Dependence Graph API (DepGraphAPI) Programmer’s
Guide
Release 0.9b

Paradyn Parallel Performance Tools

June 16, 2009



Contents

1

2

Introduction

Definitions

2.1 Operation-Level Data Dependence . . . . . . . . ... ... ... .......
Abstractions

3.1 Graph Abstractions . . . . . . . . ...
3.2 Shared Class . . . . . . . . . e
3.3 Data Dependence Graph . . . . . . . .. ... Lo
3.4 Control Dependence Graph . . . . . . . . ... ... L.
3.5 Program Dependence Graph . . . . . . . . . ... ... ... ...
3.6 Extended Program Dependence Graph . . . . ... .. ... ... ... ..
Examples

Definitions and Basic Types

5.1 Basic Types . . . . . o e
API Reference
6.1 Shared Classes . . . . . . . . . e
6.1.1 Graph . . . . . . .
6.1.2 Node . . . . . . . e
6.1.3 PhysicalNode : Node . . . . . . . .. .. . ... ..
6.1.4 VirtualNode : Node . . . . . . . . . . . . . ... ..o
6.1.5 Edge . . . . . ..
6.2 Data Dependence Graph . . . . . . . . . ... oL
6.2.1 DDG . . . . .
6.2.2 Absloc . . . .
6.2.3 OperationNode : PhysicalNode . . . .. ... ... ... .. .....
6.2.4 FormalParameterNode : VirtualNode . . . . . . . ... ... ... ..
6.2.5 FormalReturnNode : VirtualNode . . . . . . . . . . ... ... ....
6.2.6 ActualParameterNode : VirtualNode . . . . . . . ... .. ... ...
6.2.7 ActualReturnNode : VirtualNode . . . . . . . .. ... . ... ....
6.3 Control Dependence Graph . . . . . . . . . .. ... ... ...
6.3.1 CDG . . . . .
6.3.2 BlockNode: Node . . . . . . . . . . . . . ...
6.4 Program Dependence Graph . . . . . . . . . .. ... 0L
6.4.1 PDG . . . . .
6.5 Extended Program Dependence Graph . . . . . .. .. ... ... ... ..
6.5.1 xPDG . . . . .

Implementation Status

= W

00 000D R

10
12

12
12
12
13
14
14
14
14
14
15
15
15
15
16
16
16
16
16
16
16
17
17

17



8 Building DepGraphAPI 17
8.1 Buildingon Unix . . . . . . .. .. 17

1 Introduction

The DepGraphAPI is a multi-platform library for creating and analyzing dependence graph
representations of binary code. A dependence graph is a representation of must-happen-
before and must-happen-after relationships between program elements such as instructions
and basic blocks. A program may consist of several logically separate streams of execution
that are interleaved by the compiler; dependence graph representations undo this interleav-
ing. We represent relationships in terms of a graph, a data structure that consists of nodes
connected by directed edges. Nodes in the graph represent program elements and edges
represent dependences (must-happen-before or must-happen-after) between elements.
The DepGraphAPI currently provides four graph representations:

Data Dependence Graph (DDG) This graph represents the relations between instruc-
tions that define and instructions that use registers and memory. Nodes in this graph
represent instructions, and edges connect definitions of a particular location to its uses.

Control Dependence Graph (CDG) This graph represents conditional execution of ba-
sic blocks in the program.

Program Dependence Graph (PDG) This graph is the union of the DDG and CDG,
used to compute a program slice (defined below).

Extended Program Dependence Graph (xPDG) This graph is the PDG augmented
with additional nodes and edges necessary for forming an ezecutable slice (defined in
Section ?77.

The main goal of this API is to provide the user with abstractions representing the
logical dependencies between code elements in a program. An abstract interface provides
two benefits: it simplifies the development of tools by hiding the complexity of a particular
architecture, and it allows tools to easily be ported between platforms. Using a dependence
graph representation of a program allows the user to focus on a particular aspect of program
behavior and ignore program elements that do not affect that aspect of behavior.

