Paradyn Parallel Performance Tools

StackwalkerAPI
Programmer’s Guide

Release 1.1
December 2009

Paradyn Project
www.paradyn.org

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685

Computer Sciences Department
University of Maryland
College Park, MD 20742

bugs@dyninst.org

StackwalkerAPI Programmer’s Guide

12/7/09

Table Of Contents

I INErOAUCHION ...ttt es
2 ADSTIACHIONS ..ottt ettt ettt bttt ettt
2.1 Stackwalking INterfaceccocevcurecurecerinciriceeicescee e eeseene

2.2 Callback INErfacec.cuuiucueiiiiciiriccieieciet ettt

3 APT REEIEICE ..ttt ettt
3.1 Definitions and Basic TYPEScccvcrrrerreerneerreeineeinecrneeineessesessesessesessesessesesseaees

3.1.1 DEfINItIONS .cuoveieceeiiiecieiriccreireeictetseeecteesteeese et senene

3.1.2 BasiC TYPES ot

3.2 Namespace StackWalkerAPI ... seeees

3.3 Stackwalking INTErfaceccevicuririncciriiccieccctreecee e eeee
3.3.1 Class WaLKeT ..ottt

3.3.2 Class FIame ...t

3.4 Accessing Local Variables ...

3.5 Callback INterfaceccceurieuiuririeicirireccrrecc ettt

3.5.1 Default Implementationscccccevereerririneeueirineeieireeeeereeeeeseeseseeene

3.5.2 Class FrameStePPerccocvrrrrirnirinerereeeeeeeieiee ettt eeeens

3.5.3 Class StEPPEIGIOUP ...c.ceevreeueueuriereieirieeeteireeieieeseeseseeseesesseseesesessesesesesnens

3.5.4 Class ProcessStateccovnicieininecreinicceiceie e sensene

3.5.4.1 Class LIDIaryStatecccoeovveeeerenecrrinecrerrinecreieeecneeseeseseesesenenes

3.5.5 Class SymbOILOOKUDc.ccceuriueuicuieericiiciicineeeeiee e

4 Callback Interface Default Implementationscceoveeeevrurerieerririeieirineciesieeieseeeseeseenes
4.1 Debugger INErfacecoveeueiriricueirinicierccieeccre ettt seeeaeae
4.1.1 Class ProcDeDUGccoveuiiiieiiciicriciccieeeeeeseesese e

4.2 FrameSTEPPEIScccviriiiriiiiiiiciiietrtccte ettt
4.2.1 Class FrameFuncStePPercoovveeeeeieieieieieisrresseesesesceeesesee e

4.2.1.1 Class FrameFuncHelper ...

4.2.2 Class DebUGStEPPErccccoveveiiiiciriicieiceceeeece e

4.2.3 Class SigHandlerStepperoccccvvecueuriniceeinirecieiniceereseeeseseeseseeseenes

424 Class BottomOfStackStEPPErccccvvureeuerriricieirineeieirieereseeseieeseeneseeene

StackwalkerAPI Programmer’s Guide December 2007

Release 1.1

Page 2

1 INTRODUCTION

This document describes StackwalkerAPI, an API and library for walking a call stack. The
call stack (also known as the run-time stack) is a stack found in a process that contains the cur-
rently active stack frames. Each stack frame is a record of an executing function (or function-like
object such as a signal handler or system call). StackwalkerAPI provides an API that allows users
to collect a call stack (known asalking the call stack) and access information about its stack
frames. The current implementation supports Linux/x86, Linux/AMD-64, Linux/Power, Blue-
Genel/L, and BlueGene/P.

StackwalkerAPI is designed to be both easy-to-use and easy-to-extend. Users can easily use
StackwalkerAPI to walk a call stack without needing to understand how call stacks are laid out on
their platform. Users can easily extend StackwalkerAPI to work with new platforms and types of
stack frames by implementing a set of callbacks that can be plugged into StackwalkerAPI.

StackwalkerAPI’'s ease-of-use comes from it providing a platform independent interface that
allows users to access detailed information about the call stack. For example, the following C++
code-snippet is all that is needed to walk and print the call stack of the currently running thread.

std::vector<Frame> stackwalk;
string s;

Walker *walker = Walker::newWalker();
walker->walkStack(stackwalk);
for (unsigned i=0; i<stackwalk.size(); i++) {
stackwalk[i].getName(s);
cout << “Found function “ << s << end|;

}

StackwalkerAPI can walk a call stack in the same address space as where the StackwalkerAPI
library lives (known as dirst party stackwalk), or it can walk a call stack in another process
(known as ahird party stackwalk). To change the above example to perform a third party stack-
walk, we would only need to pass a process identifiesv@valker , €.9:

Walker *walker = Walker::newWalker(pid);

Our other design goal with StackwalkerAPI is to make it easy-to-extend. The mechanics of
how to walk through a stack frame can vary between different platforms, and even between differ-
ent types of stack frames on the same platform. In addition, different platforms may have different
mechanisms for reading the data in a call stack or looking up symbolic names that go with a stack
frame. StackwalkerAPI provides a callback interface for plugging in mechanisms for handling
new systems and types of stack frames. The callback interface can be used to port Stackwalker-
API to new platforms, extend StackwalkerAPI support on existing systems, or more easily inte-
grate StackwalkerAPI into existing tools. There are callbacks for the following StackwalkerAPI
operations:

» Walk through a stack frameStackwalkerAPI1 will find different types of stack frames on dif-
ferent platforms and even within the same platform. For example, on Linux/x86 the stack
frame generated by a typical function looks different from the stack frame generated by a sig-
nal handler. The callback interface can be used to register a handler with StackwalkerAPI that
knows how to walk through a new type of stack frame. For example, the DyninstAPI tool reg-
isters an object with StackwalkerAPI that describes how to walk through the stack frames gen-

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 3

erated by its instrumentation.

» Access process datdo walk a call stack, StackwalkerAPI needs to be able to read a process’
memory and registers. When doing a first party stackwalk, this is done by directly reading
them from the current address space. When doing a third party stackwalk, this is done by read-
ing them using a debugger interface. The callback interface can be used to register new objects
for accessing process data. This can be used, for example, to port StackwalkerAPI to a new
operating system or make it work with a new debugger interface.

» Look up symbolic nameswWhen StackwalkerAPI finds a stack frame, it gets an address that
points into the piece of code that created that stack frame. This address is not necessarily
meaningful to a user, so StackwalkerAPI attempts to associate the address with a symbolic
name. The callback interface can be used to register an object with StackwalkerAPI that per-
forms an address to name mapping, allowing StackwalkerAPI to associate names with stack
frames.

2 ABSTRACTIONS

StackwalkerAPI contains two interfaces: the Stackwalking Interface and the Callback Inter-
face. The stackwalking interface is used to walk the call stack, query information about stack
frames, and collect basic information about threads. The Callback Interface is used to provide
custom mechanisms for walking a call stack. Users who operate in one of StackwalkerAPI’s stan-
dard configurations do not need to use the Callback Interface.

