

Page 11

Paradyn Parallel Performance Tools
Dyninst

Programmer’s Guide
Release 7.0

March 2011
[image: image1.png]

Computer Science Department

University of Wisconsin-Madison

Madison, WI 53711

Computer Science Department

University of Maryland

College Park, MD 20742

Email: bugs@dyninst.org

Web: www.dyninst.org

1.
Introduction
4
2.
Abstractions
5
3.
Examples
7
3.1
Instrumenting a function
7
3.2
Binary Analysis
9
3.3
Instrumenting Memory Access
10
4.
Interface
11
4.1
Class BPatch
11
4.1.1
Callbacks
16
4.2
Class BPatch_addressSpace
20
4.3
Class BPatch_process
25
4.4
Class BPatch_thread
27
4.5
Class BPatch_binaryEdit
29
4.6
Class BPatch_sourceObj
30
4.7
Class BPatch_function
31
4.8
Class BPatch_point
36
4.9
Class BPatch_image
37
4.10
Class BPatch_module
41
4.11
Class BPatch_snippet
44
4.12
Class BPatch_type
49
4.13
Class BPatch_variableExpr
50
4.14
Class BPatch_flowGraph
51
4.15
Class BPatch_edge
52
4.16
Class BPatch_loopTreeNode
53
4.17
Class BPatch_basicBlock
54
4.18
Class BPatch_basicBlockLoop
56
4.19
Class BPatch_instruction
57
4.20
Class BPatch_register
58
4.21
Class BPatch_sourceBlock
58
4.22
Class BPatch_cblock
58
4.23
Class BPatch_frame
59
4.24
Class BPatch_dependenceGraphNode
60
4.25
Class BPatch_dependenceGraphEdge
61
4.26
Container Classes
62
4.26.1
Class BPatch_Vector
62
4.26.2
Class BPatch_Set
62
4.27
Memory Access Classes
64
4.27.1
Class BPatch_memoryAccess
64
4.27.2
Class BPatch_addrSpec_NP
65
4.27.3
Class BPatch_countSpec_NP
65
4.28
Type System
65
4.29
Hybrid Code Analysis
66
5.
Using the API
69
5.1
Overview of Major Steps
69
5.2
Creating a Mutator Program
69
5.3
Setting Up the Application Program (mutatee)
70
5.4
Running the Mutator
71
5.5
Optimizing Dyninst Performance
71
5.5.1
Optimizing Mutator Performance
72
5.5.2
Optimizing Mutatee Performance
73
Appendix A - Complete Examples
76
Appendix B - Running the Test Cases
81
Appendix C - Common pitfalls
85
Appendix D – Building Dyninst
87
References
92

1. Introduction

The normal cycle of developing a program is to edit the source code, compile it, and then execute the resulting binary. However, sometimes this cycle can be too restrictive. We may wish to change the program while it is executing or after it has been linked, thus avoiding the process of re-compiling, re-linking, or even re-executing the program to change the binary. At first, this may seem like a bizarre goal, however there are several practical reasons why we may wish to have such a system. For example, if we are measuring the performance of a program and discover a performance problem, it might be necessary to insert additional instrumentation into the program to understand the problem. Another application is performance steering; for large simulations, computational scientists often find it advantageous to be able to make modifications to the code and data while the simulation is executing.

This document describes an Application Program Interface (API) to permit the insertion of code into a computer application that is either running or on disk. The API for inserting code into a running application, called dynamic instrumentation, shares much of the same structure as the API for inserting code into an executable file or library, known as static instrumentation. The API also permits changing or removing subroutine calls from the application program. Binary code changes are useful to support a variety of applications including debugging, performance monitoring, and to support composing applications out of existing packages. The goal of this API is to provide a machine independent interface to permit the creation of tools and applications that use runtime and static code patching. The API and a simple test application are described in [1]. This API is based on the idea of dynamic instrumentation described in [3].

The key features of this interface are the abilities to:

· Insert and change instrumentation in a running program.

· Insert instrumentation into a binary on disk and write a new copy of that binary back to disk.

· Perform static and dynamic analysis on binaries and processes.

The goal of this API is to keep the interface small and easy to understand. At the same time, it needs to be sufficiently expressive to be useful for a variety of applications. We accomplished this goal by providing a simple set of abstractions and a way to specify which code to insert into the application
.

2. Abstractions

The DyninstAPI library provides an interface for instrumenting and working with binaries and processes. The user writes a mutator, which uses the DyninstAPI library to operate on the application. The process that contains the mutator and DyninstAPI library is known as the mutator process. The mutator process operates on other processes or on-disk binaries, which are known as mutatees.
The API is based on abstractions of a program. For dynamic instrumentation, it can be based on the state while in execution. The two primary abstractions in the API are points and snippets. A point is a location in a program where instrumentation can be inserted. A snippet is a representation of some executable code to be inserted into a program at a point. For example, if we wished to record the number of times a procedure was invoked, the point would be the first instruction in the procedure, and the snippets would be a statement to increment a counter. Snippets can include conditionals and function calls.

Mutatees are represented using an address space abstraction. The address space represents either a process (for dynamic instrumentation) or a disk executable (for static instrumentation). Dynamic instrumentation is the address space that represents a binary and any dynamic libraries loaded with the process. For static instrumentation, the address space represents an executable file on disk and the set of dynamic library files that the executable depends on. The address space abstraction is extended by process and binary abstractions for dynamic and static instrumentation. The process abstraction represents information about a running process such as threads or stack state. The binary abstraction represents information about a binary found on disk.

The code and data represented by an address space is broken up into function and variable abstractions. Functions contain points, which specify locations to insert instrumentation. Functions also contain a control flow graph abstraction, which contains information about basic blocks, edges, loops, and instructions. If the mutatee contains debug information. DyninstAPI will also provide abstractions about variable and function types, local variables, function parameters, and source code line information. The collection of functions and variables in a mutatee is represented as an image.

The API includes a simple type system based on structural equivalence. If mutatee programs have been compiled with debugging symbols and the symbols are in a format that Dyninst understands, type checking is performed on code to be inserted into the mutatee. See Section 4.28 for a complete description of the type system.

Due to language constructs or compiler optimizations, it may be possible for multiple functions to overlap (that is, share part of the same function body) or for a single function to have multiple entry points. In practice, it is impossible to determine the difference between multiple overlapping functions and a single function with multiple entry points. The DyninstAPI uses a model where each function (BPatch_function object) has a single entry point, and multiple functions may overlap (share code). We guarantee that instrumentation inserted in a particular function is only executed in the context of that function, even if instrumentation is inserted into a location that exists in multiple functions.

3. Examples

To illustrate the ideas of the API, we present several short examples that demonstrate how the API can be used. The full details of the interface are presented in the next section. To prevent confusion, we refer to the application process or binary that is being modified as the mutatee, and the program that uses the API to modify the application as the mutator. The mutator is a separate process from the application process.

The examples in this section are simple code snippets, not complete programs. Appendix A provides an example of a complete Dyninst program.

3.1 Instrumenting a function

A mutator program must create a single instance of the class BPatch. This object is used to access functions and information that are global to the library. It must not be destroyed until the mutator has completely finished using the library. For this example, we will assume that the mutator program has declared a global variable called bpatch of class BPatch.

All instrumentation will be done with a BPatch_addressSpace object, which allows us to write code that will work for both static and dynamic instrumentation. During initialization we will use either BPatch_process to create or attach to a process, or BPatch_binaryEdit to open a file on disk. When instrumentation is completed, we will either run the BPatch_process or write the BPatch_binaryEdit back onto the disk.

The mutator first needs to identify the application to be modified. If the process is already in execution, this can be done by specifying the executable file name and process id of the application as arguments in order to create an instance of a process object:

BPatch_process *appProc = bpatch.processAttach(name, processId);

This creates a new instance of the BPatch_process class that refers to the existing process. It had no effect on the state of the process (i.e., running or stopped). If the process has not been started, the mutator specifies the pathname and argument list of a program it seeks to execute:

BPatch_process *appProc = bpatch.processCreate(pathname, argv);

If the mutator is opening a file for static binary rewriting, it will execute:

BPatch_binaryEdit *appBin = bpatch.openBinary.(pathname);

The above statements will create either a BPatch_process object or BPatch_binaryEdit object, depending on whether Dyninst is doing static or dynamic instrumentation. The instrumentation and analysis code can be made agnostic towards static or dynamic modes by using a BPatch_addressSpace object. Both BPatch_process and BPatch_binaryEdit inherit from BPatch_addressSpace, so we can use cast operations to move between the two:

BPatch_process *proc = static_cast<BPatch_process *>(appAddrSpace)

-or-

BPatch_binaryEdit *bin = static_cast<BPatch_binaryEdit *>(appAddrSpace)

Once the address space has been created, the mutator defines the snippet of code to be inserted and identifies where the points should be inserted.

If the mutator wanted to instrument the entry point of InterestingProcedure it should get a BPatch_function from the application’s BPatch_image, and get the entry BPatch_instPoint from that function:

BPatch_Vector<BPatch_function *> functions;

BPatch_Vector<BPatch_point *> *points;

BPatch_image *appImage = app->getImage();

appImage->findFunction(“InterestingProcedure”, functions);

points = functions[0]->findPoint(BPatch_entry);

The mutator also needs to contrast the instrumentation that it will insert at the BPatch_point. It can do this by allocating an integer in the application to store instrumentation results, and then creating a BPatch_snippet to increment that integer:

BPatch_variableExpr *intCounter =

app->malloc(*(appImage->findType("int")));

BPatch_arithExpr addOne(BPatch_assign, *intCounter,

 BPatch_arithExpr(BPatch_plus, *intCounter, BPatch_constExpr(1)));

The mutator can set the BPatch_snippet to be run at the BPatch_point by doing an insert​Snippet call:

app->insertSnippet(addOne, *points);

Finally, the mutator should either continue the mutate process and wait for it to finish, or write the resulting binary onto the disk, depending on whether it is doing static or dynamic instrumentation:

appProc->continueExecution();

while (!appProc->isTerminated()) {

bpatch.waitForStatusChange();

}

-or-

appBin->writeFile(newPath);

A complete example can be found in Appendix A.

3.2 Binary Analysis

This example will illustrate how to use Dyninst to iterate over a function’s control flow graph and inspect instructions. These are steps that would usually be part of a larger data flow or control flow analysis. Specifically, this example will collect every basic block in a function, iterate over them, and count the number of instructions that access memory.

Unlike the previous instrumentation example, this example will use binary rewriting as part of the analysis. Bear in mind, these techniques can also be applied when working with processes. This example makes use of InstructionAPI, details of which can be found in the InstructionAPI Reference Manual.

Similar to the above example, the mutator will start by creating a BPatch object and opening a file to operate on:

BPatch bpatch;

BPatch_binaryEdit *binedit = bpatch.openFile(pathname);

The mutator needs to get a handle to a function to do analysis on. This example will look up a function by name; alternatively, it could have iterated over every function in BPatch_image or BPatch_module:

BPatch_image *appImage = binedit->getImage();

std::vector<BPatch_function *> funcs;

image->findFunction(“InterestingProcedure”, funcs);

A function’s control flow graph is represented by the BPatch_flowGraph class. The BPatch_flowGraph contains, among other things, a set of BPatch_basicBlock objects connected by BPatch_edge objects. This example will simply collect a list of the basic blocks in BPatch_flowGraph and iterate over each one:

BPatch_flowGraph *fg = funcs[0]->getCFG();

std::set<BPatch_basicBlock *> blocks;

fg->getAllBasicBlocks(blocks);

Each basic block has a list of instructions. Each instruction is represented by a
Dyninst::InstructionAPI::Instruction::Ptr object.

std::set<BPatch_basicBlock *>::iterator block_iter;

for (block_iter = blocks.begin(); block_iter != blocks.end(); ++block_iter) {

BPatch_basicBlock *block = *block_iter;

std::vector<Dyninst::InstructionAPI::Instruction::Ptr> insns;

block->getInstructions(insns);

}

Given an Instruction object, which is described in the InstructionAPI Reference Manual, we can query for properties of this instruction. InstructionAPI has numerous methods for inspecting the memory accesses, registers, and other properties of an instruction. This example simply checks whether this instruction accesses memory:

std::vector<Dyninst::InstructionAPI::Instruction::Ptr>::iterator

insn_iter;

for (insn_iter = insns.begin(); insn_iter != insns.end(); ++insn_iter)

{

Dyninst::InstructionAPI::Instruction::Ptr insn = *insn_iter;

if (insn->readsMemory() || insn->writesMemory()) {

insns_access_memory++;

}

}

3.3 Instrumenting Memory Access XE "BPatch_bytesAccessedExpr "

 XE "Memory Access Snippets"
There are two snippets useful for memory access instrumentation: BPatch_effectiveAddressExpr and BPatch_bytesAccessedExpr. Both have nullary constructors; the result of the snippet depends on the instrumentation point where the snippet is inserted. BPatch_effectiveAddressExpr has type void*, while BPatch_bytesAccessedExpr has type int.

These snippets may be used to instrument a given instrumentation point if and only if the point has memory access information attached to it. In this release the only way to create instrumentation points that have memory access information attached is via BPatch_function.findPoint(const BPatch_Set<BPatch_opCode>&). For example, to instrument all the loads and stores in a function named foo with a call to printf, one may write:

BPatch_addressSpace *app = ...;

BPatch_image *appImage = proc->getImage();

// We’re interested in loads and stores

BPatch_Set<BPatch_opCode> axs;

axs.insert(BPatch_opLoad);

axs.insert(BPatch_opStore);

// scan the function foo and create instrumentation points

std::vector<BPatch_function*> funcs;

img->findFunction(“InterestingProcedure”, funcs);

std::vector<BPatch_point*>* points = funcs[0]->findPoint(axs);

// create the printf function call snippet

std::vector<BPatch_snippet*> printfArgs;

BPatch_snippet *fmt = new BPatch_constExpr("Access at: %p.\n");

printfArgs.push_back(fmt);

BPatch_snippet *eae = new BPatch_effectiveAddressExpr();

printfArgs.push_back(eae);

std::vector<BPatch_function *> printfFuncs;

img->findFunction("printf", printfFuncs);

BPatch_funcCallExpr printfCall(*(printfFuncs[0]), printfArgs);

// insert the snippet at the instrumentation points

app->insertSnippet(printfCall, *points);

Interface

This section describes functions in the API. The API is organized as a collection of C++ classes. The primary classes are BPatch, Bpatch_process, BPatch_binaryEdit, BPatch_thread, BPatch_image, BPatch_point, and BPatch_snippet. The API also uses a template class called BPatch_Vector. This class is based on the Standard Template Library (STL) vector class.

3.4 Class BPatch

The BPatch class represents the entire Dyninst library. There can only be one instance of this class at a time. This class is used to perform functions and obtain information that is not specific to a particular thread or image.

BPatch_Vector<BPatch_process*> *getProcesses XE "getThreads" ()

Returns the list of processes that are currently defined. This list includes processes that were directly created by calling processCreate/processAttach, and indirectly by the UNIX fork or the Windows CreateProcess system call. It is up to the user to delete this vector when they are done with it.
BPatch_process *processAttach XE "attachProcess" (const char *path, int pid)
BPatch_process *processCreate XE "createProcess" (const char *path, char *argv[],

char *envp[] = NULL, int stdin_fd=0, int stdout_fd=1, int stderr_fd=2)

Each of these functions returns a pointer to a new instance of the BPatch_process class. The path parameter needed by these functions should be the pathname of the executable file containing the process image. The processAttach function returns a BPatch_process associated with an existing process. On Linux platforms the path parameter can be NULL since the executable image can be derived from the process pid. Attaching to a process puts it into the stopped state. The processCreate function creates a new process and returns a new BPatch_process associated with it. The new process is put into a stopped state before executing any code.

The stdin_fd, stdout_fd, and stderr_fd parameters are used to set the standard input, output, and error of the child process. The default values of these parameters leave the input, output, and error to be the same as the mutator process. To change these values, an open UNIX file descriptor (see open(1)) can be passed.

BPatch_binaryEdit *openBinary(const char *path,
bool openDependencies = false)

This function opens the executable file or library file pointed to by path for binary rewriting. If openDependencies is true then Dyninst will also open all shared libraries that path depends on. Upon success, this function returns a new instance of a BPatch_binaryEdit class that represents the opened file and any dependent shared libraries. This function returns NULL in the event of an error.

bool pollForStatusChange XE "pollForStatusChange" ()

This is useful for a mutator that needs to periodically check on the status of its managed threads and does not want to check each process individually. It returns true if there has been a change in the status of one or more threads that has not yet been reported by either isStopped or isTerminated.

void setDebugParsing XE "setDebugParsing" (bool state)

Turn on or off the parsing of debugger information. By default, the debugger information (produced by the –g compiler option) is parsed on those platforms that support it. However, for some applications this information can be quite large. To disable parsing this information, call this method with a value of false prior to creating a process.

bool parseDebugInfo()

Returns true if debugger information parsing is enabled, and false otherwise.

void setTrampRecursive XE "setTrampRecursive" (bool state)

Turn on or off trampoline recursion. By default, any snippets invoked while another snippet is active will not be executed. This is the safest behavior, since recursively-calling snippets can cause a program to take up all available system resources and die. For example, adding instrumentation code to the start of printf, and then calling printf from that snippet will result in infinite recursion.

This protection operates at the granularity of an instrumentation point. When snippets are first inserted at a point, this flag determines whether code will be created with recursion protection. Changing the flag is not retroactive, and inserting more snippets will not change the recursion protection of the point. Recursion protection increases the overhead of instrumentation points, so if there is no way for the snippets to call themselves, calling this method with the parameter true will result in a performance gain. The default value of this flag is false.

bool isTrampRecursive ()

Returns whether trampoline recursion is enabled or disabled. True means that it is enabled.

void setTypeChecking XE "setTypeChecking" (bool state)

Turn on or off type-checking of snippets. By default type-checking is turned on, and an attempt to create a snippet that contains type conflicts will fail. Any snippet expressions created with type-checking off have the type of their left operand. Turning type-checking off, creating a snippet, and then turning type-checking back on is similar to the type cast operation in the C programming language.

bool isTypeChecked()

Returns true if type-checking of snippets is enabled, and false otherwise.

bool waitForStatusChange XE "pollForStatusChange" ()

This function waits until there is a status change to some thread that has not yet been reported by either isStopped or isTerminated, and then returns true. It is more efficient to call this function than to call pollForStatusChange in a loop, because waitForStatusChange blocks the mutator process while waiting.

void setDelayedParsing (bool)

Turn on or off delayed parsing. When it is activated Dyninst will initially parse only the symbol table information in any new modules loaded by the program, and will postpone more thorough analysis (instrumentation point analysis, variable analysis, and discovery of new functions in stripped binaries). This analysis will automatically occur when the information is necessary.

