
12/11/07

Release 2.0
December 2007

SymtabAPI
Programmer’s Guide

Table of Contents

SymtabAPI Programmer’s Guide December 11, 2007

1 Introduction..2
2 Abstractions ..2

2.1 Symbol Table Interface ...3
2.1.1 Transformations to the Symbol Table...4

2.2 Type Interface ..4
2.3 Line Number Interface..5
2.4 Local Variable Interface ..5
2.5 Dynamic Address Translation ...5

3 Simple Examples...5
4 Definitions and Basic Types ...8

4.1 Definitions ..8
4.2 Basic Types ...9

5 Namespace SymtabAPI ...9
6 API Reference - Static Components ..10

6.1 Symbol Table Interface ...10
6.1.1 Class Symtab ...10
6.1.2 Class Module...17
6.1.3 Class Symbol ...18
6.1.4 Class Archive...22
6.1.5 Class ExceptionBlock...24

6.2 Type Interface ..25
6.2.1 Class Type..25
6.2.2 Class typeEnum ..28
6.2.3 Class typeFunction ...29
6.2.4 Class typeScalar...30
6.2.5 Class Field..30
6.2.6 Class fieldListType ...31
6.2.7 Class derivedType ..34
6.2.8 Class rangedType ...35

6.3 Line Number Interface..37
6.3.1 Class LineInformation ...37
6.3.2 Class LineNoTuple ...38
6.3.3 Iterating over Line Information ...39

6.4 Local Variable Interface ..39
6.4.1 Class localVar..40

7 API Reference - Dynamic Components..41
7.1 Class AddressLookup..41

7.1.1 Class ProcessReader ...44
Appendix A:Building SymtabAPI.. 45

SymtabAPI Programmer’s Guide Page 2

1 INTRODUCTION

SymtabAPI, a multi-platform library for parsing symbol tables, object file headers and debug
information. SymtabAPI currently supports the ELF (IA-32, IA-64, AMD-64, POWER, and
SPARC), XCOFF (POWER), and PE (Windows) object file formats. In addition, it also supports
the DWARF and stabs debugging formats.

The main goal of this API is to provide an abstract view of binaries and libraries across multi-
ple platforms. An abstract interface provides two benefits: it simplifies the development of a tool
since the complexity of a particular file format is hidden, and it allows tools to be easily ported
between platforms. Each binary object file is represented in a canonical platform independent
manner by the API. The canonical format consists of four components: a header block that con-
tains general information about the object (e.g., its name and location), a set of symbol lists that
index symbols within the object for fast lookup, debug information (type, line number and local
variable information) present in the object file and a set of additional data that represents informa-
tion that may be present in the object (e.g., relocation or exception information). Adding a new
format requires no changes to the interface and hence will not affect any of the tools that use the
SymtabAPI.

Our other design goal with SymtabAPI is to allows user and tool developers to easily extend
or add symbol or debug information to the library through a platform-independent interface.
Often times it is impossible to satify all the requirements of a tool that uses SymtabAPI, as those
requirements can vary from tool to tool. So by providing extensible structures, SymtabAPI allows
tools to modify any structure to fit their own requirements. Also, tools frequently use more sophis-
ticated analyses to augment the information available from the binary directly; it should be possi-
ble to make this extra information available to the SymtabAPI library. An example of this is a tool
operating on a stripped binary. Although the symbols for the majority of functions in the binary
may be missing, many can be determined via more sophisticated analysis. In our model, the tool
would then inform the SymtabAPI library of the presence of these functions; this information
would be incorporated and available for subsequent analysis. Other examples of such extensions
might involve creating and adding new types or adding new local variables to certain functions.

This document describes SymtabAPI, an Application Program Interface (API) for parsing
object files or binaries, for querying symbols and debug information, for interacting with the
library to add, remove or change symbols or other useful information, and for exporting the new
symbol table data in standard formats (e.g. XML).

The SymtabAPI interface is designed to be small and easy to understand, while remaining suf-
ficiently expressive to be useful for a variety of applications. The way we have done this is by pro-
viding a simple set of abstractions and a simple way to interact with the API.

2 ABSTRACTIONS

SymtabAPI provides a simple set of abstractions over complicated data structures which
makes it straight-forward to use. The SymtabAPI consists of four interfaces : the symbol table
interface, the type interface, the line map interface and the local variable interface.

Figure 1 shows the ownership hierarchy for the SymtabAPI classes. Ownership here is a “con-
tains” relationship; if one class owns another, then instances of the owner class maintain an exclu-

SymtabAPI Programmer’s Guide Page 3

sive instance of the other. For example, each Symtab class instance contains multiple instances
of class Symbol and each Symbol class instance belongs to one Symtab class instance. Each
of four interfaces and the classes belonging to these interfaces are described in the rest of the sec-
tion. The API functions in each of the classes are described in detail in Section 6.

2.1 Symbol Table Interface

The symbol table interface is responsible for parsing the object file and handling the look-up
and addition of new symbols. It is also responsible for the export and emit functionality that Sym-
tabAPI supports. The Symtab and the Module classes inherit from the LookupInterface
class, an abstract class, ensuring the same lookup function signatures for both Module and
Symtab classes.

• Symtab - A Symtab class object represents either an object file on-disk or in-memory that the
SymtabAPI library operates on.

Figure 1: SymtabAPI Object Ownership Diagram

Type

Class A belongs to the

L
E

G
E

N
D

Symbol

Archive

ExceptionBlock

Symtab

Module

localVar LineNoTuple

LineInformation

A Class A belongs to the

Local Variable interface

Line Number interface

A Class A belongs to the
symbol table interface

Type interfaceA
Class A belongs to the

1:N

1:N

1:N

1:N

A

1:1

1:N

1:1 Each instance of class A owns one instance of class BA B

1:N Each instance of class A owns multiple instances of class BA B

N:1N:1

SymtabAPI Programmer’s Guide Page 4

• Symbol - A Symbol class object identifies functions and variables within the binary object.
• Module - A Module class object represents a particular source file in cases where multiple

files were compiled into a single binary object; if this information is not present, we use a sin-
gle default module.

• Archive - An Archive class object represents a collection of binary objects stored in a single
file (e.g., a static archive).

• ExceptionBlock - An ExceptionBlock class object represents an exception block which
contains the information necessary for run-time exception handling.

2.1.1 Transformations to the Symbol Table

The following is the list of transformations that SymtabAPI performs to the symbol table
information existing in the object file.

• Stores the symbol information along with all weak symbols which are aliases to it together.
Just the names of the aliases are stored with the original symbol in the list of pretty/man-
gled/typed names.

2.2 Type Interface

 The Type interface is responsible for parsing type information from the object file and han-

dling the look-up and addition of new type information. Figure 2 shows the class inheritance dia-
gram for the type interface. Class Type is the base class for all of the classes that are part of the

Figure 2: SymtabAPI Type Interface - Class Inheritance Diagram

Type

fieldListTypederivedType rangedType

typeStruct

typeUnion

typeArray

typeSubrangetypeFunction

typeEnum

typeScalar typeCommon

typePointer

typeTypedef

typeRef

L
E

G
E

N
D

A inherits from B

Type interface

A B

CBlock

A
Class A belongs to the

Represents an abstract
Class

SymtabAPI Programmer’s Guide Page 5

interface. This class provides the basic common functionality for all the types, such as querying
the name and size of a type. The rest of the classes represent specific types and provide more func-
tionality based on the type.

Some of the types inherit from a second level of type classes, each representing a separate cat-
egory of types.

• fieldListType - This category of types represent the container types that contain a list of
fields. Examples of this category include structure and the union types.

• derivedType - This category of types represent types derived from a base type. Examples
of this category include typedef, pointer and reference types.

• rangedType - This category represents range types. Examples of this category include the
array and the sub-range types.
The enum, function, common block and scalar types do not fall under any of the above cate-

gory of types. Each of the specific types is derived from Type .

2.3 Line Number Interface

The Line Number interface is responsible for parsing line number information from the object
file debug information and handling the look-up and addition of new line information. The main
classes for this interface are LineInformation and LineNoTuple .

• LineInformation - A LineInformation class object represents a mapping of line
numbers to address range within a module (source file).

• LineNoTuple - A LineNoTuple class object represents a location in source code with a
source file, line number in that source file and start column in that line.

2.4 Local Variable Interface

The Local Variable Interface is responsible for parsing local variable and parameter informa-
tion of functions from the object file debug information and handling the look-up and addition of
new add new local variables. All the local variables within a function are tied to the Symbol class
object representing that function.

• localVar - A localVar class object represents a local variable or a parameter belonging to a
function.

2.5 Dynamic Address Translation

The AddrTranslate class is a component for mapping between absolute addresses found
in a running process and SymtabAPI objects. This is useful because libraries can load at different
addresses in different processes. Each AddrTranslate instance is associated with, and pro-
vides mapping for, one process.

3 SIMPLE EXAMPLES

To illustrate the ideas in the API, this section presents several short examples that demonstrate
how the API can be used.

SymtabAPI Programmer’s Guide Page 6

SymtabAPI has the ability to parse files that are on-disk or present in memory. The user pro-
gram starts by requesting SymtabAPI to parse an object file. SymtabAPI returns a handle if the
parsing succeeds, whcih can be used for further interactions with the SymtabAPI library. The fol-
lowing example shows how to parse a shared object file on disk.

using namespace Dyninst;
using namespace SymtabAPI;

//Name the object file to be parsed:
std::string file = “libfoo.so”;

//Declare a pointer to an object of type Symtab; this represents the file.
Symtab *obj = NULL;

// Parse the object file
bool err = Symtab::openFile(file, obj);

Once the object file is parsed successfully and the handle is obtained, symbol look up and update
operations can be performed in the following way.

using namespace Dyninst;
using namespace SymtabAPI;
std::vector <Symbol *> syms;

// search for symbol of any type with demangled (pretty) name “bar”.
if (obj->findSymbolByType(syms, "bar", Symbol::ST_UNKNOWN)) {

// change the type of the found symbol to type variable(ST_OBJECT)
syms[0]->setType(Symbol::ST_OBJECT);

// Add a new demangled (pretty) name to the found symbol.
syms[0]->addPrettyName("foo");
// These changes are automatically added to symtabAPI; no further
// actions are required by the user.

}

New symbols can be created and added to the library at any point using the handle returned by
successful parsing of the object file.

using namespace Dyninst;
using namespace SymtabAPI;

//Module for the symbol
Module *mod;

//obj represents a handle to a parsed object file.
//Lookup module handle for “DEFAULT_MODULE”
obj->findModule(mod, “DEFAULT_MODULE”);

// Create a new function symbol
Symbol *newSym = new Symbol("func1", // Name of the new symbol

mod, //Its source module (default)
Symbol::ST_FUNCTION, // Its type (function)
Symbol::SL_GLOBAL, // Scoping (global)
123456);// And address(from start of text section)

// Add the newly created symbol to symtabAPI
obj->addSymbol(newSym);

SymtabAPI gives the ability to query type information present in the object file. Also, new user
defined types can be added to SymtabAPI. The following example shows both how to query type
information after an object file is successfully parsed and also add a new structure type.