Figure 1 shows the ownership hierarchy for StackwalkerAPI’s classes. Ownership is a “con-
tains” relationship; if one class owns another, then instances of the owner class maintain an exclu-
sive instance of the other. For example, in Figure 1 the @agdker instance contains exactly one
instance of aProcessState object. No other instance ofalker uses that instance afro-
cessState

This remainder of this section briefly describes the six classes that make up StackwalkerAPI’s
two interfaces. For more details, see the class descriptions in Section 3.

Walker

(SymbolLooku@(ProcessSta@ (StepperGroupD(Frame >
!2
(FrameStepper)

Als aclass

Each instance of class A owns one instange

C A %(B) ofclass B

)1:N5(Each instance of class A owns multiple
(A B) instances of class B

LEGEND

Figure 1: Object Ownership

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 4

2.1 Stackwalking Interface

val ker - Thewalker class is the top-level class used for collecting stackwalks. It provides a
simple interface for requesting a stackwalk. E&a¢diker object is associated with one pro-
cess, but may walk the call stacks of multiple threads within that process.

Frane - A call stack is returned as a vector ame objects, where eadframe object repre-

sents a stack frame. It can provide information about the stack frame and basic information
about the function, signal handler or other mechanism that created it. Users can request infor-
mation such as the symbolic name associated witlrithee object, and values of its saved
registers.

2.2 Callback Interface

StackwalkerAPI includes default implementations of the Callback Interface on each of its sup-

ported platforms. These default implementations allow StackwalkerAPI to work “out of the box”
in a standard configuration on each platform. Users can port StackwalkerAPI to new platforms or
customize its call stack walking behavior by implementing their own versions of the classes in the
Callback Interface.

FraneSt epper - A FrameStepper 0Object describes how to walk through a single type of stack
frame. Users can provide an implementation of this interface that allows StackwalkerAPI to
walk through new types of stack frames. For example, the DyninstAPI uses this interface to
extend StackwalkerAPI to allow it to walk through stack frames created by instrumentation
code.

St epper Group - A StepperGroup IS a collection ofFrameStepper 0Objects and criteria that
describes when to use each typeafmeStepper . These criteria are based on simple address
ranges in the code space of the target process. In the above example with DyninstAPI, it
would be the job of thestepperGroup to identify a stack frame as belonging to instrumenta-
tion code and use the instrumentatfemeStepper to walk through it.

ProcessSt at e - A ProcessState interface describes how to access data in the target process.
To walk a call stack, StackwalkerAPI needs to access both registers and memory in the target
process;ProcessState provides an interface that StackwalkerAPI can use to access that
information. StackwalkerAPI includes two default implementatiorotessState for each
platform: one to collect a first party stackwalk in the current process, and one that uses a
debugger interface to collect a third party stackwalk in another process.

Synmbol Lookup - The SymbolLookup interface is used to associate a symbolic name with a
stack frame. A stackwalk returns a collection of addresses in the code space of a binary. This
class uses the binary’s symbol table to map those addresses into symbolic names. A default
implementation of this class, which uses the DynSymtab package, is provided with Stack-
walkerAPI. A user could, for example, use this interface to allow StackwalkerAPI to use libelf

to look up symbol names instead.

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 5

3 APl REFERENCE

This section describes the StackwalkerAPl API. It is divided into three sub-sections: a
description of the definitions and basic types used by this API, a description of the interface for
collecting stackwalks, and a description of the callback interface.

3.1 Definitions and Basic Types

The following definitions and basic types are referenced throughout the rest of this manual.

3.1.1 Definitions

» Stack Frame A stack frame is a record of a function (or function-like object) invocation.
When a function is executed, it may create a frame on the call stack. StackwalkerAPI finds
stack frames and returns a description of them when it walks a call stack.

The following three definitions deal with stack frames.

» Bottom of the StackThe bottom of the stack is the earliest stack frame in a call stack, usually
a thread’s initial function. The stack grows from bottom to the top.

» Top of the Stack The top of the stack is the most recent stack frame in a call stack. The stack
frame at the top of the stack is for the currently executing function.

» Frame Object A Frame object is StackwalkerAPI’s representation of a stack framerafne
object is a snapshot of a stack frame at a specific point in time. Even if a stack frame changes
as a process executessrame object will remain the same. Eaéhame object is represented
by an instance of therame class.

The following three definitions deal with fields ifame object.

» SP (Stack Pointer) A Frame object's SP member points to the top of its stack frame (a stack
frame grows from bottom to top, similar to a call stack). THieme object for the top of the
stack has a SP that is equal to the value in the stack pointer register at the tirranthe
object was created. Thrame object for any other stack frame has a SP that is equal to the top
address in the stack frame.

* FP (Frame Pointer) A Frame object's FP member points to the beginning (or bottom) of its
stack frame. The Frame object for the top of the stack has a FP that is equal to the value in the
frame pointer register at the time theame object was created. Thrame object for any other
stack frame has a FP that is equal to the beginning of the stack frame.

* RA (Return Address)A Frame object’s RA member points to the location in the code space
where control will resume when the function that created the stack frame resumes. The Frame
object for the top of the stack has a RA that is equal to the value in the program counter regis-
ter at the time th&rame object was created. Ttrame object for any other stack frame has a
RA that is found when walking a call stack.

Figure 2 shows the relationship between application code, stack framesaatdobjects. In the

figure, the source code on the left has run throughnihi@ andfoo functions, and into thear
function. It has created the call stack in the center, which is shown as a sequence of words grow-
ing down. The current values of the processor registers, while executizg jrare shown below

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 6

the call stack. When StackwalkerAPI walks the call stack, it createsrtihee objects shown on
the right. EachFrame object corresponds to one of the stack frames found in the call stack or
application registers.

The call stack in Figure 2 is similar to one that would be found on the x86 architecture. Details
about how the call stack is laid out may be different on other architectures, but the meanings of
the FP, SP, and RA fields in the Frame objects will remain the same.

main’s _
void main() { Cal | Stack Frame Object
int a; C . FP
foo(0); a %//RA
mains RA < — ~

main’s FP foo’s _
void foo(int b) { C Nrame Object
int C, ' I
bar() foo'sRA |< ~ _FP

foo’s FP %\R A
d SP
void bar() { Regi sters bar's
int d; Frame Pointer <- ~ _ Frame Object
while(1); Program Counter |< -~ B
é N

~FP
} Stack Pointer <> RA

TSP

A—B A contains B’s address
A--->B A contains the contents of B

LEGEND

Figure 2: Stack Frame and Frame Object Layout

The following four definitions deal with processes involved in StackwalkerAPI.
» Target Process The process from which StackwalkerAPI is collecting stackwalks.
* Host Process The process in which StackwalkerAPI code is currently running.

» First Party Stackwallk StackwalkerAPI collects first party stackwalk when it walks a call
stack in the same address space it is running in, i.e. the target process is the same as the host
process.

» Third Party Stackwalk StackwalkerAPI collects third party stackwalk when it walks the call
stack in a different address space from the one it is running in, i.e. the target process is differ-
ent from the host process. A third party stackwalk is usually done through a debugger inter-
face.