Users which require small run-time perturbation of a program should not delay parsing; the overhead for analysis may occur at unexpected times if it is triggered by internal Dyninst behavior. Users who desire instrumentation of a small number of functions will benefit from delayed parsing.

bool delayedParsingOn()

Returns true if delayed parsing is enabled, and false otherwise.

void setInstrStackFrame(bool)

Turn on and off stack frames in instrumentation. When on, Dyninst will create stack frames around instrumentation. A stack frame allows Dyninst or other tools to walk a call stack through instrumentation, but introduces overhead to instrumentation. The default is to not create stack frames.

bool getInstrStackFrames()

Returns true if instrumentation will create stack frames, false otherwise.

void setMergeTramp (bool)

Turn on or off inlined tramps. Setting this value to true will make each base trampoline have all of its mini-trampolines inlined within it. Using inlined mini-tramps may allow instrumentation to execute faster, but inserting and removing instrumentation may take more time. The default setting for this is true.
bool isMergeTramp ()

This returns the current status of inlined trampolines. A value of true indicates that trampolines are inlined.

void setSaveFPR (bool)

Turn on or off floating point saves. Setting this value to false means that floating point registers will never be saved, which can lead to large performance improvements. The default value is true. Setting this flag may cause incorrect program behavior if the instrumentation does clobber floating point registers, so it should only be used when the user is positive this will never happen.

bool isSaveFPROn ()

This returns the current status of the floating point saves. True means we are saving floating points based on the analysis for the given platform.

void setBaseTrampDeletion(bool)

If true, we delete the base tramp when the last corresponding minitramp is deleted. If false, we leave the base tramp in. The default value is false.

bool baseTrampDeletion()

Returns true if base trampolines are set to be deleted, false otherwise.

void setLivenessAnalysis(bool)

If true, we perform register liveness analysis around an instPoint before inserting instrumentation, and we only save registers that are live at that point. This can lead to faster run-time speeds, but at the expense of slower instrumentation time. The default value is true.

bool livenessAnalysisOn()

Returns true if liveness analysis is currently enabled.

void getBPatchVersion(int &major, int &minor, int &subminor)

Return Dyninst’s version number. The major version number will be stored in major, the minor version number in minor, and the subminor version in subminor. For example, under Dyninst 5.1.0, this function will return 5 in major, 1 in minor, and 0 in subminor.

int getNotificationFD()

Returns a file descriptor that is suitable for inclusion in a call to select(). Dyninst will write data to this file descriptor when it to signal a state change in the process. BPatch::pollForStatusChange should then be called so that Dyninst can handle the state change. This is useful for applications where the user does not want to block in BPatch::waitForStatusChange. The file descriptor will reset when the user calls BPatch::pollForStatusChange.

BPatch_type *createArray(const char *name, BPatch_type *ptr, unsigned int low, unsigned int hi) XE " createArray "
Create a new array type. The name of the type is name, and the type of each element is ptr. The index of the first element of the array is low, and the last is high. The standard rules of type compatibility, described in Section 4.28, are used with arrays created using this function.

BPatch_type *createEnum(const char *name, BPatch_Vector<char *> elementNames, BPatch_Vector<int> elementIds) XE " createEnum "
BPatch_type *createEnum(const char *name, BPatch_Vector<char *> elementNames)

Create a new enumerated type. There are two variations of this function. The first one is used to create an enumerated type where the user specifies the identifier (int) for each element. In the second form, the system specifies the identifiers for each element. In both cases, a vector of character arrays is passed to supply the names of the elements of the enumerated type. In the first form of the function, the number of element in the elementNames and elementIds vectors must be the same, or the type will not be created and this function will return NULL. The standard rules of type compatibility, described in Section 4.28, are used with enums created using this function.

BPatch_type *createScalar(const char *name, int size) XE " createScalar "
Create a new scalar type. The name field is used to specify the name of the type, and the size parameter is used to specify the size in bytes of each instance of the type. No additional information about this type is supplied. The type is compatible with other scalars with the same name and size.

BPatch_type *createStruct(const char *name, BPatch_Vector<char *> fieldNames, BPatch_Vector<BPatch_type *> fieldTypes) XE " createStruct "
Create a new structure type. The name of the structure is specified in the name parameter. The fieldNames and fieldTypes vectors specify fields of the type. These two vectors must have the same number of elements or the function will fail (and return NULL). The standard rules of type compatibility, described in Section 4.28, are used with structures created using this function. The size of the structure is the sum of the size of the elements in the fieldTypes vector.

BPatch_type *createTypedef(const char *name, BPatch_type *ptr) XE " createTypedef "
Create a new type called name and having the type ptr.

BPatch_type *createPointer(const char *name, BPatch_type *ptr)

BPatch_type *createPointer(const char *name, BPatch_type *ptr, int size) XE " createPointer "
Create a new type, named name, which points to objects of type ptr. The first form creates a pointer whose size is equal to sizeof(void*)on the target platform where the muta​tee is running. In the second form, the size of the pointer is the value passed in the size parameter.

BPatch_type *createUnion(const char *name, BPatch_Vector<char *> fieldNames, BPatch_Vector<BPatch_type *> fieldTypes) XE " createUnion "
Create a new union type. The name of the union is specified in the name parameter. The fieldNames and fieldTypes vectors specify fields of the type. These two vectors must have the same number of elements or the function will fail (and return NULL). The size of the union is the size of the largest element in the fieldTypes vector.

3.4.1 Callbacks

The following functions are intended as a way for API users to be informed when an error or significant event occurs. Each function allows a user to register a handler for an event. The return code for all callback registration functions is the address of the handler that was previously registered (which may be NULL if no handler was previously registered). For backwards compatibility reasons, some callbacks may pass a BPatch_thread object when a BPatch_process may be more appropriate. A BPatch_thread may be converted into a BPatch_process using BPatch_thread::getProcess().
enum BPatchErrorLevel XE "BPatchErrorLevel" { BPatchFatal, BPatchSerious, BPatchWarning, BPatchInfo };

typedef void (*BPatchErrorCallback XE "BPatchErrorCallback")(BPatchErrorLevel severity, int number, char **params)

This is the prototype for the error callback function. The severity field indicates how important the error is (from fatal to information/status). The number is a unique number that identifies this error message. Params are the parameters that describe the detail about an error, e.g., the process id where the error occurred. The number and meaning of params depends on the error. However, for a given error number the number of parameters returned will always be the same.

BPatchErrorCallback registerErrorCallback XE "registerErrorCallback" (BPatchErrorCallback func)

This function registers the error callback function with the BPatch class. The return value is the address of the previous error callback function. Dyninst users can change the error callback during program execution (e.g., one error callback before a GUI is initialized, and a different one after).

typedef void (*BPatchSignalHandlerCallback XE "BPatchErrorCallback")(BPatch_point *at_point, long signum, BPatch_Vector<Dyninst::Address> *handlers)

This is the prototype for the signal handler callback function. The at_point parameter indicates the point at which the signal/exception was raised, signum is the number of the signal/exception that was raised, and the handlers vector contains any registered handler(s) for the signal/exception. In Windows this corresponds to the stack of Structured Exception Handlers, while for Unix systems there will be at most one registered exception handler. As of April 15, 2008, this functionality is only fully implemented for the Windows platform.
BPatchSignalHandlerCallback registerSignalHandlerCallback XE "registerErrorCallback" (BPatchSignalHandlerCallback func, BPatch_Set<long> *signal_numbers)

This function registers the signal handler callback function with the BPatch class. The return value indicates success or failure. The signal_numbers set contains those signal numbers for which the callback will be invoked. As of April 15, 2008, this functionality is only fully implemented for the Windows platform.

typedef void (*BPatchStopThreadCallback XE "BPatchErrorCallback")(BPatch_point *at_point, void *returnValue)

This is the prototype for the callback that is associated with the stopThreadExpr snippet class (see Section 4.11). Unlike the other callbacks in this section, stopThreadExpr callbacks are registered during the creation of the stopThreadExpr snippet type. Whenever a stopThreadExpr snippet executes in a given thread, the snippet evaluates the calculation snippet that stopThreadExpr takes as a parameter, stops the thread’s execution and invokes this callback. The at_point parameter is the BPatch_point at which the stopThreadExpr snippet was inserted, and returnValue contains the computation made by the calculation snippet.

typedef void (*BPatchAsyncThreadEventCallback XE "BPatchThreadEventCallback")(

BPatch_process *proc, BPatch_thread *thread)

This is the prototype for most callback functions associated with events that occur in a thread, such as thread creation and destruction events. The thread parameter is the thread that triggered the event, and proc is the thread’s containing process.

bool registerThreadEventCallback XE "registerErrorCallback" (BPatch_asyncEventType type,

BPatchAsyncThreadEventCallback cb)

This function registers a callback to occur whenever the process triggers a new thread event. The type parameter can be either one of BPatch_threadCreateEvent or BPatch_threadDestroyEvent. Different callbacks can be registered for different values of type.
typedef void (*BPatchExecCallback)(BPatch_thread *thr)

This is the prototype for the exec callback. The thr parameter is a thread in the process that called exec. You can use the BPatch_thread::getProcess function to get the BPatch_process that performed the exec operation.

BPatchThreadEventCallback registerExecCallback XE "registerExecCallback" (

BPatchExecCallback func) Not implemented on Windows.
Register a function to be called when a thread executes an exec system call. When the function is called, the thread performing the exec will be paused.

typedef void (*BPatchForkCallback XE "BPatchPostForkCallback")(BPatch_thread *parent, BPatch_thread *child);

This is the prototype for the pre-fork and post-fork callbacks. The parent parameter is the parent thread, and the child parameter is a BPatch_thread in the newly created process. When invoked as a pre-fork callback, the child is NULL.

BPatchForkCallback registerPreForkCallback XE "registerPreForkCallback" (

BPatchForkCallback func) not implemented on Windows
Register a function to be called when a BPatch_thread forks a new process. This callback is invoked just before the fork is performed. When the callback is invoked, the thread performing the fork will be stopped.

BPatchPostForkCallback registerPostForkCallback XE "registerPostForkCallback" (

BPatchPostForkCallback func) not implemented on Windows
Register a function to be called just after the fork is performed. Both the thread performing the fork and the newly created thread will be paused when the callback is invoked. Unless a post-fork callback is registered, the mutator will not be attached to any child processes. Since there is overhead associated with each tracked process, not setting the callback allows the Dyninst library to ignore any child processes. This is particularly useful for instrumenting shell processes that create many (potentially) uninteresting children.

typedef enum BPatch_exitType XE "BPatchErrorLevel" { NoExit, ExitedNormally, ExitedViaSignal };

typedef void (*BPatchExitCallback XE "BPatchThreadEventCallback")(BPatch_thread *proc, BPatch_exitType exit_type);

This is the prototype for the callback function called when a process exit occurs. The proc parameter is a thread in the process which exited. The exit_type parameter indicates how the process exited, either normally or because of a signal. The functions BPatch_thread::getExitCode() and BPatch_thread::getExitSignal() can be used to get further information about the process exit.

BPatchThreadEventCallback registerExitCallback XE "registerExitCallback" (

BPatchExitCallback func)

Register a function to be called when a process terminates. For a normal process exit, the callback will actually be called just before the process exit, when the process is at the entry to the exit() function (except for Windows). This allows final actions to be taken on the process before it actually exits. The function BPatch_thread::isTerminated() will return true in this context even though the process hasn’t yet actually exited. In the case of an exit due to a signal, the process will have already exited. On AIX, the reason why a process exited may not be available if the process was not a child of the Dyninst mutator; the mutator will be notified of the process exiting.

typedef void (*BPatchDynLibraryCallback XE "BPatchErrorCallback")(Bpatch_thread *thr,

Bpatch_module *mod, bool load);

This is the prototype for the dynamic linker callback function. The thr field contains the thread that loaded or un​loaded a shared library. The mod field contains the module that was loaded or unloaded. The load Boolean is true if the library was loaded and false if it was unloaded.

BPatchThreadEventCallback registerDynLinkCallback XE "registerDynamicLinkCallback" (

BPatchThreadEventCallback func)

Register a function to be called when an application has loaded or unloaded a dynamic library.

typedef void (*BPatchOneTimeCodeCallback XE "BPatchErrorCallback")(Bpatch_thread *thr,

void *userData, void *returnValue);

This is the prototype for the oneTimeCode callback function. The thr field contains the thread that executed the oneTimeCode (if thread-specific) or an unspecified thread in the process (if process-wide). The userData field contains the value passed to the oneTimeCode call. The returnValue field contains the return result of the oneTimeCode snippet.
BPatchOneTimeCodeCallback registerOneTimeCodeCallback XE "registerDynamicLinkCallback" (

BPatchOneTimeCodeCallback func)

Register a function to be called on completion of any oneTimeCode.

3.5 Class BPatch_addressSpace

The BPatch_addressSpace class is a superclass of the BPatch_process and BPatch_binaryEdit classes. It contains functionality that is common between the two sub classes.

const BPatch_image *getImage XE "getImage" ()

Return a handle to the executable file associated with this BPatch_process object.

bool getSourceLines XE "getImage" (unsigned long addr, std::vector< std::pair< const char *, unsigned int > > & lines)

This function returns the line information associated with the mutatee address, addr. The vector lines contain pairs of filenames and line numbers that are associated with addr. In many cases only one filename and line number is associated with an address, but certain compiler optimizations may lead to multiple filenames and lines at an address. This information is only available if the mutatee was compiled with debug information.

This function returns true if it was able to find any line information at addr, and false otherwise.

bool getAddressRanges XE "getImage" (char * fileName, unsigned int lineNo, std::vector< std::pair< unsigned long, unsigned long > > & ranges)

Given a filename and line number, fileName and lineNo, this function this function returns the ranges of mutatee addresses that implement the code range in the output parameter ranges. In many cases a source code line will only have one address range implementing it. However, compiler optimizations may transform this into multiple disjoint address ranges. This information is only available if the mutatee was compiled with debug information.

This function returns true if it was able to find any line information, false otherwise.

BPatch_variableExpr *malloc XE "malloc" (int n)

BPatch_variableExpr *malloc(const BPatch_type &type)

These two functions allocate memory. Memory allocation is from a heap. The heap is not necessarily the same heap used by the application. The available space in the heap may be limited depending on the implementation. The first function, malloc(int n), allocates n bytes of memory from the heap. The second function, malloc(const BPatch_type& t), allocates enough memory to hold an object of the specified type. Using the second version is strongly encouraged because it provides additional information to permit better type checking of the passed code. The returned memory is persistent and will not be released until BPatch_process::free is called or the application terminates.

BPatch_variableExpr *createVariable(Dyninst::Address addr,

BPatch_type *type,

std::string var_name = std::string(“”),

BPatch_module *in_module = NULL)

This method creates a new variable at the given address addr in the module in_module. If a name is specified, Dyninst will assign var_name to the variable; otherwise, it will assign an internal name. The type parameter will become the type for the new variable.

When operating in binary rewriting mode, it is an error for the in_module parameter to be NULL; it is necessary to specify the module in which the variable will be created. Dyninst will then write the variable back out in the file specified by in_module.

void free XE "free" (const BPatch_variableExpr &ptr)

Free the memory in the passed variable ptr. The programmer is responsible for verifying that all code that could reference this memory will not execute again (either by removing all snippets that refer to it, or by analysis of the program).

bool getRegisters(BPatch_Vector<BPatch_register> ®s) implemented for POWER and AMD64
This function returns a vector of BPatch_register objects that represents the registers available to the mutatee.

Currently supports general purpose registers (GPRs) only. Only implemented on x86-64 and POWER.

BPatchSnippetHandle *insertSnippet XE "insertSnippet" (const BPatch_snippet &expr,
BPatch_point &point,
BPatch_callWhen when=[BPatch_callBefore| BPatch_callAfter],
BPatch_snippetOrder order = BPatch_firstSnippet)

BPatchSnippetHandle *insertSnippet(const BPatch_snippet &expr,
const BPatch_Vector<BPatch_point *> &points,
BPatch_callWhen when=[BPatch_callBefore| BPatch_callAfter],
BPatch_snippetOrder order = BPatch_firstSnippet)

Insert a snippet of code at the specified point. If a list of points is supplied, insert the code snippet at each point in the list. The when argument specifies when the snippet is to be called; a value of BPatch_callBefore indicates that the snippet should be inserted just before the specified point or points in the code, and a value of BPatch_callAfter indicates that it should be inserted just after them. The order argument specifies where the snippet is to be inserted relative to any other snippets previously inserted at the same point. The values BPatch_firstSnippet and BPatch_lastSnippet indicate that the snippet should be inserted before or after all snippets, respectively.

It is illegal to use BPatch_callAfter with a BPatch_entry point. Use BPatch_callBefore when instrumenting entry points, which inserts instrumentation before the first instruction in a subroutine. Likewise, it is illegal to use BPatch_callBefore with a BPatch_exit point. Use BPatch_callAfter with exit points. BPatch_callAfter inserts instrumentation at the last instruction in the subroutine. insert​Snippet will return NULL when used with an illegal pair of points.

bool deleteSnippet XE "deleteSnippet" (BPatchSnippetHandle *handle)

Remove the snippet associated with the passed handle. If the handle is not defined for the process, then deleteSnippet will return false.

bool beginInsertionSet XE "deleteSnippet" ()

Normally, a call to insertSnippet immediately injects instrumentation into the mutatee. However, users may wish to insert a set of snippets as a single batch operation. This provides two benefits: First, Dyninst may insert instrumentation in a more efficient manner. Second, multiple snippets may be inserted at multiple points as a single operation, with either all snippets being inserted successfully or none. This batch insertion mode is begun with a call to beginInsertionSet; after this call, no snippets are actually inserted until a corresponding call to finalizeInsertionSet. Dyninst accumulates all calls to insertSnippet during batch mode internally, and the returned BPatchSnippetHandles are filled in when finalizeInsertionSet is called.

Insertion sets are un​necessary when doing static binary instrumentation. Dyninst uses an implicit insertion set around all instrumentation to a static binary.

bool finalizeInsertionSet(bool atomic)

Inserts all snippets accumulated since a call to beginInsertionSet. If the atomic parameter is true, then a failure to insert any snippet results in all snippets being removed; effectively, the insertion is all-or-nothing. If the atomic parameter is false, then snippets are inserted individually. This function also fills in the BPatchSnippetHandle structures returned by the insertSnippet calls comprising this insertion set. It returns true on success and false if there was an error inserting any snippets.

Insertion sets are unnecessary when doing static binary instrumentation. Dyninst uses an implicit insertion set around all instrumentation to a static binary.

bool removeFunctionCall XE "removeFunctionCall" (BPatch_point &point)

Disable the mutatee function call at the specified location. The point specified must be a valid call point in the image of the mutatee. The purpose of this routine is to permit tools to alter the semantics of a program by eliminating procedure calls. The mechanism to achieve the removal is platform dependent, but might include branching over the call or replacing it with NOPs. This function only removes a function call; any parameters to the function will still be evaluated.

bool replaceCode XE "setInheritSnippets" (BPatch_point *point, BPatch_snippet *snippet)

Replaces the instruction identified by point with the provided snippet. The provided point may represent either a specific instruction (acquired via BPatch_​function::find​Point), function entry, function exit, or a call site. If the point corresponds to a function entry, the first instruction in the function will be replaced. If the point corresponds to a function exit, the return instruction at that exit will be replaced. If the point corresponds to a call site, the call instruction will be replaced. If the point corresponds to any other location, replacement will fail and an error will be returned.

This call returns true if the replacement succeeded, or false otherwise. The replacement mechanism uses similar techniques as our instrumentation mechanism, and can fail in the same circumstances.

