
Paradyn Paral le l Performance Tools

User’s Guide 5/30/07

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

User’s Guide

Release 5.1

May 2007

Table of Contents Page i

User’s Guide May 30, 2007 Release 5.0

1 Overview..1
1.1 Release notes (version 5.1) ...2
1.2 Release notes (version 5.0) ...2
1.3 Release notes (version 4.2) ...2
1.4 Release notes (version 4.1) ...2
1.5 Release notes (version 4.0) ...3
1.6 Release notes (version 3.3) ...3
1.7 Release notes (version 3.2) ...4
1.8 Release notes (version 3.1) ...4
1.9 Release notes (version 3.0) ...4
1.10 Supported hardware and software platforms ...6
1.11 Other documentation: Manuals ..7
1.12 Other documentation: Technical papers ..8
1.13 Contacting the Paradyn developers ..9

2 Running Paradyn..1
2.1 Overview of major steps ...1
2.2 Setting up Paradyn and the Paradyn daemons ..1

2.2.1 Paradyn environment variables ...1
2.2.2 Overriding Paradyn’s default fonts ..2

2.3 Preparing your application program ...5
2.3.1 Generation of debug information (all platforms)5

2.4 Running Paradyn ...5
2.5 Running applications with Paradyn ..7

2.5.1 Defining a new process ..7
2.5.2 Attaching to a process ...9

2.6 Architectural issues ...10
2.6.1 Common Platforms ..10
2.6.2 MPI ...11
2.6.3 Microsoft Windows ..12
2.6.4 Multi-threaded ..13

3 Main Control window..1
3.1 Main menubar ..1

3.1.1 File menu ..1
3.1.2 Setup menu ..1
3.1.3 Phase menu ..2
3.1.4 Visi menu/button ..2
3.1.5 Help menu ..2

3.2 Status lines ..3
3.3 Buttons ..3

4 Tunable Constants ..1
4.1 Overview ...1
4.2 User Tunable Constants ..2
4.3 Developer Tunable Constants ..2

Table of Contents Page ii

User’s Guide May 30, 2007 Release 5.0

5 Selecting resources ...1
5.1 Resources (The “Where” Axis) ..1
5.2 The Where Axis display ..3
5.3 How to select foci using the Where Axis ..4
5.4 The Where Axis GUI ..5
5.5 Call Graph display ...6

6 Selecting metrics...1
6.1 How to select metrics ..1
6.2 Metric Descriptions ...2

7 Controlling visis..1
7.1 Starting ..1
7.2 Stopping ..2

8 Phases...1
8.1 Starting a new phase ..1
8.2 Visualizations and Phases ...1
8.3 The Performance Consultant and phases ...1

9 Performance Consultant..1
9.1 The W3 search model ...1

9.1.1 The Why Axis ..2
9.1.2 The search strategy ..3

9.2 Running the Performance Consultant ..4
9.2.1 The Performance Consultant window ...4
9.2.2 Starting and stopping a search ...5
9.2.3 The Search History Graph display ..6

9.3 Interpreting the results of callgraph-based search ..7
9.4 Interpreting the results of module-then-function search ..8
9.5 Customizing the search parameters ..13

10 Standard visi modules..1
10.1 Time Histogram visi ..1

10.1.1 File menu ..2
10.1.2 Curve menu ...2
10.1.3 Panning and zooming ...2

10.2 Barchart visi ..4
10.2.1 Changing metrics and foci being viewed ...5
10.2.2 Viewing data ..5

10.3 Table visi ...6
10.3.1 Actions menu ...7
10.3.2 View menu ...7

10.4 3D Terrain visi ..8
10.5 Viewing the application output display ..9

11 Exporting Paradyn Data ..1
11.1 Saving Performance Data ...1

Table of Contents Page iii

User’s Guide May 30, 2007 Release 5.0

11.1.1 Saving Performance Data From Front-End ...1
11.1.2 Saving Performance Data From the Visis ..3

11.2 Saving the Where Axis ..4
11.3 Saving Performance Consultant Search Data ..4

12 Paradyn Configuration Language ..1
12.1 Notation ..1
12.2 Lexical conventions ...1
12.3 Language structure ..2
12.4 Daemon definition ..3
12.5 Process definition ..4
12.6 Tunable constant definition ..5
12.7 Visi definition ...6
12.8 Exclude definition ...6
12.9 Metric Description Language ..7

12.9.1 Metric definition ...8
12.9.2 Variables ...9
12.9.3 Types ...9
12.9.4 Predefined variables ..10
12.9.5 Resource lists ...11
12.9.6 Constraints ...12
12.9.7 Metric definitions ..13
12.9.8 Metric statements ..15
12.9.9 Metric expressions ..15
12.9.10 Function calls ...16
12.9.11 Instrumentation requests ...17
12.9.12 Instrumentation code ...17
12.9.13 Interaction of constraints and metrics ...18
12.9.14 A complete example ..19

List of Figures

Tutorial May 30, 2007 Release 5.0

1 Overview
Figure 1: Platforms on which Paradyn can monitor application processes 1-7

2 Running Paradyn
Figure 2: Files needed to run Paradyn ... 2-2
Figure 3: Environment variables used when running Paradyn ... 2-3
Figure 4: Starting Paradyn ... 2-6
Figure 5: Defining a new application process ... 2-7
Figure 6: Paradyn ready to run the application .. 2-8
Figure 7: Specifying a process to attach to. ... 2-10
Figure 8: Attach completed and application execution continuing. 2-11
Figure 9: Sample Makefile for Windows. .. 2-12

3 Main Control window
Figure 10: Paradyn Main Control window ... 3-1

4 Tunable Constants
Figure 11: The Tunable Constants Window ... 4-1
Figure 12: Tunable Constants Descriptions Window ... 4-2
Figure 13: User-level Tunable Constants .. 4-3
Figure 14: Developer-level Tunable Constants. Use at your own risk! 4-4

5 Selecting resources
Figure 15: Where Axis window. ... 5-1
Figure 16: Showing all resources in the Where Axis display .. 5-3
Figure 17: A single focus selected ... 5-4
Figure 18: Multiple foci selection ... 5-5
Figure 19: Callgraph display ... 5-7

6 Selecting metrics
Figure 20: Metrics dialog box ... 6-1
Figure 21: Metrics dialog box with several metrics selected ... 6-2
Figure 22: Metrics defined in Paradyn .. 6-3
Figure 23: Developer Mode Metrics defined in Paradyn .. 6-7

7 Controlling visis
Figure 24: Paradyn Main Control window ... 7-1
Figure 25: Start A Visualization menu .. 7-1
Figure 26: Message box indicating instrumentation has been deferred 7-2

8 Phases
Figure 27: Phase Table Display ... 8-1
Figure 28: Time Histogram: Global Phase .. 8-2
Figure 29: Time Histogram: Local Phase (3) .. 8-2

9 Performance Consultant
Figure 30: The Why Axis ... 9-2
Figure 31: A sample Performance Consultant window .. 9-4
Figure 32: The Performance Consultant’s search begins .. 9-6

List of Figures

Tutorial May 30, 2007 Release 5.0

Figure 33: The Performance Consultant refines bottleneck to CPUbound 9-8
Figure 34: Search History Graph tunable constants for saving screen space 9-9
Figure 35: The Performance Consultant refines bottleneck beyond CPUbound 9-10
Figure 36: The second set of Search History Graph refinements .. 9-11
Figure 37: Final Search History Graph bottleneck refinement .. 9-12

10 Standard visi modules
Figure 38: Time Histogram with selected curve ... 10-1
Figure 39: Time Histogram with unsmoothed and hidden curves ... 10-3
Figure 40: Zoomed Time Histogram ... 10-3
Figure 41: Barchart visualization window ... 10-4
Figure 42: Barchart showing total values .. 10-5
Figure 43: Table visualization window .. 10-6
Figure 44: Table visualization showing short focus names .. 10-7
Figure 46: 3D Terrain visualization ... 10-9
Figure 45: Table visualization with values shown to two significant digits 10-9
Figure 47: Application output window ...10-10

11 Exporting Paradyn Data
Figure 48: Export dialog window ... 11-1
Figure 49: Performance Data File Header and Data Format ... 11-2
Figure 51: Visi Menu to Export Paradyn Data ... 11-3
Figure 50: The Paradyn Main Window after saving performance data. 11-3
Figure 52: The Paradyn Main Window after saving resource names. 11-4
Figure 53: Format for exported search data in shg.txt. ... 11-5
Figure 54: Paradyn Main Window after saving Performance Consultant data. 11-5

12 Paradyn Configuration Language
Figure 55: List of MDL keywords ... 12-2
Figure 56: Predefined variables ..12-10
Figure 57: Metric labels. ...12-14

Page 1-1

User’s Guide May 30, 2007 Release 5.0

1 OVERVIEW

Paradyn is a tool for measuring the performance of parallel and distributed programs. When run
with Paradyn, instrumentation is dynamically inserted into an executing application program and
its performance is reported in real-time. Paradyn’s features include:

• Run-time program instrumentation: you do not have to modify your source code or use a spe-
cial compiler. Paradyn directly instruments the binary image of your running program.