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 7

3.1.2 Basic Types

typedef unsigned long Addr ess

An integer value capable of holding an address in the target process. Address variables should
not, and in many cases cannot, be used directly as a pointer. It may refer to an address in a dif-
ferent process, and it may not directly match the target process’ pointer representation.
Address IS guaranteed to be at least large enough to hold an address in a target process, but
may be larger.

typedef ... Dyninst::PID

A handle for identifying a process. On UNIX systems this will be an integer representing a
PID. On Windows this will be BANDLEoODject.

typedef ... Dyninst:: THR I D
A handle for identifying a thread. On Linux based platforms this is an integer referring to a
TID (Thread Identifier). On Solaris and AlX the integer refers to a LWP (Light Weight Pro-
cess). On Windows it is@ANDLEObject.

typedef ... Dyni nst : : MachRegi st er

A value that names a machine register.

typedef unsigned long Dyni nst : : MachRegi st er Val
A value that holds the contents of a registerDgninst::MachRegister names a specific
register, while ayninst::MachRegisterVal represents the value that may be in that regis-
ter.

3.2 Namespace StackwalkerAPI

The classes in Section 3.3 and Section 3.5 fall under the C++ namespace::Stack-
walker . To access them, a user should refer to them usin@yhiest::Stackwalker:: prefix,
€.g. Dyninst::Stackwalker::Walker . Alternatively, a user can add the C+sing keyword
above any references to StackwalkerAPI objects, &igg namespace Dyninst and using
namespace Stackwalker

3.3 Stackwalking Interface

This section describes StackwalkerAPI’s interface for walking a call stack. This interface is
sufficient for walking call stacks on all the systems and variations covered by our default call-
backs.

To collect a stackwalk, first create new Walker object associated with the target process via
Walker::newWalker()

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 8

or
Walker::newWalker(Dyninst::PID pid).

Once awalker object has been created, a call stack can be walked with the
Walker::walkStack

method. The new stack walk is returned as a vectpraofe objects.

3.3.1 Class Walker

Defi ned | n: walker.h

Thewalker class allows users to walk call stacks and query basic information about threads
in a target process. The user should createater object for each process from which they are
walking call stacks. Eactvalker object is associated with one process, but may walk call stacks
on multiple threads within that process. Thelker class allows users to query for the threads
available for walking, and it allows you to specify a particular thread whose call stack should be
walked. Stackwalks are returned as a vectarafie objects.

Eachwalker object contains three objects:
* ProcessState
» StepperGroup
» SymbolLookup
These objects are part of the Callback Interface and can be used to customize Stackwalker-

API. TheProcessState object tellswalker how to access data in the target process, and it deter-
mines whether thisvalker collects first party or third party stackwalkealker will pick an

appropriate defaulProcessState object based on which factory metHothe users calls. The
StepperGroup Object is used to customize how thalker steps through stack frames. Tagn-
bolLookup object is used to customize how StackwalkerAPI looks up symbolic names of the
function or object that created a stack frame.

static Walker *newWalker()
This factory method creates a newlker object that performs first party stackwalks.

The newwalker object uses the defaustepperGroup andSymbolLookup callbacks for the
current platform, and it uses therocSelf callback for its ProcessState oObject. See
Section 3.5.1 for more information about defaults in the Callback Interface.

This method returnsiULL if it was unable to create a newalker object. The newwalker
object was created with thew operator, and should be deallocated withdbiete operator
when it is no longer needed.

static Walker *newWalker(Dyninst::PID pid)

1. “Factory method” is a object-oriented design pattern term that describes a method that is responsible for
constructing new objects. StackwalkerAPI uses factory methods to allow it to return an error when con-
structing an object. Thé&/alker::newWalker methods are the factory methods forWialker
class.

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 9

This factory method creates a n&velker object that performs third party stackwalks, on the
process identified byid .

The newwalker object uses the defauttepperGroup andSymbolLookup callbacks for the
current platform, and it uses therocSelf callback for its ProcessState object. See
Section 3.5.1 for more information about defaults in the Callback Interface.

This method returnsiULL if it was unable to create a newalker object. The newwalker
object was created with thew operator, and should be deallocated with dblete operator
when it is no longer needed.

static Walker *newWalker(ProcessState *proc,
StepperGroup *steppergroup = NULL,
SymbolLookup *lookup = NULL)

This factory method creates a nemalker object that walks call stacks on the giveioc
object. CustonstepperGroup andSymbolLookup can be given with thateppergroup and
lookup parameters. If theteppergroup Or lookup parameters arfULL, then Stackwalker-
API will create awalker object that uses a default callbacks for theLL parameter, as
described in Section 3.5.1.

It is an error to passiULL in theproc parameterproc is used to determine whether to collect
first party or third party stackwalks and, in the case of third party stackwalks, identify the tar-
get process.

This method returnsiULL if there was an error creating the nemalker object. The new
Walker oObject was created with thew operator, and should be deallocated with dbiete
operator when it is no longer needed.

bool walkStack(std::vector<Frame> &stackwalk, Dyninst::THR_ID thread =
NULL_THR_ID)

This method walks a call stack in the process associated withwtilier . The call stack is
returned as a vector Gfame objects instackwalk . The top of the stack is returned in index

of stackwalk , and the bottom of the stack is returned in indaskwalk.size()-1

A stackwalk can be taken on a specific thread by passing a value itvéhe parameter. If
thread has the valu@&luULL_THR_ID, then a default thread will be chosen. When doing a third
party stackwalk, the default thread will be the process’ initial thread. When doing a first party
stackwalk, the default thread will be the thread that calégbtack

This method returngue on success arfdise on failure.

bool walkStackFromFrame(std::vector<Frame> &stackwalk, const Frame &frame)

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 10

This method walks a call stack starting from the given stack fraree . The call stack will
be output in thestackwalk vector, withframe stored in index of stackwalk and the bot-
tom of the stack stored in indexckwalk.size()-1.
This method returngue on success arfdise on failure.

bool walkSingleFrame(const Frame &in, Frame &out)
This methods walks through single frarme, Parametesut will be set tan ’s caller frame.
This method returngue on success arfdise on error.

bool getinitialFrame(Frame &frame, Dyninst:: THR_ID thread = NULL_THR_ID)

This method returns thierame object on the top of the stack in parameteihe . Underwalk-
Stack, frame would be the one returned in index O of ¢hkeekwalk vector.

A stack frame can be found on a specific thread by passing a valuetindlie parameter. If
thread has the value&luLL_THR_ID, then a default thread will be chosen. When doing a third
party stackwalk, the default thread will be the process’ initial thread. When doing a first party
stackwalk, the default thread will be the thread that cghesitialFrame
This method returngue on success arfdise on failure.

bool getAvailableThreads(std::vector<Dyninst:: THR_ID> &threads)
This method returns a vector of threads in the target process upon which StackwalkerAPI can
walk call stacks. The threads are returned in output paranesads . Note that this method
may return a subset of the actual threads in the process. For example, when walking call stacks
on the current process, it is only legal to walk the call stack on the currently running thread. In
this casegetAvailableThreads returns a vector containing only the current thread.
This method returngue on success arfdise on failure.

ProcessState *getProcessState() const
This method returns ttmocessState object associated with thigalker .