WARNING: This function is dangerous. Unlike instrumentation, program state is not saved and restored around the new code. The provided snippet may modify registers and memory. This call may have unexpected effects on program execution, resulting in incorrect results or program crashes.

bool replaceFunction XE "replaceFunction" (BPatch_function &old, BPatch_function &new)

Replace all calls to user function old with calls to new. This is done by inserting instrumentation (specifically a BPatch_funcJumpExpr) into the beginning of function old such that a non-returning jump is made to function new. Returns true upon success, false otherwise.
bool replaceFunctionCall XE "replaceFunctionCall" (BPatch_point &point, BPatch_function &newFunc)
Change the function call at the specified point to the function indicated by newFunc. The purpose of this routine is to permit runtime steering tools to change the behavior of programs by replacing a call to one procedure by a call to another. Point must be a function call point. If the change was successful, the return value is true, otherwise false will be returned.

WARNING: Care must be used when replacing functions. In particular if the compiler has performed inter-procedural register allocation between the original caller/callee pair, the replacement may not be safe since the replaced function may clobber registers the compiler thought the callee left untouched. Also the signatures of the both the function being replaced and the new function must be compatible.

bool loadLibrary XE "detach" (const char *libname, bool reload=false)

For dynamic rewriting, this function loads a dynamically linked library into the process’s address space. For static rewriting, this function adds a library as a library dependency in the rewritten file. In both cases Dyninst creates a new BPatch_module to represent this library.

The libname parameter identifies the file name of the library to be loaded, in the standard way that dynamically linked libraries are specified on the operating system on which the API is running. This function returns true if the library was loaded successfully, otherwise it returns false.

The reload parameter is ignored and only remains for backwards compatibility.

bool isStaticExecutable()

This function returns true if the original file opened with this BPatch_addressSpace is a statically linked executable, and false otherwise.

void allowTraps(bool allowtraps)

This function is used to tell Dyninst whether it can fall back to use traps when doing instrumentation. Depending on certain architecture dependent characteristics, certain functions may be difficult to instrument, and Dyninst must fall back to inserting a trap to do instrumentation. This can have a serious performance impact on the mutatee.

If this function is called with allowtraps set to false, then Dyninst will not insert any instrumentation that depends on a trap. If a piece of instrumentation would depend on a trap, the insertSnippet will return an error instead of inserting it. If this function is called with allowtraps set to true, then Dyninst will use trap-based instrumentation if necessary.

The default value for allowTraps is true.

3.6 Class BPatch_process

The BPatch_process class represents a running process, which includes one or more threads of execution and an address space.

bool stopExecution XE "stopExecution" ()

bool continueExecution XE "continueExecution" ()

bool terminateExecution XE "terminateExecution" ()

These three functions change the running state of the process. stopExecution puts the process into a stopped state. Depending on the operating system, stopping one process may stop all threads associated with a process. continueExecution continues execution of the process. terminateExecution terminates execution of the process and will invoke the exit callback if one is registered. Each function returns true on success, or false for failure. Stopping or continuing a terminated thread will fail and these functions will return false.

bool isStopped XE "isStopped" ()

int stopSignal XE "stopSignal" ()

bool isTerminated XE "isTerminated" ()

These three functions query the status of a process. isStopped returns true if the process is currently stopped. If the process is stopped (as indicated by isStopped), then stopSignal can be called to find out what signal caused the process to stop. isTerminated returns true if the process has exited. Any of these functions may be called multiple times, and calling them will not affect the state of the process.

BPatch_variableExpr *getInheritedVariable XE "getInheritedVariable" (const BPatch_variableExpr &parentVar)

Retrieve a new handle to an existing variable (such as one created by BPatch_process::malloc) that was created in a parent process and now exists in a forked child process. When a process forks all existing BPatch_variableExprs are copied to the child process, but the Dyninst handles for these objects are not valid in the child BPatch_process. This function is invoked on the child process’ BPatch_process, parentVar is a variable from the parent process, and a handle to a variable in the child process is returned. If parentVar was not allocated in the parent process, then NULL is returned.

BPatchSnippetHandle *getInheritedSnippet(BPatchSnippetHandle &parentSnippet) XE "oneTimeCode"

This function is similar to getInheritedVariable, but operates on BPatchSnippetHandles. Given a child process that was created via fork and a BPatch​SnippetHandle, parentSnippet, from the parent process, this function will return a handle to parentSnippet that is valid in the child process. If it is determined that parentSnippet is not associated with the parent process, then NULL is returned.
void setMutationsActive XE "setMutationsActive" (bool)

Enable or disable the execution of snippets for the process. This provides a way to temporally disable all of the dynamic code patches that have been inserted without having to delete them one by one. All allocated memory will remain unchanged while the patches are disabled. When the mutations are not active, any process control functions (i.e., stop​Execution and continueExecution) may still be used. Requests to insert snippets (including oneTimeCode) cannot be made while mutations are disabled.

void detach XE "detach" (bool cont)

Detach from the process. The process must be stopped to call this function. Instrumentation and other changes to the process will remain active in the detached copy. The cont parameter is used to indicate if the process should be continued as a result of detaching.

Linux does not support detaching from a process while leaving it stopped. All processes are continued after detach on Linux.

int getPid XE "detach" ()

Return the system id for the mutatee process. On UNIX based systems this is a PID. On Windows this is the HANDLE object for a process.

typedef enum BPatch_exitType XE "BPatchErrorLevel" { NoExit, ExitedNormally, ExitedViaSignal };

BPatch_exitType terminationStatus XE "detach" ()

If the process has exited, terminationStatus will indicate whether the process exited normally or because of a signal. If the process has not exited, NoExit will be returned. On AIX, the reason why a process exited will not be available if the process was not a child of the Dyninst mutator; in this case, ExitedNormally will be returned in both normal and signal exit cases.

int getExitCode()

If the process exited in a normal way, getExitCode will return the associated exit code. On AIX, this code will not be available if the process was not a child of the Dyninst mutator.

int getExitSignal()

If the process exited because of a received signal, getExitSignal will return the associated signal number. On AIX, this code will not be available if the process was not a child of the Dyninst mutator.

void oneTimeCode XE "oneTimeCode" (const BPatch_snippet &expr)

Cause the snippet expr to be executed by the mutatee immediately. If the process is multithreaded, the snippet is run on a thread chosen by Dyninst. If the user requires the snippet to be run on a particular thread, use the BPatch_thread version of this function instead. The process must be stopped to call this function. The behavior is synchronous; oneTimeCode will not return until after the snippet has been run in the application.

bool oneTimeCodeAsync XE "oneTimeCode" (const BPatch_snippet &expr,

 void *userData = NULL)

This function sets up a snippet to be evaluated by the process at the next available opportunity. When the snippet finishes running Dyninst will callback any function registered through BPatch::registerOneTimeCodeCallback, with userData passed as a parameter. This function return true on success and false if it could not post the oneTimeCode.

If the process is multithreaded, the snippet is run on a thread chosen by Dyninst. If the user requires the snippet to be run on a particular thread, use the BPatch_thread version of this function instead. The behavior is asynchronous; oneTimeCodeAsync returns before the snippet is executed.
If the process is running when oneTimeCodeAsync is called, expr will be run immediately. If the process is stopped, then expr will be run when the process is continued.

3.7 Class BPatch_thread

The BPatch_thread class represents and controls a thread of execution that is running in a process.

void getCallStack XE "getCallStack" (BPatch_Vector<BPatch_frame>& stack)

This function fills the given vector with current information about the call stack of the thread. Each stack frame is represented by a BPatch_frame (see section 4.23 for information about this class).

long getTid XE "getCallStack" ()

This function returns a platform-specific identifier for this thread. This is the identifier that is used by the threading library. For example, on pthread applications this function will return the thread’s pthread_t value.

long getLWP XE "getCallStack" ()

This function returns a platform-specific identifier that the operating system uses to identify this thread. For example, on UNIX platforms this returns the LWP id. On Windows this returns a HANDLE object for the thread.

long getBPatchID XE "getCallStack" ()

This function returns a Dyninst-specific identifier for this thread. These ID’s apply only to running threads, the BPatch ID of an already terminated thread my be repeated in a new thread.

BPatch_function *getInitialFunction XE "getCallStack" ()

Return the function that was used by the application to start this thread. For example, on pthread applications this will return the initial function that was passed to pthread_create.

unsigned long getStackTopAddr XE "getCallStack" ()

Returns the base address for this thread’s stack.

bool isDeadOnArrival XE "getCallStack" ()

This function returns true if this thread terminated execution before Dyninst was able to attach to it. Since Dyninst performs new thread detection asynchronously, it is possible for a thread to be created and destroyed before Dyninst can attach to it. When this happens, a new BPatch_thread is created, but isDeadOnArrival always returns true for this thread. It is illegal to perform any thread-level operations on a dead on arrival thread.

BPatch_process *getProcess XE "getCallStack" ()

Return the BPatch_process that contains this thread.

void oneTimeCode XE "oneTimeCode" (const BPatch_snippet &expr)

Cause the snippet expr to be evaluated by the process immediately. This is similar to the BPatch_process::oneTimeCode function, except that the snippet is guaranteed to run only on this thread. The process must be stopped to call this function. The behavior is synchronous; oneTimeCode will not return until after the snippet has been run in the application.

bool oneTimeCodeAsync XE "oneTimeCode" (const BPatch_snippet &expr,

 void *userData = NULL)

This function sets up the snippet expr to be evaluated by this thread at the next available opportunity. When the snippet finishes running, Dyninst will callback any function registered through BPatch::registerOneTimeCodeCallback, with userData passed as a parameter. This function returns true if expr was posted and false otherwise.

This is similar to the BPatch_process::oneTimeCodeAsync function, except that the snippet is guaranteed to run only on this thread. The process must be stopped to call this function. The behavior is asynchronous; oneTimeCodeAsync returns before the snippet is executed.
 XE "dumpCore"
3.8 Class BPatch_binaryEdit

The BPatch_binaryEdit class represents a set of executable files and library files for binary rewriting. BPatch_binaryEdit inherits from the BPatch_addressSpace class, where most functionality for binary rewriting is found.

bool writeFile(const char *outFile)

Rewrite a BPatch_binaryEdit to disk. The original file opened with this BPatch_binaryEdit is written to the current working directory with the name outFile. If any dependent libraries were also opened and have instrumentation or other modifications, then those libraries will be written to disk in the current working directory under their original names.

A rewritten dependency library should only be used with the original file that was opened for rewriting. For example, if the file a.out and its dependent library libfoo.so were opened for rewriting, and both had instrumentation inserted, then the rewritten libfoo.so should not be used without the rewritten a.out. To build a rewritten libfoo.so that can load into any process, libfoo.so must be the original file opened by BPatch::openBinary.

This function returns true if it successfully wrote a file, and false otherwise.

3.9 Class BPatch_sourceObj XE "BPatch_sourceObj"
The BPatch_sourceObj class is the C++ superclass for the BPatch_function, BPatch_module, and BPatch_image classes. It provides a set of common methods for all three classes. In addition, it can be used to build a “generic” source navigator using the getObjParent and getSourceObj methods to get parents and children of a given level (i.e. the parent of a module is an image, and the children will be the functions).

enum BPatchErrorLevel XE "BPatchErrorLevel" { BPatchFatal, BPatchSerious, BPatchWarning, BPatchInfo };

enum BPatch_sourceType {

BPatch_sourceUnknown,

BPatch_sourceProgram,

BPatch_sourceModule,

BPatch_sourceFunction,

BPatch_sourceOuterLoop,

BPatch_sourceLoop,

BPatch_sourceStatement };

BPatch_sourceType getSrcType XE "getSrcType" ()

Returns the type of the current source object.

void getSourceObj XE "getSourceObj" (BPatch_Vector<BPatch_sourceObj *> &objs)

Returns the child source objects of the current source object. For example, when called on a BPatch_sourceProgram object this will return objects of type BPatch_sourceFunction. When called on a BPatch_sourceFunction object it may return BPatch_sourceOuterLoop and BPatch_sourceStatement objects.

BPatch_sourceObj *getObjParent XE "getObjParent" ()

Return the parent source object of the current source object. The parent of a BPatch_​image is NULL.

typedef enum BPatch_language {

 BPatch_c,

 BPatch_cPlusPlus,

 BPatch_fortran,

 BPatch_fortran77,

 BPatch_fortran90,

 BPatch_f90_demangled_stabstr,

 BPatch_fortran95,

 BPatch_assembly,

 BPatch_mixed,

 BPatch_hpf,

 BPatch_java,

 BPatch_unknownLanguage

} BPatch_language;

BPatch_language getLanguage XE "getLanguage" ()
Return the source language of the current BPatch_sourceObject. For programs that are written in more than one language, BPatch_mixed will be returned. If there is insufficient information to determine the language, BPatch_unknownLanguage will be returned.

3.10 Class BPatch_function XE " BPatch_function "
An object of this class represents a function in the application. A BPatch_image object (see description below) can be used to retrieve a BPatch_function object representing a given function.

char *getName XE "getName" (char *buffer, int len)

Place the name of the function in buffer, up to len characters. It returns the value of the buffer parameter.

char *getMangledName XE "getMangledName" (char *buffer, int len)

Place the mangled (internal symbol) name of the function in buffer, up to len characters. It returns the value of the buffer parameter.

char *getTypedName XE "getMangledName" (char *buffer, int len)

Place the full function prototype (from debug information) of the function in buffer, up to len characters. It returns the value of the buffer parameter.

bool getNames XE "getMangledName" (BPatch_vector<const char *> &names)

Add all known names of the function to the vector names, including names generated by weak symbols. It returns true if one or more names were added. And, false otherwise. The names reside in memory managed by Dyninst.

bool getMangledNames XE "getMangledName" (BPatch_vector<const char *> &names)

As above, but returns all known mangled (internal symbol) names.

bool getTypedNames XE "getMangledName" (BPatch_vector<const char *> &names)

As above, but returns all known function prototypes.

BPatch_Vector<BPatch_localVar *> *getParams XE "getParams" ()

Return a vector of BPatch_localVar snippets that refer to the parameters of this function. The position in the vector corresponds to the position in the parameter list (starting from zero). The returned local variables can be used to check the types of functions, and can be used in snippet expressions.

BPatch_type *getReturnType XE "getReturnType" ()

Return the type of the return value for this function.

BPatch_Vector<BPatch_localVar *> *getVars()

Returns a vector of BPatch_localVar objects that contain the local variables in this function. These BPatch_localVars can be used as parts of snippets in instrumentation. This function requires debug information to be present in the mutatee. If Dyninst was unable to find any local variables, this function will return an empty vector. It is up to the user to free the vector returned by this function.

bool isInstrumentable XE "isInstrumentable" ()

Return true if the function can be instrumented, and false if it cannot. Various conditions can cause a function to be uninstrumentable. For example, there exists a platform-specific minimum function size beyond which a function cannot be instrumented.

bool isSharedLib XE "isSharedLib" ()

This function returns true if the function is defined in a shared library.

const char *libraryName XE "libraryName" ()

Return the name of the library that contains this function. If the function is not defined in a library, a NULL will be returned.

Bpatch_module *getModule XE "getModule" ()

Return the module that contains this function. Depending on whether the program was compiled for debugging or the symbol table stripped, this information may not be available. This function returns NULL if module information was not found.

char *getModuleName XE "getModuleName" (char *name, int maxLen)

Copies the name of the module that contains this function into the buffer pointed to by name. Copies at most maxLen characters and returns a pointer to name.

enum BPatch_procedureLocation { BPatch_entry, BPatch_exit,
BPatch_subroutine, BPatch_allLocations }

const BPatch_Vector<BPatch_point *> *findPoint XE "findPoint" (const BPatch_procedureLocation loc)

Return the BPatch_point or list of BPatch_points associated with the procedure. It is used to select which type of points associated with the procedure will be returned. BPatch_entry and BPatch_exit request respectively the entry and exit points of the subroutine. BPatch_subroutine returns the list of points where the procedure calls other procedures. If the lookup fails to locate any points of the requested type, NULL is returned.
enum BPatch_opCode { BPatch_opLoad, BPatch_opStore, BPatch_opPrefetch }

BPatch_Vector<BPatch_point *> *findPoint(const BPatch_Set<BPatch_opCode>& ops) XE "findPoint"

 XE " BPatch_opCode"
Return the vector of BPatch_points corresponding to the set of machine instruction types described by the argument. This version is used primarily for memory access instrumentation. The BPatch_opCode is an enumeration of instruction types that may be requested: BPatch_opLoad, BPatch_opStore, and BPatch_opPrefetch. Any combination of these may be requested by passing an appropriate argument set containing the desired types. The instrumentation points created by this function have additional memory access information attached to them. This allows such points to be used for memory access specific snippets (e.g. effective address). The memory access information attached is described under Memory Access classes in section 4.27.1.

BPatch_localVar *findLocalVar(const char *name)

Search the function’s local variable collection for name. This returns a pointer to the local variable if a match is found. This function returns NULL if it fails to find any variables.

BPatch_Vector<BPatch_variableExpr *> *findVariable(const char * name)

Return a set of variables matching name at the scope of this function. If no variables match in the local scope, then the global scope will be searched for matches. This function returns NULL if it fails to find any variables.

BPatch_localVar *findLocalParam(const char *name)

Search the function’s parameters for a given name. A BPatch_localVar * pointer is returned if a match is found, and NULL is returned otherwise.

void *getBaseAddr XE "getBaseAddr" ()

Return the starting address of the function in the mutatee’s address space.

BPatch_flowGraph *getCFG XE "getCFG" ()
Return the control flow graph for the function, or NULL if this information is not available. The BPatch_flowGraph is described in section 4.14.

bool findOverlapping XE "getCFG" (BPatch_Vector<BPatch_function *> &funcs)
Determine which functions overlap with the current function (see Section 2). Return true if other functions overlap the current function; the overlapping functions are added to the funcs vector. Return false if no other functions overlap the current function.

	DEPRECATED
	BPatch_dependenceGraphNode* getDataDependenceGraph (BPatch_instruction* inst) implemented on x86

	DEPRECATED
	Returns a handle to the BPatch_dependenceGraphNode object used to navigate through the partial data dependence graph that includes the instruction inst and its predecessors, or NULL if this information is not available. A data dependence graph reflects the data dependence relations between instructions. Currently, data dependence graph does not take aliases into consideration.

	DEPRECATED
	BPatch_dependenceGraphNode* getControlDependenceGraph (BPatch_instruction* inst) implemented on x86

	DEPRECATED
	Returns a handle to the BPatch_dependenceGraphNode object used to navigate through the partial control dependence graph that includes the instruction inst and its predecessors, or NULL if this information is not available. A control dependence graph reflects the control dependence relations between instructions.

	DEPRECATED
	BPatch_dependenceGraphNode* getProgramDependenceGraph (BPatch_instruction* inst) implemented on x86

	DEPRECATED
	Returns a handle to the BPatch_dependenceGraphNode object used to navigate through the partial program dependence graph that includes the instruction inst and its predecessors, or NULL if this information is not available. A program dependence graph is merely a union of data and control dependence graphs. Currently, program dependence graph does not take aliases into consideration.

