
InstructionAPI Reference Manual 7.0

Generated by Doxygen 1.4.7

11 Mar 2011

CONTENTS

Contents

1 InstructionAPI Introduction 1

2 InstructionAPI Modules and Abstractions 1

2.1 Instruction Interface . 1

2.2 Instruction Decoding . 2

2.3 InstructionAST Hierarchy . 3

3 InstructionAPI Class Reference 4

3.1 Instruction Class . 4

3.2 Operation Class . 9

3.3 Operand Class . 10

3.4 InstructionAST Class . 12

3.5 Expression Class . 14

3.6 Result Class . 16

3.7 RegisterAST Class . 17

3.8 Immediate Class . 19

3.9 BinaryFunction Class . 19

3.10 Dereference Class . 21

3.11 RegInfo Struct . 22

3.12 IA32RegTable Struct . 22

3.13 InstructionDecoder_x86 Class . 22

i

1 InstructionAPI Introduction

1 InstructionAPI Introduction

When analyzing and modifying binary code, it is necessary to translate between raw binary in-
structions and an abstract form that describes the semantics of the instructions. As a part of the
Dyninst project, we have developed the Instruction API, an API and library for decoding and rep-
resenting machine instructions in a platform-independent manner. The Instruction API includes
methods for decoding machine language, convenient abstractions for its analysis, and methods
to produce disassembly from those abstractions. The current implementation supports the IA32,
IA-64, AMD-64, SPARC, POWER, and PowerPC instruction sets. The Instruction API has the
following basic capabilities:

� Decoding: interpreting a sequence of bytes as a machine instruction in a given machine
language.

� Abstract representation: representing the behavior of that instruction as an abstract syntax
tree.

� Disassembly: translating an abstract representation of a machine instruction into a string
representation of the corresponding assembly language instruction.

Our goal in designing the Instruction API is to provide a representation of machine instructions
that can be manipulated by higher-level algorithms with minimal knowledge of platform-speci�c
details. In addition, users who need platform-speci�c information should be able to access it. To
do so, we provide an interface that disassembles a machine instruction, extracts an operation and
its operands, converts the operands to abstract syntax trees, and presents this to the user. A user
of the Instruction API can work at a level of abstraction slightly higher than assembly language,
rather than working directly with machine language. Additionally, by converting the operands to
abstract syntax trees, we make it possible to analyze the operands in a uniform manner, regardless
of the complexity involved in the operand's actual computation.

2 InstructionAPI Modules and Abstractions

The Instruction API contains three major components: the top-level instruction representation,
the abstract syntax trees representing the operands of an instruction, and the decoder that creates
the entire representation. We will present an overview of the features and uses of each of these
three components, followed by an example of how the Instruction API can be applied to binary
analysis.

2.1 Instruction Interface

The Instruction API represents a machine language instruction as an Instruction object, which
contains an Operation and a collection of Operands. The Operation contains the following items:

� The mnemonic for the machine language instruction represented by its associated Instruction

� The number of operands accepted by the Operation

� Which Operands are read and/or written by the associated machine operation

� What other registers (if any) are a�ected by the underlying machine operation

Each Operand contains �ags to indicate whether it is read, written, or both by the machine
instruction represented by its parent Instruction, and contains a Expression abstract syntax tree

1

2.2 Instruction Decoding

representing the operations required to compute the value of the operand. Figure 1 depicts these
ownership relationships within an Instruction.

Instruction

Operation

 m_InsnOp

vector<Operand>

 m_Operands

Expression

 op_value

Figure 1: An Instruction and the objects it owns

Instruction objects provide two types of interfaces: direct read access to their components, and
common summary operations on those components. The �rst interface allows access to the Opera-
tion and Operand data members, and each Operand object in turn allows traversal of its abstract
syntax tree. More details about how to work with this abstract syntax tree can be found in
InstructionAST Hierarchy (Section 2.3). This interface would be used, for example, in a data
�ow analysis where a user wants to evaluate the results of an e�ective address computation given
a known register state.

The second interface allows a user to get the sets of registers read and written by the instruction,
information about how the instruction accesses memory, and information about how the instruction
a�ects control �ow, without having to manipulate the Operands directly. For instance, a user
could implement a register liveness analysis algorithm using just this second interface (namely the
getReadSet and getWriteSet functions).

2.2 Instruction Decoding

An InstructionDecoder interprets a sequence of bytes according to a given machine language and
transforms them into an instruction representation. It determines the opcode of the machine
instruction, translates that opcode to an Operation object, uses that Operation to determine how
to decode the instruction's Operands, and produces a decoded Instruction.

raw machine language InstructionDecoder
input

Instruction
constructs

Figure 2: The InstructionDecoder's inputs and outputs

Instruction decoders are built from the following elements:

� A function to �nd and extract an opcode given a pointer into a bu�er that points to the
beginning of a machine instruction

2

2.3 InstructionAST Hierarchy

� A table that, for a particular architecture, maps opcodes to Operations and functions that
decode Operands

From these elements, it is possible to generalize the construction of Instructions from Operations
and Operands to an entirely platform-independent algorithm. Likewise, much of the construction
of the ASTs representing each operand can be performed in a platform-independent manner.

2.3 InstructionAST Hierarchy

The AST representation of an operand encapsulates the operations performed on registers and
immediates to produce an operand for the machine language instruction.

The inheritance hierarchy of the AST classes is shown in Figure 3.

InstructionAST

Expression

BinaryFunction Dereference Immediate RegisterAST

Figure 3: The InstructionAST inheritance hierarchy

The grammar for these AST representations is simple: all leaves must be RegisterAST or Immedi-
ate nodes. These nodes may be combined using a BinaryFunction node, which may be constructed
as either an addition or a multiplication. Also, a single node may descend from a Dereference node,
which treats its child as a memory address. Figure 4 shows the allowable parent/child relation-
ships within a given tree, and Figure 5 shows how an example IA32 instruction is represented
using these objects.