StepperGroup *getStepperGroup() const
This method returns th&epperGroup 0bject associated with thigalker .

SymbolLookup *getSymbolLookup() const

This method returns tr&/mbolLookup 0bject associated with thigalker .

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 11

3.3.2 Class Frame

Def i ned I n: frame.h

The walker class returns a call stack as a vector mame objects. As described in
Section 3.3.1, eachrame object represents a stack frame, and contains a return address (RA),
stack pointer (SP) and frame pointer (FP). For each of these values, optionally, it stores the loca-
tion where the values were found. Eaehme object may also be augmented with symbol infor-
mation giving a function name (or a symbolic name, in the case of non-functions) for the object
that created the stack frame.

TheFrame class provides a set of functionge(RALocation , getSPLocation ~ andgetFPLo-
cation) that return the location in the target process’ memory or registers where the RA, SP, or
FP were found. These functions may be used to modify the stack. For example, the DyninstAPI
uses these functions to change return addresses on the stack when it relocates code. The RA, SP,
and FP may be found in a register or in a memory address on a call stack.

static Frame *newFrame(regvalue_t ra, regvalue_t sp, regvalue_t fp,
Walker *walker)

This method creates a newame object and sets the mandatory data members: RA, SP and
FP. The newrame object is associated with thelker .

The optional location fields can be set by the methods below.

The newFrame object is created with theew operator, and the user should be deallocate it
with thedelete operator when it is no longer needed.

regvalue_t getRA() const

This method returns thisame object’s return address.
void setRA(regvalue_t val)

This method sets thizame object’s return address tal .
regvalue_t getSP() const

This method returns thisame object’s stack pointer.
void setSP(regvalue_t val)

This method sets thisame object’s stack pointer teal .
regvalue_t getFP() const

This method returns thisame object’s frame pointer.

void setFP(regvalue_t val)

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 12

This method sets thizame object’s frame pointer teal .

typedef enum { loc_address, loc_register, loc_unknown } storage_t;
typedef struct {
union {
address addr;
Dyninst::MachRegister reg;
} val;
storage_t location;
} location_t;

Thelocation_t structure is used by thgetRALocation , getSPLocation , andgetFPLoca-

tion methods to describe where in the processame object’s RA, SP, or FP were found.
When walking a call stack these values may be found in registers or memory. If they were
found in memory, théocation field of location_t ~ will containloc_address and theaddr

field will contain the address where it was found. If they were found in a registeodhe

tion field of location_t will containloc_register and thereg field will refer to the regis-

ter where it was found. If thisrame object was not created by a stackwalk (using the
newframe factory method, for example), and has not had a set location method called, then
location will containoc_unknown .

location_t getRALocation() const

This method returnsilacation_t describing where the RA was found.
void setRALocation(location_t newval)

This method sets the location of where the RA was founevizal .
location_t getSPLocation() const

This method returnslacation_t describing where the SP was found.
void setSPLocation(location_t newval)

This method sets the location of where the SP was foumshtal .
location_t getFPLocation() const

This method returnslacation_t describing where the FP was found.
void setFPLocation(location_t newval)

This method sets the location of where the FP was founshi@l .

bool getName(std::string &str)

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 13

This method returns a stack frame’s symbolic name. Most stack frames are created by func-
tions, or function-like objects such as signal handlers or system calls. This method returns the
name of the object that created this stack frame. For stack frames create by functions, this
symbolic name will be the function name. A symbolic name may not always be available for
all Frame objects, such as in cases of stripped binaries or special stack frames types.

The function name is obtained by using thisme object’'s RA to call theSsymbolLookup call-

back. By default StackwalkerAPI will attempt to use the DynSymtab package to look up sym-
bol names in binaries. If DynSymtab is not found, and no alternaiweolLookup object is
present, then this method will return an error.

This method returngue 0On success arfdise on error.
bool getObject(void* &obj)

In addition to returning a symbolic name (sg@Name) the SymbolLookup interface allows
for an opaque object, #id* , to be associated with erame object. The contents of this
void* is determined by theymbolLookup implementation. Under the default implementation
that uses DynSymtab, theid* points to abyn_Symbol object orNULLif no symbol is found.

This method returnsue on success arfdise on error.
bool getStepper(FrameStepper* &stepper) const

This method returns therameStepper object that was used to construct tRiame object in
thestepper output parameter. This method retummas on success arfdise on error.

bool getLibOffset(std::string &lib, Dyninst::Offset &offset, void* &symtab)

This method returns the DSO (a library or executable) and an offset into that DSO that points
to the location within that DSO where this frame was creailied.is the path to the library

that was loaded, andffset is the offset into that library. The return value of thgntab
parameter is dependent on tBgmbolLookup implementation--by default it will contain a
pointer to aDyninst::Symtab ~ object for this DSO. See thgeymtabAPIProgrammes Guide

for more information on usinQyninst:Symtab ~ objects.

3.4 Accessing Local Variables

Def i ned | n:local_var.h

StackwalkerAPI can be used to access local variables found in the frames of a call stack. The
StackwalkerAPI interface for accessing the values of local variables is closely tied to the Sym-
tabAPI interface for collecting information about local variables--SymtabAPI handles for func-
tions, local variables, and types are part of this interface.

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 14

Given an initial handle to a SymtabAPRlnction object, SymtabAPI can look up local vari-
ables contained in that function and the types of those local variables. S&gritabAPIPro-
grammers Guide for more information.

Dyninst::SymtabAPI::Function *getFunctionForFrame(Frame f)

This method returns a SymtabAPI function handle for the function that created the call stack
frame,f.

const int glvv_Success = 0;
const int glvv_EParam = -1;
const int glvv_EOutOfScope = -2;
const int glvv_EBufferSize = -3;
const int glvv_EUnknown = -4;

int getLocalVariableValue(Dyninst::SymtabAPI::localVar *var,
std::vector<Frame> &swalk,
unsigned frame,
void *out_buffer,
unsigned out_buffer_size)

Given a local variable and a stack frame from a call stack, this function returns the value of the
variable in that frame. The local variable is specified by the SymtabAPI variable olect,
swalk is a call stack that was collected via StackwalkerAPI, @ade specifies an index into

that call stack that contains the local variable. The value of the variable is stored in
out_buffer and the size afut_buffer ~ should be specified ut_buffer_size

A local variable only has a limited scope with-in a target process’ execution. StackwalkerAPI
cannot guarantee that it can collect the correct return value of a local variable from a call stack
if the target process is continued after the call stack is collected.

Finding and collecting the values of local variables is dependent on debugging information
being present in a target process’ binary. Not all binaries contain debugging information, and
in some cases, such as for binaries built with high compiler optimization levels, that debug-
ging information may be incorrect.

getLocalVariableValue will return on of the following values:

* glw_Success - getLocalVariableValue was able to correctly read the value of the given vari-
able.

* glw_EParam - An error occurred, an incorrect parameter was specifieth¢ was larger
thanswalk.size() , var was not a variable in the function specified by frame, ...).

» glw_EOutOfScope - An error occurred, the specified variable exists in the function but isn’t
live at the current execution point.