SymtabAPI Programmer’s Guide Page 7

// create a new struct Type
// typedef struct{
// int field1,
// int field2[10]
// } struct1;

using namespace Dyninst;
using namespace SymtabAPI;

// obj represents a handle to a parsed object file using SymtabAPI
// Find a handle to the integer type
Type *lookupType;
obj->findType(“int”, lookupType);

// Convert the generic type object to the specific scalar type object
typeScalar *intType = lookupType->getScalarType()

// container to hold names and types of the new structure type
vector<pair<string, Type *> >fields;

//create a new array type(int type2[10])
typeArray *intArray = typeArray::create(obj,”intArray”,intType,0,9);

//types of the structure fields
fields.push_back(pair<string, Type *>(“field1”, intType));
fields.push_back(pair<string, Type *>(“field2”, intArray));

//create the structure type
typeStruct *struct1 = typeStruct::create(obj, ”struct1”, fields, obj);

Users can also query line number information present in an object file. The following example
shows how to use SymtabAPI to get the address range for a line number within a source file.

using namespace Dyninst;
using namespace SymtabAPI;

// obj represents a handle to a parsed object file using symtabAPI
// Container to hold the address range
vector< pair< Offset, Offset > > ranges;

// Get the address range for the line 30 in source file foo.c
obj->getAddressRanges("foo.c", 30, ranges);

Local variable information can be obtained using symtabAPI. You can query for a local variable
within the entire object file or just within a function. The following example shows how to find
local variable foo within function bar .

using namespace Dyninst;
using namespace SymtabAPI;

// Obj represents a handle to a parsed object file using symtabAPI
// Get the Symbol object representing function bar
vector<Symbol *> syms;
obj->findSymbolByType(syms, “bar”, Symbol::ST_FUNCTION);

// Find the local var foo within function bar
vector<localVar *> *vars = syms[0]->findLocalVarible(“foo”);

Parsing an XCOFF object file is different than the rest of the file formats as the XCOFF format
also allows archives to contain dynamic libraries. The following examples shows how to open an
XCOFF archive using SymtabAPI on AIX.

SymtabAPI Programmer’s Guide Page 8

//Name the object file to be parsed
std::string file = “libfoo.a”

// Declare a pointer to an object of type Archive. This represents the archive.
Archive *archive = NULL;

// Declare an pointer to an object of type Symtab. This represents the object.
Symtab *Obj = NULL;

// Try to parse the archive file; error handling omitted for simplicity
Archive::openArchive(file, archive);

// Get the Symtab object for the desired object
archive->getMember(“bar.o”, Obj);
// Obj now contains a handle to the desired binary object “bar.o”

The rest of this document describes the class hierarchy and the API in detail.

4 DEFINITIONS AND BASIC TYPES

The following definitions and basic types are referenced throughout the rest of this document.

4.1 Definitions

• Offset - Offsets represent an address relative to the start address(base) of the object file. For
executables, the Offset represents an absolute address.

The following definitions deal with the symbol table interface.

• Object File - An object file is the representation of code that a compiler or assembler
generates by processing a source code file. It represents .o’s, a.out’s and shared libraries.

• Symbol - A symbol identifies a function, variable or modules within the binary object.
• Module - A module represents a particular source file in cases where multiple files were

compiled into a single binary object; if this information is not present, we use a single default
module.

• Archive - An archive represents a collection of binary objects stored in a single file (e.g., a
static archive).

• Relocations - These provide the necessary information for inter-object references within
an object.

• Exception Blocks - These contain the information necessary for run-time exception
handling

The following definitions deal with members of the Symbol class.

• Alias - An Alias in the symbol table context represents a weak symbol with the same attributes
as the original symbol to which it an alias, but has a different name.

• Mangled Name - A mangled name for a symbol provides a way of encoding additional
information about a function, structure, class or another data type in a symbol name. It is a
technique used to solve various problems caused by the need to resolve unique names for pro-
gramming entities in many modern programming languages. For example, a function foo with
signature void foo() has a mangled name _Z8foov when compiled with gcc.

• Pretty Name - A pretty name for a symbol represents a user-level symbolic name for a
symbol. For example, foo can be a pretty name for a function declared as void foo() .

• Typed Name - A typed name for a symbol represents the user-level symbolic name com-

SymtabAPI Programmer’s Guide Page 9

plete with the signature. For example, void foo() can be a typed name for the function
foo.

• Symbol Linkage - The symbol linkage for a symbol gives information on the visibility
(binding) of this symbol, whether it is visible only in the object file where it is defined (local),
if it is visible to all the object files that are being linked (global), or if its a weak alias to a glo-
bal symbol.

• Symbol Type - Symbol type for a symbol represents the category of symbols to which it
belongs. It can be a function symbol or a variable symbol or a module symbol.

The following definitions deal with the type and the local variable interface.

• Type - A type represents the data type of a variable or a parameter. This can represent lan-
guage pre-defined types (e.g. int, float), pre-defined types in the object (e.g., structures or
unions), or user-defined types.

• Local Variable - A local variable represents a variablethat has been declared within the
scope of a sub-routine or a parameter to a sub-routine.

4.2 Basic Types

typedef unsigned long Offset

An integer value that contains an offset from base address of the object file.

typedef int typeId_t

A unique handle for identifying a type. Each of types is assigned a globally unique ID. This
way it is easier to identify any data type of a variable or a parameter.

typedef ... PID

A handle for identifying a process that is used by the Dynamic Components of SymtabAPI.
On UNIX platforms PID is a int , on Windows it is a HANDLE that refers to a process.

typedef unsigned long Address

An integer value that represents an address in a process. This is used by the Dynamic Compo-
nents of SymtabAPI.

5 NAMESPACE SYMTAB API

The classes described in Section 6 are under the C++ namespace Dyninst::SymtabAPI .
To access them a user should refer to them using the Dyninst:: and SymtabAPI:: pre-
fixs, e.g. Dyninst::SymtabAPI::Type . Alternatively, a user can add the C++ using
keyword above any references to SymtabAPI objects, e.g, using namespace Dyninst
and using namespace SymtabAPI .

SymtabAPI Programmer’s Guide Page 10

6 API REFERENCE - STATIC COMPONENTS

This section describes the all the five interfaces of SymtabAPI. Each of the sub sections repre-
sent a different interface.

6.1 Symbol Table Interface

This section describes the symbol table interface for the SymtabAPI library. Currently this
interface has the following capabilities

• Parsing the symbols in a binary, either on disk or in memory
• Querying for symbols
• Updating existing symbol information
• Adding new symbols
• Exporting symbols in standard formats
• Getting relocation, exception information
• Getting header information

The primary classes for this interface are Symtab, Module, Symbol, Archive and Exception-
Block.

6.1.1 Class Symtab

The Symtab class represents an object file either on-disk or in-memory. This class is responsi-
ble for the parsing of the Object file information and holding the data that can be accessed through
look up functions.

static bool openFile(Symtab *&obj, string filename)

This factory method1 creates a new Symtab object for an object file on disk. This object serves
as a handle to the parsed object file. filename represents the name of the Object file to be
parsed. The Symtab object is returned in obj if the parsing succeeds.

Returns true if the file is parsed without an error, else returns false. The error is set to
Object_Parsing. printSymtabError() should be called to get more error details.

static bool openFile(Symtab *&obj, char *mem_image, size_t size)

This factory method creates a new Symtab object for an object file in memory. This object
serves as a handle to the parsed object file. mem_image represents the pointer to the Object
file in memory to be parsed. size indicates the size of the image. The Symtab object is
returned in obj if the parsing succeeds.

Returns true if the file is parsed without an error, else returns false. The error is set to
Object_Parsing. printSymtabError() should be called to get more error details.

1. “Factory method” is an object-oriented design pattern term that describes a method that is responsible for
constructing new objects. SymtabAPI uses factory methods to allow it to return an error when construct-
ing an object.

SymtabAPI Programmer’s Guide Page 11

bool findSymbolByType(vector <Symbol *> &ret, const string name,
Symbol::SymbolType sType, bool isMangled = false,
bool isRegex = false, bool checkCase = false)

This method finds and returns a vector of symbols with type sType whose names match the
given Mangled/Pretty name based on the isMangled flag. If the isRegex flag is set a reg-
ular expression match is performed with the symbol names. checkCase is applicable only if
isRegex has been set. This indicates if the case be considered while performing regular
expression matching. ret contains the list of matched symbols if any.

Returns true if it finds symbols with the given attributes. or else returns false. The error value
is set to No_Such_Function / No_Such_Variable/ No_Such_Module/
No_Such_Symbol based on the type.

bool findModule(Module *ret, const string name)

This method searches for a module with name name. ret contains the handle to the module
found.

If the module exists return true, or else return false with ret set to NULL.

bool findFuncByEntryOffset(vector<Symbol *> &ret, const Offset offset)

This method returns a vector of function symbols with the given offset offset.

There can be two or more symbols starting having the same entry point offsets. These are usu-
ally aliases to the original function symbol.

Returns true on success and false if there is no symbol with the given offset. The error value is
set to No_Such_Symbol .

bool getAllSymbolsByType(vector<Symbol *> &ret,
Symbol::SymbolType sType)

This method returns all symbols whose type matches the given type sType.

Returns true on success and false if there are no symbols with the given type. The error value
is set to No_Such_Symbol .

bool getAllModules(vector<module *> &ret)

This method returns all modules in the object file. Returns true on success and false if there
are no modules. The error value is set to No_Such_Module.

bool getAllExceptions(vector<ExceptionBlock *> &exceptions)

This method retrieves all the exception blocks in the Object file.

Returns false if there are no exception blocks else returns true with exceptions containing
a vector of ExceptionBlocks.

SymtabAPI Programmer’s Guide Page 12

bool findException(ExceptionBlock &excp, Offset addr)

This method returns the exception block in the binary at the offset addr .

Returns false if there is no exception block at the given offset else returns true with excp con-
taining the exception block.

bool findCatchBlock(ExceptionBlock &excp, Offset addr, unsigned size = 0)

This method returns true if the address range [addr, addr+size] contains a catch block,
with excp pointing to the appropriate block, else returns false.

bool addSymbol(Symbol *newsym, bool isDynamic)

This method adds a new symbol newsym to all of the internal data structures. The primary
name of the newsym must be a mangled name. isDynamic represents whether the symbol
belongs to the dynamic symbol table also. Returns true on success and false on failure. A new
copy of newsym is not made. newsym must not be deallocated after adding it to symtabAPI.

bool isExec() const

This method returns true if the Object is an executable or else returns false.

typedef enum {
obj_Unknown,
obj_SharedLib,
obj_Executable

} ObjectType;

ObjectType getObjectType() const

This method queries information on the type of the object file(Executable/ Shared object/
Unknown).

bool isCode(const Offset where) const

This method checks if the given offset where address belongs to the text section. Returns true
if that is the case or else returns false.

bool isData(const Offset where) const

This method checks if the given offset where address belongs to the data section. Returns
true if that is the case or else returns false.

bool isValidOffset(const Offset where) const

This method checks if the given offset if the given offset where is a valid address. For an
address to be valid it should be aligned and it should be a valid code offset or a valid data off-
set.