	DEPRECATED
	BPatch_dependenceGraphNode* getSlice(BPatch_instruction* inst) implemented on x86

	DEPRECATED
	Returns a handle to the BPatch_dependenceGraphNode object used to navigate through the intraprocedural slice of the function backwards from instruction inst. Returns NULL if this information is not available. Currently, slice of a function does not take aliases into consideration.

3.11 Class BPatch_point XE " BPatch_point"
An object of this class represents a location in an application’s code at which the library can insert instrumentation. A BPatch_image object (see section 4.9) is used to retrieve a BPatch_point representing a desired point in the application.

enum BPatch_procedureLocation { BPatch_entry, BPatch_exit,
BPatch_subroutine, BPatch_address }

BPatch_procedureLocation getPointType XE "getPointType" ()

Return the type of the point.

BPatch_function *getCalledFunction XE "getCalledFunction" ()

Return a BPatch_function representing the function that is called at the point. If the point is not a function call site or the target of the call cannot be determined, then this function returns NULL.

std::string getCalledFunctionName()

Returns the name of the function called at this point. This method is similar to getCal-ledFunction()->getName(), except in cases where DyninstAPI is running in binary rewrit​ing mode and the called function resides in a library or object file that DyninstAPI has not opened. In these cases, Dyninst is able to determine the name of the called function, but is unable to construct a BPatch_function object.
BPatch_function *getFunction()

Returns a BPatch_function representing the function in which this point is contained.

BPatch_basicBlockLoop *getLoop()

Returns the containing BPatch_basicBlockLoop if this point is part of loop instrumentation. Returns NULL otherwise.

void *getAddress XE "getAddress" ()

Return the address of the first instruction at this point.

bool usesTrap_NP XE "usesTrap_NP" ()

Return true if inserting instrumentation at this point requires using a trap. On the x86 architecture, because instructions are of variable size, the instruction at a point may be too small for Dyninst to replace it with the normal code sequence used to call instrumentation. Also, when instrumentation is placed at points other than subroutine entry, exit, or call points, traps may be used to ensure the instrumentation fits. In this case, Dyninst replaces the instruction with a single-byte instruction that generates a trap. A trap handler then calls the appropriate instrumentation code. Since this technique is used only on some platforms, on other platforms this function always returns false.

const BPatch_memoryAccess* getMemoryAccess XE "getMemoryAccess" ()

Returns the memory access object associated with this point. Memory access points are described in section 4.27.1.

const BPatch_Vector<BPatchSnippetHandle *> getCurrentSnippets XE "getCurrentSnippets" ()

const BPatch_Vector<BPatchSnippetHandle *>

 getCurrentSnippets XE "getCurrentSnippets" (BPatch_callWhen when)

Return the BPatchSnippetHandles for the BPatch_snippets that are associated with the point. If argument when is BPatch_callBefore, then BPatchSnippetHandles for snippets installed immediately before this point will be returned. Alternatively, if when is BPatch_callAfter, then BPatchSnippetHandles for snippets installed immediately after this point will be returned.

bool getLiveRegisters XE "getMemoryAccess" (BPatch_Vector<BPatch_Register> ®s) implemented for POWER and AMD64

Fill regs with the registers that are live before this point (e.g., BPatch_callBefore). Currently returns only general purpose registers (GPRs).

bool isDynamic()

This call returns true if this is a dynamic call site (e.g. a call site where the function call is made via a function pointer).

Instruction::Ptr getInstructionAtPoint XE "getMemoryAccess" () implemented for IA32, AMD64, and POWER

On implemented platforms, this function returns a shared pointer to an InstructionAPI Instruction object representing the first machine instruction at this point’s address. On unimplemented platforms, returns a NULL shared pointer.

3.12 Class BPatch_image XE " BPatch_image"
This class defines a program image (the executable associated with a process). The only way to get a handle to a BPatch_image is via the BPatch_process member function getImage.

const BPatch_point *createInstPointAtAddr XE " createInstPointAtAddr " (caddr_t address)

Return an instrumentation point at the specified address. This function is designed to permit users who wish to insert instrumentation at an arbitrary place in the code segment. Instruction addresses can be found using the BPatch_instruction object (see section 4.19). On x86 platforms, users should take care to ensure that the requested point is not in the middle of a multi-byte instruction.

BPatch_Vector<BPatch_variableExpr *> *getGlobalVariables()

Return a vector of global variables that are defined in this image.

BPatch_process *getProcess()

Returns the BPatch_process associated with this image.

char *getProgramFileName(char *name, unsigned int len)

Fills provided buffer name with the program’s file name up to len characters. The filename may include path information.

bool getSourceObj(BPatch_Vector<BPatch_sourceObj *> &sources)

Fill sources with the source objects (see section 4.5) that belong to this image. If there are no source objects, the function returns false. Otherwise, it returns true.

const BPatch_Vector<BPatch_function *> *getProcedures XE "getProcedures" (

bool incUninstrumentable = false)

Return a vector of the functions in the image. If the incUninstrumentable flag is set, the returned table of procedures will include uninstrumentable functions. The default behavior is to omit these functions.

const BPatch_Vector<BPatch_module *> *getModules XE "getModules" ()

Return a vector of the modules in the image.

bool getVariables(BPatch_Vector<BPatch_variableExpr *> &vars)

Fills vars with the global variables defined in this image. If there are no variable, the function returns false. Otherwise, it returns true.

BPatch_Vector<BPatch_function*> *findFunction XE "findFunction" (

const char *name,

BPatch_Vector<BPatch_function*> &funcs,

bool showError = true,

bool regex_case_sensitive = true,

bool incUninstrumentable = false,

bool dont_use_regex = false)

Return a vector of BPatch_functions corresponding to name, or NULL if the function does not exist. If name contains a POSIX-extended regular expression, and dont_use_regex is false, a regular expression search will be performed on function names and matching BPatch_functions returned. If showError is true, then Dyninst will report an error via the BPatch::registerErrorCallback if no function is found.

If the incUninstrumentable flag is set, the returned table of procedures will include uninstrumentable functions. The default behavior is to omit these functions.

[NOTE: If name is not found to match any demangled function names in the module, the search is repeated as if name is a mangled function name. If this second search succeeds, functions with mangled names matching name are returned instead.]

BPatch_Vector<BPatch_function*> *findFunction XE "findFunction" (

BPatch_Vector<BPatch_function*> &funcs,

BPatchFunctionNameSieve bpsieve,

void *sieve_data = NULL,

int showError = 0,

bool incUninstrumentable = false)

Return a vector of BPatch_functions according to the generalized user-specified filter function bpsieve. This permits users to easily build sets of functions according to their own specific criteria. Internally, for each BPatch_function f in the image, this method makes a call to bpsieve(f.getName(), sieve_data). The user-specified function bpsieve is responsible for taking the name argument and determining if it belongs in the output vector, possibly by using extra user-provided information stored in sieve_data. If the name argument matches the desired criteria, bpsieve should return true. If it does not, bpsieve should return false.

The function bpsieve should be defined in accordance with the typedef:

 bool (*BPatchFunctionNameSieve) (const char *name, void* sieve_data);

If the incUninstrumentable flag is set, the returned table of procedures will include uninstrumentable functions. The default behavior is to omit these functions.

bool findFunction(Dyninst::Address addr, BPatch_Vector<BPatch_function *> &funcs)

Find all functions that have code at the given address, addr. Dyninst supports functions that share code, so this method may return more than one BPatch_function. These functions are returned via the funcs output parameter. This function returns true if it finds any functions, false otherwise.

const BPatch_variableExpr *findVariable XE "findVariable" (const char *name)

const BPatch_variableExpr *findVariable(const BPatch_point &scope,

const char *name) second form of this method is not implemented on Windows.
Performs a lookup and returns a handle to the named variable. The first form of the function looks up only variables of global scope, and the second form uses the passed BPatch_point as the scope of the variable. The returned BPatch_variableExpr can be used to create references (uses) of the variable in subsequent snippets. The scoping rules used will be those of the source language. If the image was not compiled with debugging symbols, this function will fail even if the variable is defined in the passed scope.

const BPatch_type *findType XE "findType" (const char *name)

Performs a lookup and returns a handle to the named type. The handle can be used as an argument to BPatch_addressSpace::malloc to create new variables of the corresponding type.

BPatch_module *findModule(const char *name,

bool substring_match = false)

Returns a module named name if present in the image. If the match fails, NULL is returned. If substring_match is true, the first module that has name as a substring of its name is returned (e.g. to find libpthread.so.1, search for libpthread with substring_match set to true).

bool getSourceLines XE "getImage" (unsigned long addr,

 std::vector<std::pair<const char *, unsigned int> > & lines)

Given an address addr, this function returns a vector of pairs of filenames and line numbers at that address. This function is an alias for BPatch_​process::getSourceLines (see section 4.3).

bool getAddressRanges XE "getImage" (char * fileName, unsigned int lineNo, std::vector< std::pair< unsigned long, unsigned long > > & ranges)

Given a file name and line number, fileName and lineNo, this function returns a list of address ranges that this source line was compiled into. This function is an alias for BPatch_process::getAddressRanges (see section 4.3).

bool parseNewFunctions XE "getImage" (BPatch_Vector<BPatch_module*> &newModules, const BPatch_Vector<Dyninst::Address> &funcEntryAddrs)

This function takes as input a list of function entry points indicated by the funcEntryAddrs vector, which are used to seed parsing in whatever modules they are found. All affected modules are placed in the newModules vector, which includes any existing modules in which new functions are found, as well as modules corresponding to new regions of the binary, for which new BPatch_modules are created. The return value is true in the event that at least one previously unknown function was identified, and false otherwise.

3.13 Class BPatch_module XE " BPatch_module"
An object of this class represents a program module, which is part of a program’s executable image. A BPatch_module represents a source file in an executable or a shared library. Dyninst automatically creates a module called DEFAULT_MODULE in each exectuable to hold any objects that it cannot match to a source file. BPatch_module objects are obtained by calling the BPatch_image member function getModules.

BPatch_Vector<BPatch_function*> *findFunction XE "findFunction" (

const char *name,

BPatch_Vector<BPatch_function*> &funcs,

bool notify_on_failure = true,

bool regex_case_sensitive = true,

bool incUninstrumentable = false)

Return a vector of BPatch_functions matching name, or NULL if the function does not exist. If name contains a POSIX-extended regular expression, a regex search will be performed on function names, and matching BPatch_functions returned. [NOTE: The BPatch_Vector argument funcs must be declared fully by the user before calling this function. Passing in an uninitialized reference will result in undefined behavior.]

If the incUninstrumentable flag is set, the returned table of procedures will include uninstrumentable functions. The default behavior is to omit these functions.

[NOTE: If name is not found to match any demangled function names in the module, the search is repeated as if name is a mangled function name. If this second search succeeds, functions with mangled names matching name are returned instead.]

BPatch_function *findFunctionByMangled XE "findFunction" (

const char *mangled_name,

bool incUninstrumentable = false)

Return a BPatch_function for the mangled function name defined in the module corresponding to the invoking BPatch_module, or NULL if it does not define the function.

If the incUninstrumentable flag is set, the functions searched will include uninstrumentable functions. The default behavior is to omit these functions.

size_t getAddressWidth()

Return the size (in bytes) of a pointer in this module. On 32-bit systems this function will return 4, and on 64-bit systems this function will return 8.

bool getSourceLines XE "getImage" (unsigned long addr, std::vector< std::pair< const char *, unsigned int > > & lines)

This function returns the line information associated with the mutatee address addr. The vector lines contain pairs of filenames and line numbers that are associated with addr. In many cases only one filename and line number is associated with an address, but certain compiler optimizations may lead to multiple filenames and lines at an address. This information is only available if the mutatee was compiled with debug information.

This function may be more efficient than the BPatch_process version of this function. Calling BPatch_process::getSourceLines will cause Dyninst to parse line information for all modules in a process. If BPatch_module::getSourceLines is called then only the debug information in this module will be parsed.

This function returns true if it was able to find any line information at addr, and false otherwise.

bool getAddressRanges XE "getImage" (char * fileName, unsigned int lineNo, std::vector< std::pair< unsigned long, unsigned long > > & ranges)

Given a filename and line number, fileName and lineNo, this function this function returns the ranges of mutatee addresses that implement the code range in the output parameter ranges. In many cases a source code line will only have one address range implementing it. However, compiler optimizations may turn this into multiple, disjoint address ranges. This information is only available if the mutatee was compiled with debug information.

This function may be more efficient than the BPatch_process version of this function. Calling BPatch_process::getAddressRange will cause Dyninst to parse line information for all modules in a process. If BPatch_module::getAddressRange is called then only the debug information in this module will be parsed.

This function returns true if it was able to find any line information, false otherwise.

const BPatch_Vector<BPatch_function *> *getProcedures XE "getProcedures" ()

Return a vector containing the functions in the module.

char *getName XE "getName" (char *buffer, int len)

This function copies the filename of the module into buffer, up to len characters. It returns the value of the buffer parameter.

char *getFullName(char *buffer, int length)

Fills buffer with the full path name of a module, up to length characters when this information is available.

unsigned long getSize()

Return the size of the module. The size is defined as the end of the last function minus the start of the first function.

bool getVariables(BPatch_Vector<BPatch_variableExpr *> &vars)

Fill the vector vars with the global variables that are specified in this module. Returns false if no results are found and true otherwise.

void *getBaseAddr()

Return the base address of the module. This address is defined as the start of the first function in the module.

bool isSharedLib XE "isSharedLib" ()

This function returns true if the module is part of a shared library.

BpatchSnippetHandle* insertInitCallback XE "isSharedLib" (Bpatch_snippet& callback)

This function inserts the snippet callback at the entry point of this module’s init function (creating a new init function/section if necessary).

BpatchSnippetHandle* insertFiniCallback XE "isSharedLib" (Bpatch_snippet& callback)

This function inserts the snippet callback at the exit point of this module’s fini function (creating a new fini function/section if necessary).

const char *getUniqueString XE "getUniqueString" ()
Performs a lookup and returns a unique string for this image. Returns a string the can be compared (via strcmp) to indicate if two images refer to the same underlying object file (i.e., executable or library). The contents of the string are implementation specific and defined to have no semantic meaning.

3.14 Class BPatch_snippet XE " BPatch_snippet"
A snippet is an abstract representation of code to insert into a program. Snippets are defined by creating a new instance of the correct subclass of a snippet. For example, to create a snippet to call a function, create a new instance of the class BPatch_funcCallExpr. Creating a snippet does not result in code being inserted into an application. Code is generated when a request is made to insert a snippet at a specific point in a program. Sub-snippets may be shared by different snippets (i.e, a handle to a snippet may be passed as an argument to create two different snippets), but whether the generated code is shared (or replicated) between two snippets is implementation dependent.

const BPatch_type *getType XE "getType" ()

Return the type of the snippet. The BPatch_type system is described in section 4.12.

float getCost XE "getCost" ()

Returns an estimate of the number of seconds it would take to execute the snippet. The problems with accurately estimating the cost of executing code are numerous and out of the scope of this document[2]. It is important to realize that the returned cost value is, at best, an estimate.

The rest of the classes are derived classes of the class BPatch_snippet.

BPatch_actualAddressExpr XE "BPatch_retExpr" ()

This snippet results in an expression that evaluates to the actual address of the instrumentation. To access the original address where instrumentation was inserted, use BPatch_originalAddressExpr. Note that this actual address is highly dependent on a number of internal variables and has no relation to the original address.

BPatch_arithExpr XE "BPatch_arithExpr" (BPatch_binOp op, const BPatch_snippet &lOperand,
const BPatch_snippet &rOperand)

 Perform the required binary operation. The available binary operators are:

	Operator
	Description

	BPatch_assign
	assign the value of rOperand to lOperand

	BPatch_plus
	add lOperand and rOperand

	BPatch_minus
	subtract rOperand from lOperand

	BPatch_divide
	divide rOperand by lOperand

	BPatch_times
	multiply rOperand by lOperand

	BPatch_ref
	Array reference of the form lOperand[rOperand]

	BPatch_seq
	Define a sequence of two expressions (similar to comma in C)

BPatch_arithExpr(BPatch_unOp, const BPatch_snippet &operand)

Define a snippet consisting of a unary operator. The unary operators are:

	Operator
	Description

	BPatch_negate
	Returns the negation of an integer

	BPatch_addr
	Returns a pointer to a BPatch_variableExpr

	BPatch_deref
	Dereferences a pointer

BPatch_boolExpr XE "BPatch_boolExpr" (BPatch_relOp op, const BPatch_snippet &lOperand,
const BPatch_snippet &rOperand)

Define a relational snippet. The available operators are:

	Operator
	Function

	BPatch_lt
	Return lOperand < rOperand

	BPatch_eq
	Return lOperand == rOperand

	BPatch_gt
	Return lOperand > rOperand

	BPatch_le
	Return lOperand <= rOperand

	BPatch_ne
	Return lOperand != rOperand

	BPatch_ge
	Return lOperand >= rOperand

	BPatch_and
	Return lOperand && rOperand (Boolean and)

	BPatch_or
	Return lOperand || rOperand (Boolean or)

The type of the returned snippet is boolean, and the operands are type checked.

BPatch_breakPointExpr XE "BPatch_breakPointExpr" ()

Define a snippet that stops a process when executed by it. The stop can be detected using the isStopped member function of BPatch_process, and the program’s execution can be resumed by calling the continueExecution member function of BPatch_process.

BPatch_bytesAccessedExpr XE "BPatch_bytesAccessedExpr " ()

This expression returns the number of bytes accessed by a memory operation. For most load/store architecture machines it is a constant expression returning the number of bytes for the particular style of load or store. This snippet is only valid at a memory operation instrumentation point.

BPatch_constExpr XE "BPatch_constExpr" (int value)

BPatch_constExpr(long value)

BPatch_constExpr(const char *value)

BPatch_constExpr(const void *value)

Define a constant snippet of the appropriate type. The char* form of the constructor creates a constant string; the null-terminated string beginning at the location pointed to by the parameter is copied into the application’s address space, and the BPatch_constExpr that is created refers to the location to which the string was copied.

BPatch_dynamicTargetExpr XE "BPatch_retExpr" ()

This snippet calculates the target of a control flow instruction with a dynamically determined target. It can handle dynamic calls, jumps, and return statements.

BPatch_effectiveAddressExpr XE "BPatch_effectiveAddressesExpr " ()

Define an expression that contains the effective address of a memory operation. For a multi-word memory operation (i.e. more than the “natural” operation size of the machine), the effective address is the base address of the operation.

BPatch_funcCallExpr XE "BPatch_funcCallExpr" (const BPatch_function& func,
const BPatch_Vector<BPatch_snippet*> &args)

Define a call to a function. The passed function must be valid for the current code region. Args is a list of arguments to pass to the function; the maximum number of arguments varies by platform and is summarized below. If type checking is enabled, the types of the passed arguments are checked against the function to be called. Availability of type checking depends on the source language of the application and program being compiled for debugging.

	Platform
	Maximum number of arguments

	AMD64/EMT-64
	No limit

	IA-32
	No limit

	POWER
	8 arguments

BPatch_funcJumpExpr XE "funcJumpExpr" (const BPatch_function &func)
Define a snippet that represents a non-returning jump to function func. Func must take the same number and type of arguments as the function in which this snippet is inserted; these arguments will be passed to func. Func must also have the same return type. This snippet can be used to change the implementation of a function, or conditionally change it if the snippet is part of an if-statement.

