
virtual PatchBlock* copyBlock(PatchBlock* blk, PatchObject* obj);

virtual PatchEdge* makeEdge(ParseAPI::Edge* edge, PatchBlock* src,
PatchBlock* trg, PatchObject* obj);

virtual PatchEdge* copyEdge(PatchEdge* edge, PatchObject* obj);

Programmers implement the above virtual methods to instantiate a CFG structure (either
a PatchFunction, a PatchBlock, or a PatchEdge) or to copy (e.g., when forking a new
process).

6.8 PointMaker

Declared in: Point.h

The PointMaker class is a factory class that constructs instances of the Point class. The methods of
the PointMaker class are invoked by PatchMgr’s findPoint methods. Programmers can extend the
Point class, and then implement a set of virtual methods in this class to instantiate the subclasses
of Point.

PointMaker(PatchMgrPtr mgr);

The constructor takes input the relevant PatchMgr mgr.

41

virtual Point *mkFuncPoint(Point::Type t, PatchMgrPtr m, PatchFunction *f);
virtual Point *mkFuncSitePoint(Point::Type t, PatchMgrPtr m, PatchFunction *f, PatchBlock *b);
virtual Point *mkBlockPoint(Point::Type t, PatchMgrPtr m, PatchBlock *b, PatchFunction *context);
virtual Point *mkInsnPoint(Point::Type t, PatchMgrPtr m, PatchBlock *, Address a,

InstructionAPI::Instruction::Ptr i, PatchFunction *context);
virtual Point *mkEdgePoint(Point::Type t, PatchMgrPtr m, PatchEdge *e, PatchFunction *context);

Programmers implement the above virtual methods to instantiate the subclasses of Point.

6.9 Default Plugin

6.10 PushFrontCommand and PushBackCommand

Declared in: Command.h

The class PushFrontCommand and the class PushBackCommand inherit from the Command class.
They are to insert a snippet to a point. A point maintains a list of snippet instances. PushFront-
Command would add the new snippet instance to the front of the list, while PushBackCommand
would add to the end of the list.

static Ptr create(Point* pt, SnippetPtr snip);

This static method creates an object of PushFrontCommand or PushBackCommand.

InstancePtr instance();

Returns a snippet instance that is inserted at the point.

6.11 RemoveSnippetCommand

Declared in: Command.h

The class RemoveSnippetCommand inherits from the Command class. It is to delete a snippet
Instance.

static Ptr create(InstancePtr instance);

This static function creates an instance of RemoveSnippetCommand.

42

6.12 RemoveCallCommand

Declared in: Command.h

The class RemoveCallCommand inherits from the class Command. It is to remove a function call.

static Ptr create(PatchMgrPtr mgr, PatchBlock* call_block, PatchFunction* context = NULL);

This static method takes input the relevant PatchMgr mgr, the call_block that contains
the function call to be removed, and the PatchFunction context. There may be multiple
PatchFunctions containing the same call_block. If the context is NULL, then the call_block
would be deleted from all PatchFunctions that contains it; otherwise, the call_block would
be deleted only from the PatchFuncton context.

6.13 ReplaceCallCommand

Declared in: Command.h

The class ReplaceCallCommand inherits from the class Command. It is to replace a function call
with another function.

static Ptr create(PatchMgrPtr mgr, PatchBlock* call_block,
PatchFunction* new_callee, PatchFunction* context);

This Command replaces the call_block with the new PatchFunction new_callee. There
may be multiple functions containing the same call_block, so the context parameter spec-
ifies in which function the call_block should be replaced. If context is NULL, then the
call_block would be replaced in all PatchFunctions that contains it.

6.14 ReplaceFuncCommand

Declared in: Command.h

The class ReplaceFuncCommand inherits from the class Command. It is to replace an old function
with the new one.

static Ptr create(PatchMgrPtr mgr, PatchFunction* old_func, PatchFunction* new_func);

This Command replaces the old PatchFunction old_func with the new PatchFunction
new_func.

43

A PatchAPI for Dyninst Programmers

The PatchAPI is a Dyninst component and as such is accessible through the main Dyninst interface
(BPatch objects). However, the PatchAPI instrumentation and CFG models differ from the Dyninst
models in several critical ways that should be accounted for by users. This section summarizes those
differences and describes how to access PatchAPI abstractions from the DyninstAPI interface.

A.1 Differences Between DyninstAPI and PatchAPI

The DyninstAPI and PatchAPI differ primarily in their CFG representations and instrumentation
point abstractions. In general, PatchAPI is more powerful and can better represent complex bina-
ries (e.g., highly optimized code or malware). In order to maintain backwards compatibility, the
DyninstAPI interface has not been extended to match the PatchAPI. As a result, there are some
caveats.