Dereference

Expression

 val_to_deref

BinaryFunction

Expression

 arg1

Expression

 arg2

Figure 4: InstructionAST intermediate node types and the objects they own

3

3 InstructionAPI Class Reference

mov eax (%esi)

mov

operation

*

 operand

eax

 operand

esi

 dereference target

Figure 5: The decomposition of mov %eax, (%esi)

These ASTs may be searched for leaf elements or subtrees (via getUses and isUsed) and traversed
breadth-�rst or depth-�rst (via getChildren).

Any node in these ASTs may be evaluated. Evaluation attempts to determine the value rep-
resented by a node. If successful, it will return that value and cache it in the node. The tree
structure, combined with the evaluation mechanism, allows the substitution of known register and
memory values into an operand, regardless of whether those values are known at the time an
instruction is decoded. More details on this mechanism may be found in Dyninst::Instruction-
API::Expression (Section 3.5).

3 InstructionAPI Class Reference

3.1 Instruction Class

The Instruction class is a generic instruction representation that contains operands, read/write se-
mantic information about those operands, and information about what other registers and memory
locations are a�ected by the operation the instruction performs.

The purpose of an Instruction object is to join an Operation with a sequence of Operands, and
provide an interface for some common summary analyses (namely, the read/write sets, memory
access information, and control �ow information).

The Operation contains knowledge about its mnemonic and su�cient semantic details to answer
the following questions:

� What Operands are read/written?

� What registers are implicitly read/written?

� What memory locations are implicitly read/written?

� What are the possible control �ow successors of this instruction?

Each Operand is an AST built from RegisterAST and Immediate leaves. For each Operand, you
may determine:

4

3.1 Instruction Class

� Registers read

� Registers written

� Whether memory is read or written

� Which memory addresses are read or written, given the state of all relevant registers

Instructions should be constructed from an unsigned char∗ pointing to machine language, using
the InstructionDecoder class. See InstructionDecoder for more details.

Public Member Functions

� Instruction (Operation::Ptr what, size_t size, const unsigned char ∗raw,
Dyninst::Architecture arch)

� const Operation & getOperation () const

� void getOperands (std::vector< Operand > &operands) const

� Operand getOperand (int index) const

� unsigned char rawByte (unsigned int index) const

� const void ∗ ptr () const
� void getWriteSet (std::set< RegisterAST::Ptr > ®sWritten) const

� void getReadSet (std::set< RegisterAST::Ptr > ®sRead) const

� bool isRead (Expression::Ptr candidate) const
� bool isWritten (Expression::Ptr candidate) const
� bool readsMemory () const

� bool writesMemory () const

� void getMemoryReadOperands (std::set< Expression::Ptr > &memAccessors) const

� void getMemoryWriteOperands (std::set< Expression::Ptr > &memAccessors) const

� Expression::Ptr getControlFlowTarget () const
� bool allowsFallThrough () const

� std::string format () const
� bool isValid () const

� bool isLegalInsn () const

� InsnCategory getCategory () const

Constructors & Destructors

Instruction (Operation::Ptr what, size_t size, const unsigned char ∗ raw,
Dyninst::Architecture arch)

Parameters:

what Opcode of the instruction

operandSource Contains the Expressions to be transformed into Operands

size Contains the number of bytes occupied by the corresponding machine instruction

raw Contains a pointer to the bu�er from which this instruction object was decoded.

Construct an Instruction from an Operation and a collection of Expressions. This method is not
intended to be used except by the InstructionDecoder class, which serves as a factory class for
producing Instruction objects. While an Instruction object may be built "by hand" if desired,
using the decoding interface ensures that the operation and operands are a sensible combination,

5

3.1 Instruction Class

and that the size reported is based on the actual size of a legal encoding of the machine instruction
represented. In the course of constructing an Instruction, the Expressions in operandSource will
be transformed to Operand objects. This transformation will map the semantic information about
which operands are read and written in the Operation object what to the value computations in
operandSource.

Member Functions

const Operation & getOperation () const

Returns:

The Operation used by the Instruction

See Operation (Section 3.2) for details of the Operation interface.

void getOperands (std::vector< Operand > & operands) const

The vector operands has the instruction's operands appended to it in the same order that they
were decoded.

Operand getOperand (int index) const

The getOperand method returns the operand at position index, or an empty operand if index
does not correspond to a valid operand in this instruction.

unsigned char rawByte (unsigned int index) const

Returns a pointer to the bu�er from which this instruction was decoded.

size_t size () const

Returns the size of the corresponding machine instruction, in bytes.

const void ∗ ptr () const

Returns a pointer to the raw byte representation of the corresponding machine instruction.

void getWriteSet (std::set< RegisterAST::Ptr > & regsWritten) const

Parameters:

regsWritten Insert the set of registers written by the instruction into regsWritten.

The list of registers returned in regsWritten includes registers that are explicitly written as
destination operands (like the destination of a move). It also includes registers that are implicitly
written (like the stack pointer in a push or pop instruction). It does not include any registers used
only in computing the e�ective address of a write. pop ∗eax, for example, writes to esp, reads
esp, and reads eax, but despite the fact that ∗eax is the destination operand, eax is not itself
written.

For both the write set and the read set (below), it is possible to determine whether a register
is accessed implicitly or explicitly by examining the Operands. An explicitly accessed register

6

3.1 Instruction Class

appears as an operand that is written or read; also, any registers used in any address calculations
are explicitly read. Any element of the write set or read set that is not explicitly written or read
is implicitly written or read.

void getReadSet (std::set< RegisterAST::Ptr > & regsRead) const

Parameters:

regsRead Insert the set of registers read by the instruction into regsRead.