• Performance data visualizations: Paradyn currently provides visualizations to present perfor-
mance data in time-plots, bar graphs, and tables.

• Automated search for performance bottlenecks: Paradyn’s Performance Consultant has a well-
defined notion of bottlenecks and directs Paradyn’s instrumentation in search of them.

• Multi-platform support: Paradyn currently can measure programs running on Solaris
(SPARC), Linux (x86), Linux (ia64), Linux (x86-64), Windows 2000 and XP (x86), and AIX
(RS6000).

• Paradyn can measure programs running on heterogeneous combinations of the above systems.

• Support for MPI message-passing.

• The ability to monitor and display performance data, and isolate performance problems to
particular intervals (“phases”) of program execution.

• An open interface for defining new performance metrics: the Metric Description Language
allows the advanced Paradyn user/programmer to define new performance metrics. These
metrics can be based on application specific performance data.

• An open interface for adding new run-time visualizers and external analysis: using Paradyn’s
Visilib, programmers can interface new or existing display routines to Paradyn performance
data, and Paradyn’s measurement data export capability supports analysis with external tools.

Paradyn differs from many performance tools in that it can decide what performance data to
collect while the program is running. When you select some performance metric to be displayed
for some part of your program, at that moment Paradyn will insert the necessary data gathering
instrumentation into your application program. This method allows you to have direct and
dynamic control over the overhead of data collection (so you don’t pay for what you don’t use).

A tool based on dynamic instrumentation can control instrumentation overhead and data vol-
ume while still being able to collect information about the time-varying behavior of long-running
complex application programs.

Dynamic instrumentation may seem a bit unusual at first. When you (or the Performance
Consultant) are not requesting a particular kind of performance data, it is usually not being col-
lected. This means that there may be intervals of time for which you cannot display data: if you
display a time-plot, there will be gaps in the curves. Paradyn tries to keep you informed of these
details, so that you can use this information to your advantage.

Note: this manual contains color figures with detail which may not be easy to distinguish when
printed/viewed in grayscale.

Page 1-2

User’s Guide May 30, 2007 Release 5.0

1.1 Release notes (version 5.1)

Release 5.1 of the Paradyn Parallel Performance tools is provided as both binary and source distri-
butions, along with extensive documentation.

Paradyn is now built using the Dyninst API and Symtab API.

1.2 Release notes (version 5.0)

• Integrated MRNet and Paradyn for improved scalability

• Full support for Linux/x86-64

• Support for parsing stripped binaries on all platforms

• Improved effeciency when instrumenting loops

1.3 Release notes (version 4.2)

• Support for parsing and handling stripped binaries on PowerPC

• Support for instrumenting multi-threaded applications on Linux 2.4/x86 systems with NPTL

• Support for MPI-2 applications using LAM orMPICH

• Support for MPI-1 applications using LAM

• Full support for Linux/IA64

• AIX 5.2 support.

• Improved build/install process.

1.4 Release notes (version 4.1)

Key improvements for Paradyn 4.1 include

• Support for parsing and handling stripped binaries on x86

• Support for instrumenting multi-threaded applications on Linux 2.6/x86 systems with NPTL

• MRNet 1.0 with a test suite, Windows support, and Dynamic Filter Management

• Unified the daemons for multi-threaded and single-threaded applications

• Improved MPI support

• Improved handling of application fork and exec calls

• Performance improvements

• Paradyn front-end uses true Win32 threads on Windows and supports customized fonts

• Paradyn now uses tcl version 8.4.0

• AIX 4.1 support has been dropped

Page 1-3

User’s Guide May 30, 2007 Release 5.0

1.5 Release notes (version 4.0)

Key improvements for Paradyn 4.0 include:

• Support for instrumenting multi-threaded applications on AIX and Solaris.

• Support for Performance Consultant searches of multi-threaded applications

• Initial support for PAPI library which can aid in finding memory bottlenecks

• Partial support for new PMAPI interface

• Support for handling application fork and exec calls

• Paradyn and KernInst now use same visualizations

• Enhanced histogram save functionality

• Improved support for using ssh for startup of monitored mpi applications

• Paradyn now uses tcl version 8.3.4

• The Paradyn front-end is preemptively multithreaded, enabling it to run on MP workstations.

• The Paradyn runtime library and DynInst runtime libraries are fully decoupled

1.6 Release notes (version 3.3)

Key improvements for Paradyn 3.3 include:

• can instrument many more application functions on the x86 and SPARC platforms

• now handle applications with multiple names for the same function

• separate window to display application stderr/stdout output

• ability to export data from visualizations for off-line analysis

• optimization of instrumentation based on sharing of common subexpressions

• handle MPI applications that create communicators and tags at a rapid rate

• CPU time can be based on hardware counters on AIX, if they’re availables

• sampling of wall time has been made much more efficient for AIX

• 64 bit data path now from data collection to main Paradyn process

• scalability improvements when aggregating sampling data

Platform changes and notes for Paradyn 3.3:

• glibc versions 2.1 and 2.2 are supported on Linux.

• MPI message passing is supported for MPICH 1.2.2 with the ch_p4 device.

• support for instrumenting multithreaded applications is deferred until the next minor release.

• Windows 2000 is now supported.

• IRIX (MIPS), Solaris (x86) and Tru64 (Alpha) are no longer supported by Paradyn. The last
release for these platforms was Release 3.2

Page 1-4

User’s Guide May 30, 2007 Release 5.0

• Paradyn 3.3 is the last release for Linux 2.2, Solaris 7, and Windows NT 4.0.

1.7 Release notes (version 3.2)

Key improvements for Paradyn 3.2 include:

• support for high-resolution wall timers on Linux based on the TSC register

• support for high-resolution CPU timers on Linux when used with a kernel built with the
hrtime patch. (See the Paradyn Installation Guide for details about obtaining and installing
this patch.)

• support for shared objects on AIX

• support for high-resolution wall timers on Irix

• improved predicted and observed cost estimates on Linux and Solaris

• improved process control and Fortran support on Irix

• function relocation on x86: functions with tight instrumention points are now relocated and
expanded to avoid trap-based instrumentation

• improved x86 function parsing

• many performance improvements and bug fixes

Platform changes for Paradyn 3.2:

• The Paradyn daemon is now supported for sequential programs on AIX 4.3

• PVM is no longer supported

• Paradyn 3.2 is the last release for Solaris 2.6

1.8 Release notes (version 3.1)

Key improvements for Paradyn 3.1 include:

• preliminary support for applications running on Tru64 Unix (Alpha): “beta” versions of the
Paradyn daemon and run-time library are available on request

• more reliable bootstrapping (for both explicit process creation and attaching to existing pro-
cesses) and handling of processes as they fork(), exec() and exit()

• support for x86 applications which have their own signal handlers (which would otherwise
conflict with Paradyn’s use of signals for instrumentation and control on these platforms)

• more flexible static and dynamic instrumentation heap organization

• cleaner source organization and easier, more configurable build

• many performance improvements, bug-fixes and software revisions.

1.9 Release notes (version 3.0)

New features for Paradyn 3.0 include:

Page 1-5

User’s Guide May 30, 2007 Release 5.0

• support for Irix 6.5 (MIPS; N64 & N32 ABIs; Origin MPI), Linux 2.2 (x86) and newer versions
of Solaris

• support for applications using MPICH 1.2.0 on Linux and Solaris platforms

• support for Fortran applications on Irix and WindowsNT

• support for multithreaded applications and per-thread metrics (currently only Solaris threads
on SPARC/Solaris, through a separate Paradyn daemon and run-time library: see the separate
Instrumentation of Multithreaded Programs document.)

• dynamic instrumentation and notification of dynamic function calls

• an extensive suite of inclusive metrics (i.e., metrics which include called functions)

• program callgraph display and alternative callgraph-based Code hierarchy search based on ret-
roactive (“catchup”) instrumentation execution for currently-executing (on-stack) functions
and cheaper inclusive metrics

• reorganization of processes and threads under the Machine resource hierarchy

• execution measurement data export capability to support analysis with external tools

• multiple inferior instrumentation heaps, localized to allow use of atomic single-instruction
instrumentation points on SPARC and MIPS.

• system-call interruption and restart (Solaris)

• instrumentation trigger guards available on SPARC, MIPS, RS6000 and x86 platforms

• support for remote/wide-area application monitoring

• shared-memory sampling now standard (i.e., added for WindowsNT and AIX)

• dynamic loading of Paradyn runtime library (libdyninstRT) now standard on all platforms
(except AIX)

• runtime histogram (rthist) visi ported to Tk (like most other Paradyn visis and the main GUI)

• Paradyn GUI and visis ported to WindowsNT

• support for Microsoft CodeView debug format (WindowsNT)

• many performance improvements, bug-fixes and software re-engineering.

Further implementation details behind these features (and more) are available in the Paradyn
Developer’s Guide.

Paradyn releases attempt to make capabilities available as early as possible on a wide variety of
platforms, however, there are some limitations in the current version:

• Fortran and C++ application support is being improved on a number of platforms.