When func returns, control flows as a return from the function in which this snippet is inserted.

class BPatch_ifExpr XE "BPatch_ifExpr" (const BPatch_boolExpr &conditional,
const BPatch_snippet &tClause,
const BPatch_snippet &fClause)

class BPatch_ifExpr(const BPatch_boolExpr &conditional,
const BPatch_snippet &tClause)

This constructor creates an if statement. The first argument, conditional, should be a Boolean expression that will be evaluated to decide which clause should be executed. The second argument, tClause, is the snippet to execute if the conditional evaluates to true. The third argument, fClause, is the snippet to execute if the conditional evaluates to false. This third argument is optional. Else-if statements, can be constructed by making the fClause of an if statement another if statement.

BPatch_insnExpr XE "Bpatch_paramExpr" (BPatch_instruction *insn) implemented on x86-64
This constructor creates a snippet that allows the user to mimic the effect of an existing instruction. In effect, the snippet “wraps” the instruction and provides a handle to particular components of instruction behavior. This is currently implemented for memory operations, and provides two override methods: overrideLoadAddress and overrideStoreAddress. Both methods take a BPatch_snippet as an argument. Unlike other snippets, this snippet should be installed via a call to BPatch_process​::replaceCode (to replace the original instruction). For example:

// Assume that access is of type BPatch_memoryAccess, as

// provided by a call to BPatch_point->getMemoryAccess. A

// BPatch_memoryAccess is a child of BPatch_instruction, and

// is a valid source of a BPatch_insnExpr.

BPatch_insnExpr insn(access);

// This example will modify a store by increasing the target

// address by 16.

BPatch_arithExpr newStoreAddr(BPatch_plus,

 BPatch_effectiveAddressExpr(),

 BPatch_constExpr(16));

// now override the original store address

insn.overrideStoreAddress(newStoreAddr)

// now replace the original instruction with the new one.

// Point is a BPatch_point corresponding to the desired location, and

// process is a BPatch_process.

process.replaceCode(point, insn);

BPatch_originalAddressExpr XE "BPatch_retExpr" ()

This snippet results in an expression that evaluates to the original address of the point where the snippet was inserted. To access the actual address where instrumentation is executed, use BPatch_actualAddressExpr.

BPatch_paramExpr XE "Bpatch_paramExpr" (int paramNum)

This constructor creates an expression whose value is a parameter being passed to a function. ParamNum specifies the number of the parameter to return, starting at 0. Since the contents of parameters may change during subroutine execution, this snippet type is only valid at points that are entries to subroutines, or when inserted at a call point with the when parameter set to BPatch_callBefore.

BPatch_registerExpr XE "BPatch_retExpr" (BPatch_register reg)

This snippet results in an expression whose value is the value in the register at the point of instrumentation.

BPatch_retExpr XE "BPatch_retExpr" ()

This snippet results in an expression that evaluates to the return value of a subroutine. This snippet type is only valid at BPatch_exit points, or at a call point with the when parameter set to BPatch_callAfter.

BPatch_sequence XE "BPatch_sequence" (const BPatch_Vector<BPatch_snippet*> &items)

Define a sequence of snippets. The passed snippets will be executed in the order in which they appear in items.

BPatch_stopThreadExpr XE "BPatch_retExpr" (const BPatchStopThreadCallback &callback, const BPatch_snippet &calculation)

The snippet evaluates its calculation snippet and stops the thread that executes it. The result of the calculation snippet is passed up to the mutator, which triggers the callback in the user program. This constructor registers the callback to the stopThreadExpr instance. The same callback may be used for different stopThreadExpr instances. See the definition of BPatchStopThreadCallback in Section 4.1.1.

BPatch_threadIndex()

This snippet returns an integer expression that contains the thread index of the thread that is executing this snippet. The thread index is the same value that is returned on the mutator side by BPatch_thread::getBPatchID.

BPatch_tidExpr XE "BPatch_tidExpr" (const BPatch_process *proc)

This snippet results in an integer expression that contains the tid of the thread that is executing this snippet. This can be used to record the threadId, or to filter instrumentation so that it only executes for a specific thread.

BPatch_nullExpr XE "Bpatch_nullExpr" ()

Define a null snippet. This snippet contains no executable statements.

3.15 Class BPatch_type XE "BPatch_type"
The class BPatch_type is used to describe the types of variables, parameters, return values, and functions. Instances of the class can represent language predefined types (e.g. int, float), mutatee defined types (e.g., structures compiled into the mutatee application), or mutator defined types (created using the create* methods of the BPatch class).

BPatch_Vector<BPatch_field *> *getComponents() XE "getComponents"
Return a vector of the types of the fields in a BPatch_struct or BPatch_union. If this method is invoked on a type whose BPatch_dataClass is not BPatch_struct or BPatch_union, NULL is returned.

BPatch_Vector<BPatch_cblock *> *getCblocks() XE "getCblocks"
Return the common block classes for the type. The methods of the BPatch_cblock can be used to access information about the member of a common block. Since the same named (or anonymous) common block can be defined with different members in different functions, a given common block may have multiple definitions. The vector returned by this function contains one instance of BPatch_cblock for each unique definition of the common block. If this method is invoked on a type whose BPatch_dataClass is not BPatch_common, NULL will be returned.

BPatch_type *getConstituentType() XE "getConstituentType"
Return the type of the base type. For a BPatch_array this is the type of each element, for a BPatch_pointer this is the type of the object the pointer points to. For BPatch_typedef types, this is the original type. For all other types, NULL is returned.

enum BPatch_dataClass {

BPatch_dataScalar,

BPatch_dataEnumerated,
BPatch_dataTypeClass,
BPatch_dataStructure,
BPatch_dataUnion,

BPatch_dataArray,
BPatch_dataPointer,

BPatch_dataReference,
BPatch_dataFunction,
BPatch_dataTypeAttrib,
BPatch_dataUnknownType,
BPatch_dataMethod,
BPatch_dataCommon,

BPatch_dataPrimitive,
BPatch_dataTypeNumber,
BPatch_dataTypeDefine,
BPatch_dataNullType }

BPatch_dataClass getDataClass() XE "getDataClass"
Return one of the above data classes for this type.

unsigned long getLow() XE "getLow"
unsigned long getHigh() XE "getHigh"
Return the upper and lower bound of an array. Calling these two methods on non-array types produces an undefined result.

const char *getName() XE "getName"
Return the name of the type.

bool isCompatible(const BPatch_type &otype) XE "isCompatible"
Returns true if otype is type compatible with this type. The rules for type compatibility are given in Section 4.28. If the two types are not type compatible, the error reporting callback function will be invoked one or more times with additional information about why the types are not compatible.

3.16 Class BPatch_variableExpr XE " BPatch_variableExpr"
The BPatch_variableExpr class is another class derived from BPatch_snippet. It represents a variable or area of memory in a process’s address space. A BPatch_variableExpr can be obtained from a BPatch_process using the malloc member function, or from a BPatch_image using the findVariable member function.

Some BPatch_variableExpr have an associated BPatch_type, which can be accessed by functions inherited from BPatch_snippet. BPatch_variableExpr objects will have an associated BPatch_type if they originate from binaries with sufficient debug information that describes types, or if they were provided with a BPatch_type when created by Dyninst.

BPatch_variableExpr provides several member functions not provided by other types of snippets:

bool readValue XE "readValue" (void *dst)

void readValue(void *dst, int size)

Read the value of the variable in an application’s address space that is represented by this BPatch_variableExpr. The dst parameter is assumed to point to a buffer large enough to hold a value of the variable’s type. If the size parameter is supplied, then the number of bytes it specifies will be read. For the first version of this method, if the size of the variable is unknown (i.e., no type information), no data is copied and the method returns false.

bool writeValue XE "writeValue" (void *src)

void writeValue(void *src, int size)

Change the value of the variable in an application’s address space that is represented by this BPatch_variableExpr. The src parameter should point to a value of the variable’s type. If the size parameter is supplied, then the number of bytes it specifies will be written. For the first version of this method, if the size of the variable is unknown (i.e., no type information), no data is copied and the method returns false.

void *getBaseAddr XE "getBaseAddr" ()

Return the base address of the variable. This is designed to let users who wish to access elements of arrays or fields in structures do so. It can also be used to obtain the address of a variable to pass a point to that variable as a parameter to a procedure call. It is similar to the ampersand (&) operator in C.

BPatch_Vector<BPatch_variableExpr *> getComponents() XE "getComponents"
Return a vector containing the components of a struct or union. Each element of the vector is one field of the composite type, and contains a variable expression for accessing it.

3.17 Class BPatch_flowGraph XE " BPatch_flowGraph"
The BPatch_flowGraph class represents the control flow graph of a function. It provides methods for discovering the basic blocks and loops within the function (using which a caller can navigate the graph). A BPatch_flowGraph object can be obtained by calling the getCFG method of a BPatch_function object.

bool containsDynamicCallsites()

Returns true if the control flow graph contains any dynamic call sites (e.g., calls through a function pointer).

void getAllBasicBlocks XE "getAllBasicBlocks" (BPatch_Set<BPatch_basicBlock*>&)

Fill the given set with pointers to all basic blocks in the control flow graph. BPatch_basicBlock is described in section 4.17.

void getEntryBasicBlock XE "getEntryBasicBlock" (BPatch_Vector<BPatch_basicBlock*>&)

Fill the given vector with pointers to all basic blocks that are entry points to the function. BPatch_basicBlock is described in section 4.17.

void getExitBasicBlock XE "getExitBasicBlock" (BPatch_Vector<BPatch_basicBlock*>&)

Fill the given vector with pointers to all basic blocks that are exit points of the function. BPatch_basicBlock is described in section 4.17.

void getLoops XE "getLoops" (BPatch_Vector<BPatch_basicBlockLoop*>&)

Fill the given vector with a list of all natural (single entry) loops in the control flow graph.

void getOuterLoops XE "getLoops" (BPatch_Vector<BPatch_basicBlockLoop*>&)

Fill the given vector with a list of all natural (single entry) outer loops in the control flow graph.

BPatch_loopTreeNode *getLoopTree XE "getLoops" ()

Return the root node of the tree of loops in this flow graph.

enum BPatch_procedureLocation { BPatch_locLoopEntry, BPatch_locLoopExit, BPatch_locLoopStartIter, BPatch_locLoopEndIter }

BPatch_Vector<BPatch_point*> *findLoopInstPoints XE "getLoops" (const BPatch_procedureLocation loc, BPatch_basicBlockLoop *loop);

Find instrumentation points for the given loop that correspond to the given location: loop entry, loop exit, the start of a loop iteration and the end of a loop iteration. BPatch_locLoopEntry and BPatch_locLoopExit instrumentation points respectively execute once before the first iteration of a loop and after the last iteration. BPatch_locLoopStartIter and BPatch_locLoopEndIter respectively execute at the beginning and end of each loop iteration.

 [NOTE: Dyninst is not always able to generate a correct flow graph in the presence of indirect jumps. If a function has a case statement or indirect jump instructions, the targets of the jumps are found by searching instruction patterns (peep-hole). The instruction patterns generated are compiler specific and the control flow graph analyses include only the ones we have seen. During the control flow graph generation, if a pattern that is not handled is used for case statement or multi-jump instructions in the function address space, the generated control flow graph may not be complete.]

3.18 Class BPatch_edge

The BPatch_edge class represents a control flow edge in a BPatch_flowGraph.

BPatch_point *getPoint() XE "getSources"
Return an instrumentation point for this edge. This point can be passed to BPatch_process::insertSnippet to instrument the edge.

enum BPatch_edgeType { CondJumpTaken, CondJumpNottaken,
UncondJump, NonJump }

BPatch_edgeType getType()

Return a type describing this edge. A CondJumpTaken edge is found after a conditional branch, along the edge that is taken when the condition is true. A CondJumpNottaken edge follows the path when the condition is not taken. UncondJump is used along an edge that flows out of an unconditional branch that is always taken. NonJump is an edge that flows out of a basic block that does not end in a jump, but falls through into the next basic block.

BPatch_basicBlock *getSource()

Return the source BPatch_basicBlock that this edge flows from.

BPatch_basicBlock *getTarget()

Return the target BPatch_basicBlock that this edge flows to.

3.19 Class BPatch_loopTreeNode XE "Class BPatch_basicBlock"
The BPatch_loopTreeNode class provides a tree interface to a collection of instances of class BPatch_basicBlockLoop contained in a BPatch_flowGraph. The structure of the tree follows the nesting relationship of the loops in a function’s flow graph. Each BPatch_​loopTreeNode contains a pointer to a loop (represented by BPatch_basicBlockLoop), and a set of sub-loops (represented by other BPatch_loopTreeNode objects). The root BPatch_​loopTreeNode instance has a null loop member since a function may contain multiple outer loops. The outer loops are contained in the root instance’s vector of children.

Each instance of BPatch_loopTreeNode is given a name that indicates its position in the hierarchy of loops. The name of each root loop takes the form of loop_x, where x is an integer from 1 to n, where n is the number of outer loops in the function. Each sub-loop has the name of its parent, followed by a _y, where y is 1 to m, where m is the number of sub-loops under the outer loop. For example, consider the following C function:

void foo() {

int x, y, z, i;

for (x=0; x<10; x++) {

for (y = 0; y<10; y++)

...

for (z = 0; z<10; z++)

...

}

for (i = 0; i<10; i++) {

...

}

}
The foo function will have a root BPatch_loopTreeNode, containing a NULL loop entry and two BPatch_loopTreeNode children representing the functions outer loops. These children would have names loop_1 and loop_2, respectively representing the x and i loops. loop_2 has no children. loop_1 has two child BPatch_loopTreeNode objects, named loop_1_1 and loop_1_2, respectively representing the y and z loops.

BPatch_basicBlockLoop *loop XE "getSources"
A node in the tree that represents a single BPatch_basicBlockLoop instance.

BPatch_Vector<BPatch_loopTreeNode *> children XE "getSources"
The tree nodes for the loops nested under this loop.

const char *name() XE "getSources"
Return a name for this loop that indicates its position in the hierarchy of loops.

bool getCallees(BPatch_Vector<BPatch_function *> &v, BPatch_process *p)

This function fills the vector v with the list of functions that are called by this loop.

const char *getCalleeName(unsigned int i)

This function return the name of the ith function called in the loop’s body.

unsigned int numCallees()

Returns the number of callees contained in this loop’s body.

BPatch_basicBlockLoop *findLoop(const char *name)

Finds the loop object for the given canonical loop name.

3.20 Class BPatch_basicBlock XE "Class BPatch_basicBlock"
The BPatch_basicBlock class represents a basic block in the application being instrumented. Objects of this class representing the blocks within a function can be obtained using the BPatch_flowGraph object for the function. BPatch_basicBlock includes methods for navigating through the control flow graph of the containing function.

void getSources(BPatch_Vector<BPatch_basicBlock*>&) XE "getSources"
Fills the given vector with the list of predecessors for this basic block (i.e, basic blocks that have an outgoing edge in the control flow graph leading to this block).

void getTargets(BPatch_Vector<BPatch_basicBlock*>&) XE "getTargets"
Fills the given vector with the list of successors for this basic block (i.e, basic blocks that are the destinations of outgoing edges from this block in the control flow graph).

bool dominates(BPatch_basicBlock*) XE "dominates"
This function returns true if the argument is pre-dominated in the control flow graph by this block, and false if it is not.

BPatch_basicBlock* getImmediateDominator() XE "getImmediateDominator"
Return the basic block that immediately pre-dominates this block in the control flow graph.

void getImmediateDominates(BPatch_Vector<BPatch_basicBlock*>&) XE "getImmediateDominates"
Fill the given vector with a list of pointers to the basic blocks that are immediately dominated by this basic block in the control flow graph.

void getAllDominates(BPatch_Set<BPatch_basicBlock*>&) XE "getAllDominates"
Fill the given set with pointers to all basic blocks that are dominated by this basic block in the control flow graph.

void getSourceBlocks(BPatch_Vector<BPatch_sourceBlock XE "getSourceBlock" *>&)

Fill the given vector with pointers to the source blocks contributing to this basic block’s instruction sequence.

int getBlockNumber XE "getBlockNumber" ()

Return the ID number of this basic block. The ID numbers are consecutive from 0 to n-1, where n is the number of basic blocks in the flow graph to which this basic block belongs.

BPatch_Vector<BPatch_instruction *> getInstructions()

Return a vector of the instructions that are contained within this basic block.

bool getInstructions XE "getMemoryAccess" (std::vector<Instruction>&) implemented for IA32, AMD64, and POWER

Fills the given vector with InstructionAPI Instruction objects representing the instructions in this basic block, and returns true if successful. See the InstructionAPI Programmer’s Guide for details.

void getIncomingEdges(BPatch_Vector<BPatch_edge *> &inc)

Fills inc with all of the control flow edges that point to this basic block.

BPatch_Vector<BPatch_point *> findPoint(const BPatch_Set<BPatch_opCode> &ops)

Find all points in the basic block that match the given operation.

void getOutgoingEdges(BPatch_Vector<BPatch_edge *> &out)

Fill out with all of the control flow edges that leave this basic block.

unsigned long getStartAddress()

This function returns the starting address of the basic block. The address returned is an absolute address.

unsigned long getEndAddress()

This function returns the end address of the basic block. The address returned is an absolute address.

unsigned long getLastInsnAddress()

Return the address of the last instruction in a basic block.

bool isEntryBlock()

This function returns true if this basic block is an entry block into a function.

bool isExitBlock()

This function returns true if this basic block is an exit block of a function.

unsigned size()

Return the size of a basic block. The size is defined as the difference between the end address and the start address of the basic block.

3.21 Class BPatch_basicBlockLoop XE "BPatch_basicBlockLoop"
An object of this class represents a loop in the code of the application being instrumented.

bool containsAddress(unsigned long addr)

Returns true if addr is contained within any of the basic blocks that compose this loop, excluding the block of any of its sub-loops.

bool containsAddressInclusive(unsigned long addr)

Returns true if addr is contained within any of the basic blocks that compose this loop, or in the blocks of any of its sub-loops.

BPatch_edge *getBackEdge()

Return a pointer to a back edge that defines this natural loop.

int getBackEdge(BPatch_Vector<BPatch_edge *> &edges)

Returns the number of back edges that define this natural loop and adds those edges to the edges vector. A loop can have multiple back edges if those edges define loops comprising the same set of nodes.

void getContainedLoops XE "getContainedLoops" (BPatch_Vector<BPatch_basicBlockLoop*>&)
Fill the given vector with a list of the loops nested within this loop.

BPatch_flowGraph *getFlowGraph()
Return a pointer to the control flow graph that contains this loop.

BPatch_basicBlock *getLoopHead()
Return a pointer to the basic block that is at the head of this loop.

void getOuterLoops XE "getContainedLoops" (BPatch_Vector<BPatch_basicBlockLoop*>&)
Fill the given vector with a list of the outer loops nested within this loop.

void getLoopBasicBlocks(BPatch_Vector<BPatch_basicBlock*>&) XE "getLoopBasicBlocks"
Fill the given vector with a list of all basic blocks that are part of this loop.

void getLoopBasicBlocksExclusive(

BPatch_Vector<BPatch_basicBlock*>&) XE "getLoopBasicBlocks"
Fill the given vector with a list of all basic blocks that are part of this loop but not its sub-loops.