SymtabAPI Programmer’s Guide Page 13

Returns true if it succeeds or else returns false.

const string &file() const

This method returns the full path name of the object file. Returns an empty string if it the
object file is a memory image.

const string &name() const

This method returns the name of the object file. Returns an empty string if it the object file is a
memory image.

char *mem_image() const

This method returns the pointer to the object file in memory. Returns NULL if its a file on disk
and not a memory image.

Offset codeOffset() const
Offset dataOffset() const

These methods return the code/data segment address values for the object, offset from the start
(base) of the binary.

Offset dataLength() const
Offset codeLength() const

These methods return the code/data segment length values for the binary.

char* code_ptr () const
char* data_ptr () const

These methods return a pointer to the start of the code or the data section for the binary.

unsigned getNumberOfSymbols() const

This method return the total number of symbols present in the binary

The number returned represents all the symbols present in the .symtab section of the binary.

unsigned getAddressWidth() const

This method returns the address width in bytes for the object file. On 32-bit systems this func-
tion will return 4, and on 64-bit systems this function will return 8.

Offset getLoadOffset() const

This method returns the offset of the load section of the object file.

Offset getEntryOffset() const

This method returns the entry point offset of the object file.

SymtabAPI Programmer’s Guide Page 14

Offset getBaseOffset() const

This method returns the base address of the object file.

bool getAddressRanges(vector< pair<unsigned long, unsigned long> > & ranges,
string lineSource, unsigned int LineNo)

This method returns the address ranges in ranges corresponding to the line with line number
lineNo in the source file lineSource . Searches all modules for the given source.

Return true if at least one address range corresponding to the line number was found and
returns false if none found.

bool getSourceLines(vector<LineNoTuple> &lines, Offset addressInRange)

This method returns the source file names and line numbers corresponding to the given
address addressInRange. Searches all modules for the given source.

Return true if at least one tuple corresponding to the offset was found and returns false if none
found.

bool addLine(string &lineSource, unsigned int lineNo,
unsigned int lineOffset, Offset lowInclusiveAddr,
Offset highExclusiveAddr)

This method adds a new line to the line map. lineSource represents the source file name.
lineNo represents the line number.

Returns true on success and false on error.

bool addAddressRange(Offset lowInclusiveAddr, Offset highExclusiveAddr,
string lineSource, unsigned int lineNo,
unsigned int lineOffset = 0);

This method adds an address range [lowInclusiveAddr, highExclusiveAddr)
for the line with line number lineNo in source file lineSource at offset lineOffset .

Returns true on success and false on error.

bool findType(Type *&type, string name)

 Performs a look up among all the built-in types, standard types and user-defined types and
returns a handle to the found type with name name.

Returns true if a type is found with type containing the handle to the type, else return false.

std::vector<Type *> *getAllstdTypes()

Returns all the standard types that normally occur in a program.

SymtabAPI Programmer’s Guide Page 15

std::vector<Type *> *getAllbuiltInTypes()

Returns all the bulit-in types defined in the binary.

bool findLocalVariable(vector<localVar *> &vars, string name)

The method returns a list of local variables named name within the object file.

Returns true with vars containing a list of localVar objects corresponding to the local vari-
ables if found or else returns false.

bool findLocalVarsByScope(vector<localVar *> &vars, Symbol *func)

This method finds a list of variables within the binary that are local to the scope of the func-
tion func .

This method returns true with vars containing a list of localVar objects corresponding to the
local variables or else returns false.

bool findLocalVarsByScope(vector<localVar *> &vars, Offset addr)

This method finds a list of variables within the binary that are local at the offset addr .

This method returns true with vars containing a list of localVar objects corresponding to the
local variables or else returns false.

typedef enum ... SymtabError

SymtabError can take one of the following values.

• Obj_Parsing - An error occurred during object parsing(internal error)

• Syms_To_Functions - An error occurred in converting symbols to functions(internal
error)

• Build_Function_Lists - An error occurred while building function lists(internal error)

• No_Such_Function - No such function exists with the given inputs

• No_Such_Variable - No such variable exists with the given inputs

• No_Such_Module - No such module exists with the given inputs

• No_Such_Symbol - No such symbol exists with the given inputs

• No_Such_Member - No such member exists in the archive with the given inputs

• Not_A_File - Binary to be parsed may be an archive and not a file

• Not_An_Archive - Binary to be parsed is not an archive

• No_Error - Previous operation did not result in failure.

SymtabAPI Programmer’s Guide Page 16

static SymtabError getLastSymtabError()

This method returns an error value for the previously performed operation that resulted in a
failure.

SymtabAPI sets a global error value in case of error during any operation. This call returns the
last error that occurred while performing any operation.

static string &printError(SymtabError serr)

This method returns a detailed description of the enum value serr in human readable format.

6.1.2 Class Module

This class represents a module which is part of the image. This class also gives all the infor-
mation pertaining to a module.

typedef enum{
lang_Unknown,
lang_Assembly,
lang_C,
lang_CPlusPlus,
lang_GnuCPlusPlus,
lang_Fortran,
lang_Fortran_with_pretty_debug,
lang_CMFortran

}supportedLanguages

This represents the language of the source file which has been compiled into the object file.

bool getAllSymbolsByType(vector<Symbol *> &ret,
Symbol::SymbolType sType)

This method returns all symbols within the module whose type matches the given type
sType.

Returns true on success and false if there are no symbols with the given type. The error value
is set to No_Such_Symbol .

bool findSymbolByType(vector <Symbol *> &ret, const string name,
Symbol::SymbolType sType, bool isMangled = false,
bool isRegex = false, bool checkCase = false)

This method finds and returns a vector of symbols within the module with type sType where
the name matches the given Mangled/Pretty name based on the isMangled flag. If the
isRegex flag is set a regular expression match is performed with the symbol names.
checkCase is applicable only if isRegex has been set. This indicates if the case be consid-
ered while performing regular expression matching. ret contains the list of matched symbols
if any.

SymtabAPI Programmer’s Guide Page 17

Returns true if it finds symbols with the given attributes. or else returns false. The error value
is set to No_Such_Function / No_Such_Variable/ No_Such_Module/
No_Such_Symbol based on the type.

bool isShared() const

This method returns true if the module is shared, else return false.

const string& fileName() const

This method returns the full path name for the module.

There is always a file name corresponding to a module.

const string& fullName() const

This method returns the file name for the module.

There is always a file name corresponding to a module.

bool setName(string newName)

This method sets the full name of the module to newName. Returns true on success and false
on failure.

supportedLanguages language() const
bool setLanguage(supportedLanguages lang)

These methods return the language for the module / set it to lang .

Offset addr() const

This method returns the offset for the module from the start of the object file.

bool getAddressRanges(vector< pair<unsigned long, unsigned long> > & ranges,
string lineSource, unsigned int LineNo)

This method returns the address ranges in ranges corresponding to the line with line number
lineNo in the source file lineSource . Searches only this module for the given source.

Return true if at least one address range corresponding to the line number was found and
returns false if none found.

bool getSourceLines(vector<LineNoTuple> &lines, Offset addressInRange)

This method returns the source file names and line numbers corresponding to the given
address addressInRange. Searches only this module for the given source.

Return true if at least one tuple corresponding to the offset was found and returns false if none
found.

SymtabAPI Programmer’s Guide Page 18

LineInformation *Dyn_Module::getLineInformation() const

This method returns the line map corresponding to the module. Returns NULL if there is no
line information existing for the module.

bool findType(Type *&type, string name)

This method performs a look up and returns a handle to the named type.

This method searches all the built-in types, standard types and user-defined types within the
module. Returns true if a type is found with type containing the handle to the type, else
return false.

bool findLocalVariable(vector<localVar *> &vars, string name)

The method returns a list of local variables within the module with name name.

Returns true with vars containing a list of localVar objects corresponding to the local vari-
ables if found or else returns false.

6.1.3 Class Symbol

The Symbol class represents a symbol in the object file. This class holds the symbol informa-
tion such as the mangled, pretty and typed names, the module in which it is present, type, link-
age, offset and size.

typedef enum {
ST_UNKNOWN,
ST_FUNCTION,
ST_OBJECT,
ST_MODULE,
ST_NOTYPE

} SymbolType

This represents the type for a symbol. ST_UNKNOWN represents an unknown type,
ST_FUNCTION represents a function type. ST_OBJECT represents the variable type,
ST_MODULE represents the module type and ST_NOTYPE represents the existence of no
type.

SymtabAPI Programmer’s Guide Page 19

typedef enum {
SL_UNKNOWN,
SL_GLOBAL,
SL_LOCAL,
SL_WEAK

} SymbolLinkage

Symbol (const string name, Module *module, SymbolType stype,
SymbolLinkage slinkage, Offset addr, Section *sec = NULL,
unsigned size = 0, void *upPtr = NULL, bool isInDynSymtab = false,
bool isInSymtab = true)

This method creates an object of class Symbol with the mangled name name, module mod-
ule , the symbol type stype , the symbol linkage slinkage , offset addr , the section sec ,
the size size and a void pointer upPtr . isInDynSymtab is set to true if the symbol
belongs to the dynamic symbol table. isInSymtab is set to true if the symbol belongs to the
regular symbol table.

The void pointer can be used to extend the Symbol class to store any additional information.
This is particularly useful when converting between Symbol to any other object.

Symbol(const Symbol &sym)

This method constructs a new symbol from the given symbol sym. Copies over all the
attributes of the symbol including the extra information stored using the upPtr .

bool operator== (const Symbol &sym) const

This method compares this symbol with sym.

Returns true if all the members of the object sym are same as the members of this object.

const string& getName () const

This method returns the primary mangled name for the symbol. Refer to Section 4 for more
details on a mangled name.

const string& getPrettyName() const

This method returns the primary pretty (unmangled) name for the symbol. Refer to Section 4
for more details on a mangled name.

const string& getTypedName() const

This method returns the primary typed name for the symbol. Refer to Section 4 for more
details on a typed name.

const Module *getModule () const

This method returns the module handle to which this symbol belongs. If the symbol does not
belong to any module NULL is returned.

SymtabAPI Programmer’s Guide Page 20

const string &getModuleName () const

This method returns the name of the module to which this symbol belongs. If the symbol does
not belong to any module an empty string is returned.

SymbolType getType() const

This method returns the type of the symbol.

SymbolLinkage getLinkage() const

This method returns the linkage associated with this symbol.