• CPU timers are being derived from virtual timers for more efficient management of large
groups of metric timers (such as those used for timing functions which are disabled and then
re-enabled during message-passing communication operations based on spin-waiting).

• Handling of collections of processes (on the same processor by a single Paradyn daemon) and
propagation of associated metrics to fork&exec’d processes are being improved, along with the
management of metrics defined on dynamic sets of processes. Support for applications consist-

Page 1-6

User’s Guide May 30, 2007 Release 5.0

ing of multiple executables (and distinct callgraphs/resources) is being improved.

• The automated search executed by the Performance Consultant is being streamlined/opti-
mized to avoid redundant instrumentation of nodes, and the callgraph-based version refined
to re-evaluate inclusively-exigent nodes with exclusive metrics to verify whether internal (non-
leaf) graph nodes are themselves exigent. The search from all such exclusively-exigent nodes
will then progress to consider other resource hierarchies.

• AIX application programs that are to be monitored using Paradyn need to be re-linked with
explicit code block markers and Paradyn’s run-time instrumentation library. This link step is
necessary because Paradyn isn’t yet able to dynamically load its instrumentation library under
AIX, and the peculiar format of libraries makes it difficult to distinguish user and library mod-
ules. Details of this link step are described in Section 2.3. Instrumentation of dynamically-
linked libraries is not supported on AIX.

• The standard version of Paradyn cannot safely handle some threaded applications or applica-
tions that share code space as it currently does not know about threads. If you use a non-pre-
emptive thread package, Paradyn will still work; performance data can be attributed to the
Unix processes, but cannot be broken-down by thread. If you use any multiprocessing or pre-
emptive threading package, Paradyn’s instrumentation is likely to misbehave (i.e., we make no
guarantees on what will happen). A separate Paradyn daemon and run-time library supporting
applications based on Solaris threads on SPARC is available: see the separate Instrumentation
of Multithreaded Programs document for further information.

• Paradyn currently uses 32-bit counters as the basis for some of its instrumentation. For very
frequent events, such as those triggered by hardware counters (such as instruction counters or
memory reference counters), these 32-bit counters will overflow. Future releases will allow
larger counters.

• Instrumentation and monitoring of 64-bit applications is not supported. 64-bit SPARC/Solaris
support is under development.

• Instrumentation metrics for I/O are based on the Unix read() and write() system calls. If
you use read or write for socket operations, these will appear as I/O. If you use other system
calls that do file I/O, these will not be accounted for.

Most (if not all) of these restrictions will be relaxed in an intermediate release or the next major
release of Paradyn.

1.10 Supported hardware and software platforms

The Paradyn user interface can run and Paradyn can monitor application programs on any of the
types of workstations and parallel computers listed in Figure 1. Paradyn can also monitor applica-
tion program running on heterogeneous combinations of these platforms.

Note the following qualifiers:

• MPI programs can only be run under the non-threaded POE environment on SP clusters, and
under MPICH 1.2.x on Linux and Solaris platforms. Additional support is in development.

Page 1-7

User’s Guide May 30, 2007 Release 5.0

1.11 Other documentation: Manuals

In addition to this User’s Guide, the following documentation is available for Paradyn:

Installation Guide

The Installation Guide describes how to obtain Paradyn via anonymous ftp and install it on
your system(s). It also describes the minimum operating system and system software version
numbers needed for compatibility with this release of Paradyn.

Tutorial

The tutorial provides a step-by-step example of the use of Paradyn. It walks you through the
main features of starting a program with Paradyn, displaying performance visualizations, and
using the Performance Consultant. The tutorial is intended to show you many of the common
and most useful features, but is not a complete description of Paradyn’s features. This manual
(the User’s Guide) contains the complete description of Paradyn.

VisiLib Programmer’s Guide

Visilib is the standard API interface for external processes that want to collect performance
data from Paradyn. Paradyn performance visualizations (Time Histogram, Bar Chart, Table
and 3D Terrain) execute as separate processes, using Visilib as their interface to Paradyn. This
document describes how to use Visilib in order to develop custom data visualizations.

System Identifier Description

sparc-sun-solaris2.8 Sun Solaris operating system version 8 on SPARC processors.

sparc-sun-solaris2.9 Sun Solaris operating system version 9 on SPARC processors.

i386-unknown-linux2.4 Linux operating system with kernel version 2.4 on x86 processors.

i386-unknown-nt4.0 Microsoft Windows NT operating system version 4.0 on x86 pro-
cessors. This should work, but we no longer test on this platform.

i386-unknown-w2k Microsoft Windows 2000 operating system on x86 processors.

i386-unknown-winxp Microsoft Windows XP operating system version on x86 proces-
sors.

rs6000-ibm-aix5.1 IBM AIX operating system version 5.1 running on RS6000 proces-
sors.

rs6000-ibm-aix4.3a IBM AIX operating system version 4.3.3 on RS6000 processors.
This should work, but we no longer test on this platform.

Figure 1: Platforms on which Paradyn can monitor application processes

a. Power3-based AIX systems will only function properly if APAR IY03550 has been applied. This is detailed
in the AIX installation notes, below.

Page 1-8

User’s Guide May 30, 2007 Release 5.0

MDL Programmer’s Guide

MDL programming hints and examples for those wishing to write their own metrics.

Developer’s Guide

This is intended for those who wish to understand the Paradyn source code—whether to just
to browse it or to actually make changes with the intent of rebuilding Paradyn from scratch.

Instrumentation of Multithreaded Programs

Describes implementation of instrumentation for threaded programs, with current usage and
status information for using Paradyn with applications on Solaris, AIX, and Linux 2.6.

1.12 Other documentation: Technical papers

Following is a bibliography of currently available papers on the technology contained in or related
to Paradyn. These papers and others may be obtained from the Paradyn Project Web home page.

1. “The Paradyn Parallel Performance Measurement Tools”, Barton P. Miller, Mark D. Callaghan, Jonathan
M. Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. IEEE Computer 28, 11, (November 1995). Special issue on Parallel and Distributed
Processing Tools.

2. “An Adaptive Cost Model for Parallel Program Instrumentation” Jeffrey K. Hollingsworth and Barton P.
Miller. EuroPar’96 Conference, Lyon, France, August 1996. Appears as LNCS 1123, Vol.I, pp. 88-97,
Springer-Verlag.

3. “Dynamic Program Instrumentation for Scalable Performance Tools”, Jeffrey K. Hollingsworth, Barton
P. Miller, and Jon Cargille. Scalable High Performance Computing Conf., Knoxville, May 1994.

4. “Dynamic Control of Performance Monitoring on Large Scale Parallel Systems”, Jeffrey K. Holling-
sworth and Barton P. Miller. International Conference on Supercomputing, Tokyo, July 19-23, 1993.

5. “The Paradyn Parallel Performance Tools and PVM”, Barton P. Miller, Jeffrey K. Hollingsworth, and
Mark D. Callaghan. Environments and Tools for Parallel Scientific Computing, J. J. Dongarra and B.
Tourancheau, eds., SIAM Press, 1994.

6. “Mapping Performance Data for High-Level and Data Views of Parallel Program Performance”, R.
Bruce Irvin and Barton P. Miller. International Conf. on Supercomputing, Philadelphia, May 1996.

7. “A Performance Tool for High-Level Parallel Programming Languages”, R. Bruce Irvin and Barton P.
Miller. Programming Environments for Massively Parallel Distributed Systems, K. M. Decker and
R. M. Rehmann editors, Birkhauser Verlag, pp. 299-314, 1994.

8. “Optimizing Array Distributions in Data-Parallel Programs”, Krishna Kunchithapadam and Barton P.
Miller. 7th Workshop on Languages and Compilers for Parallel Computing, Ithaca, NY. August 1994.

9. “Integrating a Debugger and Performance Tool for Steering”, Krishna Kunchithapadam and Barton P.
Miller. Workshop on Debugging and Performance Tuning for Parallel Computing Systems. Cape Cod,
Massachusetts, USA, October 1994.

10. “What to Draw? When to Draw? An Essay on Parallel Program Visualization”, Barton P. Miller. Journal
of Parallel and Distributed Computing 18, 2 (June 1993).

11. “Binary Wrapping: A Technique for Instrumenting Object Code”, Jon Cargille and Barton P. Miller.
SIGPLAN Notices 27, 6 (June 1992).

Page 1-9

User’s Guide May 30, 2007 Release 5.0

12. “Finding Bottlenecks in Large-scale Parallel Programs”, Jeffrey K. Hollingsworth, August 1994. Univer-
sity of Wisconsin-Madison Computer Sciences Department Tech. Report #1243 (Ph.D. Thesis).

13. “Performance Measurement Tools for High-Level Parallel Programming Languages”, R. Bruce Irvin,
October 1995. University of Wisconsin-Madison Computer Science Department Technical Report
#1292 (Ph.D. Thesis).