Program Slice: An excellent example of the use of the program dependence graph is
the program slice, or more commonly just “slice”. Intuitively, a slice of a program from a
particular point is the sub-program that affects that point (a backward slice) or is affected
by that point (a forward slice). Formally, we define slices as follows. Let i represent an
instruction in the program and a some location that i defines (writes a value into). The
backward slice from (i, a) are all instructions (and defined locations) that may affect the value
written into a by i. A forward slice from (i,a) are all instructions (and defined locations)
that may be affected by the definition of a by .



A future goal of this library is to allow users to improve the precision of these graph rep-
resentations through the use of additional analyses. The included analyses used to generate
these graph representations are conservative, and may overapproximate the actual depen-
dences between instructions. A future release will provide API extensions for updating these
graph structures, either with information known to the user directly, with the results of more
sophisticated static analysis, or with dynamic analysis results.

The current beta of the DepGraphAPI depends on the InstructionAPI library and the
DyninstAPI; future versions will depend only on the InstructionAPI and ParsingAPT li-
braries released as part of the DyninstAPI. Currently we support the [A-32 and AMD-64
architectures as these are the only architectures supported by the InstructionAPI. Future
architecture support will include PowerPC, TA-64, and SPARC. The DepGraphAPI has no
file format or operating system constraints.

2 Definitions

Instruction An instruction represents a single machine instruction with a unique starting
offset. Instruction instances are identified by this offset.

Basic Block A basic block is a contiguous sequence of instructions with the property that
if the first instruction in the block is executed all other instructions will be executed
before the block is exited.

Function A function is a collection of basic blocks with a single entry block. Functions are
frequently reached by call instructions, although this may not be the case due to com-
piler optimizations. Similarly, functions are frequently exited via return instructions,
but other exit methods may be used by the compiler.

Abstract Location An abstract location represents a machine register, memory location,
or set of memory locations. Registers are referred to by their InstructionAPI represen-
tation. Memory locations consist of a region and an optional offset within that region.
Regions include the stack, the heap, and global memory. Stack locations are assumed
to be relative from the top of the stack at the beginning of the function. Our current
implementation assumes a single heap location; this may change in future releases.
Finally, offsets into global memory are absolute addresses from a base of zero.

Operation An operation is a pair of an instruction and an abstract location defined by that
instruction. An instruction may define more than one abstract location, particularly on
CISC architectures. If we represent data dependence at the instruction level we may
overapproximate dependences between instructions; we describe an example of this
occurrence in Section 2.1. Instead we represent dependences at the operation level.

Parameters The parameters to a function consist of all abstract locations that may be
used by an instruction in the function without having been defined by an instruction
in the function.



Results The results of a function consist of all abstract locations that are defined by that
function.

Data Dependence In general, instruction j is data dependent on an instruction ¢ if ¢
defines some abstract location a, j uses a, and there is an execution path from 7 to j
along which a is not redefined. We use a more precise definition that uses operations
instead of instructions. Let m = (i,a) be an operation representing the definition of a
by i, and similarly for n = (j,b). Then n is data dependent on m if i defines a, j uses
a to define b, and there exists a path as above. Note that j may define other abstract
locations, but no data dependence will exist if a is not used in these other definitions.

Control Dependence An instruction j is control dependent on an instruction ¢ if ¢ has
multiple successors and j is executed along at least one, but not all, possible execution
paths from .

2.1 Operation-Level Data Dependence

The conventional definition of the DDG (in which nodes represent instructions) may over-
approximate the data dependencies within a binary. This occurs when an instruction defines
multiple abstract locations and uses different sets of abstract locations for each definition.
For example, consider the TA-32 instruction xchng which exchanges the contents of two
registers. From an instruction perspective, this instruction uses and defines two registers.
However, there is no dependence between the use and definition of the same registers. To
avoid this over-approximation, each node in the DepGraphAPI DDG consists of an operation;
an (instruction, abstract location) pair. We show an example of the use of instructions and
operations in Figure 1.