* glvw_EBufferSize - An error occurred, the variable’s value does not fit inside out_buffer.
* glw_EUnknown - An unknown error occurred. It is most likely that the local variable was

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 15

optimized away or debugging information about the variable was incorrect.

3.5 Callback Interface

This subsection describes the Callback Interface for StackwalkerAPI. The Callback Interface
is primarily used to port StackwalkerAPI to new platforms, extend support for new types of stack
frames, or integrate StackwalkerAPI into existing tools.

The classes in this subsection are interfaces, they cannot be instantiated. To create a new
implementation of one of these interfaces, create a new class that inherits from the callback class
and implement the necessary methods. To use aPn@wssState , StepperGroup , Or Symbol-

Lookup class with StackwalkerAPI, create a new instance of the class and register it with a new
Walker oObject using the

Walker::newWalker(ProcessState *, StepperGroup *, SymbolLookup *)

factory method (see Section 3.3.1). To use a ReameStepper class with StackwalkerAPI, cre-
ate a new instance of the class and register it with a StepperGroup using the

StepperGroup::addStepper(FrameStepper *)

method (see Section 3.5.3).

Some of the classes in the Callback Interface have methods with default implementations. A
new class that inherits from a Callback Interface can optionally implement these methods, but it is
not required. If a method requires implementation, it is written as a C++ pure virtual method
(virtual funcName() = 0). A method with a default implementation is written as a C++ virtual
method Yirtual funcName()).

3.5.1 Default Implementations

The classes described in the Callback Interface are C++ abstract classes, or interfaces. They
cannot be instantiated. For each of these classes StackwalkerAPI provides one or more default
implementations on each platform. These default implementations are classes that inherit from the
abstract classes described in the Callback Interface. If a user creatéiea object without pro-
viding their ownFrameStepper , ProcessState , andSymbolLookup o0bjects, then Stackwalker-

API will use the default implementations listed in Table 1.

StepperGroup ProcessState SymbolLookup FrameStepper

Linux/x86 1.AddrRange 1.ProcSelf 1.SwkSymtab 1.FrameFuncStepper
Linux/x86_64 2.ProcDebug 2.SigHandlerStepper
3.DebugStepper
4.StepperWanderer
5.BottomOfStackStepper

Linux/PPC 1.AddrRange 1|ProcSelf 1.SwkSymtab 1.FrameFuncStepper
2.ProcDebug 2.SigHandlerStepper
BlueGene 1.AddrRange 1.ProcDebug 1.$wkSymtab 1.FrameFuncStepper

1. Callback Interface Defaults

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 16

3.5.2 Class FrameStepper

Def i ned | n: framestepper.h

TheFrameStepper class is an interface that tells StackwalkerAPI how to walk through a spe-
cific type of stack frame. There may be many different ways of walking through a stack frame on
a platform, e.g, on Linux/x86 there are different mechanisms for walking through system calls,
signal handlers, regular functions, and frameless functions. A sirgteeStepper describes
how to walk through one of these types of stack frames.

A user can create their owRrameStepper classes that tell StackwalkerAPI how to walk
through new types of stack frames. A néveameStepper 0bject must be added toSaepper-
Group before it can be used.

In addition to walking through individual stack framesFameStepper tells its Stepper-
Group when it can be used. TheameStepper registers address ranges that cover objects in the
target process’ code space (such as functions). These address ranges should contain the objects
that will create stack frames through which theameStepper can walk. If multipleFrameStep-
per objects have overlapping address ranges, then a priority value is used to determine which
FrameStepper should be attempted first.

FrameStepper IS an interface class; it cannot be instantiated. Users who want to develop new
FrameStepper 0bjects should inherit from this class and implement the below virtual functions.

typedef enum { gcf_success,
gcf_stackbottom,
gcf_not_me,
gcf_error } gcframe_ret _t

virtual gcframe_ret_t getCallerFrame(const Frame &in, Frame &out) =0

This method walks through a single stack frame and generatesna object that represents
the caller’s stack frame. Parameterwill be a Frame object that thissrameStepper is capa-

ble of walking through. Parameteat is an output parameter that this method should set to
theFrame object that calleth .

There may be multiple ways of walking through a different types of stack frames. Each
FrameStepper class should be able to walk through a type of stack frame. For example, on
x86 oneFrameStepper could be used to walk through stack frames generated by ABI-com-
pliant functions;out 's FP and RA are found by reading froim’s FP, andout 's SP is set to

the word belowin 's FP. A differentFrameStepper might be used to walk through stack
frames created by functions that have optimized away their FP. In thisicasey have a FP

that does not poindut 's FP and RA. TherameStepper will need to use other mechanisms

to discover out’s FP or RA; perhaps themeStepper searches through the stack for the RA

or performs analysis on the function that created the stack frame.

If getCallerFrame successfully walks through , it is required to set the following parame-
ters inout . See Section 3.3.2 for more details on the values that can be se#rie abject:

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 17

* Return Address (RA)The RA should be set with tifeame::setRA method.
» Stack Pointer (SP) The SP should be set with theme::setSP method.
* Frame Pointer (FP)} The FP should be set with theme::setFP method

Optionally,getCallerFrame ~ can also set any of following parametersun:

* Return Address Location (RALocation) The RALocation should be set with the
Frame::setRALocation() method.

e Stack Pointer Location (SPLocation) The SPLocation should be set with the
Frame::setRALocation() method.

» Frame Pointer Location (FPLocationr)The FPLocation should be set with theme::set-
FPLocation() method.

If a location field in out is not set, then the appropriaterame::getRALocation
Frame::getSPLocation Or Frame::getFPLocation method will returnoc_unknown .

getCallerFrame should returrgcf_success if it successfully walks througim and creates
anout Frame object. It should retur@cf_stackbottom if in is the bottom of the stack and
there are no stack frames below it. It should retggihnot_me if in is not the correct type of
stack frame for thisframeStepper to walk through. StackwalkerAPI will then attempt to
locate anotheFrameStepper to handlen or abort the stackwalk. It should retugtr_error

if there was an error and the stack walk should be aborted.

virtual void registerStepperGroup(StepperGroup &steppergroup)

This method is used to notify erameStepper when StackwalkerAPI adds it toSaepper-
Group . TheStepperGroup to which thisFrameStepper is being added is passed in parameter
steppergroup . This method can be used to initialize themeStepper (in addition to any
FrameStepper constructor).

virtual unsigned getPriority() = 0

This method is used by th&epperGroup to decide whictFrameStepper to use if multiple
FrameStepper 0bjects are registered over the same address rangadgs#iressRanges in

Section 3.5.3 for more information about address ranges). This method returns an integer rep-
resenting a priority level, the lower the number the higher the priority.

The defaultFrameStepper 0bjects provided by StackwalkerAPI all return priorities between
0x1000 and0x2000 . If two FrameStepper 0bjects have an overlapping address range, and
they have the same priority, then the order in which they are used is undefined.

3.5.3 Class StepperGroup

Def i ned | n: steppergroup.h

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 18

The StepperGroup class contains a collection dframeStepper oObjects. TheStepper-
Group’s primary job is to decide whiclFrameStepper should be used to walk through a stack
frame given a return address. The defaitpperGroup keeps a set of address ranges for each
FrameStepper . If multiple FrameStepper 0bjects overlap an address, then the defauliper-

Group Will use a priority system to decide.