14. “MDL: A Language and Compiler for Dynamic Program Instrumentation”, Jeffrey K. Hollingsworth,
Barton P. Miller, Marcelo J. R. Gonçalves, Oscar Naìm, Zhichen Xu and Ling Zheng. PACT’97, San
Francisco, California, USA, November, 1997.

15. “A Callgraph-based Search Strategy for Automated Performance Diagnosis,” Harold W. Cain, Barton P.
Miller and Brian J. N. Wylie. EuroPar’2000, München, Germany, August 2000.

1.13 Contacting the Paradyn developers

There are various ways to get in touch with us. We are glad to answer questions and appreciate
feedback.

e-mail: paradyn@cs.wisc.edu

This is our project e-mail address. Use this address for technical questions or requests.

Web: http://www.cs.wisc.edu/~paradyn

This is our home page. From this page, you can find out how to get a binary or source version
of Paradyn. You can also get updates and news on the current release of Paradyn.

FTP: ftp://ftp.cs.wisc.edu/pub/paradyn/

This is our ftp site. In the “paradyn” directory, you will find subdirectories containing the bina-
ry and source versions of the Paradyn release. Make sure to look at the README files!

FAX: +1-608-262-9777

Postal: Paradyn Project
c/o Prof. Barton P. Miller
Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706-1685
U.S.A.

Page 2-1

User’s Guide May 30, 2007 Release 5.0

2 RUNNING PARADYN

In this section, we describe the steps that you should follow to run Paradyn. First we give you an
overview of the major steps and then we explain each one in detail. For this section, we are assum-
ing that you have already installed Paradyn as documented in the Installation Guide.

2.1 Overview of major steps

To run Paradyn, follow the steps:

1. Set up Paradyn and daemons (Section 2.2): You need to specify the location of the Paradyn exe-
cutable and configuration files and some external libraries. You may also wish to override the
default fonts used in the Paradyn GUI.

2. Run Paradyn (Section 2.4): Paradyn has several options that you may use during execution,
such as adding a new process to your application. These options may be specified directly on
the command line or in a Paradyn configuration file for the application.

Sections 2.2 through 2.4 explain these steps in more detail.

2.2 Setting up Paradyn and the Paradyn daemons

Paradyn has two main parts: the Paradyn front-end and user interface (“paradyn”) and the Para-
dyn daemons (“paradynd”), which are the agents that run on each remote host where your applica-
tion program is running. Paradyn contains the user interface that allows you to display
performance visualizations, use the Performance Consultant to find bottlenecks, start or stop your
application, and monitor the status of your application. The Paradyn daemons operate under the
control of Paradyn to monitor and instrument the application processes. Paradyn also uses config-
uration files to specify details of Paradyn configuration, instrumentation and application pro-
grams. You must have Tcl and Tk library files installed to be able to use the Paradyn front-end.
Also, a special RPC package is required to use Paradyn on Windows systems.

For the details of installing Paradyn, its daemons, Tcl/Tk and other external software, refer to
the Paradyn Installation Guide. This section details settings for environment variables required
for Paradyn’s operation, and describes how to override the default fonts used by the Paradyn GUI.

2.2.1 Paradyn environment variables

After you have installed Paradyn, you need to specify the location of Paradyn’s executable and
configuration files. The files needed to run Paradyn are listed in Figure 2, along with explanations
of their use. The environment variables that are needed or helpful when running Paradyn are listed
in Figure 3, along with a description of their use.

Page 2-2

User’s Guide May 30, 2007 Release 5.0

2.2.2 Overriding Paradyn’s default fonts

Paradyn’s graphical user interface (GUI) uses fonts that may not be available on all systems or
be visually appealing to all users, so Paradyn allows users to specify alternative fonts to use instead
of its defaults. Alternative fonts are specified to Paradyn using Tk’s options database. (Paradyn uses
Tk to implement its GUI.) Tk initializes its options database differently depending on the type of

File Use

paradyn
paradyn.exe

The executable that starts a Paradyn session and provides the main user
interface. There are versions for each supported platform and an appropri-
ate version should be placed in a location that will be found by your shell’s
search path (or you can specify the full path name to run it).

paradynd
paradynd.exe

The executable for a Paradyn daemon. Versions exist for each of the sup-
ported target application environments, and an appropriate version should
be placed in a location that will be found by your shell’s search path (or you
can specify the full path name to run it).

paradyn.rc Contains crucial information, such as metric and daemon definitions. The
following steps are used to try to find this file (in the order listed):

1. Look for the file paradyn.rc in the directory specified by the environ-
ment variable “PARADYN_ROOT” (i.e., $PARADYN_ROOT/paradyn.rc).

2. Look in your current working directory for the file paradyn.rc .

.paradynrc In addition to paradyn.rc , Paradyn will also look in your account’s home
directory for a file named .paradynrc (note the slightly different form).
Should it exist, this file is processed after, and in addition to, paradyn.rc .

Figure 2: Files needed to run Paradyn

Page 2-3

User’s Guide May 30, 2007 Release 5.0

Environment Variable Use

PARADYN_ROOT Specifies the location of the paradyn.rc configuration file. In source
code distributions of Paradyn, it is also used to locate the root of the
Paradyn code tree. (Not required if you are running Paradyn from
your current working directory or from your home directory.)

PARADYN_LIB Used to specify the Paradyn run-time instrumentation shared object
file (libparadynRT.so.1 or libparadynRT.dll). The full path
name of this file must be specified. E.g.,

setenv PARADYN_LIB /usr/home/me/lib/libparadynRT.so.1

DYNINSTAPI_RT_LIB Used to specify the Dyninst run-time instrumentation shared object
file (libdyninstAPI_RT.so.1 or libdyninstAPI_RT.dll). This
file is required for use with Paradyn. The full path name of this file
must be specified. E.g.,

setenv DYNINSTAPI_RT_LIB /usr/home/me/lib/
libdyninstAPI_RT.so.1

PARADYN_LIB_MT This environment variable is needed only if paradyndMT, the dae-
mon for monitoring multi-threaded applications, is used. Used to
specify the Paradyn run-time instrumentation shared object file for
multi-threaded applications (libparadynMT.so.1). The full path
name of this file must be specified. E.g.,

setenv PARADYN_LIB_MT /usr/home/me/lib/libpara-
dynMT.so.1

LD_LIBRARY_PATH
(UNIX only)

Update this variable so that the directory that contains the libp-
dthread.so file is specified, which is used by the front-end. On Linux,
update so that the directory that contains the libdwarf.so file (which
can be retrieved off of the release web page) is specified. The libd-
warf.so file is used by the Paradyn daemon. E.g.,

setenv LD_LIBRARY_PATH /usr/home/me/lib:/usr/home/libd-
warf

AIXTHREAD_SCOPE
(AIX ONLY)

This is needed only on AIX if paradyndMT is being used. This envi-
ronment variable should be set to ‘S’ on AIX.

TCL_LIBRARY
TK_LIBRARY

These environment variables specify the location of the Tcl and Tk
command files needed to implement the basic Tcl/Tk object types. If
you have been using a current installed version of Tcl/Tk, you proba-
bly already have these correctly set. If not, see the instructions in the
Paradyn Installation Guide for information on setting them.

LIBPATH
(AIX ONLY)

This is needed only on AIX. This environment variable specifies the
location of the file libDyninstText.a .

Figure 3: Environment variables used when running Paradyn

Page 2-4

User’s Guide May 30, 2007 Release 5.0

system. On UNIX systems, Tk initializes its options database from the X resource database, so
alternative Paradyn font specifications should be added to whatever file the system’s X installation
uses to specify X resources (e.g., $HOME/.Xresources). On Microsoft Windows systems, Tk adds
the contents of the $HOME/.Xdefaults to its options database, so specifications for alternative
Paradyn fonts should be added to that file.

To specify an alternative font, add a line of the form:

resource_path.Font: font_specification

to the appropriate Tk options database configuration file. Like all Tk-based applications, each
graphical resource (e.g., button, menu, or label) can be identified with a path. Similar to resource
paths in the X Window System, each component in the path can be either the name of a Tk GUI
component class such as Menu, Button, and Label, or it can be the name of a particular instance of
a Tk GUI component class. Paths are read left-to-right, with the outermost GUI component speci-
fied first in the path. Components in a path are separated by a period ‘.’ or an asterisk ‘*’. If two
components are separated by a period (“x.y”), the first component (“x”) is the immediate parent of
the second component (“y”). Because it is tedious to specify all GUI components in each resource
path, the ‘*’ indicates zero or more components are not specified. For example, the resource path
Paradyn*status.Button names all buttons in all windows of the Paradyn class, but only if they
are immediately enclosed by some other component whose instance name is status . The subtle-
ties of resource paths are outside the scope of this document; because resource paths are specified
the same whether on UNIX or Microsoft Windows systems, we refer the reader to the X Window
System documentation for complete details.

The font specification can be given in Tk’s shorthand notation instead of the X Window Sys-
tem’s font naming scheme. For example, a font specification can be given as “times 10 italic ”
instead of “-*-times-medium-i-*-*-10-*-*-*-*-*-*-* ”. For details on font naming, we refer
the reader to the Tk documentation for details.