Offset getAddr() const

This method returns the offset associated with this symbol.

vector<string> &getAllMangledNames() const
vector<string> &getAllPrettyNames() const
vector<string> &getAllTypedNames() const

This method returns a the list of appropriate (mangled/unmangled/typed) names associated
with this symbol, including all aliases(alternate names).

This method returns an empty vector in case the symbol does not have names of a certain
kind.

unsigned getSize() const

This method returns the size occupied by a symbol in bytes.

Section *getSec() const

This method returns a handle to the section in which this symbol is present. Returns NULL if
the symbol is not associated with a section.

void *getUpPtr() const

This method returns a handle to the data stored by an external user or application program for
this symbol.

This is useful for extending the already existing symbol information. A user can store extra
information per symbol by using this upPtr. This method retrieves this extra information that
is originally stored as part of this symbol.

This method returns NULL in case no extra information is stored by the user.

bool isInDynSymtab() const

Returns true if the symbol belongs to the dynamic symbol table

SymtabAPI Programmer’s Guide Page 21

bool isInSymtab() const

Returns true if the symbol belongs to the regular symbol table or else returns false.

bool setModule (Module *module)

This function changes the module to which the symbol belongs to module . Returns true if it
succeeds.

bool setModuleName (string moduleName)

This function changes the module name of the symbol to moduleName. Returns true if it
succeeds.

bool setSize (unsigned ns)

The method changes the size of the symbol to ns . Returns true if it succeeds.

bool setAddr(Offset newAddr)

This method changes the offset of the symbol to newAddr . Returns true if it succeeds.

bool setType(SymbolType sType)

This method sets the type of the symbol to sType . Returns true if it succeeds, else returns
false.

bool setUpPtr(void *newUpPtr)

This method sets the upPtr of the symbol to newUpPtr .

This is useful for extending the symbol data structure to store information specific to the tool
using SymtabAPI. This method returns true on success.

bool addMangledName(string name, bool isPrimary = false)

This method adds a mangled name name to the symbol. If isPrimary is true then it
becomes the default name for the symbol.

This method returns true on success and false on failure.

bool addPrettyName(string name, bool isPrimary = false)

This method adds a pretty name name to the symbol. If isPrimary is true then it becomes
the default name for the symbol.

This method returns true on success and false on failure.

SymtabAPI Programmer’s Guide Page 22

bool addTypedName(string name, bool isPrimary = false)

This method adds a typed name name to the symbol. If isPrimary is true then it becomes
the default name for the symbol.

This method returns true on success and false on failure.

bool isWeak()

This method returns true if the symbol is weak else returns false. weak symbols are usually
aliases to global symbols.

bool isLocal()

This method returns true if the symbol linkage is local else returns false.

bool isGlobal()

This method returns true if the symbol linkage is global else returns false.

bool getLocalVariables(vector<localVar *> &vars)

This method returns the local variables in the function. vars contains the list of variables
found.

If the symbol is not a function or there is no debugging information present then it returns
NULL with the error code set to NOT_A_FUNCTION/NO_DEBUG_INFO accordingly.

Returns true on success and false on failure.

bool getParams(vector<localVar *> ¶ms)

This method returns the parameters to the function. params contains the list of parameters.

If the symbol is not a function or there is no debugging information present then it returns
NULL with the error code set to NOT_A_FUNCTION/NO_DEBUG_INFO accordingly.

Returns true on success and false on failure.

bool findLocalVariable(vector<localVar *> &vars, string name)

This method returns a list of local variables within a function that have name name. vars
contains the list of variables found.

Returns true on success and false on failure.

6.1.4 Class Archive

This is used only on AIX. This class represents an archive. This class has information of all
the members in the archives.

SymtabAPI Programmer’s Guide Page 23

static bool openArchive(Archive *&img, string name)

This factory method creates a new Archive object for an archive file on disk. This object
serves as a handle to the parsed archive file. name represents the name of the archive to be
parsed. The Archive object is returned in img if the parsing succeeds.

This method returns false if the given file is not an archive. The error is set to
Not_An_Archive . This returns true if the archive is parsed without an error. print-
SymtabError() should be called to get more error details.

static bool openArchive(Archive *&img, char *mem_image, size_t size)

This factory method creates a new Archive object for an archive file in memory. This object
serves as a handle to the parsed archive file. mem_image represents the pointer to the archive
to be parsed. size represents the size of the memory image. The Archive object is returned
in img if the parsing succeeds.

This method returns false if the given file is not an archive. The error is set to
Not_An_Archive. This returns true if the archive is parsed without an error. printSymtab-
Error() should be called to get more error details.

bool getMember(Symtab *&img, string member_name)

This method returns the member object handle if the member exists in the archive. img corre-
sponds to the object handle for the member.

This method returns false if the member with name member_name does not exist else
returns true.

bool getMemberByOffset(Symtab *&img, Offset memberOffset)

This method returns the member object handle if the member exists at the start offset mem-
berOffset in the archive. img corresponds to the object handle for the member.

This method returns false if the member with name member_name does not exist else
returns true.

bool getAllMembers(vector <Symtab *> &members)

This method returns all the member object handles in the archive. Returns true on success
with members containing the Symtab Objects for all the members in the archive.

bool isMemberInArchive(string member_name)

This method returns true if the member with name member_name exists in the archive or
else returns false.

SymtabAPI Programmer’s Guide Page 24

static SymtabError getLastSymtabError()

This method returns an error value for the previously performed operation that resulted in a
failure.

SymtabAPI sets a global error value in case of error during any operation. This call returns the
last error that occurred while performing any operation.

static string &printError(SymtabError serr)

This method returns a detailed description of the enum value serr in human readable format.

6.1.5 Class ExceptionBlock

This class represents an Exception Block present in the Object file. This class gives all the
information pertaining to that Exception Block.

bool hasTry() const

This method returns true if the Exception Block has a try block, else returns false.

Offset tryStart() const

This methods returns the start offset of the try block.

If the exception block does not have a try block it returns 0.

Offset tryEnd() const

This method returns the end offset of the try block.

If the exception block does not have a try block it returns 0.

Offset trySize() const

This method returns the size of the try block. This returns 0 in case the exception block does
not have a try block.

Offset catchStart() const

This method returns the start address of the catch block.

bool contains(Offset addr) const

This method returns true if the offset addr is contained with in the try block. If there is no try
block associated with this exception block or the offset does not fall within the try block, it
returns false.

SymtabAPI Programmer’s Guide Page 25

6.2 Type Interface

This section describes the type interface for the SymtabAPI library. Currently this interface
has the following capabilities

• Look up types within an object file.

• Extend the types to create new types and add them to the object file.
To look up types or to add new types, the object file should already be parsed and should have

a Symtab handle to the object file. The rest of the section describes the classes that are part of the
type interface.

6.2.1 Class Type

The class Type represents the types of variables, parameters, return values, and functions.
Instances of this class can represent language predefined types (e.g. int, float), already defined
types in the Object File or binary (e.g., structures compiled into the binary), or newly created
types (created using the create factory methods of the corresponding type classes described later
in the section) that are added to SymtabAPI by the user.

As described in Section , this class serves as a base class for all the other classes in this inter-
face. An object of this class is returned from type look up operations performed through the
Symtab class described in Section 6. The user can then obtain the specific type object from the
generic Type class object. The following example shows how to get the specific object from a
given “Type” object returned as part of a look up operation.

//Example shows how to retrieve a structure type object from a given “Type” object
using namespace Dyninst;
using namespace SymtabAPI;

//Obj represents a handle to a parsed object file using symtabAPI
//Find a structure type in the object file
Type *structType = obj->findType(“structType1”);

// Get the specific typeStruct object
typeStruct *stType = structType->isStructType();

const string &getName()

This method returns the name associated with this type.

Each of the types is represented by a symbolic name. This method retrieves the name for the
type. For example, in the example above “structType1” represents the name for the
structType object.

bool setName(string zname)

This method sets the name of this type to name. Returns truie on success and false on failure.

SymtabAPI Programmer’s Guide Page 26

typedef enum{
dataEnum,
dataPointer,
dataFunction,
dataSubrange,
dataArray,
dataStructure,
dataUnion,
dataCommon,
dataScalar,
dataTypeDefine,
dataReference,
dataUnknownType,
dataNullType,
dataTypeClass

} DataClass;

DataClass getType()

This method returns the data class associated with the type.

This value should be used to convert this generic type object to a specific type object which
offers more functionality by using the corresponding query function described later in this
section. For example, if this method returns dataStructure then the isStructure-
Type() should be called to dynamically cast the Type object to the typeStruct object.

typeId_t getID()

This method returns the ID associated with this type.

Each type is assigned a unique ID within the object file. For example an integer scalar built-in
type is assigned an Id -1.

unsigned getSize()

This method returns the total size in bytes occupied by the type.

typeEnum *getEnumType()

If this Type object represents an enum type, then return the object casting the Type object to
typeEnum otherwise return NULL.

typePointer *getPointerType()

If this Type object represents an pointer type, then return the object casting the Type object to
typePointer otherwise return NULL.

typeFunction *getFunctionType()

If this Type object represents an Function type, then return the object casting the Type object
to typeFunction otherwise return NULL.

SymtabAPI Programmer’s Guide Page 27

typeRange *getSubrangeType()

If this Type object represents a Sub-range type, then return the object casting the Type object
to typeSubrange otherwise return NULL.

typeArray *getArrayType()

If this Type object represents an Array type, then return the object casting the Type object to
typeArray otherwise return NULL.

typeStruct *getStructType()

If this Type object represents a Structure type, then return the object casting the Type object to
typeStruct otherwise return NULL.

typeUnion *getUnionType()

If this Type object represents a Union type, then return the object casting the Type object to
typeUnion otherwise return NULL.

typeScalar *getScalarType()

If this Type object represents a Scalar type, then return the object casting the Type object to
typeScalar otherwise return NULL.

typeCommon *getCommonType()

If this Type object represents a Common type, then return the object casting the Type object to
typeCommon otherwise return NULL.

typeTypedef *getTypeDefType()

If this Type object represents a TypeDef type, then return the object casting the Type object to
typeTypedef otherwise return NULL.

typeRef *getRefType()

If this Type object represents a Reference type, then return the object casting the Type object
to typeRef otherwise return NULL.

bool setUpPtr(void *newUpPtr)

This method sets the upPtr of the symbol to newUpPtr .

This is useful for extending the class to store information specific to the tool using Sym-
tabAPI. This method returns true on success.

SymtabAPI Programmer’s Guide Page 28

void *getUpPtr() const

This method returns a handle to the data stored by an external user or application program for
this symbol.

This is useful for extending the already existing type information. A user can store extra infor-
mation per type by using this upPtr. This method retrieves this extra information that is origi-
nally stored as part of this symbol.

This method returns NULL in case no extra information is stored by the user.