BPatch_basicBlock* getLoopHead() XE "getLoopHead"
Return the basic block at the head of this loop.

bool hasAncestor(BPatch_basicBlockLoop*) XE "getLoopHead"
Returns true if this loop is nested within the given loop (the given loop is one of its ancestors in the tree of loops).

bool hasBlock(BPatch_basicBlock *b)

Returns true if this loop or any of its sub-loops contain b, false otherwise.

bool hasBlockExclusive(BPatch_basicBlock *b)

Returns true if this loop, excluding its sub-loops, contains b, false otherwise.

3.22 Class BPatch_instruction

A BPatch_instruction represents a single machine instruction in the BPatch_flowGraph. BPatch_instructions can be retrieved with the BPatch_basicBlock::getInstructions call.

void *getAddress()

This function returns the starting address of this instruction. This function returns an
address in the mutatee, not in the mutator.

BPatch_point *getInstPoint()

This function returns a BPatch_point at this instruction. This point can be passed to
BPatch_process::insertSnippet to instrument this instruction.

3.23 Class BPatch_register

A BPatch_register represents a single register of the mutatee. The list of BPatch_registers can be retrieved with the BPatch_addressSpace::getRegisters method.

std::string *name()

This function returns the canonical name of the register.
3.24 Class BPatch_sourceBlock XE "BPatch_sourceBlock"
An object of this class represents a source code level block. Each source block objects consists of a source file and a set of source lines in that source file. This class is used to fill source line information for each basic block in the control flow graph. For each basic block in the control flow graph there is one or more source block object(s) that correspond to the source files and their lines contributing to the instruction sequence of the basic block.

const char* getSourceFile XE "getSourceFile" ()

Returns a pointer to the name of the source file in which this source block occurs.

void getSourceLines XE "getSourceLines" (BPatch_Vector<unsigned short>&)

Fill the given vector with a list of the lines contained within this source block.

3.25 Class BPatch_cblock XE "BPatch_cblock"
This class is used to access information about a common block.

BPatch_Vector<BPatch_field *> *getComponents() XE "getComponents"
Return a vector containing the individual variables of the common block.

BPatch_Vector<BPatch_function *> *getFunctions() XE "getFunctions"
Return a vector of the functions that can see this common block with the set of fields described in getComponents. However, other functions that define this common block with a different set of variables (or sizes of any variable) will not be returned.

3.26 Class BPatch_frame

A BPatch_frame object represents a stack frame. The getCallStack member function of BPatch_thread returns a vector of BPatch_frame objects representing the frames currently on the stack.

BPatch_frameType getFrameType XE "getFrameType" ()

Return the type of the stack frame. Possible types are:

	Frame Type
	Meaning

	BPatch_frameNormal
	A normal stack frame.

	BPatch_frameSignal
	A frame that represents a signal invocation.

	BPatch_frameTrampoline
	A frame the represents a call into instrumentation code.

void *getFP XE "getFP" ()

Return the frame pointer for the stack frame.

void *getPC XE "getPC" ()

Returns the program counter associated with the stack frame.

BPatch_function *findFunction XE "findFunction" ()

Returns the function associated with the stack frame.

	DEPRECATED
	3.27 Class BPatch_dependenceGraphNode

	DEPRECATED
	A BPatch_dependenceGraphNode object represents a node in any of data, control or program dependence graphs as well as the graph that represents the slice of a function. One can navigate through these graphs by getOutgoingEdges and getIncomingEdges methods which will return a list of other BPatch_dependenceGrapNode objects. Currently, successor list of a node may not be exhaustive.

	DEPRECATED
	BPatch_dependenceGraphNode(BPatch_instruction* bpinst)

	DEPRECATED
	Constructor. It takes a pointer to a BPatch_instruction object which represents the instruction this node holds.

	DEPRECATED
	BPatch_dependenceGraphNode (BPatch_instruction* bpinst, BPatch_Vector<BPatch_dependenceGraphNode*>* predecessorList, BPatch_Vector<BPatch_dependenceGraphNode*>* successorList)

	DEPRECATED
	Constructor. It takes a BPatch_instruction parameter which represents the instruction this node holds, a list of pointers to other BPatch_dependenceGraphNode objects which are immediate predecessors of this node, and a list of pointers to other BPatch_dependenceGraphNode objects which are immediate successors of this node.

	DEPRECATED
	BPatch_instruction* getBPInstruction()

	DEPRECATED
	Returns a pointer to the BPatch_instruction that this node represents.

	DEPRECATED
	void getOutgoingEdges(BPatch_Vector <BPatch_ dependenceGraphEdge *>& out)

	DEPRECATED
	Fills the given vector with the outgoing edges (successors).

	DEPRECATED
	void getIncomingEdges(BPatch_Vector <BPatch_ dependenceGraphEdge *>& inc)

	DEPRECATED
	Fills the given vector with the incoming edges (predecessors).

	DEPRECATED
	bool isImmSuccessor(BPatch_dependenceGraphNode* other_node)

	DEPRECATED
	Returns true if other_node is an immediate successor of this instruction (if there exists an edge between this node and other_node among outgoing edges).

	DEPRECATED
	bool isImmPredecessor(BPatch_dependenceGraphNode* other_node)

	DEPRECATED
	Returns true if other_node is an immediate predecessor of this instruction (if there exists an edge between this node and other_node among incoming edges).

	
	

	DEPRECATED
	3.28 Class BPatch_dependenceGraphEdge

	DEPRECATED
	A BPatch_dependenceGraphEdge represents an edge between two BPatch_dependenceGraphNode objects.

	DEPRECATED
	BPatch_dependenceGraphEdge(BPatch_dependenceGraphNode* source, BPatch_dependenceGraphNode* target)

	DEPRECATED
	Constructor. source is the source of this edge while target is the target.

	DEPRECATED
	BPatch_dependenceGraphNode* getSource()

	DEPRECATED
	Returns the dependence graph node which is the source of this edge.

	DEPRECATED
	BPatch_dependenceGraphNode* getTarget()

	DEPRECATED
	Returns the dependence graph node which is the target of this edge.

3.29 Container Classes

3.29.1 Class BPatch_Vector XE " BPatch_Vector"
The BPatch_Vector class is a container used to hold other objects used by the API. As of Dyninst 5.0, BPatch_Vector is an alias for the C++ Standard Template Library (STL) std::vector.

3.29.2 Class BPatch_Set XE " BPatch_Set"
BPatch_Set is another container class, similar to the set class in the STL. It maintains a collection of objects and provides fast lookup. Elements are ordered by a comparison function, which can be user-supplied. This allows for efficiently returning a sorted list of elements, or returning the value of the minimum or maximum element.

BPatch_Set()

A constructor that creates an empty set with the default comparison function.

BPatch_Set(const BPatch_Set<T,Compare>& newBPatch_Set)

Copy constructor.

int size()

Return the number of elements in the set.

bool empty()

Returns true if the set is empty, or false if it is not.

void insert(const T&)

Insert the given element into the set.

void remove(const T&)

Remove the given element from the set.

bool contains(const T&)

Returns true if the argument is a member of the set, otherwise returns false.

T* elements(T*)

Fill an array with a list of the elements in the set that are sorted in ascending order according to the comparison function. The input argument should point to an array large enough to hold the elements. This function returns its input argument, unless the set is empty, in which case it returns NULL.

T minimum()

Return the minimum element in the set, as determined by the comparison function. For an empty set, the result is undefined.

T maximum()

Return the maximum element in the set, as determined by the comparison function. For an empty set, the result is undefined.

BPatch_Set<T,Compare>& operator= (const BPatch_Set<T,Compare>&)

the assignment operator.

bool operator== (const BPatch_Set<T,Compare>&)

The equality operator. Returns true if both sets consist entirely of elements that are each equal to an element in the other set, or if both sets are empty.

bool operator!= (const BPatch_Set<T,Compare>&)

The inequality operator. Returns true if either set contains an element not in the other set.

BPatch_Set<T,Compare>& operator+= (const T&)

Add the given object to the set.

BPatch_Set<T,Compare>& operator|= (const BPatch_Set<T,Compare>&)

Set union operator. Assign the result of the union to the set on the left hand side.

BPatch_Set<T,Compare>& operator&= (const BPatch_Set<T,Compare>&)

Set intersection operator. Assign the result of the intersection to the set on the left hand side.

BPatch_Set<T,Compare>& operator-= (const BPatch_Set<T,Compare>&)

Set difference operator. Assign the difference of the sets to the set on the left hand side.

BPatch_Set<T,Compare> operator| (const BPatch_Set<T,Compare>&)

Set union operator.

BPatch_Set<T,Compare> operator& (const BPatch_Set<T,Compare>&)

Set intersection operator.

BPatch_Set<T,Compare> operator- (const BPatch_Set<T,Compare>&)

Set difference operator.

3.30 Memory Access Classes XE "Memory Access Classes"
Instrumentation points created through findPoint(const BPatch_Set<BPatch_opCode>& ops) get memory access information attached to them. This information is used by the memory access snippets, but is also available to the API user. The classes that encapsulate memory access information are contained in the BPatch_memoryAccess_NP.h header.

3.30.1 Class BPatch_memoryAccess XE " BPatch_memoryAccess "
This class encapsulates a memory access abstraction. It contains information that describes the memory access type: read, write, read/write, or prefetch. It also contains information that allows the effective address and the number of bytes transferred to be determined.

bool isALoad_NP XE "isALoad_NP" ()

Returns true if the memory access is a load (memory is read into a register).

bool isAStore_NP XE "isAStore_NP" ()

Returns true if the memory access is write. Some machine instructions may both load and store.

bool isAPrefetch_NP XE "isAPrefetch_NP" ()

Returns true if memory access is a prefetch (i.e, it has no observable effect on user registers). It this returns true, the instruction is considered neither load nor store. Prefetches are detected only on IA32.

short prefetchType_NP XE "prefetchType_NP" ()

If the memory access is a prefetch, this method returns a platform specific prefetch type.
BPatch_addrSpec_NP getStartAddr_NP XE "getStartAddr_NP" ()

Return an address specification that allows the effective address of a memory reference to be computed. For example, on the x86 platform a memory access instruction operand may contain a base register, an index register, a scaling value, and a constant base. The BPatch_addrSpec_NP describes each of these values.

BPatch_countSpec_NP getByteCount_NP XE "getByteCount_NP" ()

Return a specification that describes the number of bytes transferred by the memory access.

3.30.2 Class BPatch_addrSpec_NP XE "BPatch_addrSpec_NP"
This class encapsulates the information required to determine an effective address at runtime. The general representation for an address is a sum of two registers and a constant; this may change in future releases. Some architectures use only certain bits of a register (e.g. bits 25:31 of XER register on the Power chip family); these are represented as pseudo-registers. The numbering scheme for registers and pseudo-registers is implementation dependent and should not be relied upon; it may change in future releases.

int getImm XE "getImm" ()

Return the constant offset. This may be positive or negative.

int getReg XE "getReg" (unsigned i)

Return the register number for the ith register in the sum, where 0 ≤ i ≤ 2. Register numbers are positive; a value of -1 means no register.

int getScale()

Returns any scaling factor used in the memory address computation.

Class BPatch_countSpec_NP XE "BPatch_countSpec_NP"
This class encapsulates the information required to determine the number of bytes transferred by a memory access.

3.31 Type System XE "Type Checking"
The Dyninst type system is based on the notion of structural equivalence. Structural equivalence was selected to allow the system the greatest flexibility in allowing users to write mutators that work with applications compiled both with and without debugging symbols enabled. Using the create* methods of the BPatch class, a mutator can construct type definitions for existing mutatee structures. This information allows a mutator to read and write complex types even if the application program has been compiled without debugging information. However, if the application has been compiled with debugging information, Dyninst will verify the type compatibility of the operations performed by the mutator.

The rules for type computability are that two types must be of the same storage class (i.e. arrays are only compatible with other arrays) to be type compatible. For each storage class, the following additional requirements must be met for two types to be compatible:

Bpatch_dataScalar

Scalars are compatible if their names are the same (as defined by strcmp) and their sizes are the same.

BPatch_dataPointer

Pointers are compatible if the types they point to are compatible.

BPatch_dataFunc

Functions are compatible if their return types are compatible, they have same number of parameters, and position by position each element of the parameter list is type compatible.

BPatch_dataArray

Arrays are compatible if they have the same number of elements (regardless of their lower and upper bounds) and the base element types are type compatible.

BPatch_dataEnumerated

Enumerated types are compatible if they have the same number of elements and the identifiers of the elements are the same.

BPatch_dataStructure

BPatch_dataUnion

Structures and unions are compatible if they have the same number of constituent parts (fields) and item by item each field is type compatible with the corresponds field of the other type.

In addition, if either of the types is the type BPatch_unknownType, then the two types are compatible. Variables in mutatee programs that have not been compiled with debugging symbols (or in the symbols are in a format that the Dyninst library does not recognize) will be of type BPatch_unknownType.

3.32 Hybrid Code Analysis XE "Type Checking"
Activating hybrid code analysis causes Dyninst to augment its static analysis of the code with run-time code discovery techniques. Hybrid analysis is useful even for binaries that have not been deliberately obfuscated, as Dyninst’s static analysis of the program binary may miss code for which there are no function symbols, and may parse functions incompletely if they contain indirect jumps whose targets are not recognizable as jump table entries. This mechanism also allows for the analysis of analysis-resistant binaries that are stripped of symbol information and may dynamically unpack binary code or modify existing code. These use cases have corresponding modes of hybrid code analysis:

1. Instrumentation-based discovery: This mode makes no modification to Dyninst’s static analysis, except to mark statically unresolved control transfers for instrumentation. The following types of control transfers are instrumented: indirect jump instructions that do not follow jump table conventions, indirect calls with statically unresolved targets, and static control transfers to invalid or un-initialized memory regions.

2. Malware-mode discovery: This mode makes Dyninst’s static analysis more conservative, and compensates through heavier use of instrumentation. It also assumes that the binary may attempt to modify its own code, so it write-protects all memory pages that contain code, causing overwrite attempts to raise signals. This mode can only be activated if the user registers code-discovery and code-overwrite callbacks, in which case the user can specifically request that this mode be activated, or rely on Dyninst’s heuristics for detecting the likely presence of code obfuscations.

3. Static analysis only: This is Dyninst’s traditional mode of analysis; no run-time code discovery is performed.
Heuristic analysis-mode selection. The user can set the desired hybrid-analysis mode or rely on Dyninst’s heuristics. Dyninst chooses static-analysis only for binaries with symbol information. Instrumentation-based discovery is the default for stripped binaries, but malware mode is activated if one of the following conditions is met:

1. The binary lacks a .text section and its first section is writable

2. The binary’s .text section is writable or uninitialized

3. The program contains static control transfers to un-initialized regions

4. The binary contains contains control-transfer obfuscations

enum BPatch_hybridMode { BPatch_staticMode, BPatch_instMode, BPatch_malwareMode};

bool BPatchImage::setHybridMode(BPatch_hybridMode mode);

Set the hybrid analysis mode to static analysis only (turns of heuristic enabling of hybrid modes), set it to do instrumentation-based code discovery only, or set it to malware mode, in which the program is assumed to be analysis-resistant.

static void BPatchCodeDiscoveryCallback (std::vector<BPatch_function*> &newFuncs, std::vector<BPatch_function*> modifiedFuncs);

This callback is invoked whenever previously un-analyzed code is discovered through runtime analysis, and delivers a vector of functions whose analysis has been modified and a vector of functions that are newly discovered.

static void BPatchCodeOverwriteBeginCallback (std::vector<BPatch_basicBlock*> &overwriteLoopBlocks);

This callback allows the user to remove any instrumentation as the program starts writing to a code page, which may be desirable as instrumentation cannot be removed during the overwrite loop’s execution, and any breakpoint instrumentation will dramatically slow the loop’s execution. Only invoked if hybrid analysis mode is set to BPatch_malwareMode.

static void BPatchCodeOverwriteEndCallback(std::vector<Address> &deadFuncAddrs, std::vector<BPatch_function*> &modifiedFuncs, std::vector<BPatch_function*> &newFuncs);

This callback delivers the effects of the overwrite loop when it is done executing. In many cases no code will have changed. This function is only called if the Dyninst’s hybrid analysis mode is set to BPatch_malwareMode.

Execute at the signal handler’s entry point. If the handler shifts execution to un-analyzed code, this will cause the BPatchCodeDiscoveryCallback to be invoked.

BPatch_process::removeDebuggingArtifacts();

Remove debugging artifacts. This function invoked automatically if hybrid analysis mode is set to BPatch_malwareMode, but there is no harm in calling it twice.

bool BPatch_flowGraph::isValid();

When a function’s analysis is updated, its BPatch_function object remains valid, but its BPatch_flowGraph does not. A new CFG can be obtained from the BPatch_function when the CFG is found to be invalid.

enum {BPatch_noInterp, BPatch_interpAsTarget, BPatch_interpAsReturnAddr} BPatch_stInterpret;

BPatch_stopThreadExpr(BPatch_snippet *calculation, BPatch_stInterpret interp = BPatch_noInterp, bool useCache = false);

Interpret the calculation as an address, which will cause addresses corresponding to relocated code and Dyninst’s instrumentation to be translated into an unrelocated address.

Using the API

In this section, we describe the steps needed to compile your mutator and mutatee programs and to run them. First we give you an overview of the major steps and then we explain each one in detail.

3.33 Overview of Major Steps

To use Dyninst, you have to:

· Create a mutator program (Section 5.1): You need to create a program that will modify some other program. For an example, see the mutator shown in Appendix A - .

(1) Set up the mutatee (Section 5.3): On some platforms, you need to link your application with Dyninst’s run time instrumentation library. [NOTE: This step is only needed in the current release of the API. Future releases will eliminate this restriction.]

(2) Run the mutator (Section 5.4): The mutator will either create a new process or attach to an existing one (depending on the whether createProcess or attachProcess is used).

Sections 5.2 through 5.4 explain these steps in more detail. In this section, we assume that you have already installed the API distribution and setup the PLATFORM and DYNINST_ROOT environment variables. The installation of the API is described in the README file in the distribution tar file.

3.34 Creating a Mutator Program

The first step in using Dyninst is to create a mutator program. The mutator program specifies the mutatee (either by naming an executable to start or by supplying a process ID for an existing process). In addition, your mutator will include the calls to the API library to modify the mutatee. For the rest of this section, we assume that the mutator is the sample program given in Appendix A - . The following fragment of a Makefile shows how to link your mutator program with the Dyninst library on most platforms:

retee.o: retee.c

$(CC) -c $(CFLAGS) -I$(DYNINST_ROOT)/dyninst/dyinstAPI/h \

retee.c

retee: retee.o

$(CC) retee.o -L$(DYNINST_ROOT)/$(PLATFORM)/lib \

 -ldyninstAPI -liberty -o retee

On Linux, the options -lelf and -ldwarf must also be added to the link step. On AIX, the option –lbsd must also be added to the link step. You will also need to make sure that the LD_LIBRARY_PATH or LIBPATH (AIX) environment variable includes the directory that contains the Dyninst shared library. This is typically $DYNINST_ROOT/lib/$PLATFORM. Finally, on AIX, Dyninst mutators can easily exceed the 256MB of data space that is available to the default memory model. Your mutator can be re-linked as follows to work around this problem:

	
ldedit -bmaxdata:0x80000000/dsa MUTATOR_EXECUTABLE

Some of these libraries, such as libdwarf and libelf, may not be standard on various platforms. Check the README file in dyninst/dyninstAPI for more information on where to find these libraries.