StepperGroup provides both an interface and a default implementation of that interface.
Users who want to customize tiseepperGroup should inherit from this class and re-implement
any of the below virtual functions.

virtual StepperGroup(Walker *walker)
This factory constructor creates a n&apperGroup Object associated withalker .
virtual bool addStepper(FrameStepper *stepper)

This method adds a newameStepper to this StepperGroup . The newly addedtepper
will be tracked by thisstepperGroup , and it will be considered for use when walking through
stack frames.

This method returns true if it successfully addedrthmeStepper , and false on error.

virtual bool addAddressRanges(
const std::vector<std::pair<Address, Address> >&ranges,
const FrameStepper *stepper) =0

This method associates a set of address rangeggs , with a FrameStepper , stepper .
These address ranges contain objects in the process’ code space that create stack frames that
stepper can walk through.

The defaultstepperGroup will use stepper to walk through aFrame object (by returning it
from findStepperForAddr) if the Frame object’s RA falls within a range registered by this

method. A Frame object, frame, falls within a range, range[i] , |if

rangeli].first framesgetRA() rangeli].second . If multiple FrameStepper
objects have overlapping ranges, then the defawliperGroup will use the one with the
highest priority first (seErameStepper::getPriority in Section 3.5.2).

For example, suppose thsameStepper was designed to walk through a signal handler
frame on Linux/x86. During initialization therameStepper inspects the target process’ vsy-

scall pagé and finds that signal handlers will appear on the call stack with a RA between
Oxffffle000 andoxffffe400 . It then registers this range with if8epperGroup usingadd-
AddressRanges . If the StepperGroup encounters an RA in this range, it then uses the signal
handlerFrameStepper to walk through it.

2. The vsyscall page is a small shared object that is loaded by the kernel into every process’ address space. It
is part of Linux's mechanism for quickly transferring control between the kernel and user space. It also
provides information about how to stack walk through system calls and signal handlers.

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 19

Suppose anoth&rameStepper was designed to walk through regular stack frames created by
ABI-compliant functions. ThigrameStepper Wwill be used as a general catch-all if no other
FrameStepper can walk through @&rame object. TheFrameStepper can register itself with

an address range that spans the whole address space, and a lower priority than the signal han-
dler FrameStepper . The StepperGroup will then use the signal handl@rameStepper to

step through signal handlers, and #hisneStepper to step through any otherame object.

This method returngue on success arfdise if there is an error.

virtual bool removeAddressRanges(
const std::vector<std::pair<Address, Address > > &ranges,
const FrameStepper *stepper) =0

This method removes ErameStepper 's address range from stepperGroup . SeeaddAd-
dressRange for more details on hovtepperGroup andFrameStepper oObjects use address
ranges. The address ranges specifiedrdbges will be deleted fromstepper ’'s address
ranges. For example, if the address rangmo00 to 0x2000 was registered to BrameStep-

per namedfoo , and thenremoveAddressRanges was used to remove the address range
0x1500 to 0x1600 out of foo , thenfoo would have two address ranges associated with it:
0x1000 t00x1500 andox1600 to 0x2000 .

This function returns true on success and false on error.

virtual bool findStepperForAddr(Address addr, FrameStepper* &out,
const FrameStepper *last_tried = NULL)

Given an address that points into a function (or function-like object)r , this method
decides whichrrameStepper should be used to walk through the stack frame created by the
function at that address. A pointer to themeStepper Wwill be returned in parameteat .

It may be possible that therameStepper this method decides on is unable to walk through
the stack frame (it returngf_not_me from FrameStepper::getCallerFrame). In this case
StackwalkerAPI will callfindStepperForAddr again with theast_tried parameter set to
the failedFrameStepper . findStepperForAddr should then find anothéframeStepper to
use. Parametedst_tried will be set toNULL the first timegetStepperToUse is called for a
stack frame.

The default version of this method uses address ranges to decide m#nieiStepper to use.

The address ranges are contained within the process’ code space, and map a piece of the code
space to a FrameStepper that can walk through stack frames created in that code range. If mul-
tiple FrameStepper 0Objects share the same range, then the one with the highest priority will

be tried first.

This method returngue on success arfdise on failure.

Walker *getWalker() const

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 20

This method returns th&alker object that associated with tte&pperGroup

3.5.4 Class ProcessState

Def i ned | n: procstate.h

TheProcessState class is a virtual class that defines an interface through which Stackwalk-
erAPI can access the target process. It allows access to registers and memory, and provides basic
information about the threads in the target process. StackwalkerAPI provides two default types of
ProcessState Objects:ProcSelf does a first party stackwalk, amdocDebug does a third party
stackwalk.

A newProcessState class can be created by inheriting from this class and implementing the
following functions.

virtual bool getRegValue(Dyninst::MachRegister reg, Dyninst:: THR_ID thread,
Dyninst::MachRegisterVal &val) = 0

This method takes a register name as ingugt, and returns the value in that registerin in
the threadhread .

This method returngue on success arfdise on error.
virtual bool readMem(void *dest, Address source, size_t size) =0

This method reads memory from the target process. Paramwatershould point to an allo-
cated buffer of memory at leasite bytes in the host process. Parameteifce should con-
tain an address in the target process to be read from. If this method sucgeedbytes of
memory is copied fromsource, stored indest , andtrue is returned. This method returns
false otherwise.

virtual bool getThreadlds(std::vector<Dyninst:: THR_ID> &threads) = 0
This method returns a list of threads whose call stacks can be walked in the target process.
Thread are returned in thireads vector. In some cases, such as with the defaatiDebug |,
this method returns all of the threads in the target process. In other cases, suchrmsawith
Self , this method returns only the calling thread.

The first thread in thehreads vector (index 0) will be used as the default thread if the user
requests a stackwalk without specifying an thread\(gg¢i@r::WalkStack)

This method returngue on success arfdise if an error occurs.
virtual bool getDefaultThread(Dyninst:: THR_ID &default_tid) = 0

This method returns the thread representing the initial process idethel_tid output
parameter.

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 21

This method returngue on success arfdise if an error occurs.
virtual Dyninst::PID getProcessID() = 0

This method returns a process ID for the target process. The defaudissState imple-
mentations BrocDebug and ProcSelf) will return a PID on UNIX systems and BANDLE
object on Windows

3.5.4.1 Class LibraryState
Def i ned | n: procstate.h

LibraryState IS a helper class farrocessState that provides information about the current
DSOs (libraries and executables) that are loaded into a process’ addressFsgaesteppers
frequently use the.ibraryState to get the DSO through which they are attempting to stack
walk.

Each Library is represented usingiladdrPair object, which is defined as follows:
typedef std::pair<std::string, Dyninst::Address> LibAddrPair

LibAddrPair.first refers to the file path of the library that was loaded, arghd-
drPair.second is the load address of that library in the process’ address space. The load address
of a library can be added to a symbol offset from the file in order to get the absolute address of a
symbol.

virtual bool getLibraryAtAddr(Address addr, LibAddrPair &lib) = 0

This method returns a DSO, using tite output parameter, that is loaded over addeeisis
in the current process.