In the Paradyn GUI, all top-level windows have the class Paradyn so that alternative fonts can

PARADYN_RSH This environment variable will specify the program to use when
starting daemons on remote hosts. The pcl file variable, remoteShell
is an alternative way to specify the shell used for starting remote dae-
mons. For example, one might set it to ‘ssh’.

PD_TIMER_SHOW_INFO This environment variable is not required to be defined. If this envi-
ronment variable is set, Paradyn will display the time querying
method it will be using in the termWin visi. For example, if Paradyn
is querying the cpu time with a method that uses a hardware counter,
“Chosen cpu timer level: 1” will display. If Paradyn uses a software
based time querying method for cpu time, “Chosen cpu timer level:
2” will appear.

Environment Variable Use

Figure 3: Environment variables used when running Paradyn

Page 2-5

User’s Guide May 30, 2007 Release 5.0

be specified easily that apply to all windows in the Paradyn GUI. Although we do not list the class
and instance names of all components of the Paradyn GUI here, alternative font specifications
similar to the following should suffice for most users:

Paradyn*Font: helvetica 10 roman

Paradyn*Button.Font: helvetica 10 bold roman

Paradyn*Menu.Font: helvetica 10 bold roman

Paradyn*Menubutton.Font: helvetica 10 bold roman

Paradyn*Label.Font: helvetica 10 bold roman

Paradyn*Entry.Font: helvetica 10 roman

Paradyn*Message.Font: helvetica 10 roman

Paradyn*Text.Font: helvetica 10 roman

2.3 Preparing your application program

On most platforms, Paradyn is able to instrument unmodified executable files (a.out or *.exe).
However, some platforms require preparation of executables, and Paradyn will benefit from the
inclusion of debug information on all platforms. This section details the application preparation
required or recommended for use with Paradyn. Additional platform-specific build and execution
details are documented in Section 2.6

2.3.1 Generation of debug information (all platforms)

Paradyn will benefit from access to debug information for the application under study, so we
recommend that executables be built to contain debug information if possible. For most compilers,
this means passing the -g compile flag to generate debugging information. For the Microsoft
Visual C++ compiler, use -Z7 or -Zi.

Note that often this does not require disabling any compiler optimizations, and while generat-
ing debug information may result in a slightly slower build and larger executable, there are no exe-
cution performance implications.

2.4 Running Paradyn

At this point, your should be ready to run your application program with Paradyn. You start Para-

dyn by entering the following command at a command prompt1

% paradyn

Several optional command line arguments can be used when invoking Paradyn:

• -f <pcl-configuration-filename>
specifies a file from where Paradyn can read configuration commands (see Section 12);

• -default_host <host name>

1. A command prompt is available under Windows from the “Command Prompt” item under the Programs
submenu of the Start menu.

Page 2-6

User’s Guide May 30, 2007 Release 5.0

specifies the default host where Paradyn should start an application when no host name is
given. (If the -default_host option is not used, the default host is the local host.)

• -x <connect-filename>
specifies a file to which Paradyn daemon start-up information will be written, which may be
used by external programs to explicitly start Paradyn daemons on different hosts which will
connect to this Paradyn front-end. (This file is created if it doesn’t already exist.)

• Paradyn should start running and display the Paradyn Main Control Window, shown in
Figure 4. This window has five menus, File, Setup, Phase, Visi, and Help. These menus allow
you to:

1. File: In this menu there is an option to get information on how to start up a daemon (Daemon
start-up info) and an option to exit the program (Exit Paradyn.)

2. Setup: This menu has selections to allow you to describe a new application program to run
from scratch (Define a Process, described below) or attach to an already-running application
process (Attach to a Process, below). In addition, you can bring up windows which allow you to
start the Performance Consultant (Performance Consultant, described in Section 9), change
Paradyn’s tunable constants (Tunable Constants Control, described in Section 4), bring up the
call graph of the program (Call Graph), and view the WhereAxis (Where Axis).

3. Phase: start and define a new local phase for visualizations and analysis (see Section 8).

4. Visi: start visualizations of your application performance (see Section 7).

5. Help: get additional information about Paradyn.

Additionally, there are four buttons in this window: RUN, PAUSE, EXPORT and EXIT. RUN and
PAUSE are disabled when there is no application currently defined. These two buttons allow you to
run or stop execution of your application as you wish. EXPORT will open a dialog offering to save
the data from current measurements to files for off-line analysis (see Section 11). Finally, EXIT will
exit Paradyn, terminating the application program if necessary, and end the session.

The Paradyn Main Control Window can contain several status lines. Each status line repre-
sents information about some part of Paradyn or your application. In the initial window, there is a
status line labeled “UIM status”. This line shows the current state of Paradyn’s User Interface Man-
ager (“ready” in this case).

Figure 4: Starting Paradyn

Page 2-7

User’s Guide May 30, 2007 Release 5.0

2.5 Running applications with Paradyn

There are two ways to give Paradyn an application program to monitor: defining a new process to
start, and attaching to an already-running process. These two methods are described below.

2.5.1 Defining a new process

One way to measure a program with Paradyn is to select the option Define A Process from the
SetUp menu. A new window appears, as shown in Figure 5.

From this window, you can specify the following parameters:

1. User: This is your login name on the host on which Paradyn will run your application process.
If you leave this field blank, the login will default to your current login name.

2. Host: This is the name of the host on which Paradyn will run your application. If you leave this
field blank, it will default to the host specified with the -default_host command line option
to paradyn, or to the current host (the one on which the Paradyn front-end is running), if the
option -default_host is not used.

3. Directory: Paradyn runs paradynd and your application as follows. First, it performs a remote
login operation using the “User” and “Host” fields specified above. The current directory (on
the remote machine) at this point is the root directory—not usually where your application
program resides. The “directory” entry box allows you to specify a directory to change to
before executing the command specified in the “Command” entry box. Note that the path-
name given is interpreted on the field named in the “Host” field. For UNIX hosts, the allowed
syntax is familiar: the path specified may start with a slash (“/”) (specifying an absolute path
name, starting from the file system root directory), or it may start with a tilde (“~”) followed by
a user name (specifying a path name rooted at the specified user’s home directory). A tilde not
followed by a user name is the same as a tilde followed by the current user name. For Windows
hosts, the path may start with a drive letter, for example “d:\myprograms\bubba”. Both forward
and backslashes are accepted in Windows paths.

4. Command: The command that will start this instance of your application program. If the

Figure 5: Defining a new application process

Page 2-8

User’s Guide May 30, 2007 Release 5.0

Directory entry has been filled in, the command is executed with the current directory set to
the specified path. If the Directory entry is left blank, then the command will be executed with
the current directory set to the home directory of the specified user. Under Windows, any
backslashes in the command must be escaped with another backslash, for example “..\\bubba
example5”.

5. Daemon: This option allows you to specify which Paradyn daemon to run. For most uses, the
default daemon (“defd”) is appropriate. For Windows applications, use the “winntd” daemon.
For MPI applications, select either “mpid”. For multi-threaded applications (only on Solaris
and AIX), use the “mt_d” daemon. If you specify additional daemons in the Paradyn configu-
ration file, they will appear here.

Once you have made your selections, click on Accept and Paradyn will start the application
program and initialize it. When the status of the Paradyn window is like that in Figure 6, the pro-
gram is ready to run and be measured.

The window in Figure 6 shows several new status lines with the following information:

1. Application name: This is the name of the application program (foo), the host machine where
it has been started (if remote), the user identifier which it is running as (if different), and the
type of daemon which is monitoring it (defd).

2. Application status: This is the overall application status (either PAUSED or RUNNING).

3. Data Manager: This is the status of Paradyn’s Data Manager.

4. Processes: This is the process identifier of the controlling process in your application.

5. brie: There is one status line on each host or node on which you are running your application;
here there is the status line for host “brie”. It shows the current status of your application pro-
cess on this host/node.

Notice that since you have defined a new process the RUN button is enabled and you are ready
to run and measure your program!

The information in the “Define a Process” window can be stored in a Paradyn Configuration

Figure 6: Paradyn ready to run the application

Page 2-9

User’s Guide May 30, 2007 Release 5.0

Language (PCL) file. In this file, the user can specify information such as: user application, new
visualizations to be added to the system, new metrics, and additional paradyn daemons. The com-
plete details of the Paradyn Configuration Language are given in Section 12.

As a simple example, if we want to run an application called “bubba”, with an executable file
named “bubba_pd” indicating special Paradyn support, a file called “bubba.pcl” might contain:

process bubba {
dir “/p/paradyn/applications/sequential/bubba”;
command “bubba_pd example.dat”;
daemon defd;

}

and the command to automatically start Paradyn with this application would be like this:

% paradyn -f bubba.pcl

This command tells Paradyn to run the application “bubba” in the directory specified by “dir”
using the command line specified by “command” with the Paradyn daemon specified by “daemon”
(defd or default daemon in this case).