3 Abstractions

DepGraphAPI provides a simple set of abstractions over complicated data structures to make
the API easy to use. We first define these abstractions in terms of concepts; the classes that
implement these concepts are defined below. The fundamental representation used by this
library is the directed graph (or digraph). A digraph is a set of nodes connected by directed
edges; each edge has a single source and target. Nodes represent logical elements of the
program. We define two types of nodes: physical and virtual. We provide a set of methods
for operating on Graphs, Nodes, and Edges; these methods provide a common interface to
all four dependence graph types provided by the DepGraphAPI.

3.1 Graph Abstractions

Graph A graph is a collection of nodes connected by directed edges; each edge has a unique
source and target node. Graphs have a set of entry nodes, from which all nodes are



i2: add ro, r1, r2

Mem[sp] sp Mem[sp] sp

(a) Instruction nodes (b) Operation nodes

Figure 1: Example of instruction vs. operation-based DDG. Figure a) provides an example
of the problems of representing instructions as single nodes. In this graph it is possible for
paths to “cross” definitions; for example, there is a path from the definition of ry by i to
the definition of sp (the stack pointer) by i3, when in the actual program there is no such
dependence. The DDG shown in figure b) makes the intra-instruction data dependencies
explicit and thus removes the possibility of erroneous paths.



reachable by following edges forward, and exit nodes, from which all nodes are reachable
by following edges backward.

Node We define two types of nodes: physical and virtual. Physical nodes represent a
particular instruction, basic block, or function. Virtual nodes represent the behavior
of code that is not directly represented by a physical node. Virtual nodes represent a
summary of the behavior of code that is not contained within the graph, such as the
behavior of a called function, the assignment of values to the parameters of a function,
or the use of values returned from a function. For example, let foo be a function that
calls bar. A DDG for function foo would include physical nodes for the code within
foo, but not for the code in bar. Instead, the behavior of bar would be represented
by one or more virtual nodes.

Edge Edges connect nodes and represent a dependence between the two connected nodes.

Figure 3.1 shows the inheritance hierarchy for the DepGraphAPI classes. All references
to DepGraphAPI classes are internally reference counted; we do not require the user to
perform any manual memory allocation or deletion.

3.2 Shared Class

Graph The Graph represents a dependence graph for a particular function.

Node The Node represents an element within the graph. Nodes are connected by edges and
are labelled with information.

PhysicalNode These Nodes represent an element (instruction, basic block, or function) of
the program. They are labelled with the starting address of that object.

VirtualNode These Nodes represent summaries of program behavior not contained within
the graph. Virtual nodes do not have an address associated with them.

Edge Edges connect Nodes. Edges are directed and have a source and target.

3.3 Data Dependence Graph

The data dependence graph adds five specialized node types.

OperationNode Each physical DDG node represents an operation (a definition of an ab-
stract location by an instruction). We describe operations and our justification of this
abstraction in Section 2.1.

FormalParameterNode A formal parameter node represents the input parameters to a
function. One of these nodes will exist in the graph for each abstract location that is
used without having first been defined by the function. These are virtual nodes, and
form a subset of the entry nodes of the DDG.



DDG

| OperationNode l | FormalParameterNode l | ActualParameterNode |

l FormalReturnNode l l ActualReturnNode |

Legend

CIass_B belongs o the A——B Class B inherits from class A
CDG interface

Class A belongs to the c Class C belongs to the
Graph interface l l DDG/PDG/xPDG interfaces

Figure 2: Inheritance diagram for the DepGraphAPI. The Graph, Node, and Edge classes

provide a common interface specification. The DDG, CDG, PDG, and xPDG graphs cus-
tomize these three classes as necessary.



FormalReturnNode A formal return node represents the values returned by the function;
this includes any explicit return result register as well as all other definitions that may
persist after the function returns. These are virtual nodes, and form a subset of the
exit nodes of the DDG.