6.2.2 Class typeEnum

This class represents an enumeration type containing a list of constants with values. This class
is derived from Type , so all those member functions are applicable. typeEnum inherits from the
Type class.

static typeEnum *create(string &name, vector<pair<string, int> *> &consts,
Symtab *obj = NULL)

static typeEnum *create(string &name, vector<string> &constNames
Symtab *obj = NULL)

These factory methods create a new enumerated type. There are two variations to this func-
tion. consts supplies the names and Id’s of the constants of the enum. The first variant is
used when user-defined identifiers are required; the second variant is used when system-
defined identifiers will be used.

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

bool addConstant(const string &constname, int value)

This method adds a constant to an enum type with name constName and value value .

Returns true on success and false on failure.

vector< pair<string, int> *> *getConstants();

This method returns the vector containing the enum constants represented by a (name, value)
pair of the constant.

bool setName(string &name)

This method sets the new name of the enum type to name.

Returns true if it succeeds, else returns false.

SymtabAPI Programmer’s Guide Page 29

bool isCompatible(Type *type)

 This method returns true if the enum type is compatible with the given type type or else
returns false. For type compatibility rules, see 7

6.2.3 Class typeFunction

This class represents a function type, containing a list of parameters and a return type. This
class is derived from Type , so all the member functions of class Type are applicable. type-
Function inherits from the Type class.

static typeFunction *create(string &name, Type *retType,
vector<Type *> ¶mTypes, Symtab *obj = NULL)

This factory method creates a new function type with name name. retType represents the
return type of the function and paramTypes is a vector of the types of the parameters in
order.

The the newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the function type is compatible with the given type type or else
returns false. For type compatibility rules see 7.

bool addParam(Type *type)

This method adds a new function parameter with type type to the function type.

Returns true if it succeeds, else returns false.

Type *getReturnType() const

 This method returns the return type for this function type. Returns NULL if there is no return
type associated with this function type.

bool setRetType(Type *rtype)

This method sets the return type of the function type to rtype . Returns true if it succeeds,
else returns false.

bool setName(string &name)

This method sets the new name of the function type to name. Returns true if it succeeds, else
returns false.

SymtabAPI Programmer’s Guide Page 30

vector< Type *> &getParams() const

This method returns the vector containing the individual parameters represented by their types
in order. Returns NULL if there are no parameters to the function type.

6.2.4 Class typeScalar

This class represents a scalar type. This class is derived from Type , so all the member func-
tions of class Type are applicable. typeScalar inherits from the Type class.

static typeScalar *create(string &name, int size, Symtab *obj = NULL)

 This factory method creates a new scalar type. The name field is used to specify the name of
the type, and the size parameter is used to specify the size in bytes of each instance of the
type.

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

bool isSigned()

This method returns true if the scalar type is signed or else returns false.

bool isCompatible(Type *type)

This method returns true if the scalar type is compatible with the given type type or else
returns false. For type compatibility rules see 7.

6.2.5 Class Field

This class represents a field in a container. For e.g. a field in a structure/union type.

typedef enum {
visPrivate,
visProtected,
visPublic,
VisUnknown

} visibility_t;

A handle for identifying the visibility of a certain Field in a container type. This can represent
private, public, protected or unknown(default) visibility

Field(string &name, Type *type, visibility_t vis = visUnknown)

This constructor creates a new field with name name, type type and visibility vis . This
newly created Field can be added to a container type.

const string &getName()

This method returns the name associated with the field in the container.

SymtabAPI Programmer’s Guide Page 31

Type *getType()

 This method returns the type associated with the field in the container.

int getOffset()

This method returns the offset associated with the field in the container

visibility_t getVisibility()

This method returns the visibility associated with a field in a container.

This returns visPublic for the variables within a common block.

bool setUpPtr(void *newUpPtr)

This method sets the upPtr of the symbol to newUpPtr .

This is useful for extending the class to store information specific to the tool using Sym-
tabAPI. This method returns true on success.

void *getUpPtr() const

This method returns a handle to the data stored by an external user or application program for
this symbol.

This is useful for extending the already existing field information. A user can store extra infor-
mation per type by using this upPtr. This method retrieves this extra information that is origi-
nally stored as part of this symbol.

This method returns NULL in case no extra information is stored by the user.

6.2.6 Class fieldListType

This class represents a container type. It is one of the three categories of types as described in
Section . The structure and the union types fall under this category. This class is derived from
Type , so all the member functions of class Type are applicable. fieldListType inherits
from the Type class.

vector<Field *> *getComponents()

This method returns the list of all fields present in the container.

This gives information about the name, type and visibility of each of the fields. Returns NULL
of there are no fields.

SymtabAPI Programmer’s Guide Page 32

bool addField(string &fieldname, Type *type,
visibility_t vis = VisUnknown)

This method adds a new field at the end to the container type with field name fieldname ,
type type and type visibility vis . Returns true on success and false on failure.

bool addField(string &fieldname, Type *type,int num
visibility_t vis = VisUnknown)

This method adds a field after the field with number num with field name fieldname , type
type and type visibility vis . Returns true on success and false on failure.

bool addField(Field *fld)

This method adds a new field fld to the container type.Returns true on success and false on
failure.

bool addField(Field *fld, int num)

This method adds a field fld after field num to the container type. Returns true on success
and false on failure.

6.2.6.1 Class typeStruct : public fieldListType

This class represents a structure type. The structure type is a special case of the container type.
The fields of the structure represent the fields in this case. As a subclass of class fieldList-
Type , all methods in fieldListType are applicable.

static typeStruct *create(string &name, vector<pair<string, Type *>> &flds,
Symtab *obj = NULL)

This factory method creates a new struct type. The name of the structure is specified in the
name parameter. The flds vector specifies the names and types of the fields of the structure
type.

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

static typeStruct *create(string &name, vector<Field *> &fields
Symtab *obj = NULL)

This factory method creates a new struct type. The name of the structure is specified in the
name parameter. The fields vector specifies the fields of the type.

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries

bool isCompatible(Type *type)

This method returns true if the struct type is compatible with the given type type or else
returns false. For type compatibility rules see 7

SymtabAPI Programmer’s Guide Page 33

6.2.6.2 Class typeUnion

This class represents a union type, a special case of the container type. The fields of the union
type represent the fields in this case. As a subclass of class fieldListType , all methods in
fieldListType are applicable. typeUnion inherits from the fieldListType class.

static typeUnion *create(string &name, vector<pair<string, Type *>> &flds,
Symtab *obj = NULL)

 This factory method creates a new union type. The name of the union is specified in the name
parameter. The flds vector specifies the names and types of the fields of the union type.

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

static typeUnion *create(string &name, vector<Field *> &fields,
Symtab *obj = NULL)

This factory method creates a new union type. The name of the structure is specified in the
name parameter. The fields vector specifies the fields of the type.

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the union type is compatible with the given type type or else
returns false. For type compatibility rules see 7.

6.2.6.3 Class typeCommon

This class represents a common block type in fortran, a special case of the container type. The
variables of the common block represent the fields in this case. As a subclass of class field-
ListType , all methods in fieldListType are applicable. typeCommon inherits from the
Type class.

vector<CBlocks *> *getCBlocks()

This method returns the common block objects for the type.

The methods of the CBlock can be used to access information about the members of a com-
mon block. The vector returned by this function contains one instance of CBlock for each
unique definition of the common block

6.2.6.4 Class CBlock

This class represents a common block in Fortran. Multiple functions can share a common
block.

bool getComponents(vector<Field *> &vars)

This method returns the vector containing the individual variables of the common block.

SymtabAPI Programmer’s Guide Page 34

Returns true if there is at least one variable, else returns false.

bool getFunctions(vector<Symbol *> &funcs)

This method returns the functions that can see this common block with the set of variables
described in getComponents method above.

Returns true if there is at least one function, else returns false.

6.2.7 Class derivedType

This class represents a derived type which is a reference to another type. It is one of the three
categories of types as described in Section . The pointer, reference and the typedef types fall under
this category. This class is derived from Type , so all the member functions of class Type are
applicable.

Type *getConstituentType() const

 This method returns the type of the base type to which this type refers to.

6.2.7.1 Class typePointer

This class represents a pointer type, a special case of the derived type. The base type in this
case is the type this particular type points to. As a subclass of class derivedType , all meth-
ods in derivedType are also applicable.

static typePointer *create(string &name, Type *ptr,
Symtab *obj = NULL)

static typePointer *create(string &name, Type *ptr, int size,
Symtab *obj = NULL)

These factory methods create a new type, named name, which points to objects of type ptr.
The first form creates a pointer whose size is equal to sizeof(void*) on the target platform
where the application is running. In the second form, the size of the pointer is the value passed
in the size parameter.

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the Pointer type is compatible with the given type type or else
returns false. For type compatibility rules see 7

bool setPtr(Type *ptr)

This method sets the pointer type to point to the type in ptr . Returns true if it succeeds, else
returns false.

SymtabAPI Programmer’s Guide Page 35

6.2.7.2 Class typeTypedef

This class represents a typedef type, a special case of the derived type. The base type in this
case is the Type this particular type is typedef’ed to. As a subclass of class derivedType , all
methods in derivedType are also applicable.

static typeTypedef *create(string &name, Type *ptr,
Symtab *obj = NULL)

This factory method creates a new type called name and having the type ptr .

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the typedef type is compatible with the given type type or else
returns false. For type compatibility rules see 7

6.2.7.3 Class typeRef

This class represents a reference type, a special case of the derived type. The base type in this
case is the Type this particular type refers to. As a subclass of class derivedType , all methods
in derivedType are also applicable here.

static typeRef *create(string &name, Type *ptr, int size,
Symtab * obj = NULL)

This factory method creates a new type, named name, which is a reference to objects of type
ptr . The size parameter is used to specify the size in bytes of each instance of the type.

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the ref type is compatible with the given type type or else returns
false. For type compatibility rules see 7

6.2.8 Class rangedType

This class represents a range type with a lower and an upper bound. It is one of the three cate-
gories of types as described in Section . The sub-range and the array types fall under this category.
This class is derived from Type , so all the member functions of class Type are applicable.

int getLow() const

This method returns the lower bound of the range.

This can be the lower bound of the range type or the lowest index for an array type.

SymtabAPI Programmer’s Guide Page 36

int getHigh() const

This method returns the higher bound of the range.

This can be the higher bound of the range type or the highest index for an array type.

6.2.8.1 Class typeSubrange

This class represents a sub-range type. As a subclass of class rangedType , all methods in
rangedType are applicable here. This type is usually used to represent a sub-range of another
type. For example, a typeSubrange can represent a sub-range of the array type or a new inte-
ger type can be declared as a sub range of the integer using this type.

static typeSubrange *create(string &name, int size, int low, int hi,
symtab *obj = NULL)

This factory method creates a new sub-range type. The name of the type is name, and the size
is size . The lower bound of the type is represented by low , and the upper bound is repre-
sented by high .