2.5.2 Attaching to a process

Sometimes, defining a new process from Paradyn as shown in the previous sub-section is not con-
venient. The main limitation of defining a new process is that a new process is launched every time
you run Paradyn (and killed every time you exit Paradyn). Many programs you may wish to mea-
sure are not amenable to starting up and shutting down every time you wish to measure them.
Typically these are server-type programs, which are meant to run for an indefinite amount of time.
In such cases, it is more convenient to attach to an already-running program when you wish to
measure it with Paradyn, and to detach from it when you exit Paradyn.

Paradyn currently does not offer the option to detach from the application leaving it running
when you exit; on exit, Paradyn kills the application it is monitoring and all its associated processes.
This limitation will be removed in a future release.

To attach to a running process, choose Attach to a Process from the Setup menu of the Paradyn
main window. A dialog box (Figure 7) will appear.

The User, Host, and Daemon items have the same meaning as in Section 2.5.1. The most impor-
tant box is Pid, where you specify the process identifier of the process (on the Host machine) you
wish to attach to. The Executable file item lets you specify a full pathname to the executable file cor-
responding to the process id. The Paradyn Daemon needs to find the executable file on disk in
order to extract symbols (procedures, modules) that will go in the Code portion of the Paradyn
Where Axis. Obtaining symbols from the executable file is also done when defining a new process
(Section 2.5.1). However, it can be burdensome to enter the full path name of a process that you
want to attach to; it is possible that you might not even know the disk directory from which it was
launched. Therefore, if you leave the Executable file item blank, the Paradyn Daemon will make an
effort to locate its value automatically. (It obtains the program name by examining the process’ first
argument, argv[0] . It then looks in several directories for this program name; it searches the pro-

Page 2-10

User’s Guide May 30, 2007 Release 5.0

cess’ current directory and all items in its PATH environment variable. For those interested, further
technical details on how attach is performed can be found in the separate Paradyn Developer’s
Guide.) If Paradyn reports that it cannot locate the executable file, you will have to enter the full
path name in the Executable file field.

The Paradyn daemon can attach to a process, whether it is currently running or stopped. After
it has attached, you may wish to have the daemon automatically pause or run the application. To
do this, choose either Pause application or Run application items from the dialog box. The default is
Leave as is, which detects whether the program was running or stopped at the time of attach. Note
that the process is necessarily paused for a short time while the Paradyn daemon initializes it
(parses its symbol table, parses any shared libraries it has been linked with, etc.)

When you have entered the desired parameters, click on ATTACH to perform the attach opera-
tion. When ready, the Paradyn main window should look like Figure 8.

2.6 Architectural issues

Certain platforms require slight modifications to the procedures discussed above. In this subsec-
tion, we describe each of them in turn.

2.6.1 Common Platforms

These notes apply for Solaris, Linux (x86/ia64), and AIX (RS/6000). Variations for Windows and
MPI programs follow.

On these platforms we support instrumenting shared objects (dynamically-linked libraries).
Dynamic executables are executables that are linked with shared object files, and are the default

Figure 7: Specifying a process to attach to.

Page 2-11

User’s Guide May 30, 2007 Release 5.0

output generated by the link-editor, therefore no special flags are needed to create dynamic execut-
ables. Paradyn’s run-time instrumentation library is a shared object (libparadynRT.so.1) which
is dynamically loaded at run-time, and does not need to be linked with the executable.

Shared objects will show up on the Paradyn Where Axis and performance data can be col-
lected for functions from shared objects. Also, the Performance Consultant will include functions
in shared objects in its search for bottlenecks. The MDL exclude option can be used to specify
shared objects and/or functions from shared objects that should not be included in the Perfor-
mance Consultant’s search. This is discussed in more detail in Section 12.8.

When using the Sun C or Fortran compilers on Solaris, you should also specify the -xs option
together with -g. The -g option alone will direct the compiler to place debugging information in
the object files (.o files), but it will not place the debugging information on the executable (a.out)
file. You must use the -xs option so that the compiler will add the debugging information to the
a.out file. The -xs option is not needed if you are using GNU compilers..

Inter-library calls on AIX appear to be made by a “shadow” function with the same name as
the function being called. Paradyn detects these shadow functions and appends “_linkage” to their
names. This is simply for clarification purposes.

2.6.2 MPI

To run an MPI application under Paradyn one should follow the steps described in
Section 2.5.1. The user should set Daemon to mpid. The Command field should contain the same
command line one uses to launch the application without Paradyn(e.g., “mpirun -np 2 hello ”).
Note that the Processes field for MPI will identify the type of MPI being used (POE, IRIX or
MPICH) and not the processes involved in the job. Platform-specific details are given below.

• MPICH: Currently, Paradyn supports MPICH version 1.2.2 with the ch_p4 device. The user
should use the “mpirun ” command to start an application. Unsupported mpirun options
include “-p4pg file ”, “- gdb” and “- dbx ”. The “mpirun ” command will be started through a
remote shell on the machine specified in the Host field of the dialog box. If no name is speci-
fied, it will run on the frontend machine.

Figure 8: Attach completed and application execution continuing.

Page 2-12

User’s Guide May 30, 2007 Release 5.0

• POE MPI on AIX: the POE job launcher poe can be entered in the command field or omitted.

2.6.3 Microsoft Windows

The way Paradyn works in Windows is similar to other platforms, however there are a few small
differences.

On Windows the run-time instrumentation library (libparadynRT.dll) is loaded dynami-
cally. You must either define PARADYN_LIBwith a full path to libparadynRT.dll or have it in a
directory that is listed in your PATH environment variable, so that it can be found by the dynamic
linker.

Paradyn needs symbolic debug information, so you must compile your application with
debugging information enabled. We currently handle CodeView (also called “Microsoft style”)
and COFF symbol formats, though we recommend CodeView format since it provides more com-
plete and accurate information than with COFF symbols. The option to enable a CodeView sym-
bol table will depend on the compiler used. For the Microsoft compiler this option is /Z7 or /Zi .
You must also direct the linker to generate symbolic information in the executable file. The
options /debug must be passed to the linker. Figure 9 shows a sample Makefile for the Microsoft
Visual C++ compiler.

The files which are needed to run on Windows are paradynd.exe (the paradyn daemon),
libparadynRT.dll (the run-time dynamic instrumentation library), and oncrpc.dll (a version
of the Sun RPC library for Windows, included with the Paradyn binary release, which is used by
Paradynd to communicate with the Paradyn front-end). All of these files should be in directories
that are listed on your “path” environment variable.

In order to have a Paradyn daemon started automatically by the Paradyn front-end (as for the
other platforms), you need to have a remote shell daemon (rshd or sshd) running on the Windows
machine(s), and you must be able to execute commands on Windows from the Unix machine
where the Paradyn front-end is running. If you don’t have an rshd running on the Windows
machine, you must start the Paradyn daemon manually. Either refer to the -x command-line
option for Paradyn to automatically get this information (Section 2.4) or use the information from
the “Daemon start-up info” menu item under the “File” menu in the Paradyn user interface. You
must start paradynd giving the exact arguments shown in that dialog but specifying the appropri-
ate “flavor” (which will be winntd for a Paradyn daemon and application processes running on
Windows): note that for each session the port identifier (and possibly also host machine) argu-
ments will be slightly different, so you can’t reuse exactly the same command line for different
Paradyn sessions. The command line to start paradynd on Windows will look like:

CC = cl /Z7
OBJECTS = main.obj this.obj that.obj

bubba.exe: $(OBJECTS)
link -out:bubba.exe -debug $(OBJECTS)

Figure 9: Sample Makefile for Windows.

Page 2-13

User’s Guide May 30, 2007 Release 5.0

paradynd -zwinnt -l2 -m myhostmachine.domain.org -p 12345

Once the Paradyn daemon is started, it connects to the existing Paradyn front-end session, and
everything else will work as usual.

Note that currently Paradyn is not expected to work with gcc-compiled application programs
under Windows.

2.6.4 Multi-threaded

Paradyn currently supports multithreaded applications on all platforms.

Page 3-1

User’s Guide May 30, 2007 Release 5.0

3 MAIN CONTROL WINDOW

In this section we discuss features of the Paradyn main control window (an example is shown in
Figure 10). The Paradyn main window is the interface though which a user can access all parts of
the Paradyn tool. The main window is divided into three sections; the top section contains a menu
bar, the middle section contains a dynamic set of status lines (split into a generic part and a part for
per-process status information which is both resizable and scrollable), and the bottom section con-
tains a set of menu buttons. We discuss the details of each of these below.

3.1 Main menubar

The menu bar in the Paradyn main control window contains five items; four of these display a sub-
menu when selected, and the other opens a dialog, as follows:

3.1.1 File menu

The File sub-menu contains two menu items. The option Daemon start-up info gives information
on how to manually start a daemon from a terminal. When the option Exit Paradyn is selected, the
Paradyn process and all currently-associated application, daemon and visualization processes exit.
The same effect can be achieved by clicking on the EXIT button (Section 3.3).