ActualParameterNode These virtual nodes represent abstract locations used by a callee
function.

ActualReturnNode These virtual nodes represent abstract locations defined by a callee
function.

3.4 Control Dependence Graph

The control dependence graph adds one new specialized node type:

BlockNode We represent control dependence at the basic block level for efficiency. There-
fore, each node in the CDG represents a block.

3.5 Program Dependence Graph

The Program Dependence Graph is the union of the DDG and CDG and is constructed from
the same abstractions used by the DDG. The basic block-level information in the CDG is
automatically converted to OperationNodes.

3.6 Extended Program Dependence Graph

Although users can use PDGs to slice programs, the slices obtained through PDGs are not
always executable slices due to the presence of unconditional branches. An executable slice
is a slice of a program that can be executed without any change in program behavior with
respect to the given slicing criteria. Program slices obtained through the PDG will not
include branch instructions that do not depend on the slicing target; however, these branch
instructions are necessary to ensure proper control flow. Therefore, we augment the PDG
to create the Extended Program Dependence Graph (xPDG). The xPDG adds dependence
edges between branches and and all other instructions in the basic block that ends at the
branch.

4 Examples

To illustrate the ideas in the API, we present two short examples that demonstrate how the
API can be used.

Our first example demonstrates how to access the PDG for a particular function and take
a slice from a known instruction (identified by its address) and register that the instruction
defines. The code for this example is shown in Figure 3. Lines of interest are:



001 using namespace Dyninst;

002 using namespace DepGraphAPI;

003

004 // Assume this represents a function of interest

005 BPatch function xfunc;

006 // And an address of an instruction of interest

007 Address insnAddr;

008 // And a register defined by the previous instruction
009 InstructionAPI::RegisterAST::Ptr reg;

010

011 // Access the PDG for this function

012 PDG::Ptr pdg = PDG::analyze(func);

013

014 // Find the node of interest

015 NodelIterator nodeBegin, nodeEnd;

016 pdg->find(insnAddr, reg, nodeBegin, nodeEnd);

017

018 // Make sure we found a node. ..

019 if (nodeBegin == nodeEnd) {

020 // Complain

021 }

022

023 // Create the forward slice from the node of interest
024 Nodelterator sliceBegin, sliceEnd;

025 pdg->forwardClosure (x*nodeBegin, sliceBegin, sliceEnd);
026

027 // Iterate over each node in the closure and do something
028 for (; sliceBegin != sliceEnd; sliceBegin++) {

029 /o

030 }

031

032

Figure 3: Slicing example. This code fragment identifies the nodes reachable by following
edges forward from the node with address insnAddr.



Line 16 identifies all nodes with a particular address insnAddr. The set of these nodes
is represented by the pair of iterators nodeBegin and nodeEnd.

Line 19 determines whether there were nodes at the given address. If the iterators are
equal the range is empty.

Line 25 determines the set of nodes reachable from the given node (the forward closure
from the node). The statement *nodeBegin returns the first node from the set identi-
fied in line 16. As before, the closure is represented by an iterator pair sliceBegin,
sliceEnd.

Line 28 shows how to iterate over the forward closure. The iterator sliceBegin will
represent each node in the closure; the sequence in which the nodes are returned is
undefined. Each node can be accessed by dereferencing the iterator: *sliceBegin.

The second example shows how to determine which instructions in a basic block that have
a data dependence to themselves; that is, they define and use the same abstract location.
This is one method to identify a loop iteration variable. The code for this example is shown
in Figure 4. Lines of interest are:

5!

Line 15 shows how to access the instructions in a basic block. The InsnInstance type-
def consists of an InstructionAPI instruction object and the address of the instruction.
We use these addresses to identify nodes within the graph.

Line 18 shows how to iterate over each instruction in the block.

Line 23 shows how to find the set of nodes representing each instruction. Since the
DDG may represent a single instruction as multiple operation nodes this set may have
multiple elements.