Under Windows NT, the mutator also needs to be linked with the dbghelp library, which is included in the Microsoft Platform SDK. Below is a fragment from a Makefile for Windows NT:

CC = cl

retee.obj: retee.c

$(CC) -c $(CFLAGS) -I$(DYNINST_ROOT)/dyninst/dyninstAPI/h

retee.exe: retee.obj

link -out:retee.exe retee.obj \

 $(DYNINST_ROOT)\$(PLATFORM)\lib\libdyninstAPI.lib \

 dbghelp.lib

3.35 Setting Up the Application Program (mutatee)

On most platforms, any additional code that your mutator might need to call in the mutatee (for example files containing instrumentation functions that were too complex to write directly using the API) can be put into a dynamically loaded shared library, which your mutator program can load into the mutatee at runtime using the loadLibrary member function of BPatch_process.

To locate the runtime library that Dyninst needs to load into your program, an additional environment variable must be set. The variable DYNINSTAPI_RT_LIB should be set to the full pathname of the run time instrumentation library, which should be:

$DYNINST_ROOT/$PLATFORM/lib/libdyninstAPI_RT.so (UNIX)

%DYNINST_ROOT%/i386-unknown-nt4.0/lib/libdyninstAPI_RT.dll (Windows)

Figure 1 is an example of how you would modify the link command in your Makefile (on one of the UNIX-based platforms) to handle the extra link step required by the current version of the API. If your Makefile contained the link step shown in Figure 1:

(a) You would change it to the version shown in Figure 1.

(b) Note that the additions in Figure 1 are shown in bold.

	OBJECTS = main.o this.o that.o

LIBDIR = $DYNINST_ROOT/lib/$PLATFORM

bubba.pd: ${OBJECTS}

${CC) ${OBJECTS} \

<insert any additional modules here> \

-lm -lcurses -ltermcap -o bubba.pd

(b) The Link Command Modified to Run Application. Items in Bold face show the changes (additions)

	Figure 1: Changing Your Makefile to Link an Application as a Dyninst mutatee.

3.36 Running the Mutator

At this point, you should be ready to run your application program with your mutator. For example, to start the sample program shown in Appendix A - :

% retee foo <pid>

3.37 Optimizing Dyninst Performance

This section describes how to tune Dyninst for optimum performance. During the course of a run, Dyninst will perform several types of analysis on the binary, make safety assumptions about instrumentation that is inserted, and rewrite the binary (perhaps several times). Given some guidance from the user, Dyninst can make assumptions about what work it needs to do and can deliver significant performance improvements.

There are two areas of Dyninst performance users typically care about. First, the time it takes Dyninst to parse and instrument a program. This is typically the time it takes Dyninst to start and analyze a program, and the time it takes to modify the program when putting in instrumentation. Second, many users care about the time instrumentation takes in the modified mutatee. This time is highly dependent on both the amount and type of instrumentation put it, but it is still possible to eliminate some of the Dyninst overhead around the instrumentation.

The following subsections describe techniques for improving the performance of these two areas.

3.37.1 Optimizing Mutator Performance

CPU time in the Dyninst mutator is usually consumed by either parsing or instrumenting binaries. When a new binary is loaded, Dyninst will analyze the code looking for instrumentation points, global variables, and attempting to identify functions in areas of code that may not have symbols. Upon user request, Dyninst will also parse debug information from the binary, which includes local variable, line, and type information.

All of these items are parsed lazily, that is Dyninst won’t try to generate this information until it is requested. Information is parsed on a per-library basis, so a request for information about a specific library function will cause Dyninst to parse information about all functions in that library. Much of the Dyninst parsing performance problems can be removed, or mitigated, by structuring the mutator application so that it only requests information from Dyninst if and when it needs it.

Not all operations require Dyninst to trigger parsing. Some common operations that lead to parsing are:

· Requesting a BPatch_instPoint object

· Any operation on a BPatch_function other than getting its name

Debugging information is lazily parsed separately from the rest of the binary parsing. Accessing line, type, or local variable information will cause Dyninst to parse the debug information for all three of these.

Another common source of mutator time is spent re-writing the mutatee to add instrumentation. When instrumentation is inserted into a function, Dyninst may need to rewrite some or all of the function to fit the instrumentation in. If multiple pieces of instrumentation are being inserted into a function, Dyninst may need to rewrite that function multiple times.

If the user knows that they will be inserting multiple pieces of instrumentation into one function, they can batch the instrumentation into one bundle, so that the function will only be re-written once, using the BPatch_process::beginInsertionSet and BPatch_​process::end​Inser​tion​Set functions (see section 4.3). Using these functions can result in a significant performance win when inserting instrumentation in many locations.

To use the insertion set functions, add a call to beginInsertionSet before inserting instrumentation. Dyninst will start buffering up all instrumentation insertions. After the last piece of instrumentation is inserted, call finalizeInsertionSet, and all instrumentation will be atomically inserted into the mutatee, with each function being rewritten at most once.

3.37.2 Optimizing Mutatee Performance

As instrumentation is inserted into a mutatee, it will start to run slower. The slowdown is heavily influenced by three factors: the number of points being instrumented, the instrumentation itself, and the Dyninst overhead around each piece of instrumentation. The Dyninst overhead comes from pieces of protection code (described in more detail below) that do things such as saving/restoring registers around instrumentation, checking for instrumentation recursion, and performing thread safety checks.

The factor by which Dyninst overhead influences mutatee run-time depends on the type of instrumentation being inserted. When inserting instrumentation that runs a memory cache simulator, the Dyninst overhead may be negligible. On the other-hand, when inserting instrumentation that increments a counter, the Dyninst overhead will dominate the time spent in instrumentation. Remember, optimizing the instrumentation being inserted may sometimes be more important than optimizing the Dyninst overhead. Many users have had success writing tools that make use of Dyninst’s ability to dynamically remove instrumentation as a performance improvement.

The instrumentation overhead results from safety and correctness checks inserted by Dyninst around instrumentation. Dyninst will automatically attempt to remove as much of this overhead as possible, however it sometimes must make a conservative decision to leave the overhead in. Given additional, user-provided information Dyninst can make better choices about what safety checks to leave in. An unoptimized post-Dyninst 5.0 instrumentation snippet looks like the following:

	Save General Purpose Registers
	In order to ensure that instrumentation doesn’t corrupt the program, Dyninst saves all live general purpose registers.

	Save Floating Point Registers
	Dyninst may decide to separately save any floating point registers that may be corrupted by instrumentation.

	Generate A Stack Frame
	Dyninst builds a stack frame for instrumentation to run under. This provides the illusion to instrumentation that it is running as its own function.

	Calculate Thread Index
	Calculate an index value that identifies the current thread. This is primarily used as input to the Trampoline Guard.

	Test and Set Trampoline Guard
	Test to see if we are already recursively executing under instrumentation, and skip the user instrumentation if we are.

	Execute User Instrumentation
	Execute any BPatch_snippet code.

	Unset Trampoline Guard
	Marks the this thread as no longer being in instrumentation

	Clean Stack Frame
	Clean the stack frame that was generated for instrumentation.

	Restore Floating Point Registers
	Restore the floating point registers to their original state.

	Restore General Purpose Registers
	Restore the general purpose registers to their original state.

Dyninst will attempt to eliminate as much of its overhead as is possible. The Dyninst user can assist Dyninst by doing the following:

· Write BPatch_snippet code that avoids making function calls. Dyninst will attempt to perform analysis on the user written instrumentation to determine which general purpose and floating point registers can be saved. It is difficult to analyze function calls that may be nested arbitrarily deep. Dyninst will not analyze any deeper than two levels of function calls before assuming that the instrumentation clobbers all registers and it needs to save everything.

In addition, not making function calls from instrumentation allows Dyninst to eliminate its tramp guard and thread index calculation. Instrumentation that does not make a function call cannot recursively execute more instrumentation.

· Call BPatch::setTrampRecursive(true) if instrumentation cannot execute recursively. If instrumentation must make a function call, but will not execute recursively, then enable trampoline recursion. This will cause Dyninst to stop generating a trampoline guard and thread index calculation on all future pieces of instrumentation. An example of instrumentation recursion would be instrumenting a call to write with instrumentation that calls printf—write will start calling printf printf will re-call write.
· Call BPatch::setSaveFPR(false) if instrumentation will not clobber floating point registers. This will cause Dyninst to stop saving floating point registers, which can be a significant win on some platforms.
· Use simple BPatch_snippet objects when possible. Dyninst will attempt to recognize, peep-hole optimize, and simplify frequently used code snippets when it finds them. For example, on x86 based platforms Dyninst will recognize snippets that do operations like ‘var = constant’ or ‘var++’ and turn these into optimized assembly instructions that take advantage of CISC machine instructions.
· Call BPatch::setInstrStackFrames(false) before inserting instrumentation that does not need to set up stack frames. Dyninst allows you to force stack frames to be generated for all instrumentation. This is useful for some applications (e.g., debugging your instrumentation code) but allowing Dyninst to omit stack frames wherever possible will improve performance. This flag is false by default; it should be enabled for as little instrumentation as possible in order to maximize the benefit from optimizing away stack frames.
· Avoid conditional instrumentation wherever possible. Conditional logic in your instrumentation makes it more difficult to avoid saving the state of the flags.

· Avoid unnecessary instrumentation. Dyninst provides you with all kinds of information that you can use to select only the points of actual interest for instrumentation. Use this information to instrument as selectively as possible. The best way to optimize your instrumentation, ultimately, is to know a priori that it was unnecessary and not insert it.
Appendix A - Complete Examples

In this section we show two complete examples: the program from Section 3 and a complete Dyninst program, retee.

#include "BPatch.h"

#include "BPatch_addressSpace.h"

#include "BPatch_process.h"

#include "BPatch_binaryEdit.h"

#include "BPatch_function.h"

#include <string>

// Example 1: create an instance of class BPatch

BPatch bpatch;

// Example 2: attaching, creating, or opening a file for rewrite

typedef enum {

 create,

 attach,

 open } accessType_t;

BPatch_addressSpace *startInstrumenting(accessType_t accessType,

const char *name,

int pid, // For attach

const char *argv[]) { // For create

 BPatch_addressSpace *handle = NULL;

 switch (accessType) {

 case create:

 handle = bpatch.processCreate(name, argv);

 break;

 case attach:

 handle = bpatch.processAttach(name, pid);

 break;

 case open:

 handle = bpatch.openBinary(name);

 break;

 }

 return handle;

}

// Example 2: find the entry point for "InterestingProcedure"

std::vector<BPatch_point *> *findEntryPoint(BPatch_addressSpace *app) {

 std::vector<BPatch_function *> functions;

 std::vector<BPatch_point *> *points;

 BPatch_image *appImage = app->getImage();

 appImage->findFunction("InterestingProcedure", functions);

 points = functions[0]->findPoint(BPatch_entry);

 return points;

}

// Example 3: create and insert an increment snippet

void createAndInsertSnippet(BPatch_addressSpace *app,

 std::vector<BPatch_point *> *points) {

 BPatch_image *appImage = app->getImage();

 BPatch_variableExpr *intCounter = app->malloc(*(appImage->findType("int")));

 BPatch_arithExpr addOne(BPatch_assign, *intCounter,

 BPatch_arithExpr(BPatch_plus, *intCounter, BPatch_constExpr(1)));

 app->insertSnippet(addOne, *points);

}

// Example 4: finish things up (continue or write out)

void finishInstrumenting(BPatch_addressSpace *app, const char *newName) {

 BPatch_process *appProc = dynamic_cast<BPatch_process *>(app);

 BPatch_binaryEdit *appBin = dynamic_cast<BPatch_binaryEdit *>(app);

 if (appProc) {

 appProc->continueExecution();

 while (!appProc->isTerminated()) {

 bpatch.waitForStatusChange();

 }

 }

 if (appBin) {

 appBin->writeFile(newName);

 }

}

// Example 5: binary analysis

int binaryAnalysis(BPatch_addressSpace *app) {

 BPatch_image *appImage = app->getImage();

 int insns_access_memory = 0;

 std::vector<BPatch_function *> funcs;

 appImage->findFunction("InterestingProcedure", funcs);

 BPatch_flowGraph *fg = funcs[0]->getCFG();

 std::set<BPatch_basicBlock *> blocks;

 fg->getAllBasicBlocks(blocks);

 std::set<BPatch_basicBlock *>::iterator block_iter;

 for (block_iter = blocks.begin(); block_iter != blocks.end(); ++block_iter) {

 BPatch_basicBlock *block = *block_iter;

 std::vector<Dyninst::InstructionAPI::Instruction::Ptr> insns;

 block->getInstructions(insns);

 std::vector<Dyninst::InstructionAPI::Instruction::Ptr>::iterator insn_iter;

 for (insn_iter = insns.begin(); insn_iter != insns.end(); ++insn_iter) {

 Dyninst::InstructionAPI::Instruction::Ptr insn = *insn_iter;

 if (insn->readsMemory() || insn->writesMemory()) {

insns_access_memory++;

 }

 }

 }

 return insns_access_memory;

}

// Example 6: memory instrumentation

void instrumentMemory(BPatch_addressSpace *app) {

 BPatch_image *appImage = app->getImage();

 // We're interested in loads and stores

 BPatch_Set<BPatch_opCode> accessTypes;

 accessTypes.insert(BPatch_opLoad);

 accessTypes.insert(BPatch_opStore);

 // Get points for each load and store

 std::vector<BPatch_function *> funcs;

 appImage->findFunction("InterestingProcedure", funcs);

 std::vector<BPatch_point *> *points = funcs[0]->findPoint(accessTypes);

 // Create a snippet that calls printf with each effective address

 std::vector<BPatch_snippet *> printfArgs;

 BPatch_snippet *fmt = new BPatch_constExpr("Access at: 0x%lx\n");

 printfArgs.push_back(fmt);

 BPatch_snippet *eae = new BPatch_effectiveAddressExpr;

 printfArgs.push_back(eae);

 std::vector<BPatch_function *> printfFuncs;

 appImage->findFunction("printf", printfFuncs);

 BPatch_funcCallExpr printfCall(*(printfFuncs[0]), printfArgs);

 app->insertSnippet(printfCall, *points);

}

int main() {

 const char *progName = "InterestingProgram"; // = ...

 int progPID = 42; // = ...

 const char *progArgv[] = {"InterestingProgram", "-h", NULL}; // = ...

 // Example 1: create/attach/open a binary

 BPatch_addressSpace *app = startInstrumenting(create, // or attach or open

progName,

progPID,

progArgv);

 // Example 2: get entry point

 std::vector<BPatch_point *> *entryPoint = findEntryPoint(app);

 // Example 3: create and insert increment snippet

 createAndInsertSnippet(app, entryPoint);

 // Example 4: finish up instrumenting

 finishInstrumenting(app, progName);

 // Example 5: get a count of memory accesses

 int insns_access_memory = binaryAnalysis(app);

 // Example 6: instrument memory accesses

 instrumentMemory(app);

 return 0;

}

The second example is a program called “re-tee.” It takes three arguments: the pathname of an executable program, the process id of a running instance of the same program, and a file name. It adds code to the running program that copies to the named file all output that the program writes to its standard output file descriptor. In this way it works like “tee,” which passes output along to its own standard out while also saving it in a file. The motivation for the example program is that you run a program, and it starts to print copious lines of output to your screen, and you wish to save that output in a file without having to re-run the program.

#include <stdio.h>

#include <fcntl.h>

#include "BPatch.h"

#include "BPatch_process.h"

#include "BPatch_function.h"

#include "BPatch_Vector.h"

#include "BPatch_thread.h"

/*

 * retee.C

 *

 * This program (mutator) provides an example of several facets of

 * Dyninst's behavior, and is a good basis for many Dyninst

 * mutators. We want to intercept all output from a target application

 * (the mutatee), duplicating output to a file as well as the

 * original destination (e.g., stdout).

 *

 * This mutator operates in several phases. In brief:

 * 1) Attach to the running process and get a handle (BPatch_process

 * object)

 * 2) Get a handle for the parsed image of the mutatee for function

 * lookup (BPatch_image object)

 * 3) Open a file for output

 * 3a) Look up the "open" function

 * 3b) Build a code snippet to call open with the file name.

 * 3c) Run that code snippet via a oneTimeCode, saving the returned

 * file descriptor

 * 4) Write the returned file descriptor into a memory variable for

 * mutatee-side use

 * 5) Build a snippet that copies output to the file

 * 5a) Locate the "write" library call

 * 5b) Access its parameters

 * 5c) Build a snippet calling write(fd, parameters)

 * 5d) Insert the snippet at write

 * 6) Add a hook to exit to ensure that we close the file (using

 * a callback at exit and another oneTimeCode)

 */

void usage() {

 fprintf(stderr, "Usage: retee <process pid> <filename>\n");

 fprintf(stderr, " note: <filename> is relative to the application process.\n");

}

// We need to use a callback, and so the things that callback requires

// are made global - this includes the file descriptor snippet (see below)

BPatch_variableExpr *fdVar = NULL;

// Before we add instrumentation, we need to open the file for

// writing. We can do this with a oneTimeCode - a piece of code run at

// a particular time, rather than at a particular location.

int openFileForWrite(BPatch_process *app, BPatch_image *appImage, char *fileName) {

 // The code to be generated is:

 // fd = open(argv[2], O_WRONLY|O_CREAT, 0666);

 // (1) Find the open function

 BPatch_Vector<BPatch_function *>openFuncs;

 appImage->findFunction("open", openFuncs);

 if (openFuncs.size() == 0) {

 fprintf(stderr, "ERROR: Unable to find function for open()\n");

 return -1;

 }

 // (2) Allocate a vector of snippets for the parameters to open

 BPatch_Vector<BPatch_snippet *> openArgs;

 // (3) Create a string constant expression from argv[3]

 BPatch_constExpr fileNameExpr(fileName);

 // (4) Create two more constant expressions _WRONLY|O_CREAT and 0666

 BPatch_constExpr fileFlagsExpr(O_WRONLY|O_CREAT);

 BPatch_constExpr fileModeExpr(0666);

 // (5) Push 3 & 4 onto the list from step 2, push first to last parameter.

 openArgs.push_back(&fileNameExpr);

 openArgs.push_back(&fileFlagsExpr);

 openArgs.push_back(&fileModeExpr);

 // (6) create a procedure call using function found at 1 and

 // parameters from step 5.