3.1.2 Setup menu

The Setup menu contains items to define an application process, to attach to an already-running
application process, to create a Performance Consultant window, to bring up the Tunable Con-
stants dialog, and to bring up the Where Axis display. Selecting Define A Process displays the Define

A Process window (this window is shown in Figure 5 in Section 2.5.1). This is a mechanism
through which a user can provide information about their application so that Paradyn can start it.
A description of how to use the Define A Process window is given in Section 2.5.1.

Figure 10: Paradyn Main Control window

Page 3-2

User’s Guide May 30, 2007 Release 5.0

Using Define A Process creates (i.e. starts) a new application process, which Paradyn can begin
monitoring right away. Sometimes, however, it is more convenient to ask Paradyn to attach to an
already-running process (supported since Paradyn release 1.2). This is especially useful for server-
type processes such as database servers or file servers, for which re-launching every time you wish
to measure with Paradyn would be inconvenient. To attach to an already-running process, select
Attach to a Process from the Setup sub-menu. A description of how to use Attach to a Process is given
in Section 2.5.2.

The Performance Consultant menu item will bring up the Performance Consultant window.
This window provides an interface for the user to start automated performance bottleneck
searches. The Performance Consultant is described in Section 9.

The Tunable Constants menu item will bring up the Tunable Constants dialog, through which
the user can set values for any tunable constants defined in Paradyn. Information about the set of
tunable constants and how they can be modified is given in Section 4.

The Where Axis menu item will bring up the Where Axis display, through which the user makes
resource hierarchy selections. Information about the Where Axis is given in Section 5.2.

The Call Graph menu item will bring up the Call Graph display, which provides an interactive
representation of the callgraph of each executable in the application. Information about the Call
Graph is given in Section 5.5.

3.1.3 Phase menu

Phases may be started using the Phase menu. There are presently four items under this menu: Start,
Start with Perf Consultant, Start with Visis, and Start with Perf Consultant & Visis. Each item under this
menu will create a new phase; they differ in what additional actions they take. The first item, Start,
does nothing additional. Start with Perf Consultant will have Paradyn’s Performance Consultant
module (Section 9) commence searching on this phase, as opposed to simply defining the new
phase. Note: Start with Visis and Start with Perf Consultant & Visis are not yet implemented. Complete
information about phases is provided in Section 8.

3.1.4 Visi menu/button

Visualization processes can be started by selecting them from the Start A Visualization dialog which
appears upon pressing the Visi button in the main menubar. A complete description of how to start
a visualization process is given in Section 7.1, and documentation on the standard visualization
modules is given in Section 10.

3.1.5 Help menu

The Help menu options offers basic information about Paradyn in separate displays. General Info

has summary information about Paradyn capabilities and supported platforms, along with point-
ers to project Web pages and the paradyn@cs.wisc.edu maintainers’ account for further infor-
mation or to report problems. License Info contains a copy of the license agreement governing use
of the Paradyn Parallel Performance Tools. Release Info provides information related to the current

Page 3-3

User’s Guide May 30, 2007 Release 5.0

Paradyn release (and obtaining other releases). Finally, Version Info displays build/release informa-
tion about the version of Paradyn which is running: it is more detailed than the abbreviated ver-
sion identifier appearing in the upper-right of the display title, and you may be asked to provide
this information when reporting any problems with special versions of Paradyn.

3.2 Status lines

The middle section of the Paradyn main window consists of a dynamic set of status lines which are
updated as Paradyn runs and learns about new application processes. Each line displays status
information about some part of Paradyn, the application, or the Paradyn daemons monitoring
application processes.

The main window in Figure 10 contains status lines that were created after a sequential (single
process) application was defined. Some of the status lines contain information about the applica-
tion program, such as its name (foo), the process identifier(s) associated with the application on
the host (PID=19271) and an indented/offset area with status lines for each host machine or pro-
cessor node on which the application is running (in this case, only on one host, beaufort).
There are also lines displaying the status of the UI Manager and Data Manager (ready).

The indented/offset area grows additional lines as hosts or nodes join the set which constitutes
the application managed by Paradyn. After a certain number of lines is reached, this area no longer
grows automatically and a scrollbar appears in the indent area to manage this region of the display.
If desired, the window can be vertically resized to display more (or all) of the host/node status
lines, or shrunk to display fewer (down to a minimum number which can still be displayed).

3.3 Buttons

There are four buttons at the bottom of the Paradyn main window.

The RUN and PAUSE buttons allow the user to run or pause execution of the application. When
the application is running, the RUN button is disabled and the PAUSE button enabled. Conversely,
when the application is paused the PAUSE button is disabled and the RUN button enabled. Before an
application has been defined, both buttons are disabled.

The EXPORT button dumps the application execution data Paradyn currently maintains to files
for off-line analysis. This is useful for exporting execution data from Paradyn to other analysis
tools. Complete details are in Section 11.

The EXIT button, when selected, will exit Paradyn and terminate all associated application and
visualization processes.

Page 4-1

User’s Guide May 30, 2007 Release 5.0

4 TUNABLE CONSTANTS

4.1 Overview

Users can customize Paradyn’s operation through tunable constants. Paradyn defines several tun-
able constants that may be altered by the user, ranging in scope from user-interface window layout
issues to tuning the automated search parameters of the Performance Consultant (see Section 9).

Tunable constants are either boolean or floating-point. Paradyn’s tunable constants are listed in
Sections 4.2 and 4.3.

To change the value of a tunable constant, choose Tunable Constants Control from the Setup

menu of the Paradyn Main Control window. This brings up the window shown in Figure 11.

Boolean tunable constants (developerMode, showWhereAxisTips, showShgKey, showShgTips, and so
on through hideShgShadowNodes in Figure 11) are shown before floating-point numeric constants.
The checkbox to the right of a boolean tunable constant is colored gray if the tunable constant’s
setting is false, and blue if the tunable constant’s setting is true. Floating-point tunable constants
with bounds on their acceptable values have a slider widget between the name and the entry field.
A new value can be typed into the entry field or click on the slider and “drag” it to the desired
value. The minimum and maximum allowable values are displayed on the left and right sides of
the slider as a convenience: attempts to set values outside this range are truncated.

Changes made to tunable constant values do not take effect until the window is dismissed by

Figure 11: The Tunable Constants Window

Page 4-2

User’s Guide May 30, 2007 Release 5.0

clicking on Accept. Clicking on Cancel will dismiss the window without making any changes. Tun-
able constant settings remain in effect for the duration of this Paradyn session; that is, until you
explicitly change the value again through this dialog or quit the Paradyn process.

Each time a new Paradyn session is started, tunable constants are reset to their default values.
This can be an inconvenience if the default values of certain tunable constants are not to your lik-
ing. The Paradyn Configuration Language (PCL) allows you to create files read by Paradyn on
startup. Among many other things, such files can contain tunable constant settings to your liking.
See Section 12.6 for particulars on how to set tunable constant values in a PCL file.

Under the Tunable Constants Window Help menu is an entry Show Tunable Descriptions. Invok-
ing this menu item brings up the Tunable Descriptions window, giving a concise description of each
tunable constant. An example is shown in Figure 12.

4.2 User Tunable Constants

Each tunable constant is classified as either User or Developer mode. User tunable constants are
intended for everyday use. User tunable constants are listed in Figure 13.

4.3 Developer Tunable Constants

Developer tunable constants are not intended for everyday use. If you change a developer mode
tunable constant, you are presuming a detailed knowledge of the internal workings of Para-
dyn. We provide no guarantees on how system behavior changes, nor can we offer support if any
developer tunable constant has been altered from its original setting. In addition, developer tun-
able constants are subject to significant change from release to release. Nevertheless, we realize
that some experienced users may benefit by occasional access to these tunable constants.

To access developer tunable constants set the tunable constant developerMode to true and click
Accept: the Tunable Constants window will re-present itself containing both the user and developer
tunable constants. Setting the tunable constant developerMode to false will “hide” the developer

Figure 12: Tunable Constants Descriptions Window

Page 4-3

User’s Guide May 30, 2007 Release 5.0

tunable constants once again. Developer tunable constants are listed in Figure 14.

Tunable Name Description

showWhereAxisTips (bool) If true, the Where Axis window is drawn with several user-interface tips on
how to select and expand where axis items. Setting to false saves screen real
estate.

persistentData (bool) If true, all performance data remains stored internally in Paradyn histograms
after data collection has been halted by removing the instrumentation. If
false (the default), internal data is deleted at the time the related instrumen-
tation is removed (for example, when a visualization is exited).

costLimit (float) Maximum allowable perturbation of the application when running the Per-
formance Consultant (Section 9). Paradyn keeps track of an estimate of the
extent to which its instrumentation is perturbing the application under exe-
cution; this tunable constant allows users to set a maximum upper-bound on
such perturbation, as a percentage of execution time.

minObservationTime (float) Specifies a lower bound on the time (in seconds) before the Performance
Consultant will begin using data collected to evaluate hypotheses. This time
guards against the effects of transient data values at the start of a phase.

sufficientTime (float) Specifies the minimum amount of time (in seconds) before the Performance
Consultant can conclude that a hypothesis is false.

showShgKey (bool) If true, the Performance Consultant window includes a key to the meaning
of the node and text colors shown.

showShgTips (bool) If true, the Performance Consultant window includes a key to relevant
mouse functions.

hideShgTrueNodes (bool) If true, the Performance Consultant’s Search History Graph (SHG) will not
show true nodes.

hideShgFalseNodes (bool) If true, the SHG will not show false nodes.

hideShgUnknownNodes (bool) If true, the SHG will not show nodes which haven’t been determined true or
false yet.