This method returns false if no library is loaded ouedr or an error occurs, and true if it suc-
cessfully found a library.

virtual bool getLibraries(std::vector<LibAddrPair> &libs) = 0

This method returns all DSOs that are loaded into the process’ address space in the output
vector parametelps

This method returngue on success arfdise on error.

virtual void notifyOfUpdate() = 0
This method is called by the ProcessState when it detects a change in the process’ list of
loaded libraries. Implementations bibraryStates should use this method to refresh their

lists of loaded libraries.

virtual Address getLibTrapAddress() = 0

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 22

Some platforms that implement the System/V standard (Linux, Solaris, BlueGene/P) use a
trap event to determine when a process loads a library. A trap instruction is inserted into a cer-
tain address, and that trap will execute whenever the list of loaded libraries change.

On System/V supported platforms this method should return the address where a trap should
be inserted to watch for libraries loading and unloading. The ProcessState object will insert a
trap at this address and then callfyOfupdate ~ when that trap triggers.

On non-System/V platforms this method should return O.

3.5.5 Class SymbolLookup

Def i ned | n: symlookup.h

The SymbolLookup Virtual class is an interface for associating a symbolic name with a stack
frame. EaclFrame object contains an address (the RA) pointing into the function (or function-like
object) that created its stack frame. However, users do not always want to deal with addresses
when symbolic names are more convenient. This class is an interface for mappiagea
object’'s RA into a name.

In addition to getting a name, this class can also associate an opaque objeeb@ia)avith
aFrame object. It is up to thesymbolLookup implementation what to return in this opaque object.

The default implementation adymbolLookup provided by StackwalkerAPI uses the Dyn-
Symtab tool to lookup symbol names. It returrsgrabol object in the anonymousid* .

virtual bool lookupAtAddr(Address addr, string &out_name, void* &out_value) = 0
This method takes an addressqr , as input and returns the function naro&, name , and an
opaque valueyut_value , at that address. Output parameter name should be the name of
the function that containsddr . Output parametesut_value can be any opaque value deter-

mined by the SymbolLookup implementation. The values returned are used by the
Frame::.getName() andFrame::getObject() functions.

This method returngue on success arfdise on error.
virtual Walker *getWalker()

This method returns th&alker object associated with théymbolLookup .
virtual ProcessState *getProcessSate()

This method returns th@ocessState object associated with théymbolLookup .

4 CALLBACK |INTERFACE DEFAULT |IMPLEMENTATIONS

StackwalkerAPI provides one or more default implementations of each of the callback classes
described in Section 3.5. These implementations are used by a default configuration of Stack-
walkerAPI.

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 23

4.1 Debugger Interface

This section describes how to use StackwalkerAPI for collectfﬁgpé}ty stack walks. In"8
party mode StackwalkerAPI uses the OS’s debugger interface to connect to another process and
walk its call stacks. As part of being a debugger StackwalkerAPI receives and needs to handle
debug events. When a debugger event occurs, StackwalkerAPl must get control host process in
order to receive the debugger event and continue the target process.

To illustrate the complexities with running in 3rd party mode, consider the follow code snippet
that uses StackwalkerAPI to collect a stack walk every five seconds.

Walker *walker = Walker::newWalker(pid);
std::vector<Frame> swalk;

for ;) {
walker->walkStack(swalk);
sleep(5);

}

StackwalkerAPI is running in"$ party mode, since it attached to the target procgss, As
the target process runs it may be generating debug events such a thread creation and destruction,
library loads and unloads, signals, forking/execing, etc. When one of these debugger events is
generated the OS will pause the target process and send a notice to the host process. The target
process will remain paused until the host process handles the debug event and resumes the target
process.

In the above example the host process is spending almost all of its timesledhe call. If a
debugger event happens during the sleep, then StackwalkerAPI will not be able to get control of
the host process and handle the event for up to five seconds. This will cause long pauses in the tar-
get process and lead to a potentially very large slowdown.

To work around this problem StackwalkerAPI provides a notification file descriptor. This file
descriptor represents a connection between the StackwalkerAPI library and user code. Stackwalk-
erAPI will write a single byte to this file descriptor when a debug event occurs, thus notifying the
user code that it needs to let StackwalkerAPI receive and handle debug events. The user code can
use system calls suchssgect to watch for events on the notification file descriptor.

The following example illustrates how to properly use StackwalkerAPI to collect a stack walk
from another process at a five second interval. Details orPtbebebug class,getNotifica-
tionFD method, anchandleDebugEvent method can be found in Section 4.1.1. See the UNIX

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 24

man pages for more information on tkelect system call. Note that this example does not
include all of the proper error handling and includes that should be present wheseksing

Walker *walker = Walker::newWalker(pid);
ProcDebug *debugger = (ProcDebug *) walker->getProcessState();
std::vector<Frame> swalk;

for (;;) {

walker->walkStack(swalk);

struct timeval timeout;
timeout.tv_sec = 5;
timeout.tv_usec = 0;

int max = 1;

fd_set readfds, writefds, exceptfds;

FD_ZERO(&readfds); FD_ZERO(&writefds); FD_ZERO(exceptfds);
FD_SET(ProcDebug::getNotificationFD(), &readfds);

for () {
int result = select(max, &readfds, &writefds, &exceptfds,
&timeout);
if (FD_ISSET(ProcDebug::getNotificationFD(), readfds)) {
/[Debug event
ProcDebug::handleDebugEvent();

}

if (result == 0) {
/[Timeout
break;

}

4.1.1 Class ProcDebug

Def i ned | n: procstate.h

Access to StackwalkerAPI's debugger is through m&Debug class, which inherits from
the ProcessState interface. The easiest way to get aPacDebug oObject is to cast the return
value of Walker::getProcessState() into a ProcDebug . C++’s dynamic_cast operation can
be used to test if walker uses thérocDebug interface:

ProcDebug *debugger;
debugger = dynamic_cast<ProcDebug*>(walker>getProcessState());

if (debugger != NULL) {
/[3rd party

}else {
/[1st party

}

In addition to the handling of debug events, described in Section 4.1, the ProcDebug class pro-
vides a process control interface; users can pause and resume process or threads, detach from a

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 25

process, and test for events such as process death. As an implementatiorrotdbeState
class,ProcDebug also provides all of the functionality described in Section 3.5.4.

virtual bool pause(Dyninst::THR_ID tid = NULL_THR_ID)

This method pauses a process or thread. The paused object will not resume execution until
ProcDebug::resume is called. If thetid parameter is natuULL_THR_ID then StackwalkerAPI

will pause the thread specified by . If tid is NULL_THR_IDthen StackwalkerAPI will pause
every thread in the process.

When StackwalkerAPI collects a call stack from a running thread it first pauses the thread,

collects the stack walk, and then resumes the thread. When collecting a call stack from a
paused thread StackwalkerAPI will collect the stack walk and leave the thread paused. This
method is thus useful for pausing threads before stack walks if the user needs to keep the
returned stack walk synchronized with the current state of the thread.