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if this sub range type is compatible with the given type type or else
returns false. For type compatibility rules see 7

6.2.8.2 Class typeArray

This class represents an Array type. As a subclass of class rangedType, all methods in ranged-
Type are applicable.

static typeArray *create(string &name, Type *type, int low, int hi,
Symtab *obj = NULL)

This factory method creates a new array type. The name of the type is name, and the type of
each element is type . The index of the first element of the array is low , and the last is high .

The newly created type is added to the Symtab object obj . If obj is NULL the type is not
added to any object file, but it will be available for further queries

bool isCompatible(Type *type)

This method returns true if the array type is compatible with the given type type or else
returns false. For type compatibility rules see 7

Type *getBaseType() const

This method returns the base type of this array type.

SymtabAPI Programmer’s Guide Page 37

6.3 Line Number Interface

This section describes the line number interface for the SymtabAPI library. Currently this
interface has the following capabilities

• Look up address ranges for a given line number

• Look up source lines for a given address.

• Add new line information.
To look up or to add line information, the user/application must have already parsed the object

file and should have a Symtab handle to the object file. For more information on line information
lookups through the Symtab class refer to Section 6. The rest of the section describes the classes
that are part of the type interface.

6.3.1 Class LineInformation

This class represents an entire line map for a module. This contains mappings from a line
number within a source to the address ranges.

bool getAddressRanges(vector< pair<unsigned long, unsigned long> > & ranges,
string &lineSource, unsigned int LineNo)

This methos returns the address ranges in ranges corresponding to the line with line number
lineNo in the source file lineSource . Searches within this line map.

Return true if at least one address range corresponding to the line number was found and
returns false if none found.

bool getSourceLines(vector<LineNoTuple> & lines, Offset addressInRange)

This method returns the source file names and line numbers corresponding to the given
address addressInRange. Searches within this line map.

Return true if at least one tuple corresponding to the offset was found and returns false if none
found.

bool addLine(string &lineSource, unsigned int lineNo,
unsigned int lineOffset, Offset lowInclusiveAddr,
Offset highExclusiveAddr, Symtab *obj = NULL)

This method adds a new line to the line Map. lineSource represents the source file name.
lineNo represents the line number.

If obj is NULL it is just added to that line map or else the new line is added back to the
library.

SymtabAPI Programmer’s Guide Page 38

bool addAddressRange(Offset lowInclusiveAddr, Offset highExclusiveAddr,
string &lineSource, unsigned int lineNo,
unsigned int lineOffset = 0, Symtab *obj = NULL);

This method adds an address range [lowInclusiveAddr, highExclusiveAddr)
for the line with line number lineNo in source file lineSource .

If obj is NULL it is just added to that line map or else the new line is added back to the
library.

LineInformation::const_iterator begin()

This method returns an iterator pointing to the beginning of the line information for the mod-
ule.

This is useful for iterating over the entire line information present in a module. An example
described in Section 6.3.3 gives more information on how to use begin() for iterating over
the line information.

LineInformation::const_iterator end()

This method returns an iterator pointing to the end of the line information for the module.

This is useful for iterating over the entire line information present in a module. An example
described in Section 6.3.3 gives more information on how to use end() for iterating over the
line information.

6.3.2 Class LineNoTuple

LineNoTuple is tuple of three objects: source file where a line is present, line number in that
source file and start column in that line. It’s members can be accessed directly.

const chat *first

This member gives the source file for the line

unsigned int second

This member gives the line number for the line

unsigned int column

This member gives the start column for that line.

SymtabAPI Programmer’s Guide Page 39

6.3.3 Iterating over Line Information

The LineInformation class also provides the ability for iterating over its data(Line numbers
and their corresponding address ranges). The following example shows how to iterate over the
line information for a given module using SymtabAPI.

//Example showing how to iterate over the line information for a given module.
using namespace Dyninst;
using namespace SymtabAPI;

//Obj represents a handle to a parsed object file using symtabAPI
//Module handle for the module
Module *mod;

//Find the module “foo” within the object.
obj->findModule(mod, “foo”);

// Get the Line Information for module foo.
LineInformation *info = mod->getLineInformation();

//Iterate over the line information
LineInformation::const_iterator iter;
for(iter = info->begin(); iter != info->end(); iter++)
{

// First component represents the address range for the line
const std::pair<Offset, Offset> addrRange = iter->first;

//Second component gives information about the line itself.
LineNoTuple lt = iter->second;

}

6.4 Local Variable Interface

This section describes the local variable interface for the SymtabAPI library. Currently this
interface has the following capabilities

• Look up local variables and parameters within an function.

• Look up local variables local to a particular scope.

• Add new local variables.
To look up or to add local variables, the user/application must have already parsed the object

file and should have a Symtab handle to the object file. For more information on local variable
lookups through the Symbol class refer to Section 6. The rest of the section describes the classes
that are part of the type interface.

typedef enum {
storageAddr,
storageReg,
storageRegOffset,

}storageClass;

This represents a handle that encodes how a variable is stored and gives information on how to
access it. If the value is storageAddr then absolute address of the variable is available. If
the value is storageReg then the register holds the variable value. If the value is stor-
ageRegOffset then the address of the variable can be calculated as $reg+address.

SymtabAPI Programmer’s Guide Page 40

typedef enum{
storageAddrRef,
storageRegRef,

}StorageRefClass;

This gives information on whether a variable can be accessed through an address or a register.
If the value is storageAddrRef then the variable can be accessed through a pointer and the
address of that pointer is available. If the value is storageRegRef then the variable can be
accessed through a register which holds the pointer.

typedef struct{
storageClass stClass; //storage class for the variable
storageRef refClass; //storage reference for the variable
int reg; //Register in which the local variable will

//be stored
}loc_t;

This represents a particular scope for a variable where it is local. Gives information on how to
access the variable based on the location.

6.4.1 Class localVar

This represents a local variable or parameter within a function.

string &getName() const

This method returns the name of the local variable.

Type *getType()

 This method returns the type of the local variable.

string &getFileName()

This method returns the filename where this local variable was declared.

int getLineNum()

This method returns the line number at which the local variable was declared.

vector<loc_t> *getLocationLists()

A local variable can be in scope at different positions and based on that it is accessible in dif-
ferent ways. Location lists provide a way to encode that information.

The method retrieves the location list where the variable is in scope. These are represented by
the loc_t objects which give information on the storage class and how to access it.

bool setUpPtr(void *newUpPtr)

This method sets the upPtr of the symbol to newUpPtr .

SymtabAPI Programmer’s Guide Page 41

This is useful for extending the class to store information specific to the tool using Sym-
tabAPI. This method returns true on success.

void *getUpPtr() const

This method returns a handle to the data stored by an external user or application program for
this symbol.

This is useful for extending the already existing local variable information. A user can store
extra information per type by using this upPtr. This method retrieves this extra information
that is originally stored as part of this symbol.

This method returns NULL in case no extra information is stored by the user.

7 API REFERENCE - DYNAMIC COMPONENTS

Unlike the static components discussed in Section 6, which operate on files, SymtabAPI’s
dynamic components operate on a process. The Dynamic Components currently consist of the
Dynamic Address Translation system, which translates between absolute addresses in a running
process and static SymtabAPI objects.

7.1 Class AddressLookup

The AddressLookup class provides a mapping interface for determining the address in a
process where a SymtabAPI object is loaded. A single dynamic library may load at different
addresses in different processes. The ‘address’ fields in a dynamic libraries’ symbol tables will
contain offsets rather than absolute addresses. These offsets can be added to the libraries’ load
address, which is computed at runtime, to determine the absolute address where a symbol is
loaded.

The AddressLookup class examines a process and finds its dynamic libraries and executa-
bles and each one’s load address. This information can be used to map between SymtabAPI
objects and absolute addresses. Each AddressLookup instance is associated with one process.
An AddressLookup object can be created to work with the currently running process or a different
process on the same system.

On the Linux and Solaris platforms the AddressLookup class needs to read from the pro-
cess’ address space in order to determine its shared objects and load addresses. By default,
AddressLookup will attach to another process using a debugger interface to read the necessary
information, or simply use memcpy if reading from the current process. The default behavior can
be changed by implementing a new ProcessReader class and passing an instance of it to the
createAddressLookup factor constructors. The ProcessReader class is discussed in
more detail in Section 7.1.1.

When an AddressLookup object is created for a running process it takes a snapshot of the
processes currently loaded libraries and their load addresses. This snapshot is used to answer que-
ries into the AddressLookup object, and is not automatically updated when the process loads
or unloads libraries. The refresh function can be used to updated an AddressLookup
object’s view of its process.

SymtabAPI Programmer’s Guide Page 42

static AddressLookup *createAddressLookup(ProcessReader *reader = NULL)

This factory constructor creates a new AddressLookup object associated with the process
that called this function. The returned AddressLookup object should be cleaned with the
delete operator when it is no longer needed.

If the reader parameter is non-NULL on Linux or Solaris then the new AddressLookup
object will use reader to read from the target process.

This function returns the new AddressLookup object on success and NULL on error.

static AddressLookup *createAddressLookup(PID pid,
ProcessReader *reader = NULL)

This factory constructor creates a new AddressLookup object associated with the process
referred to by pid . The returned AddressLookup object should be cleaned with the delete
operator when it is no longer needed.

If the reader parameter is non-NULL on Linux or Solaris then the new AddressLookup
object will use reader to read from the target process.

This function returns the new AddressLookup object on success and NULL on error.

typedef struct {
std::string name;
Address codeAddr;
Address dataAddr;

} LoadedLibrary;

static AddressLookup *createAddressLookup(const std::vector<LoadedLibrary> &ll)

This factor constructor creates a new AddressLookup associated with a previously col-
lected list of libraries from a process. The list of libraries can be initially be collected with the
getLoadAddresses function. The list can then be used with this function to re-create the
AddressLookup object, even if the original process no longer exists. This can be useful for
off-line address lookups, where only the load addresses are collected while the process exists
and then all address translation is done after the process has terminated.

This function returns the new AddressLookup object on success and NULL on error.

bool getLoadAddresses(std::vector<LoadedLibrary> &ll)

This function returns a vector of LoadedLibrary objects that can be used by the createAd-
dressLookup(const std::vector<LoadedLibrary> &ll) function to create a
new AddressLookup object. This function is usually used as part of an off-line address lookup
mechanism.

This function returns true on success and false on error.

SymtabAPI Programmer’s Guide Page 43

bool refresh()

When a AddressLookup object is initially created it takes a snapshot of the libraries cur-
rently loaded in a process, which is then used to answer queries into this API. As the process
runs more libraries may be loaded and unloaded, and this snapshot may become out of date.

An AddressLookup ’s view of a process can be updated by calling this function, which
causes it to examine the process for loaded and unloaded objects and update its data structures
accordingly.

This function returns true on success and false on error.

bool getAddress(Symtab *tab, Symbol *sym, Address &addr)

Given a Symtab object, tab , and a symbol, sym, this function returns the address, addr ,
where the symbol can be found in the process associated with this AddressLookup .