 BPatch_funcCallExpr openCall(*openFuncs[0], openArgs);

 // (7) The oneTimeCode returns whatever the return result from

 // the BPatch_snippet is. In this case, the return result of

 // open -> the file descriptor.

 void *openFD = app->oneTimeCode(openCall);

 // oneTimeCode returns a void *, and we want an int file handle

 return (int) (long) openFD;

}

// We have used a oneTimeCode to open the file descriptor. However,

// this returns the file descriptor to the mutator - the mutatee has

// no idea what the descriptor is. We need to allocate a variable in

// the mutatee to hold this value for future use and copy the

// (mutator-side) value into the mutatee variable.

// Note: there are alternatives to this technique. We could have

// allocated the variable before the oneTimeCode and augmented the

// snippet to do the assignment. We could also write the file

// descriptor as a constant into any inserted instrumentation.

BPatch_variableExpr *writeFileDescIntoMutatee(BPatch_process *app,

 BPatch_image *appImage,

 int fileDescriptor) {

 // (1) Allocate a variable in the mutatee of size (and type) int

 BPatch_variableExpr *fdVar = app->malloc(*appImage->findType("int"));

 if (fdVar == NULL) return NULL;

 // (2) Write the value into the variable

 // Like memcpy, writeValue takes a pointer

 // The third parameter is for functionality called "saveTheWorld",

 // which we don't worry about here (and so is false)

 bool ret = fdVar->writeValue((void *) &fileDescriptor, sizeof(int),

 false);

 if (ret == false) return NULL;

 return fdVar;

}

Appendix B - Running the Test Cases TC “Appendix A - Running the Test cases”
This section describes how to run the Dyninst test cases. The primary purpose of the test cases is to verify that the API has been installed correctly (and for use in regression testing by the developers of the Dyninst library). The code may also be of use to others since it provides a fairly complete example of how to call most of the API methods. The test suite consists of mutator programs and their associated mutatee programs.

To compile the test suite, type make in the appropriate platform specific directory under dyninst/testsuite. To run, execute runTests. Each test will be executed and the result (PASSED/FAILED/CRASHED) printed.

Test mutators are run by the test_driver executable (test_driver.exe on Windows). The test_driver loads a mutator test from a shared object and runs it on a test mutatee. A single run of the test_driver may execute multiple tests (depending on parameters passed), and each test may execute multiple times with different parameters and on different mutatees.

Dyninst’s test space can be very large. Each mutatee can be run under different tests, compiled by different compilers, and run with different parameters. For example, one point in this space would be the test1 mutatee being run under under test1_13, when compiled with the g++ compiler, and in attach mode. When run without any options, the test_driver will run all test combinations that are valid on the current platform. Many of the options that are passed to test_driver can be used to limit the test space that it runs in.

In order to prevent a crashing test from stopping the test_driver from running subsequent tests, test_driver can be run under a wrapper application, runTests. The runTests wrapper invokes the test_driver with the any arguments that were passed to runTests. It will watch the test_driver process, and if test_driver exits with a fault it will print an appropriate error message and restart the test_driver on the next test.

It is generally recommended that runTests be used when running a large sequence of tests, and test_driver be used when debugging issues with a single test.

The test_driver and runTests applications can be invoked with the following list of arguments. Most arguments are used to limit the space of tests that the testsuite will run. For example, to run the above test1_13 example, you could use the following command line:

test_driver –run test1_13 –mutatee test1.mutatee_g++ -attach

-attach

Only run tests that attach to the mutatees.

-create

Only run tests that create mutatees.

-rewriter

Only run tests that rewrite mutatees.

-staticlink

Run rewriter tests that use statically linked mutatees.

-dynamiclink

Run rewriter tests that use dynamically linked mutatees.

-allmode

Run tests for all modes (create, attach, rewriter on statically linked binaries, rewriter on dynamically linked binaries).

-gcc, -g++, -pgcc, -pgCC, -icc, -icpc

Run tests on mutatees built with the specified compiler.

-noclean

Don’t remove rewritten mutatees after running rewriter tests.

-all

Run tests for all possible combinations of unoptimized mutatees.

-none, -low, -high, -max

Only run tests for mutatees of the given optimization level.

-allopt

Run tests for all mutatee optimization levels.

-full

Run tests for all possible combinations of mutatees, including all optimization levels. Requires make all to build the optimized mutatees.

-dyninst, -symtab, -instruction, -proccontrol

Only run tests for the specified component.

-allcomp

Run tests for all components.

-32, -64

Only run tests for 32-bit or 64-bit mutatees. This option is only valid on platforms such as AMD64/Linux and PowerPC/Linux where both 32-bit and 64-bit build environments are available.

-pic

Only run tests for mutatees compiled as position-independent code. Default is non-PIC mutatees. –all and –full include both.

-sp, -mp, -st, -mt

ProcControl-specific: run tests in single process, multiprocess, single thread, multithread modes, respectively.

-j n

This option spawns up to n test_driver instances from a given runTests invocation. This option is highly recommended for large test runs.

-hosts host1 [host2 ... hostn]

In conjunction with the –j option above, will distribute tests over the hosts host1…hostn. The hosts must share a filesystem with the machine from which runTests is being run, and ssh must be configured to allow password-less authentication to those hosts. Note that –j controls the total number of test_driver instances, not the number per host, so you will need to use a –j N at least equal to the number of hosts you wish to use.

-mutatee <mutatee_name>

Only run tests that use the specified mutatee name. Only certain mutatees can be run with certain tests. The primary test number specifies which mutatees it can be run with. For example, all of the test1_* tests can be run with the test1.mutatee_* mutatees, and all of the test2_* tests can be run with the test2.mutatee_* mutatees.

-run <subtest> <subtest> …

Only runs the specific sub-tests listed. For example, to run sub-test case 4 of test2 you would enter test_driver –run test2_4.

-test

Alias for –run.

-log

Print more detailed output, including messages generated by the tests. Without this option the testsuite will capture and hide any messages printed by the test, only showing a summary of whether the test passed or failed. By default, output is sent to stdout.

-logfile <filename>

Send output from the –log option to the given filename rather than to stdout.

-verbose

Enables test suite debugging output. This is useful when trying to track down issues in the test suite or tests.

Appendix C - Common pitfalls

This appendix is designed to point out some common pitfalls that users have reported when using the Dyninst system. Many of these are either due to limitations in the current implementations, or reflect design decisions that may not produce the expected behavior from the system.

Attach followed by detach

If a mutator attaches to a mutatee, and immediately exists, the current behavior is that the mutatee is left suspended. To make sure the application continues, call detach with the appropriate flags.

Attaching to a program that has already been modified by Dyninst

If a mutator attaches to a program that has already been modified by a previous mutator, a warning message will be issued. We are working to fix this problem, but the correct semantics are still being specified. Currently, a message is printed to indicate that this has been attempted, and the attach will fail.

Dyninst is event-driven

Dyninst must sometimes handle events that take place in the mutatee, for instance when a new shared library is loaded, or when the mutatee executes a fork or exec. Dyninst handles events when it checks the status of the mutatee, so to allow this the mutator should periodically call one of the functions BPatch::pollForStatusChange, BPatch::wait​ForStatusChange, BPatch_thread::isStopped, or BPatch_​thread::is​Termin​ated.

64-bit binaries (AIX)

Dyninst does not support 64-bit binaries on AIX.

Missing or out-of-date DbgHelp DLL (Windows)

Dyninst requires an up-to-date DbgHelp library on Windows. See the section on Windows-specific architectural issues for details.

Portland Compiler Group – missing debug symbols

The Portland Group compiler (pgcc) on Linux produces debug symbols that are not read correctly by Dyninst. The binaries produced by the compiler do not contain the source file information necessary for Dyninst to assign the debug symbols to the correct module.

When Building Dyninst from Source

Commonly, required external libraries and headers (such as libdwarf or libelf) are not found correctly by the compiler. Often, such packages are installed, but outside of the compiler’s default search path.

Because of this, we have provided the following extention to our make system. If the file make.config.local exists inside the $DYNINST_ROOT/dyninst directory, it will automatically be included during the build process.

You can then set the makefile variables FIRST_INCLUDE and FIRST_LIBDIR inside make.config.local. These variables represent the compiler flags used during the compilation and linking phase, respectively. These paths will be searched before any others, insuring that the correct package is used. For example:

FIRST_INCLUDE=-I/usr/local/packages/libelf-0.8.5/include

FIRST_LIBDIR =-L/usr/local/packages/libelf-0.8.5/lib

Appendix D – Building Dyninst

This appendix describes how to build Dyninst from source code, which can be downloaded from http://www.paradyn.org or http://www.dyninst.org.

BUILDING ON UNIX

Building Dyninst on UNIX platforms is a four step process that involves: unpacking the Dyninst source, installing any Dyninst dependencies, configuring paths in make.config.local, and running the build.

Dyninst’s source code is packaged in a tar.gz format. If your Dyninst source tarball is called srcDist_v5.0.tar.gz, then you could extract it with the command gunzip srcDist_v5.0.tar.gz ; tar –xvf srcDist_v5.0.tar. This will create two directories: dyninst and scripts.

Dyninst has several dependencies, depending on what platform you are using, which must be installed before Dyninst can be built. Note that for most of these packages Dyninst needs to be able to access the package’s include files, which means that development versions are required. If a version number is listed for a packaged, then there are known bugs that may affect Dyninst with earlier versions of the package.

	Linux/x86
	libdwarf-20100808

libelf

	Linux/x86-64
	libdwarf-20100808

libelf

	AIX/Power
	No external dependencies

	Linux/Power
	libdwarf-20100808

libelf

	
	

	
	

At the time of this writing the Linux packages could be found at:

· libdwarf - http://reality.sgiweb.org/davea/dwarf.html
· libelf - http://www.mr511.de/software/english.html
· libunwind - http://www.hpl.hp.com/research/linux/libunwind/download.php4
Once the dependencies for Dyninst have been installed, Dyninst must be configured to know where to find these packages. This is done through Dyninst’s dyninst/make.config.local file. This file must be written in GNU Makefile syntax and must specify directory locations for each dependency. Specifically, LIBDWARFDIR, LIBELFDIR and TCLTK_DIR variables must be set. LIBDWARFDIR should be set to the absolute path of libdwarf library where dwarf.h and libdwarf.h files reside. LIBELFDIR should be set to the absolute path where libelf.a and libelf.so files are located.

make.config.local can also be generated via autoconf. On most systems, configure with no arguments will generate a valid make.config.local. For more details, configure –help will provide a full list of configuration options.

The next thing is to set DYNINST_ROOT, PLATFORM, and LD_LIBRARY_PATH environment variables. DYNINST_ROOT should be set to path of the directory that contains dyninst and scripts subdirectories.

PLATFORM should be set to one of the following values depending upon what operating system you are running on:

i386-unknown-linux2.4
Linux 2.4/2.6 on an Intel x86 processor

rs6000-ibm-aix5.1

AIX Version 5.1

x86_64-unknown-linux2.4
Linux 2.4/2.6 on an AMD-64 processor

ppc64_linux

Linux 2.6 on a 64-bit PPC processor

ppc32_linux

Linux 2.6 on a 32-bit PPC processor

The LD_LIBRARY_PATH variable should be set in a way that it includes libdwarf home directory/lib and ${DYNINST_ROOT}/${PLATFORM}/lib directories.

Once make.config.local is set you are ready to build Dyninst. Change to the dyninst directory and execute the command make DyninstAPI. This will build Dyninst’s mutator library, the Dyninst runtime library, and Dyninst’s test suite. Successfully built binaries will be stored in a directory named after your platform at the same level as the dyninst directory.

BUILDING ON WINDOWS

Dyninst for Windows is built with Microsoft Visual Studio 2008 project and solution files. Building Dyninst for Windows is similar to UNIX in that it is a four step process: Unpack the DyninstAPI source code, install Dyninst’s package dependencies, configure Visual Studio to use the dependencies, and run the build system.

Dyninst source code is distributed as part of a tar.gz package. Most popular unzipping programs are capable of handling this format. Extracting the Dyninst tarball results in two directories: dyninst and scripts.

Dyninst for Windows depends on Microsoft’s Debugging Tools for Windows, which could be found at http://www.microsoft.com/whdc/devtools/debugging/default.mspx at the time of this writing. Download these tools and install them at an appropriate location. Make sure to do a custom install and install the SDK, which is not always installed by default. For the rest of this section, we will assume that the Debugging Tools are installed at c:\program files\Debugging Tools for Windows. If this is not the case, then adjust the following instruction appropriately.

Once the Debugging Tools are installed, Visual Studio must be configured to use them. We need to add the Debugging Tools include and library directories to Visual Studios search paths. In Visual Studio 2008 select Options… from the tools menu. Next select Projects and VC++ Directories from the pane on the left. You should see a list of directories that are sorted into categories such as ‘Executable files’, ‘Include files’, etc. The current category can be changed with a drop down box in the upper right hand side of the Dialog.

First, change to the ‘Library files’ category, and add an entry that points to C:\Program Files\Debugging Tools for Windows\sdk\lib\i386. Make sure that this entry is above Visual Studio’s default search paths.

Next, Change to the ‘Include files’ category and make a new entry in the list that points to C:\Program Files\Debugging Tools for Windows\sdk\inc. Also make sure that this entry is above Visual Studio’s default search paths. Some users have had a problem where Visual Studio cannot find the cvconst.h file. You may need to add the directory containing this file to the include search path. We have seen it installed at $(VCInstallDir)/../Visual Studio SDKs/DIA SDK/include, although you may need to search for it.

Once you have installed and configured the Debugging Tools for Windows you are ready to build Dyninst. First, you need to create the directories where Dyninst will install its completed build. From the dyninst directory you need to create the directories ../i386-unknown-nt4.0/bin and ../i386-unknown-nt4.0/lib. Next open the solution file dyninst/DyninstAPI.sln with Visual Studio. You can then build Dyninst by select ‘Build Solution’ from the build menu. This will build the Dyninst mutator library, the runtime library, and the test suite.

A
attachProcess · 13

B
BPatch_addrSpec_NP · 67

BPatch_arithExpr · 46

BPatch_basicBlockLoop · 58

BPatch_boolExpr · 47

BPatch_breakPointExpr · 47

BPatch_bytesAccessedExpr · 11, 47

BPatch_cblock · 60

BPatch_constExpr · 47

BPatch_countSpec_NP · 67

BPatch_effectiveAddressesExpr · 48

BPatch_flowGraph · 53

BPatch_funcCallExpr · 48

BPatch_function · 33

BPatch_ifExpr · 49

BPatch_image · 39

BPatch_memoryAccess · 66

BPatch_module · 43

Bpatch_nullExpr · 50

BPatch_opCode · 35

Bpatch_paramExpr · 49, 50

BPatch_point · 38

BPatch_retExpr · 46, 48, 49, 50

BPatch_sequence · 50

BPatch_Set · 64

BPatch_snippet · 46

BPatch_sourceBlock · 60

BPatch_sourceObj · 32

BPatch_tidExpr · 50

BPatch_type · 51

BPatch_variableExpr · 52

BPatch_Vector · 64

BPatchErrorCallback · 19, 20, 21, 22

BPatchErrorLevel · 19, 21, 28, 32

BPatchPostForkCallback · 20

BPatchThreadEventCallback · 20, 21

C
Class BPatch_basicBlock · 55, 56

continueExecution · 27

createArray · 17

createEnum · 17

createInstPointAtAddr · 40

createPointer · 18

createProcess · 13

createScalar · 17

createStruct · 18

createTypedef · 18

createUnion · 18

D
deleteSnippet · 24

detach · 26, 28

dominates · 57

dumpCore · 31

F
findFunction · 41, 43, 61

findPoint · 35

findType · 42

findVariable · 42

free · 23

funcJumpExpr · 48

G
getAddress · 38

getAllBasicBlocks · 53

getAllDominates · 57

getBaseAddr · 35, 53

getBlockNumber · 57

getByteCount_NP · 67

getCalledFunction · 38

getCallStack · 29, 30

getCblocks · 51

getCFG · 36

getComponents · 51, 53, 60

getConstituentType · 51

getContainedLoops · 59

getCost · 46

getCurrentSnippets · 39

getDataClass · 51

getEntryBasicBlock · 53

getExitBasicBlock · 53

getFP · 61

getFrameType · 61

getFunctions · 60

getHigh · 51

getImage · 22, 42, 43, 44

getImm · 67

getImmediateDominates · 57

getImmediateDominator · 57

getInheritedVariable · 27

getLanguage · 33

getLoopBasicBlocks · 59

getLoopHead · 59

getLoops · 53, 54

getLow · 51

getMangledName · 33, 34

getMemoryAccess · 39, 57

getModule · 34

getModuleName · 34

getModules · 40

getName · 33, 45, 52

getObjParent · 32

getParams · 34

getPC · 61

getPointType · 38

getProcedures · 40, 44

getReg · 67

getReturnType · 34

getSourceBlock · 57

getSourceFile · 60

getSourceLines · 60

getSourceObj · 32

getSources · 54, 56

getSrcType · 32

getStartAddr_NP · 66

getTargets · 56

getThreads · 13

getType · 46

getUniqueString · 45

I
insertSnippet · 24

isALoad_NP · 66

isAPrefetch_NP · 66

isAStore_NP · 66

isCompatible · 52

isInstrumentable · 34

isSharedLib · 34, 45

isStopped · 27

isTerminated · 27

L
libraryName · 34

M
malloc · 23

Memory Access Classes · 66

Memory Access Snippets · 11

O
oneTimeCode · 27, 29, 30, 31

P
pollForStatusChange · 14, 15

prefetchType_NP · 66

R
readValue · 52

registerDynamicLinkCallback · 22

registerErrorCallback · 19, 20

registerExecCallback · 20

registerExitCallback · 21

registerPostForkCallback · 21

registerPreForkCallback · 21

removeFunctionCall · 25

replaceFunction · 25

replaceFunctionCall · 26

S
setDebugParsing · 14

setInheritSnippets · 25

setMutationsActive · 28

setTrampRecursive · 14

setTypeChecking · 15

stopExecution · 27

stopSignal · 27

T
terminateExecution · 27

Type Checking · 67, 68

U
usesTrap_NP · 39

W
writeValue · 52

References TC "References"
1.
B. Buck and J. K. Hollingsworth, "An API for Runtime Code Patching," Journal of Supercomputing Applications (to appear), 2000.

2.
J. K. Hollingsworth and B. P. Miller, "Using Cost to Control Instrumentation Overhead," Theoretical Computer Science, 196(1-2), 1998, pp. 241-258.

3.
J. K. Hollingsworth, B. P. Miller, and J. Cargille, "Dynamic Program Instrumentation for Scalable Performance Tools," 1994 Scalable High-Performance Computing Conf., Knoxville, Tenn., pp. 841-850.

4.
J. K. Hollingsworth, B. P. Miller, M. J. R. Goncalves, O. Naim, Z. Xu, and L. Zheng, "MDL: A Language and Compiler for Dynamic Program Instrumentation," International Conference on Parallel Architectures and Compilation Techniques (PACT). Nov. 1997, San Francisco, pp. 201-212.

5.
J. R. Larus and E. Schnarr, "EEL: Machine-Independent Executable Editing," PLDI. June 18-21, 1995, La Jolla, CA, ACM, pp. 291-300.

� To generate more complex code, extra (initially un-called) subroutines can be linked into the application program, and calls to these subroutines can be inserted at runtime via this interface.

dyninstAPI

3/11/2011

dyninstAPI
06/25/97