If an operand is used to compute an e�ective address, the registers involved are read but not
written, regardless of the e�ect on the operand.

bool isRead (Expression::Ptr candidate) const

Parameters:

candidate Subexpression to search for among the values read by this Instruction object.

Returns true if candidate is read by this Instruction.

bool isWritten (Expression::Ptr candidate) const

Parameters:

candidate Subexpression to search for among the values written by this Instruction object.

Returns true if candidate is written by this Instruction.

bool readsMemory () const

Returns:

Returns true if the instruction reads at least one memory address as data.

If any operand containing a Dereference object is read, the instruction reads the memory at that
address. Also, on platforms where a stack pop is guaranteed to read memory, readsMemory will
return true for a pop operation.

bool writesMemory () const

Returns:

Returns true if the instruction writes at least one memory address.

If any operand containing a Dereference object is written, the instruction writes the memory at
that address. Also, on platforms where a stack push is guaranteed to write memory, writesMemory
will return true for a push operation.

7

3.1 Instruction Class

void getMemoryReadOperands (std::set< Expression::Ptr > & memAccessors) const

Parameters:

memAccessors Addresses read by this instruction are inserted into memAccessors

The addresses read are in the form of Expressions, which may be evaluated once all of the registers
that they use have had their values set. Note that this method returns ASTs representing address
computations, and not address accesses. For instance, an instruction accessing memory through
a register dereference would return a Expression tree containing just the register that determines
the address being accessed, not a tree representing a dereference of that register.

void getMemoryWriteOperands (std::set< Expression::Ptr > &memAccessors) const

Parameters:

memAccessors Addresses written by this instruction are inserted into memAccessors

The addresses written are in the same form as those returned by getMemoryReadOperands above.

Expression::Ptr getControlFlowTarget () const

Returns:

An expression evaluating to the non-fallthrough control �ow targets, if any, of this instruction.

When called on an explicitly control-�ow altering instruction, returns the non-fallthrough control
�ow destination. When called on any other instruction, returns NULL.

For direct absolute branch instructions, getControlFlowTarget will return an immediate value.
For direct relative branch instructions, getControlFlowTarget will return the expression PC +
o�set. In the case of indirect branches and calls, it returns a dereference of a register (or possibly
a dereference of a more complicated expression). In this case, data �ow analysis will often allow
the determination of the possible targets of the instruction. We do not do analysis beyond the
single-instruction level in the Instruction API; if other code performs this type of analysis, it may
update the information in the Dereference object using the setValue method in the Expression
interface. More details about this may be found in Expression (Section 3.5) and Dereference
(Section 3.10).

bool allowsFallThrough () const

Returns:

False if control �ow will unconditionally go to the result of getControlFlowTarget after
executing this instruction.

std::string format () const

Returns:

The instruction as a string of assembly language

8

3.2 Operation Class

format is principally a helper function; Instructions are meant to be written to output streams
via operator<<. format is included in the public interface for diagnostic purposes.

bool isValid () const

Returns true if this Instruction object is valid. Invalid instructions indicate that an Instruction-
Decoder has reached the end of its assigned range, and that decoding should terminate.

bool isLegalInsn () const

Returns true if this Instruction object represents a legal instruction, as speci�ed by the architecture
used to decode this instruction.

InsnCategory getCategory () const

ALPHA: Returns the category that an instruction falls into. This feature is presently incomplete,
and we welcome feedback on ways to extend it usefully.

Currently, the valid categories are c_CallInsn, c_ReturnInsn, c_BranchInsn, c_CompareInsn,
and c_NoCategory, as de�ned in InstructionCategories.h.

3.2 Operation Class

An Operation object represents a family of opcodes (operation encodings) that perform the same
task (e.g. the MOV family). It includes information about the number of operands, their read/write
semantics, the implicit register reads and writes, and the control �ow behavior of a particular
assembly language operation. It additionally provides access to the assembly mnemonic, which
allows any semantic details that are not encoded in the Instruction representation to be added by
higher layers of analysis.

As an example, the CMP operation on IA32/AMD64 processors has the following properties:

� Operand 1 is read, but not written

� Operand 2 is read, but not written

� The following �ags are written:

� Over�ow

� Sign

� Zero

� Parity

� Carry

� Auxiliary

� No other registers are read, and no implicit memory operations are performed

Operations are constructed by the InstructionDecoder as part of the process of constructing an
Instruction.

Public Member Functions

� std::string format () const
� entryID getID () const
� pre�xEntryID getPre�xID () const

9

3.3 Operand Class

Member Functions

const Operation::registerSet & implicitReads () const

Returns the set of registers implicitly read (i.e. those not included in the operands, but read
anyway).

const Operation::registerSet & implicitWrites () const

Returns the set of registers implicitly written (i.e. those not included in the operands, but written
anyway).

std::string format () const

Returns the mnemonic for the operation. Like instruction::format, this is exposed for debug-
ging and will be replaced with stream operators in the public interface.

entryID getID () const

Returns the entry ID corresponding to this operation. Entry IDs are enumerated values that
correspond to assembly mnemonics.

pre�xEntryID getPre�xID () const

Returns the pre�x entry ID corresponding to this operation, if any. Pre�x IDs are enumerated
values that correspond to assembly pre�x mnemonics.

bool isRead (Expression::Ptr candidate) const

Returns true if the expression represented by candidate is read implicitly.

bool isWritten (Expression::Ptr candidate) const

Returns true if the expression represented by candidate is written implicitly.

const Operation::VCSet & getImplicitMemReads () const

Returns the set of memory locations implicitly read.

const Operation::VCSet & getImplicitMemWrites () const

Returns the set of memory locations implicitly written.