This function returns true if it was able to successfully lookup the address of sym and
false otherwise.

bool getAddress(Symtab *tab, Offset off, Address &addr)

Given a Symtab object, tab , and an offset into that object, off , this function returns the
address, addr , of that location in the process associated with this AddressLookup .

This function returns true if it was able to successfully lookup the address of sym and
false otherwise.

bool getSymbol(Address addr, Symbol * &sym, Symtab* &tab, bool close = false)

Given an address, addr , this function returns the Symtab object, tab , and Symbol , sym,
that reside at that address. If the close parameter is true then getSymbol will return the
nearest symbol that comes before addr ; this can be useful when looking up the function that
resides at an address.

This function returns true if it was able to find a symbol and false otherwise.

bool getOffset(Address addr, Symtab* &tab, Offset &off)

Given an address, addr , this function returns the Symtab object, tab , and an offset into tab,
off , that reside at that address.

This function returns true on success and false otherwise.

bool getAllSymtabs(std::vector<Symtab *> &tabs)

This function returns all Symtab objects that are contained in the process represented by this
AddressLookup object. This will include the process’ executable and all shared objects
loaded by this process.

SymtabAPI Programmer’s Guide Page 44

This function returns true on success and false otherwise.

bool getLoadAddress(Symtab *sym, Address &load_address)

Given a Symtab object, sym, that resides in the process associated with this Address-
Lookup , this function returns sym’s load address.

On the AIX system, where an object can have one load address for its code and one for its
data, this function will return the code’s load address. Use getDataLoadAddress to get
the data load address.

This function returns true on success and false otherwise.

bool getDataLoadAddress(Symtab *sym, Address &load_addr)

Given a Symtab object, sym, this function returns the load address of its data section. This
function will return the data load address on AIX systems only, all other supported operating
systems return zero.

This function returns true on success and false otherwise.

7.1.1 Class ProcessReader

The implementation of the AddressLookup on Linux and Solaris requires it to be able to
read from the target process’ address space. By default, reading from another process on the same
system this is done through the OS’s debugger interface. A user can provide their own process
reading mechanism by implementing a child of the ProcessReader class and passing it to the
AddressLookup constructors.

The API described in this section is an interface that a user can implement. With the exception
of the ProcessReader constructor, these functions should not be called by user code.

The ProcessReader is defined, but not used, on non-Linux and Solaris systems.

PID pid

The pid member variable of ProcessReader refers to the PID of the process being read
from.

ProcessReader(PID pid_)

This constructor for a ProcessReader should be called by any child class constructor.

virtual bool start() = 0

This function is called by AddressLookup before it begins a batch of reads from a process.
Multiple readAddressSpace calls may follow the call to begin, which are then concluded
with a call to done . This function may be useful for any initialization that needs to be done

SymtabAPI Programmer’s Guide Page 45

before reads. Note that this function signifies the start of a batch of reads, and multiple batches
of reads occur during the lifetime of a ProcessReader .

This function should return true on success and false on error.

virtual bool readAddressSpace(Address traced, unsigned amount, void *inSelf) = 0

This function should read amount bytes from the address at traced into the buffer pointed
to by inSelf .

This function should return true on success and false on error.

virtual bool done() = 0

This function is called to signify the completion of a batch of reads. It is guaranteed to be
paired with a start call.

This function should return true on success and false on error.

Appendix A: Building SymtabAPI

This appendix describes how to build SymtabAPI from source code, which can be down-
loaded from http://www.paradyn.org or http://www.dyninst.org.

 Building on Unix

Building SymtabAPI on UNIX platforms is a four step process that involves: unpacking the
SymtabAPI source, installing any SymtabAPI dependencies, configuring paths in make.con-
fig.local, and running the build.

SymtabAPI’s source code is packaged in a tar.gz format. If your SymtabAPI source tarball is
called symtab_src_1.0.tar.gz , then you could extract it with the command gunzip
symtab_src_1.0.tar.gz; tar -xvf symtab_src_1.0.tar . This will create two
directories: core and scripts.

SymtabAPI has several dependencies, depending on what platform you are using, which must
be installed before SymtabAPI can be built. Note that for most of these packages Dyninst needs to
be able to access the package’s include files, which means that development versions are required.
If a version number is listed for a packaged, then there are known bugs that may affect Dyninst
with earlier versions of the package.

Linux/x86 libdwarf-20060327
libelf
libxml2

Linux/IA-64 libdwarf-20060327
libunwind-0.98.5
libelf
libxml2

Linux/x86-64 libdwarf-20060327

SymtabAPI Programmer’s Guide Page 46

libelf
libxml2

Solaris/Sparc libxml2

AIX/Power libxml2

Windows/x86 libxml2

At the time of this writing the Linux packages could be found at:

• libdwarf - http://reality.sgiweb.org/davea/dwarf.html

• libelf - http://www.mr511.de/software/english.html

• libunwind - http://www.hpl.hp.com/research/linux/libunwind/download.php4

• libxml2 - http://xmlsoft.org/downloads.html
Once the dependencies for SymtabAPI have been installed, SymtabAPI must be configured to

know where to find these packages. This is done through SymtabAPI’s core/make.con-
fig.local file. This file must be written in GNU Makefile syntax and must specify directory
locations for each dependency. Specifically, LIBDWARFDIR, LIBELFDIR and LIBXML2DIR
variables must be set. LIBDWARFDIR should be set to the absolute path of libdwarf library
where dwarf.h and libdwarf.h files reside. LIBELFDIR should be set to the absolute path
where libelf.a and libelf.so files are located. Finally, LIBXML2DIR to the absolute path
where libxml2 is located.

The next thing is to set DYNINST_ROOT, PLATFORM, and LD_LIBRARY_PATH environ-
ment variables. DYNINST_ROOT should be set to path of the directory that contains core and
scripts subdirectories.

PLATFORM should be set to one of the following values depending upon what operating sys-
tem you are running on:

alpha-dec-osf5.1 Tru64 UNIX on the Alpha processor

i386-unknown-linux2.4 Linux 2.4/2.6 on an Intel x86 processor

ia64-unknown-linux2.4 Linux 2.4/2.6 on an IA-64 processor

rs6000-ibm-aix5.1 AIX Version 5.1

sparc-sun-solaris2.9 Solaris 2.9 on a SPARC processor

x86_64-unknown-linux2.4Linux 2.4/2.6 on an AMD-64 processor

LD_LIBRARY_PATH variable should be set in a way that it includes libdwarf home direc-
tory/lib and ${DYNINST_ROOT}/${PLATFORM}/lib directories.

Once make.config.local is set you are ready to build SymtabAPI. Change to the core directory
and execute the command make SymtabAPI. This will build the SymtabAPI library. Successfully
built binaries will be stored in a directory named after your platform at the same level as the core
directory.

SymtabAPI Programmer’s Guide Page 47

 Building on Windows

SymtabAPI for Windows is built with Microsoft Visual Studio 2003 project and solution files.
Building SymtabAPI for Windows is similar to UNIX in that it is a four step process: Unpack the
SymtabAPI source code, install SymtabAPI’s package dependencies, configure Visual Studio to
use the dependencies, and run the build system.

SymtabAPI’s source code is distributed as part of a tar.gz package. Most popular unzipping
programs are capable of handling this format. Extracting the Dyninst tarball results in two directo-
ries: core and scripts.

Dyninst for Windows depends on Microsoft’s Debugging Tools for Windows, which could be
found at http://www.microsoft.com/whdc/devtools/debugging/default.mspx at the time of this
writing. Download these tools and install them at an appropriate location. Make sure to do a cus-
tom install and install the SDK, which is not always installed by default. For the rest of this sec-
tion, we will assume that the Debugging Tools are installed at c:\program
files\Debugging Tools for Windows . If this is not the case, then adjust the following
instruction appropriately.

Once the Debugging Tools are installed, Visual Studio must be configured to use them. We
need to add the Debugging Tools include and library directories to Visual Studios search paths. In
Visual Studio 2003 select Options ... from the tools menu. Next select Projects and VC++
Directories from the pane on the left. You should see a list of directories that are sorted into
categories such as ‘Executable files’, ‘Include files’, etc. The current category can be changed
with a drop down box in the upper right hand side of the Dialog.

First, change to the ‘Library files’ category, and add an entry that points to C:\Program
Files\Debugging Tools for Windows\sdk\lib\i386 . Make sure that this entry is
above Visual Studio’s default search paths.

Next, Change to the ‘Include files’ category and make a new entry in the list that points to
C:\Program Files\Debugging Tools for Windows\sdk\inc . Also make sure
that this entry is above Visual Studio’s default search paths. Some users have had a problem where
Visual Studio cannot find the cvconst.h file. You may need to add the directory containing this file
to the include search path. We have seen it installed at $(VCInstallDir)/../Visual
Studio SDKs/DIA SDK/include , although you may need to search for it. You also need to
add the libxml2 include path depending on the where the libxml2 is installed on the system.

Once you have installed and configured the Debugging Tools for Windows you are ready to
build Dyninst. First, you need to create the directories where Dyninst will install its completed
build. From the core directory you need to create the directories ../i386-unknown-
nt4.0/bin and ../i386-unknown-nt4.0/lib . Next open the solution file core/Sym-
tabAPI.sln with Visual Studio. You can then build SymtabAPI by select ‘Build Solution’ from
the build menu. This will build the SymtabAPI library.