This method returngue if successful anehlse on error.
virtual bool resume(Dyninst:: THR_ID tid = NULL_THR_ID)

This method resumes execution on a paused process or thread. This method only resumes
threads that were paused by thecDebug::pause call, using it on other threads is an error.

If the tid parameter is notiULL_THR_ID then StackwalkerAPI will resume the thread speci-

fied bytid . If tid is NULL_THR_ID then StackwalkerAPI will resume all paused threads in the
process.

This method returngue if successful anehlse on error.
virtual bool detach(bool leave_stopped = false)

This method detaches StackwalkerAPI from the target process. StackwalkerAPl will no
longer receive debug events on this target process and will no longer be able to collect call
stacks from it. This method invalidates the associateetker andProcState objects, they
should be cleaned using C++dslete operator after making this call. It is an error to attempt

to do operations on these objects after a detach, and undefined behavior may result.

If the leave_stopped parameter isrue StackwalkerAPI will detach from the process but
leave it in a paused state so that it does resume progress. This is useful for attaching another
debugger back to the process for further analysis. @& _stopped parameter is not sup-
ported on the Linux platform and its value will have no affect oni¢keen call.
This method returngue if successful anehise on error.

virtual bool isTerminated()
This method returns true if the associated target process has terminated and false otherwise. A

target process may terminate itself by calling exit, returning from main, or receiving an unhan-

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 26

dled signal. Attempting to collect stack walks or perform other operations on a terminated
process is illegal an will lead to undefined behavior.

A process termination will also be signaled through the notfication FD. Users should check
processes for theTerminated state after returning fromandleDebugEvent

static int getNotificationFD()

This method returns StackwalkerAPI’s notification FD. The notification FD is a file descriptor
that StackwalkerAPI will write a byte to whenever a debug event occurs that need. If the user
code sees a byte on this file descriptor it should kealbleDebugEvent to let Stackwalker-

APl handle the debug event. Example code using getNotificationFD can be found in
Section 4.1.

If StackwalkerAPI1 will only create one notification FD, even if it is attached to muIti;S‘]’e 3
party target processes.

static bool handleDebugEvent(bool block = false)

When this method is called StackwalkerAPI will receive and handle all pending debug events

from each & party target process to which it is attached. After handling debug events each
target process will be continued (unless it was explicitly stopped byittwebug::pause

method) and any bytes on the notification FD will be cleared. It is generally expected that
users will call this method when a event is sent to the notification FD, although it can be
legally called at any time.

If the block parameter is true, theimandleDebugEvents ~ will block until it has handled at
least one debug event. If the block parameteésise , thenhandleDebugEvents will handle
any currently pending debug events or immediately return if none are available.

StackwalkerAPl may receive process exit events for target processes while handling debug
events. The user should check for any exited processes by calidapebug::isTermi-
nated after handling debug events.

This method returngue if it handled at least one debug eventsfaid otherwise.

4.2 FrameSteppers

Def i ned | n: framestepper.h

StackwalkerAPI ships with numerous default implementations ofrtheeStepper class.
Each of theserrameStepper implementations allow StackwalkerAPI to walk a type of call
frames. Section 3.5.1 describes whiefameStepper implementations are available on which
platforms. This sections gives a brief description of what em@meStepper implementation
does. Each of the following classes implements th@neStepper interface described in
Section 3.5.2, so we do not repeat the API description for the classes here.

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 27

Several of therrameSteppers use helper classes (SEmmeFuncStepper as an example).
Users can further customize the behavior ef@aneStepper by providing their own implementa-
tion of these helper classes.

4.2.1 Class FrameFuncStepper

This class implements stack walking through a call frame that is setup with the architectures
standard stack frame. For example, on x86 HugneStepper Will be used to walk through stack
frames that are setup withpash %ebp/mov %esp,%ebp prolog.

4.2.1.1 Class FrameFuncHelper

FrameFuncStepper uses a helper classiameFuncHelper , to get information on what kind
of stack frame it's walking through. TheameFuncHelper ~will generally use techniques such as
binary analysis to determine what type of stack framerthaeFuncStepper is walking through.
Users can have StackwalkerAPI use their own binary analysis mechanisms by providing an imple-
mentation of thisrameFuncHelper

There are two important types usedrmmeFuncHelper and one important function:

typedef enum {
unknown_t=0,
no_frame,
standard_frame,
savefp_only_frame,
} frame_type;

Theframe_type describes what kind of stack frame a function uses. If it does not set up a
stack frame therframe_type should beno_frame . If it sets up a standard frame then
frame_type should bestandard_frame . Thesavefp_only frame value currently only has
meaning on the x86 family of systems, and means that a function saves the old frame pointer,
but does not setup a new frame pointer (it hagpuah %ebp instruction, but nomov
%esp,%ebp). If the FrameFuncHelper cannot determine theame_type , then it should be
assigned the valuaknown_t .

typedef enum {
unknown_s=0,
unset_frame,
halfset_frame,
set_frame

} frame_state;

The frame_state type determines the current state of function with a stack frame at some
point of execution. For example, a function may set up a standard stack frame and have a
frame_type Of standard_frame , but execution may be at the first instruction in the function
and the frame is not yet setup, in which casertihe_state will be unset_frame

If the function sets up a standard stack frame and the execution point is someplace where the
frame is completely setup, then tha@me_state should beset_frame . If the function sets up

a standard frame and the execution point is at a point where the frame does not yet exist or has
been torn down, then frame_state should be unset _frame.hdiizet_frame value of

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

Page 28

frame_state IS currently only meaningful on the x86 family of architecture, and should if the
function has saved the old frame pointer, but not yet set up a new frame pointer.

typedef std::pair<frame_type, frame_state> alloc_frame_t;
virtual alloc_frame_t allocatesFrame(Address addr) = 0;

TheallocatesFrame function of FrameFuncHelper returns aalloc_frame_t that describes
theframe_type of the function atddr and theframe_state of the function when execution
reachechddr .

If addr is invalid or an error occurs, allocatedFrame should return
alloc_frame_t(unknown_t, unknown_s).

4.2.2 Class DebugStepper

This class uses debug information found in a binary to walk through a stack frame. It depends
on SymtabAPI to read debug information from a binary, then uses that debug information to walk
through a call frame.

Most binaries must be built with debug information (-g with gcc) in order to include debug
information that thisframeStepper uses. Some languages, such as C++, automatically include
stackwalking debug information for use by exceptions. DhieugStepper class will also make
use of this kind of exception stacking information if it is available.

4.2.3 Class SigHandlerStepper

The SigHandlerStepper is used to walk through UNIX signal handlers as found on the call
stack. On some systems a signal handler generates a special kind of stack frame that cannot be
walked through using normal stack walking techniques.

4.2.4 Class BottomOfStackStepper

The BottomOfStackStepper ~ doesn’t actually walk through any type of call frame. Instead it
attempts to detect whether the bottom of the call stack has been reacheddit@opfStack-
Stepper Will report gcf_stackbottom from its getCallerFrame method. Otherwise it will
reportgcf_not_me . BottomOfStackStepper runs with a higher priority than any oth&rame-
Stepper class.

StackwalkerAPI Programmer’s Guide December 2009 Release 1.1