3.3 Operand Class

An Operand object contains an AST built from RegisterAST and Immediate leaves, and informa-
tion about whether the Operand is read, written, or both. This allows us to determine which of
the registers that appear in the Operand are read and which are written, as well as whether any
memory accesses are reads, writes, or both. An Operand, given full knowledge of the values of
the leaves of the AST, and knowledge of the logic associated with the tree's internal nodes, can
determine the result of any computations that are encoded in it. It will rarely be the case that an
Instruction is built with its Operands' state fully speci�ed. This mechanism is instead intended

10

3.3 Operand Class

to allow a user to �ll in knowledge about the state of the processor at the time the Instruction is
executed.

Public Member Functions

� Operand (Expression::Ptr val, bool read, bool written)
� void getReadSet (std::set< RegisterAST::Ptr > ®sRead) const

� void getWriteSet (std::set< RegisterAST::Ptr > ®sWritten) const

� void addE�ectiveReadAddresses (std::set< Expression::Ptr > &memAccessors) const

� void addE�ectiveWriteAddresses (std::set< Expression::Ptr > &memAccessors) const

� std::string format () const

Constructors & Destructors

Operand (Expression::Ptr val, bool read, bool written)

Create an operand from a Expression and �ags describing whether the ValueComputation is read,
written or both.

Parameters:

val Reference-counted pointer to the Expression that will be contained in the Operand being
constructed

read True if this operand is read

written True if this operand is written

Member Functions

void getReadSet (std::set< RegisterAST::Ptr > & regsRead) const

Get the registers read by this operand.

Parameters:

regsRead Has the registers read inserted into it

void getWriteSet (std::set< RegisterAST::Ptr > & regsWritten) const

Get the registers written by this operand.

Parameters:

regsWritten Has the registers written inserted into it

bool isRead (Expression::Ptr candidate) const

Returns true if this operand is read.

bool isWritten (Expression::Ptr candidate) const

Returns true if this operand is written.

11

3.4 InstructionAST Class

bool readsMemory () const

Returns true if this operand reads memory.

bool writesMemory () const

Returns true if this operand writes memory.

void addE�ectiveReadAddresses (std::set< Expression::Ptr > & memAccessors)
const

Inserts the e�ective addresses read by this operand into memAccessors.

Parameters:

memAccessors If this is a memory read operand, insert the ExpressionPtr representing
the address being read into memAccessors.

void addE�ectiveWriteAddresses (std::set< Expression::Ptr > & memAccessors)
const

Inserts the e�ective addresses written by this operand into memAccessors.

Parameters:

memAccessors If this is a memory write operand, insert the ExpressionPtr representing
the address being written into memAccessors.

std::string format () const

Return a printable string representation of the operand.

Returns:

The operand in a disassembly format

Expression::Ptr getValue () const

The getValue method returns an ExpressionPtr to the AST contained by the operand.

3.4 InstructionAST Class

The InstructionAST class is the base class for all nodes in the ASTs used by the Operand class. It
de�nes the necessary interfaces for traversing and searching an abstract syntax tree representing
an operand. For the purposes of searching an InstructionAST, we provide two related interfaces.
The �rst, getUses, will return the registers that appear in a given tree. The second, isUsed,
will take as input another tree and return true if that tree is a (not necessarily proper) subtree of
this one. isUsed requires us to de�ne an equality relation on these abstract syntax trees, and the
equality operator is provided by the InstructionAST, with the details implemented by the classes
derived from InstructionAST. Two AST nodes are equal if the following conditions hold:

� They are of the same type

12

3.4 InstructionAST Class

� If leaf nodes, they represent the same immediate value or the same register

� If non-leaf nodes, they represent the same operation and their corresponding children are
equal

Public Member Functions

� bool operator== (const InstructionAST &rhs) const
� virtual void getUses (set< InstructionAST::Ptr > &uses)=0
� virtual bool isUsed (InstructionAST::Ptr �ndMe) const =0
� virtual std::string format (formatStyle how=defaultStyle) const =0

Member Functions

bool operator== (const InstructionAST & rhs) const

Compare two AST nodes for equality.

Non-leaf nodes are equal if they are of the same type and their children are equal. RegisterASTs
are equal if they represent the same register. Immediates are equal if they represent the same
value.

virtual void getChildren (vector< InstructionAST::Ptr > & children) const [pure

virtual]

Children of this node are appended to the vector children.

virtual void getUses (set< InstructionAST::Ptr > & uses) [pure virtual]

Parameters:

uses The use set of this node is appended to the vector uses

The use set of an InstructionAST is de�ned as follows:

� A RegisterAST uses itself

� A BinaryFunction uses the use sets of its children

� An Immediate uses nothing

� A Dereference uses the use set of its child

virtual bool isUsed (InstructionAST::Ptr �ndMe) const [pure virtual]

Returns:

True if findMe is used by this AST node.

Parameters:

�ndMe AST node to �nd in the use set of this node

Unlike getUses, isUsed looks for findMe as a subtree of the current tree. getUses is designed to
return a minimal set of registers used in this tree, whereas isUsed is designed to allow searches
for arbitrary subexpressions

13

3.5 Expression Class

virtual std::string format (formatStyle how = defaultStyle) const [pure virtual]

The format interface returns the contents of an InstructionAST object as a string. By default,
format() (Section 3.4) produces assembly language.

3.5 Expression Class

An Expression is an AST representation of how the value of an operand is computed.