Line 26 shows how to get the targets of a node. These targets can be represented either
as a set of edges or a set of nodes, whichever is convenient.

Line 28 identifies nodes that have edges to themselves; that is, nodes that define
themselves.

Definitions and Basic Types

The DepGraphAPI supplies four types of dependence graphs. We define these forms of
dependence here, along with definitions of the underlying concepts. The following definitions
and basic types are referenced throughout the rest of the document.

10



001 using namespace Dyninst;

002 using namespace DepGraphAPI;

003

004 // Assume these represent a function and block of interest

005 BPatch function xfunc;

006 BPatch basicBlock *xblock;

007

008 // Access the DDG

009 DDG::Ptr ddg = DDG::analyze(func);

010

011 // Get the list of instructions (and their addresses) from the block
012

013 typedef std::pair<InstructionAPI::Instruction, Address> InsnInstance;
014 std::vector<InsnInstance> insnInstances;

015 block->getInstructions(insnInstances);

016

017 // For each instruction, look up the DDG node and see if it has itself as a
target

018 for (std::vector<InsnInstance>::iterator iter = insnInstances.begin();

019 iter != insnInstances.end(); iter++) {

020 Address addr = iter->second;

021

022 NodeIterator nodeBegin, nodeEnd;
023 ddg->find(addr, nodeBegin, nodeEnd);
024 for (; nodeBegin != nodeEnd; nodeBegin++) {

025 NodeIterator targetBegin, targetEnd;

026 (*nodeBegin) ->getTargets (targetBegin, targetEnd);
027 for (; targetBegin != targetEnd; targetBegin++) {
028 if (xtargetBegin == *nodeBegin) {

029 // Found a node that has itself as a target
030 actOnSelfDefiningNode (*xnodeBegin) ;

031 }

032 }

033 }

034 }

035

036

Figure 4: DDG traversal example. This code fragment identifies nodes within a basic block
that have a data dependence to themselves.

11



5.1 Basic Types

typedef unsigned long Address
An integer value that represents a unique location in memory.

Smart/shared pointers
All objects returned to users are transparently wrapped with a reference counted pointer
implementation. This smart pointer automatically handles deallocation and garbage col-
lection. These pointers are referred to by the ::Ptr suffix (e.g., Graph: :Ptr, Node: :Ptr,
etc.). Our implementation is derived from the Boost shared ptr implementation; for more
information, please visit www.boost.org. Shared pointers have some limitations when com-
pared with standard pointers. In particular, dynamic_cast (as well as other casting oper-
ators) are not defined on shared pointers. Performing such a cast must be done with the
dynamic_pointer_cast method. For example: VirtualNode: :Ptr virt = dynamic_pointer cast<Virtt

Iterators

The DepGraphAPI uses an iterator-based interface in favor of a collection-based interface.
This is done to reduce copying and improve efficiency. Any method that returns a range of
objects (e.g., Graph: :allNodes) takes as arguments two iterators that are updated to point
to the beginning and end of the range. The user can then use standard iterator methods
(e.g., a for loop) to examine each element in the range. We define two types of iterators:
NodeIterator and Edgelterator.

6 API Reference

This section describes the interface of the DepGraphAPI. Each of the subsections represents
a different interface.

The classes described in this section are defined in the Dyninst:: and Dyninst: :DepGraphAPI: :
namespaces. To access them a user should refer to them using the appropriate prefix (e.g.,
Dyninst: :Graph or Dyninst: :DepGraphAPI: :DDG). Alternatively, a user can add the C++
using keyword above any reference to such objects (e.g., "using namespace Dyninst;”).

The Graph, Node, and Edge classes are contained in the Dyninst:: namespace. All other
classes are defined under the Dyninst: :DepGraphAPI namespace.

6.1 Shared Classes

The Graph, Node, and Edge classes are written to be generic and shareable between Dynin-
stAPI components. We include the API for these classes here.