	SymtabAPI Programmer’s Guide
	Figure 1: SymtabAPI Object Ownership Diagram
	Figure 2: SymtabAPI Type Interface - Class Inheritance Diagram
	typedef unsigned long Offset
	typedef int typeId_t
	typedef ... PID
	typedef unsigned long Address
	static bool openFile(Symtab *&obj, string filename)
	static bool openFile(Symtab *&obj, char *mem_image, size_t size)
	bool findSymbolByType(vector <Symbol *> &ret, const string name, Symbol::SymbolType sType, bool isMangled = false, bool isRegex = false, bool checkCase = false)
	bool findModule(Module *ret, const string name)
	bool findFuncByEntryOffset(vector<Symbol *> &ret, const Offset offset)
	bool getAllSymbolsByType(vector<Symbol *> &ret, Symbol::SymbolType sType)
	bool getAllModules(vector<module *> &ret)
	bool getAllExceptions(vector<ExceptionBlock *> &exceptions)
	bool findException(ExceptionBlock &excp, Offset addr)
	bool findCatchBlock(ExceptionBlock &excp, Offset addr, unsigned size = 0)
	bool addSymbol(Symbol *newsym, bool isDynamic)
	bool isExec() const
	typedef enum { obj_Unknown, obj_SharedLib, obj_Executable } ObjectType;
	ObjectType getObjectType() const
	bool isCode(const Offset where) const
	bool isData(const Offset where) const
	bool isValidOffset(const Offset where) const
	const string &file() const
	const string &name() const
	char *mem_image() const
	Offset codeOffset() const Offset dataOffset() const
	Offset dataLength() const Offset codeLength() const
	char* code_ptr () const char* data_ptr () const
	unsigned getNumberOfSymbols() const
	unsigned getAddressWidth() const
	Offset getLoadOffset() const
	Offset getEntryOffset() const
	Offset getBaseOffset() const
	bool getAddressRanges(vector< pair<unsigned long, unsigned long> > & ranges, string lineSource, unsigned int LineNo)
	bool getSourceLines(vector<LineNoTuple> &lines, Offset addressInRange)
	bool addLine(string &lineSource, unsigned int lineNo, unsigned int lineOffset, Offset lowInclusiveAddr, Offset highExclusiveAddr)
	bool addAddressRange(Offset lowInclusiveAddr, Offset highExclusiveAddr, string lineSource, unsigned int lineNo, unsigned int lineOffset = 0);
	bool findType(Type *&type, string name)
	std::vector<Type *> *getAllstdTypes()
	std::vector<Type *> *getAllbuiltInTypes()
	bool findLocalVariable(vector<localVar *> &vars, string name)
	bool findLocalVarsByScope(vector<localVar *> &vars, Symbol *func)
	bool findLocalVarsByScope(vector<localVar *> &vars, Offset addr)
	typedef enum ... SymtabError
	static SymtabError getLastSymtabError()
	static string &printError(SymtabError serr)
	typedef enum{ lang_Unknown, lang_Assembly, lang_C, lang_CPlusPlus, lang_GnuCPlusPlus, lang_Fortran, lang_Fortran_with_pretty_debug, lang_CMFortran }supportedLanguages
	bool getAllSymbolsByType(vector<Symbol *> &ret, Symbol::SymbolType sType)
	bool findSymbolByType(vector <Symbol *> &ret, const string name, Symbol::SymbolType sType, bool isMangled = false, bool isRegex = false, bool checkCase = false)
	bool isShared() const
	const string& fileName() const
	const string& fullName() const
	bool setName(string newName)
	supportedLanguages language() const bool setLanguage(supportedLanguages lang)
	Offset addr() const
	bool getAddressRanges(vector< pair<unsigned long, unsigned long> > & ranges, string lineSource, unsigned int LineNo)
	bool getSourceLines(vector<LineNoTuple> &lines, Offset addressInRange)
	LineInformation *Dyn_Module::getLineInformation() const
	bool findType(Type *&type, string name)
	bool findLocalVariable(vector<localVar *> &vars, string name)
	typedef enum { ST_UNKNOWN, ST_FUNCTION, ST_OBJECT, ST_MODULE, ST_NOTYPE } SymbolType
	typedef enum { SL_UNKNOWN, SL_GLOBAL, SL_LOCAL, SL_WEAK } SymbolLinkage
	Symbol (const string name, Module *module, SymbolType stype, SymbolLinkage slinkage, Offset addr, Section *sec = NULL, unsigned size = 0, void *upPtr = NULL, bool isInDynSymtab = false, bool isInSymtab = true)
	Symbol(const Symbol &sym)
	bool operator== (const Symbol &sym) const
	const string& getName () const
	const string& getPrettyName() const
	const string& getTypedName() const
	const Module *getModule () const
	const string &getModuleName () const
	SymbolType getType() const
	SymbolLinkage getLinkage() const
	Offset getAddr() const
	vector<string> &getAllMangledNames() const vector<string> &getAllPrettyNames() const vector<string> &getAllTypedNames() const
	unsigned getSize() const
	Section *getSec() const
	void *getUpPtr() const
	bool isInDynSymtab() const
	bool isInSymtab() const
	bool setModule (Module *module)
	bool setModuleName (string moduleName)
	bool setSize (unsigned ns)
	bool setAddr(Offset newAddr)
	bool setType(SymbolType sType)
	bool setUpPtr(void *newUpPtr)
	bool addMangledName(string name, bool isPrimary = false)
	bool addPrettyName(string name, bool isPrimary = false)
	bool addTypedName(string name, bool isPrimary = false)
	bool isWeak()
	bool isLocal()
	bool isGlobal()
	bool getLocalVariables(vector<localVar *> &vars)
	bool getParams(vector<localVar *> ¶ms)
	bool findLocalVariable(vector<localVar *> &vars, string name)
	static bool openArchive(Archive *&img, string name)
	static bool openArchive(Archive *&img, char *mem_image, size_t size)
	bool getMember(Symtab *&img, string member_name)
	bool getMemberByOffset(Symtab *&img, Offset memberOffset)
	bool getAllMembers(vector <Symtab *> &members)
	bool isMemberInArchive(string member_name)
	static SymtabError getLastSymtabError()
	static string &printError(SymtabError serr)
	bool hasTry() const
	Offset tryStart() const
	Offset tryEnd() const
	Offset trySize() const
	Offset catchStart() const
	bool contains(Offset addr) const
	const string &getName()
	bool setName(string zname)
	typedef enum{ dataEnum, dataPointer, dataFunction, dataSubrange, dataArray, dataStructure, dataUnion, dataCommon, dataScalar, dataTypeDefine, dataReference, dataUnknownType, dataNullType, dataTypeClass } DataClass; DataClass getType()
	typeId_t getID()
	unsigned getSize()
	typeEnum *getEnumType()
	typePointer *getPointerType()
	typeFunction *getFunctionType()
	typeRange *getSubrangeType()
	typeArray *getArrayType()
	typeStruct *getStructType()
	typeUnion *getUnionType()
	typeScalar *getScalarType()
	typeCommon *getCommonType()
	typeTypedef *getTypeDefType()
	typeRef *getRefType()
	bool setUpPtr(void *newUpPtr)
	void *getUpPtr() const
	static typeEnum *create(string &name, vector<pair<string, int> *> &consts, Symtab *obj = NULL) static typeEnum *create(string &name, vector<string> &constNames Symtab *obj = NULL)
	bool addConstant(const string &constname, int value)
	vector< pair<string, int> *> *getConstants();
	bool setName(string &name)
	bool isCompatible(Type *type)
	static typeFunction *create(string &name, Type *retType, vector<Type *> ¶mTypes, Symtab *obj = NULL)
	bool isCompatible(Type *type)
	bool addParam(Type *type)
	Type *getReturnType() const
	bool setRetType(Type *rtype)
	bool setName(string &name)
	vector< Type *> &getParams() const
	static typeScalar *create(string &name, int size, Symtab *obj = NULL)
	bool isSigned()
	bool isCompatible(Type *type)
	typedef enum { visPrivate, visProtected, visPublic, VisUnknown } visibility_t;
	Field(string &name, Type *type, visibility_t vis = visUnknown)
	const string &getName()
	Type *getType()
	int getOffset()
	visibility_t getVisibility()
	bool setUpPtr(void *newUpPtr)
	void *getUpPtr() const
	vector<Field *> *getComponents()
	bool addField(string &fieldname, Type *type, visibility_t vis = VisUnknown)
	bool addField(string &fieldname, Type *type,int num visibility_t vis = VisUnknown)
	bool addField(Field *fld)
	bool addField(Field *fld, int num)
	static typeStruct *create(string &name, vector<pair<string, Type *>> &flds, Symtab *obj = NULL)
	static typeStruct *create(string &name, vector<Field *> &fields Symtab *obj = NULL)
	bool isCompatible(Type *type)
	static typeUnion *create(string &name, vector<pair<string, Type *>> &flds, Symtab *obj = NULL)
	static typeUnion *create(string &name, vector<Field *> &fields, Symtab *obj = NULL)
	bool isCompatible(Type *type)
	vector<CBlocks *> *getCBlocks()
	bool getComponents(vector<Field *> &vars)
	bool getFunctions(vector<Symbol *> &funcs)
	Type *getConstituentType() const
	static typePointer *create(string &name, Type *ptr, Symtab *obj = NULL) static typePointer *create(string &name, Type *ptr, int size, Symtab *obj = NULL)
	bool isCompatible(Type *type)
	bool setPtr(Type *ptr)
	static typeTypedef *create(string &name, Type *ptr, Symtab *obj = NULL)
	bool isCompatible(Type *type)
	static typeRef *create(string &name, Type *ptr, int size, Symtab * obj = NULL)
	bool isCompatible(Type *type)
	int getLow() const
	int getHigh() const
	static typeSubrange *create(string &name, int size, int low, int hi, symtab *obj = NULL)
	bool isCompatible(Type *type)
	static typeArray *create(string &name, Type *type, int low, int hi, Symtab *obj = NULL)
	bool isCompatible(Type *type)
	Type *getBaseType() const
	bool getAddressRanges(vector< pair<unsigned long, unsigned long> > & ranges, string &lineSource, unsigned int LineNo)
	bool getSourceLines(vector<LineNoTuple> & lines, Offset addressInRange)
	bool addLine(string &lineSource, unsigned int lineNo, unsigned int lineOffset, Offset lowInclusiveAddr, Offset highExclusiveAddr, Symtab *obj = NULL)
	bool addAddressRange(Offset lowInclusiveAddr, Offset highExclusiveAddr, string &lineSource, unsigned int lineNo, unsigned int lineOffset = 0, Symtab *obj = NULL);
	LineInformation::const_iterator begin()
	LineInformation::const_iterator end()
	const chat *first
	unsigned int second
	unsigned int column
	typedef enum { storageAddr, storageReg, storageRegOffset, }storageClass;
	typedef enum{ storageAddrRef, storageRegRef, }StorageRefClass;
	typedef struct{ storageClass stClass; //storage class for the variable storageRef refClass; //storage reference for the variable int reg; //Register in which the local variable will //be stored }loc_t;
	string &getName() const
	Type *getType()
	string &getFileName()
	int getLineNum()
	vector<loc_t> *getLocationLists()
	bool setUpPtr(void *newUpPtr)
	void *getUpPtr() const
	static AddressLookup *createAddressLookup(ProcessReader *reader = NULL)
	static AddressLookup *createAddressLookup(PID pid, ProcessReader *reader = NULL)
	typedef struct { std::string name; Address codeAddr; Address dataAddr; } LoadedLibrary;
	static AddressLookup *createAddressLookup(const std::vector<LoadedLibrary> &ll)
	bool getLoadAddresses(std::vector<LoadedLibrary> &ll)
	bool refresh()
	bool getAddress(Symtab *tab, Symbol *sym, Address &addr)
	bool getAddress(Symtab *tab, Offset off, Address &addr)
	bool getSymbol(Address addr, Symbol * &sym, Symtab* &tab, bool close = false)
	bool getOffset(Address addr, Symtab* &tab, Offset &off)
	bool getAllSymtabs(std::vector<Symtab *> &tabs)
	bool getLoadAddress(Symtab *sym, Address &load_address)
	bool getDataLoadAddress(Symtab *sym, Address &load_addr)
	PID pid
	ProcessReader(PID pid_)
	virtual bool start() = 0
	virtual bool readAddressSpace(Address traced, unsigned amount, void *inSelf) = 0
	virtual bool done() = 0

	Appendix A: Building SymtabAPI
	Building on Unix
	Building on Windows