The PatchAPI uses the same CFG model as the ParseAPI. The primary representation is an
interprocedural graph of basic blocks and edges. Functions are defined on top of this graph as
collections of blocks. A block may be contained by more than one function; we call this the
shared block model. Functions are defined to have a single entry block, and functions may overlap
if they contain the same blocks. Call and return edges exist in the graph, and therefore traversing
the graph may enter different functions. PatchAPI users may specify instrumenting a particular
block within a particular function (a block instance) by specifying both the block and the function.

The DyninstAPI uses a historic CFG model. The primary representation is the function. Functions
contain a intraprocedural graph of blocks and edges. As a result, a basic block belongs to only one
function, but two blocks from different functions may be clones of each other. No interprocedural
edges are represented in the graph, and thus traversing the CFG from a particular function is
guaranteed to remain inside that function.

As a result, multiple DyninstAPI blocks may map to the same PatchAPI block. If instrumenting a
particular block instance is desired, the user should provide both the DyninstAPI basic block and
function.

In addition, DyninstAPI uses a module abstraction, where a BPatch_module represents a collection
of functions from a particular source file (for the executable) or from an entire library (for all
libraries). PatchAPI, like ParseAPI, instead uses an object representation, where a PatchObject
object represents a collection of functions from a file on disk (executable or libraries).

The instrumentation point (instPoint) models also differ between DyninstAPI and PatchAPI. We
classify an instPoint either as a behavior point (e.g., function entry) or location point (e.g., a
particular instruction). PatchAPI fully supports both of these models, with the added extension
that a location point explicitly specifies whether instrumentation will execute before or after the
corresponding location. Dyninst does not support the behavior model, instead mapping behavior
instPoints to a corresponding instruction. For example, if a user requests a function entry instPoint
they instead receive an instPoint for the first instruction in the function. These may not always be
the same (see Bernat_AWAT). In addition, location instPoints represent an instruction, and the
user must later specify whether they wish to instrument before or after that instruction.

44

ftp://ftp.cs.wisc.edu/paradyn/papers/Bernat11AWAT.pdf

As a result, there are complications for using both DyninstAPI and PatchAPI. We cannot emphasize
enough, though, that users can combine DyninstAPI and PatchAPI with some care. Doing so offers
several benefits:

• The ability to extend legacy code that is written for DyninstAPI.

• The ability to use the DyninstAPI extensions and plugins for PatchAPI, including snippet-
based or dynC-based code generation and our instrumentation optimizer.

We suggest the following best practices to be followed when coding for PatchAPI via Dyninst:

• For legacy code, do not attempt to map between DyninstAPI instPoints and PatchAPI
instPoints. Instead, use DyninstAPI CFG objects to acquire PatchAPI CFG objects, and
use a PatchMgr (acquired through a BPatch_addressSpace) to look up PatchAPI instPoints.

• For new code, acquire a PatchMgr directly from a BPatch_addressSpace and use its methods
to look up both CFG objects and instPoints.

A.2 PatchAPI accessor methods in Dyninst

To access a PatchAPI class from a Dyninst class, use the PatchAPI::convert function, as in the
following example:

BPatch_basicBlock *bp_block = ...;
PatchAPI::PatchBlock *block = PatchAPI::convert(bp_block);

We support the following mappings, where all PatchAPI objects are within the Dyninst::PatchAPI
namespace:

From To Comments
BPatch_function PatchFunction
BPatch_basicBlock PatchBlock See above.
BPatch_edge PatchEdge See above.
BPatch_module PatchObject See above.
BPatch_image PatchMgr
BPatch_addressSpace PatchMgr
BPatch_snippet Snippet

We do not support a direct mapping between BPatch_points and Points, as the failure of Dyninst
to properly represent behavior instPoints leads to confusing results. Instead, use the PatchAPI
point lookup methods.

45

	Introduction
	Abstractions
	Public Interface
	Plugin Interface

	Examples
	Using the public interface
	CFG Traversal
	Point Finding
	Code Patching

	Using the plugin interface
	Address Space
	Snippet Representation
	Code Parsing
	Point Making
	Instrumentation Engine
	Plugin Registration

	Public API Reference
	CFG Interface
	PatchObject
	PatchFunction
	PatchBlock
	PatchEdge

	Point/Snippet Interface
	PatchMgr
	Point
	Instance

	Callback Interface
	PatchCallback

	Modification API Reference
	Plugin API Reference
	AddrSpace
	Snippet
	Command
	BatchCommand
	Instrumenter
	Patcher
	CFGMaker
	PointMaker
	Default Plugin
	PushFrontCommand and PushBackCommand
	RemoveSnippetCommand
	RemoveCallCommand
	ReplaceCallCommand
	ReplaceFuncCommand

	PatchAPI for Dyninst Programmers
	Differences Between DyninstAPI and PatchAPI
	PatchAPI accessor methods in Dyninst