6.1.1 Graph

void entryNodes(Nodelterator &begin, Nodelterator &end) This method returns
a range of nodes (defined by begin and end) such that 1) all nodes in the graph are

12



reachable from the nodes in this range by traversing out-edges and 2) the range is
minimal. The nodes included in this range may be virtual.

void exitNodes(Nodelterator &begin, Nodelterator &end) This method returns a
range of nodes (defined by begin and end) such that 1) all nodes in the graph are
reachable from the nodes in this range by traversing in-edges and 2) the range is
minimal. The nodes included in this range may be virtual.

void allNodes (Nodelterator &begin, Nodelterator &end) This method returns the
range of all nodes in the graph.

void printDOT (std::string fileName) This method generates a representation of the
graph in DOT format.

bool find(Address addr, Nodelterator &begin, Nodelterator &end) This method
sets begin and end to point to a range representing the nodes with a particular address.
It returns true if the range is non-empty.

void removeAnnotation() This method removes the graph from internal storage. Once
all user handles to the graph are discarded the graph will be destroyed.

6.1.2 Node

bool hasInEdges() This method returns true if the node has at least one in edge.

void ins(Edgelterator &begin, Edgelterator &end) This method returns the range
of in edges to the node (edges that have the node as a target).

void ins(Nodelterator &begin, Nodelterator &end) This method is similar to the
previous, but automatically traverses the edges and returns a range of source nodes.

bool hasOutEdges() This method returns true if the node has at least one out edge.

void outs(Edgelterator &begin, Edgelterator &end) This method returns the range
of out edges from the node (edges that have the node as a source).

void outs(Nodelterator &begin, Nodelterator &end) This method is similar to the
previous, but automatically traverses the edges and returns a range of target nodes.

void forwardClosure(Nodelterator &begin, Nodelterator &end) This method re-
turns all nodes reachable from this node in the forward direction (by traversing out-
edges).

void backwardsClosure(Nodelterator &begin, Nodelterator &end) This method re-
turns all nodes reachable from this node by traversing in-edges.

Graph::Ptr forwardSubgraph() This method constructs and returns the subgraph that
includes all nodes reachable from the current node along forward edges.

13



Graph::Ptr backwardSubgraph() This method constructs and returns the subgraph that
includes all nodes reachable from the current node along forward edges.

std::string format() This method returns a textual representation of the node.

bool isVirtual() This method returns true if a node is virtual.

6.1.3 PhysicalNode : Node

Address addr() This method returns the starting offset of the code object (basic block,
instruction, or operation) the node represents.

bool isVirtual() This method returns false for physical nodes.

6.1.4 VirtualNode : Node

bool isVirtual() This method always returns true for virtual nodes.

6.1.5 Edge

Node::Ptr source() This method returns the source node of an edge.

Node::Ptr target() This method returns the target node of an edge.

6.2 Data Dependence Graph
6.2.1 DDG

DDG::Ptr analyze(BPatch_function *func) This method creates and returns a DDG
for the provided function.

void formalParamNodes(Nodelterator &begin, Nodelterator &end) This method
returns the range of all formal parameters to the function.

void formalReturnNodes(Nodelterator &begin, Nodelterator &end) This method
returns the range of all formal returns from the function.

void actualParamNodes(Address callAddr, Nodelterator &begin, Nodelterator &end)
This method returns the range of all actual parameters for the call instruction at the
given address.

void actualReturnNodes(Address callAddr, Nodelterator &begin, Nodelterator &end)
This method returns the range of all actual returns for the call instruction at the given
address.

14



bool find(Address addr, Absloc::Ptr absloc, Nodelterator &begin, Nodelterator &end)
This method returns the range of nodes that fit the specific address and absloc require-
ments. This range will contain at most one element. It returns true if the range is
non-empty, and false otherwise.