The Expression class extends the InstructionAST class by adding the concept of evaluation to the
nodes of an InstructionAST. Evaluation attempts to determine the Result (Section 3.6) of the
computation that the AST being evaluated represents. It will �ll in results of as many of the nodes
in the tree as possible, and if full evaluation is possible, it will return the result of the computation
performed by the tree.

Permissible leaf nodes of a Expression tree are RegisterAST and Immediate objects. Permissible
internal nodes are BinaryFunction and Dereference objects. An Expression may represent an im-
mediate value, the contents of a register, or the contents of memory at a given address, interpreted
as a particular type.

The Results in an Expression tree contain a type and a value. Their values may be an unde-
�ned value or an instance of their associated type. When two Results are combined using a
BinaryFunction, the BinaryFunction speci�es the output type. Sign extension, type promotion,
truncation, and all other necessary conversions are handled automatically based on the input types
and the output type. If both of the Results that are combined have de�ned values, the combi-
nation will also have a de�ned value; otherwise, the combination's value will be unde�ned. For
more information, see Result (Section 3.6), BinaryFunction (Section 3.9), and Dereference
(Section 3.10).

A user may specify the result of evaluating a given Expression. This mechanism is designed to allow
the user to provide a Dereference or RegisterAST with information about the state of memory or
registers. It may additionally be used to change the value of an Immediate or to specify the result
of a BinaryFunction. This mechanism may be used to support other advanced analyses.

In order to make it more convenient to specify the results of particular subexpressions, the bind

method is provided. bind allows the user to specify that a given subexpression has a particular
value everywhere that it appears in an expression. For example, if the state of certain registers
is known at the time an instruction is executed, a user can bind those registers to their known
values throughout an Expression.

The evaluation mechanism, as mentioned above, will evaluate as many sub-expressions of an
expression as possible. Any operand that is more complicated than a single immediate value,
however, will depend on register or memory values. The Results of evaluating each subexpression
are cached automatically using the setValue mechanism. The Expression then attempts to de-
termine its Result based on the Results of its children. If this Result can be determined (most
likely because register contents have been �lled in via setValue or bind), it will be returned from
eval; if it can not be determined, a Result with an unde�ned value will be returned. See Figure
6 for an illustration of this concept; the operand represented is [EBX + 4 ∗ EAX]. The contents
of EBX and EAX have been determined through some outside mechanism, and have been de�ned
with setValue. The eval mechanism proceeds to determine the address being read by the Deref-
erence, since this information can be determined given the contents of the registers. This address
is available from the Dereference through its child in the tree, even though calling eval on the
Dereference returns a Result with an unde�ned value.

14

3.5 Expression Class

u16:UNKNOWN

u16:deref

u32:0xB080

u32:+

u32:0xB000 u32:0x80

u32:*

u32:0x20 u8:0x04

Register

EBX u32:0xB000

Register

EAX u32:0x20

Immediate

u8:0x04

Figure 6: Applying eval to a Dereference tree with

the state of the registers known and the state of memory unknown"

Public Member Functions

� void setValue (const Result &knownValue)
� void clearValue ()

� virtual bool bind (Expression ∗expr, const Result &value)
� virtual void apply (Visitor ∗)
� virtual void getChildren (std::vector< Expression::Ptr > &children) const =0

Member Typedefs

typedef dyn_detail::boost::shared_ptr<Expression> Ptr

A type de�nition for a reference counted pointer to a Expression.

Member Functions

const Result & eval () const [virtual]

15

3.6 Result Class

If the Expression can be evaluated, returns a Result containing its value. Otherwise returns an
unde�ned Result.

void setValue (const Result & knownValue)

Parameters:

knownValue Sets the result of eval for this Expression to knownValue

void clearValue ()

clearValue sets the contents of this Expression to unde�ned. The next time eval is called, it
will recalculate the value of the Expression.

int size () const

size returns the size of this Expression's Result, in bytes.

bool bind (Expression ∗ expr, const Result & value) [virtual]

bind searches for all instances of the Expression expr within this Expression, and sets the result
of eval for those subexpressions to value. bind returns true if at least one instance of expr was
found in this Expression.

bind does not operate on subexpressions that happen to evaluate to the same value. For example,
if a dereference of 0xDEADBEEF is bound to 0, and a register is bound to 0xDEADBEEF, a
dereference of that register is not bound to 0.

virtual void apply (Visitor ∗) [virtual]

apply applies a Visitor to this expression. Visitors perform post�x-order traversal of the ASTs
represented by an Expression, with user-de�ned actions performed at each node of the tree.

virtual void getChildren (std::vector< Expression::Ptr > & children) const [pure

virtual]

getChildren may be called on an Expression taking a vector of ExpressionPtrs, rather than
InstructionASTPtrs. All children which are Expressions will be appended to children.

3.6 Result Class

� m14: a 14 byte memory value

Public Member Functions

� Result (Result_Type t)
� template<typename T> Result (Result_Type t, T v)

� bool operator== (const Result &o) const
� std::string format () const

16

3.7 RegisterAST Class

Constructors & Destructors

Result (Result_Type t)

A Result may be constructed from a type without providing a value. This constructor creates a
Result of type t with unde�ned contents.

Result (Result_Type t, T v)

A Result may be constructed from a type and any value convertible to the type that the tag
represents. This constructor creates a Result of type t and contents v for any v that is implicitly
convertible to type t. Attempting to construct a Result with a value that is incompatible with its
type will result in a compile-time error.

Member Functions

bool operator== (const Result & o) const

Two Results are equal if any of the following hold:

� Both Results are of the same type and unde�ned

� Both Results are of the same type, de�ned, and have the same value

Otherwise, they are unequal (due to having di�erent types, an unde�ned Result compared to a
de�ned Result, or di�erent values).

std::string format () const

Results are formatted as strings containing their contents, represented as hexadecimal. The type
of the Result is not included in the output.

int size () const

Returns the size of the contained type, in bytes.

3.7 RegisterAST Class

A RegisterAST object represents a register contained in an operand. As a RegisterAST is a
Expression, it may contain the physical register's contents if they are known.

Public Member Functions

� virtual void getChildren (vector< InstructionAST::Ptr > &children) const

� virtual void getUses (set< InstructionAST::Ptr > &uses)

� virtual bool isUsed (InstructionAST::Ptr �ndMe) const

� bool operator< (const RegisterAST &rhs) const

Static Public Member Functions

� static RegisterAST makePC (Dyninst::Architecture arch)

� static RegisterAST::Ptr promote (const InstructionAST::Ptr reg)

17

3.7 RegisterAST Class

Member Typedefs

typedef dyn_detail::boost::shared_ptr<RegisterAST> Ptr

A type de�nition for a reference-counted pointer to a RegisterAST.

Constructors & Destructors

RegisterAST (MachRegister r)

Construct a register, assigning it the ID id.

Member Functions

void getChildren (vector< InstructionAST::Ptr > & children) const [virtual]

By de�nition, a RegisterAST object has no children.

Parameters:

children Since a RegisterAST has no children, the children parameter is unchanged by this
method.

void getUses (set< InstructionAST::Ptr > & uses) [virtual]

By de�nition, the use set of a RegisterAST object is itself.

Parameters:

uses This RegisterAST will be inserted into uses.

bool isUsed (InstructionAST::Ptr �ndMe) const [virtual]

isUsed returns true if findMe is a RegisterAST that represents the same register as this Register-
AST, and false otherwise.

std::string format (formatStyle how = defaultStyle) const [virtual]

The format method on a RegisterAST object returns the name associated with its ID.

RegisterAST makePC (Dyninst::Architecture arch) [static]

Utility function to get a Register object that represents the program counter.

makePC is provided to support platform-independent control �ow analysis.

bool operator< (const RegisterAST & rhs) const

We de�ne a partial ordering on registers by their register number so that they may be placed into
sets or other sorted containers.

MachRegister getID () const

The getID function returns the ID number of a register.

18

3.8 Immediate Class

RegisterAST::Ptr promote (const InstructionAST::Ptr reg) [static]

Utility function to hide aliasing complexity on platforms (IA-32) that allow addressing part or all
of a register

3.8 Immediate Class

The Immediate class represents an immediate value in an operand

Since an Immediate represents a constant value, the setValue and clearValue interface are
disabled on Immediate objects. If an immediate value is being modi�ed, a new Immediate object
should be created to represent the new value.

Public Member Functions

� virtual bool isUsed (InstructionAST::Ptr �ndMe) const

Member Functions

void getChildren (vector< InstructionAST::Ptr > &) const [virtual]

By de�nition, an Immediate has no children.

void getUses (set< InstructionAST::Ptr > &) [virtual]

By de�nition, an Immediate uses no registers.

bool isUsed (InstructionAST::Ptr �ndMe) const [virtual]

isUsed, when called on an Immediate, will return true if findMe represents an Immediate with
the same value. While this convention may seem arbitrary, it allows isUsed to follow a natural
rule: an InstructionAST is used by another InstructionAST if and only if the �rst InstructionAST
is a subtree of the second one.

3.9 BinaryFunction Class

A BinaryFunction object represents a function that can combine two Expressions and produce
another ValueComputation.

For the purposes of representing a single operand of an instruction, the BinaryFunctions of in-
terest are addition and multiplication of integer values; this allows a Expression to represent all
addressing modes on the architectures currently supported by the Instruction API.

Public Member Functions

� BinaryFunction (Expression::Ptr arg1, Expression::Ptr arg2, Result_Type result_-
type, funcT::Ptr func)

� virtual const Result & eval () const
� virtual void getChildren (vector< InstructionAST::Ptr > &children) const

� virtual void getUses (set< InstructionAST::Ptr > &uses)

� virtual bool isUsed (InstructionAST::Ptr �ndMe) const

19

3.9 BinaryFunction Class

Constructors & Destructors

BinaryFunction (Expression::Ptr arg1, Expression::Ptr arg2, Result_Type result_-
type, funcT::Ptr func)

Parameters:

arg1 �rst input to function

arg2 second input to function

result_type type of the function's result

func implementation of the function

The constructor for a BinaryFunction may take a reference-counted pointer or a plain C++ pointer
to each of the child Expressions that represent its arguments. Since the reference-counted imple-
mentation requires explicit construction, we provide overloads for all four combinations of plain
and reference-counted pointers. Note that regardless of which constructor is used, the pointers
arg1 and arg2 become owned by the BinaryFunction being constructed, and should not be deleted.
They will be cleaned up when the BinaryFunction object is destroyed.

The func parameter is a binary functor on two Results. It should be derived from funcT. add-
Result and multResult, which respectively add and multiply two Results, are provided as part
of the InstructionAPI, as they are necessary for representing address calculations. Other funcTs
may be implemented by the user if desired. funcTs have names associated with them for output
and debugging purposes. The addition and multiplication functors provided with the Instruction
API are named "+" and "∗", respectively.

Member Functions

const Result & eval () const [virtual]

The BinaryFunction version of eval allows the eval mechanism to handle complex addressing
modes. Like all of the ValueComputation implementations, a BinaryFunction's eval will return the
result of evaluating the expression it represents if possible, or an empty Result otherwise. A Binary-
Function may have arguments that can be evaluated, or arguments that cannot. Additionally, it
may have a real function pointer, or it may have a null function pointer. If the arguments can be
evaluated and the function pointer is real, a result other than an empty Result is guaranteed to
be returned. This result is cached after its initial calculation; the caching mechanism also allows
outside information to override the results of the BinaryFunction's internal computation. If the
cached result exists, it is guaranteed to be returned even if the arguments or the function are not
evaluable.

virtual void getChildren (vector< InstructionAST::Ptr > & children) const [virtual]

The children of a BinaryFunction are its two arguments.