DDG::Ptr removeDeadNodes() This method constructs a derived DDG that contains
no dead nodes. All nodes that cannot reach a formal return node are removed. This
includes definitions to abstract locations that are redefined before being used.

void immediateDefinitions(Nodelterator &begin, Nodelterator &end) This method
returns the range of non-formal-parameter nodes that have no in-edges. This occurs
when an instruction defines an abstract location without using any other abstract loca-
tion; for example, mov $42, eax. Using this in combination with formalParamNodes
will give the set of entry nodes to the DDG.

void deadDefinitions(Nodelterator &begin, Nodelterator &end) This method gives
the range of non-formal-return nodes that have no out-edges. This occurs when a node
defines an abstract location that is redefined before being used. These dead definitions
are commonly instruction side-effects (e.g., ignored writes to the flags).

6.2.2 Absloc

std:string format() This method returns a textual representation of the abstract location.
This representation is guaranteed to be unique for unique abstract locations.

void getAliases(AbslocIterator &begin, AbslocIterator &end) If more than one Ab-
sloc may refer to the same abstract location (e.g., a particular stack slot and the
representation of the entire stack) return any such aliases.

bool isPrecise() This method returns true if the absloc does not contain any others; that
is, if any aliases are more general than this one.

6.2.3 OperationNode : PhysicalNode

Absloc::Ptr absloc() This method returns the abstract location represented by this node.

6.2.4 FormalParameterNode : VirtualNode

Absloc::Ptr absloc() This method returns the abstract location represented by this node.

6.2.5 FormalReturnNode : VirtualNode
Absloc::Ptr absloc() This method returns the abstract location represented by this node.

15



6.2.6 ActualParameterNode : VirtualNode

Absloc::Ptr absloc() This method returns the abstract location represented by this node.

BPatch _function *callee() This method returns the callee function whose argument is
represented by this node.

6.2.7 ActualReturnNode : VirtualNode

Absloc::Ptr absloc() This method returns the abstract location represented by this node.

BPatch_function *callee() This method returns the callee function whose return is rep-
resented by this node.

6.3 Control Dependence Graph
6.3.1 CDG

CDG::Ptr analyze(BPatch_function *func) This method creates and returns a CDG
for the provided function.

bool find(BPatch_basicBlock *block, Nodelterator &begin, Nodelterator &end)
This method returns the range of nodes representing the provided block. This range
will have at most one element. It returns true if the range is non-empty and false
otherwise.

bool find(Address addr, Nodelterator &begin, Nodelterator &end) This method
returns the range of nodes containing the provided address. It returns true if the range
is non-empty and false otherwise.

6.3.2 BlockNode : Node

BPatch_basicBlock *block() This method returns the basic block represented by this
node.

6.4 Program Dependence Graph
6.4.1 PDG

PDG::Ptr analyze(BPatch_function *func) Creates and returns a PDG for the pro-
vided function.

find(Address addr, Absloc::Ptr absloc, Nodelterator &begin, Nodelterator &end)
This method returns the set of nodes that fit the specific address and absloc require-
ments. This node will be singular.

16



6.5 Extended Program Dependence Graph
6.5.1 xPDG

xPDG::Ptr analyze(BPatch_function *func) Creates and returns an xPDG for the
provided function.

find(Address addr, Absloc::Ptr absloc, Nodelterator &begin, Nodelterator &end)
This method returns the set of nodes that fit the specific address and absloc require-
ments. This node will be singular.

7 Implementation Status

This release of the DepGraphAPI is a public beta and has limited platform support and
implementation features. These limitations are as follows:

e Platforms: the DepGraphAPI is implemented for IA-32 and x86-64. This is primarily
due to a dependence on the InstructionAPI.

8 Building DepGraphAPI

This appendix describes how to build DepGraphAPI from source code, which can be down-
loaded from http://www.paradyn.org or http://www.dyninst.org.

8.1 Building on Unix

The beta of the DepGraphAPI depends on the DyninstAPI. It is currently packaged with
the DyninstAPI source tree. It can be built using the DepGraphAPI make target once the
DyninstAPI has been built and installed.

17