Parameters:

children Appends the children of this BinaryFunction to children.

virtual void getUses (set< InstructionAST::Ptr > & uses) [virtual]

The use set of a BinaryFunction is the union of the use sets of its children.

20

3.10 Dereference Class

Parameters:

uses Appends the use set of this BinaryFunction to uses.

virtual bool isUsed (InstructionAST::Ptr �ndMe) const [virtual]

isUsed returns true if findMe is an argument of this BinaryFunction, or if it is in the use set of
either argument.

3.10 Dereference Class

A Dereference object is a Expression that dereferences another ValueComputation.

A Dereference contains an Expression representing an e�ective address computation. Its use set
is the same as the use set of the Expression being dereferenced.

It is not possible, given the information in a single instruction, to evaluate the result of a deref-
erence. eval may still be called on a Expression that includes dereferences, but the expected use
case is as follows:

� Determine the address being used in a dereference via the eval mechanism

� Perform analysis to determine the contents of that address

� If necessary, �ll in the Dereference node with the contents of that addresss, using setValue

The type associated with a Dereference node will be the type of the value read from memory ,
not the type used for the address computation. Two Dereferences that access the same address
but interpret the contents of that memory as di�erent types will produce di�erent values. The
children of a Dereference at a given address are identical, regardless of the type of dereference
being performed at that address. For example, the Expression shown in Figure 6 could have its
root Dereference, which interprets the memory being dereferenced as a unsigned 16-bit integer,
replaced with a Dereference that interprets the memory being dereferenced as any other type. The
remainder of the Expression tree would, however, remain unchanged.

Public Member Functions

� Dereference (Expression::Ptr addr, Result_Type result_type)
� virtual void getChildren (vector< InstructionAST::Ptr > &children) const

� virtual void getUses (set< InstructionAST::Ptr > &uses)

� virtual bool isUsed (InstructionAST::Ptr �ndMe) const

Constructors & Destructors

Dereference (Expression::Ptr addr, Result_Type result_type)

A Dereference is constructed from a Expression pointer (raw or shared) representing the address
to be dereferenced and a type indicating how the memory at the address in question is to be
interpreted.

21

3.11 RegInfo Struct

Member Functions

virtual void getChildren (vector< InstructionAST::Ptr > & children) const [virtual]

A Dereference has one child, which represents the address being dereferenced.

Parameters:

children Appends the child of this Dereference to children.

virtual void getUses (set< InstructionAST::Ptr > & uses) [virtual]

The use set of a Dereference is the same as the use set of its children.

Parameters:

uses The use set of this Dereference is inserted into uses.

virtual bool isUsed (InstructionAST::Ptr �ndMe) const [virtual]

An InstructionAST is used by a Dereference if it is equivalent to the Dereference or it is used by
the lone child of the Dereference

3.11 RegInfo Struct

3.12 IA32RegTable Struct

3.13 InstructionDecoder_x86 Class

An InstructionDecoder object may alternately be constructed without designating a bu�er, and the
bu�er may be speci�ed at the time decode is called. This method of use may be more convenient
for users who are decoding non-contiguous instructions.

22

Index

addE�ectiveReadAddresses
Dyninst::InstructionAPI::Operand, 12

addE�ectiveWriteAddresses
Dyninst::InstructionAPI::Operand, 12

allowsFallThrough
Dyninst::InstructionAPI::Instruction, 8

apply
Dyninst::InstructionAPI::Expression, 16

BinaryFunction
Dyninst::InstructionAPI::BinaryFunction,

20
bind

Dyninst::InstructionAPI::Expression, 16

clearValue
Dyninst::InstructionAPI::Expression, 16

Dereference
Dyninst::InstructionAPI::Dereference, 21

Dyninst::InstructionAPI::BinaryFunction, 19
Dyninst::InstructionAPI::BinaryFunction

BinaryFunction, 20
eval, 20

Dyninst::InstructionAPI::Dereference, 21
Dyninst::InstructionAPI::Dereference

Dereference, 21
getChildren, 22

Dyninst::InstructionAPI::Expression, 14
Dyninst::InstructionAPI::Expression

apply, 16
bind, 16
clearValue, 16
eval, 15
getChildren, 16
Ptr, 15
size, 16

Dyninst::InstructionAPI::IA32RegTable, 22
Dyninst::InstructionAPI::Immediate, 19
Dyninst::InstructionAPI::Immediate

getChildren, 19
Dyninst::InstructionAPI::Instruction, 4
Dyninst::InstructionAPI::Instruction

allowsFallThrough, 8
format, 8
getCategory, 9
getControlFlowTarget, 8
getMemoryReadOperands, 7
getMemoryWriteOperands, 8
getOperand, 6
getOperands, 6

getOperation, 6
getReadSet, 7
getWriteSet, 6
Instruction, 5
isLegalInsn, 9
isRead, 7
isValid, 9
isWritten, 7
ptr, 6
rawByte, 6
readsMemory, 7
size, 6
writesMemory, 7

Dyninst::InstructionAPI::InstructionAST, 12
Dyninst::InstructionAPI::InstructionAST

getChildren, 13
operator==, 13

Dyninst::InstructionAPI::InstructionDecoder_-
x86, 22

Dyninst::InstructionAPI::Operand, 10
Dyninst::InstructionAPI::Operand

addE�ectiveReadAddresses, 12
addE�ectiveWriteAddresses, 12
format, 12
getReadSet, 11
getValue, 12
getWriteSet, 11
isRead, 11
isWritten, 11
Operand, 11
readsMemory, 11
writesMemory, 12

Dyninst::InstructionAPI::Operation, 9
Dyninst::InstructionAPI::Operation

format, 10
getID, 10
getImplicitMemReads, 10
getImplicitMemWrites, 10
getPre�xID, 10
implicitReads, 10
implicitWrites, 10
isRead, 10
isWritten, 10

Dyninst::InstructionAPI::RegInfo, 22
Dyninst::InstructionAPI::RegisterAST, 17
Dyninst::InstructionAPI::RegisterAST

getChildren, 18
getID, 18
operator<, 18
promote, 18
Ptr, 18

INDEX

RegisterAST, 18
Dyninst::InstructionAPI::Result, 16
Dyninst::InstructionAPI::Result

format, 17
operator==, 17
Result, 17
size, 17

eval
Dyninst::InstructionAPI::BinaryFunction,

20
Dyninst::InstructionAPI::Expression, 15

format
Dyninst::InstructionAPI::Instruction, 8
Dyninst::InstructionAPI::InstructionAST,

13
Dyninst::InstructionAPI::Operand, 12
Dyninst::InstructionAPI::Operation, 10
Dyninst::InstructionAPI::RegisterAST, 18
Dyninst::InstructionAPI::Result, 17

getCategory
Dyninst::InstructionAPI::Instruction, 9

getChildren
Dyninst::InstructionAPI::BinaryFunction,

20
Dyninst::InstructionAPI::Dereference, 22
Dyninst::InstructionAPI::Expression, 16
Dyninst::InstructionAPI::Immediate, 19
Dyninst::InstructionAPI::InstructionAST,

13
Dyninst::InstructionAPI::RegisterAST, 18

getControlFlowTarget
Dyninst::InstructionAPI::Instruction, 8

getID
Dyninst::InstructionAPI::Operation, 10
Dyninst::InstructionAPI::RegisterAST, 18

getImplicitMemReads
Dyninst::InstructionAPI::Operation, 10

getImplicitMemWrites
Dyninst::InstructionAPI::Operation, 10

getMemoryReadOperands
Dyninst::InstructionAPI::Instruction, 7

getMemoryWriteOperands
Dyninst::InstructionAPI::Instruction, 8

getOperand
Dyninst::InstructionAPI::Instruction, 6

getOperands
Dyninst::InstructionAPI::Instruction, 6

getOperation
Dyninst::InstructionAPI::Instruction, 6

getPre�xID
Dyninst::InstructionAPI::Operation, 10

getReadSet
Dyninst::InstructionAPI::Instruction, 7
Dyninst::InstructionAPI::Operand, 11

getUses
Dyninst::InstructionAPI::BinaryFunction,

20
Dyninst::InstructionAPI::Dereference, 22
Dyninst::InstructionAPI::Immediate, 19
Dyninst::InstructionAPI::InstructionAST,

13
Dyninst::InstructionAPI::RegisterAST, 18

getValue
Dyninst::InstructionAPI::Operand, 12

getWriteSet
Dyninst::InstructionAPI::Instruction, 6
Dyninst::InstructionAPI::Operand, 11

implicitReads
Dyninst::InstructionAPI::Operation, 10

implicitWrites
Dyninst::InstructionAPI::Operation, 10

Instruction
Dyninst::InstructionAPI::Instruction, 5

Instruction Decoding, 2
Instruction Interface, 1
InstructionAST Hierarchy, 3
isLegalInsn

Dyninst::InstructionAPI::Instruction, 9
isRead

Dyninst::InstructionAPI::Instruction, 7
Dyninst::InstructionAPI::Operand, 11
Dyninst::InstructionAPI::Operation, 10

isUsed
Dyninst::InstructionAPI::BinaryFunction,

21
Dyninst::InstructionAPI::Dereference, 22
Dyninst::InstructionAPI::Immediate, 19
Dyninst::InstructionAPI::InstructionAST,

13
Dyninst::InstructionAPI::RegisterAST, 18

isValid
Dyninst::InstructionAPI::Instruction, 9

isWritten
Dyninst::InstructionAPI::Instruction, 7
Dyninst::InstructionAPI::Operand, 11
Dyninst::InstructionAPI::Operation, 10

makePC
Dyninst::InstructionAPI::RegisterAST, 18

Operand
Dyninst::InstructionAPI::Operand, 11

operator<
Dyninst::InstructionAPI::RegisterAST, 18

24

INDEX

operator==
Dyninst::InstructionAPI::InstructionAST,

13
Dyninst::InstructionAPI::Result, 17

promote
Dyninst::InstructionAPI::RegisterAST, 18

Ptr
Dyninst::InstructionAPI::Expression, 15
Dyninst::InstructionAPI::RegisterAST, 18

ptr
Dyninst::InstructionAPI::Instruction, 6

rawByte
Dyninst::InstructionAPI::Instruction, 6

readsMemory
Dyninst::InstructionAPI::Instruction, 7
Dyninst::InstructionAPI::Operand, 11

RegisterAST
Dyninst::InstructionAPI::RegisterAST, 18

REMOVE, 1
Result

Dyninst::InstructionAPI::Result, 17

setValue
Dyninst::InstructionAPI::Expression, 16

size
Dyninst::InstructionAPI::Expression, 16
Dyninst::InstructionAPI::Instruction, 6
Dyninst::InstructionAPI::Result, 17

writesMemory
Dyninst::InstructionAPI::Instruction, 7
Dyninst::InstructionAPI::Operand, 12

25