Figure 13: User-level Tunable Constants

Page 4-4

User’s Guide May 30, 2007 Release 5.0

hideShgNeverSeenNodes (bool) If true, the SHG will not show nodes which it has not begun to evaluate yet.

hideShgActiveNodes (bool) If true, the SHG will not show nodes which are active (instrumented).

hideShgInactiveNodes (bool) If true, the SHG will not show nodes which are inactive (un-instrumented).

hideShgShadowNodes (bool) If true, the SHG will not show shadow nodes.

useLoops (bool) If true, the SHG will contain nested loops.

PC_SyncThreshold (float) Percentage Performance Consultant uses as threshold for all synchronization
hypotheses (such as ExcessiveSyncWaitingTime). For example, selecting 20%
here will cause any synchronization-related hypothesis-focus pair testing
above 0.20 to conclude “true.”

PC_CPUThreshold (float) Percentage Performance Consultant uses as threshold for determining CPU
bottlenecks (CPUbound).

PC_IOThreshold (float) Percentage Performance Consultant uses as threshold for determining I/O
blocking time bottlenecks (ExcessiveIOBlockingTime).

PC_IOOpThreshold (float) Number of bytes Performance Consultant uses as threshold for determining
small I/O operation bottlenecks (TooManySmallIOOps).

developerMode (bool) If set, additional tunable constants and metrics are made available to the
user. NB: USE AT YOUR OWN RISK!!

Tunable Name Description

hysteresisRange (float) Represents the fraction above and below threshhold that a test should use.

PCuseCallGraphSearch (bool) If true, the Performance Consultant uses a callgraph-based search of the Code
hierarchy, otherwise uses a module-then-function search.

PCprintDataTrace (bool) If true, the Performance Consultant prints a full trace to stdout of all PC-related
data events: data arrival at the PC, data values after filtering, etc.

PCprintTestResults (bool) If true, the Performance Consultant prints data to the console window every time
it computes a result value for an experiment.

PCprintDataCollection (bool) If true, the Performance Consultant prints out trace information on PC-initiated
instrumentation requests and disables.

PCuseIndividualThresholds

(bool)
If true, the Performance Consultant will ignore the user-level tunable constants
PC_SyncThreshold,PC_CPUThreshold,PC_IOThreshold,PC_IOOpThreshold,and use
a set of hypothesis-specific developer-level tunable constants instead.

PCprintSearchChanges (bool) If true, the Performance Consultant prints data to the console window every time
it draws a conclusion for a hypothesis, or starts or stops an experiment.

PCcollectInstrTimings (bool) Times all instrumentation requests, saving result in TESTresult.out

printChangeCollection (bool) If true, the name of each metric/focus pair is printed to the console window any
time it is enabled or disabled.

Figure 14: Developer-level Tunable Constants. Use at your own risk!

Figure 13: User-level Tunable Constants

Page 4-5

User’s Guide May 30, 2007 Release 5.0

When the Developer Mode tunable constant is set, Paradyn makes available a number of addi-
tional “developer-mode metrics” for selection. For further details, see Section 6.

printSampleArrival (bool) If true, the arrival of each sample from paradynd is printed out to the console
window.

tclPrompt (bool) If true, a Paradyn prompt is presented in the start-up shell window, allowing the
user to type in and execute arbitrary Tcl language commands.

enableRequestPacketSize

(float)
It represents the length of the packet sent when batching enable requests. The
default value is 5.

highSyncThreshold (float) If PCuseIndividualThresholds is set to true, this will be used as the Performance
Consultant test threshold for ExcessiveSyncWaitingTime.

highCPUtoSyncRatioThresh-

old (float)
If PCuseIndividualThresholds is set to true, this will be used as the Performance
Consultant test threshold for CPUbound.

lockOverhead (float) If PCuseIndividualThresholds is set to true, this will be used as the Performance
Consultant test threshold for lockOverhead.

minLockSize (float) If PCuseIndividualThresholds is set to true, this will be used as the Performance
Consultant test threshold for minLockSize.

highIOthreshold (float) If PCuseIndividualThresholds is set to true, this will be used as the Performance
Consultant test threshold for ExcessiveIOBlockingTime.

diskBlockSize (float) If PCuseIndividualThresholds is set to true, this will be used as the Performance
Consultant test value for TooManySmallIOOps.

seekBoundThreshold (float) If PCuseIndividualThresholds is set to true, this will be used as the Performance
Consultant test threshold for seekBound.

Figure 14: Developer-level Tunable Constants. Use at your own risk!

Page 5-1

User’s Guide May 30, 2007 Release 4.2

5 SELECTING RESOURCES

You specify performance data for Paradyn to collect in two parts: the type of performance data and
the part(s) of the program for which you want this data collected. The parts of your program are
called resources in Paradyn. This section discusses how to select resources. (Section 6.1 discusses
how to select metrics—the type of performance data.)

5.1 Resources (The “Where” Axis)

The Where Axis is used to describe the parts of your program for which Paradyn can report per-
formance data. It is a visual representation of different ways to specify these parts. A simple exam-
ple of a Where Axis is given in Figure 15. The Where Axis is used to make all resource-related
selections. For example, users will use the Where Axis for adding resources to a visi, and in the
future for manual refinements in the Performance Consultant. This section describes the Where
Axis, its visual representation, and how to make selections.

Before we delve into specific examples of usage, a few definitions are in order:

Resources:

Resources are program components. Examples include modules, procedures, processes, barriers,
locks, processor nodes, and disks. Some of the resource types are common to all programming
platforms. Examples of these common resources include Modules and Procedures. Some resources
are only supported on particular platforms. An example of this type of resource would be the Bar-
rier synchronization object.

Figure 15: Where Axis window.
“Whole Program” has three unexpanded subtrees and one expanded subtree (Code)

Page 5-2

User’s Guide May 30, 2007 Release 4.2

Resource Hierarchy:

Paradyn organizes all of a program’s resources into hierarchies (trees). Each hierarchy represents a
broad class of objects in an application. Typically, a parallel program has at least four hierarchies:
Code (under which we have an application’s modules, then individual functions), Process (under
which we have each node in a parallel machine), Machine (these are the nodes or hosts in the paral-
lel or distributed environment), and SyncObject (that includes such types as message tags, sema-
phores and barriers).

The code hierarchy contains a hierarchical representation of the code which comprises the pro-
gram under examination. It is a two level hierarchy. The code space as a whole is separated into
modules, which represent a high level grouping of program functionality. In general, a module
corresponds to an individual source file in a higher level language, or to a single library. A module
contains all of the functions located in the corresponding original source file (or files, for librar-
ies).

There are a few instances in which the set of modules displayed in the code hierarchy will not cor-
respond exactly to the set of source files and modules linked into the program, as discussed next.

The “DEFAULT_MODULE” module holds all functions which could not be assigned to any other
module, either because the necessary information could not be found, or because the functions are
not rightfully assigned to any of the input files or libraries which make up the given executable. On
most supported platforms, this module should include only functions which are built-in by the
compiler or environment, in the sense that they do not come from any user specified source files
or libraries (e.g., the _start , __do_global_ctors_aux , and __do_global_dtors_aux
functions provided in crt0 by most Unix C compilers).

Some compiler and linker settings do not generate enough information to resolve functions into
modules: e.g., when compiled/linked without the ‘-g ’ compilation flag which requests a symbol
table be included in the object/executable for the use of tools such as a debugger. When parsing a
file which does not contain this information, Paradyn assigns all functions to the
“DEFAULT_MODULE”. In particular, we are not aware of any compilers and linkers on the AIX plat-
form which provide the necessary information. As such, when Paradyn is used on AIX, all func-
tions are generally placed in that module. Note that this affects the MDL “exclude” directive
(Section 12.8).

In Paradyn versions 2.1 and above, it is no longer necessary to explicitly delineate “interesting”
user code with DYNINSTstartCode and DYNINSTendCode block objects. However, later Para-
dyn versions should still correctly parse executables which have been so built. To maintain com-
patibility with older Paradyn versions, when an application is linked with DYNINSTstartCode
and DYNINSTendCode, any statically linked code which is outside of the range delimited by DYN-
INSTstartCode and DYNINSTendCode is placed in the “DYN_MODULE” module.

Focus:

A focus is a set of selections from the Where Axis containing exactly one resource from each
resource hierarchy. For example, in the Where Axis of Figure 15, a focus might be the set

Page 5-3

User’s Guide May 30, 2007 Release 4.2

{/Code/Alloc.o, /Machine, /Process, /SyncObject}. The selection /Code/Alloc.o means restrict our performance
data collection to only the code contained in module Alloc.o . The selection /Machine means all
machines (nodes) on which your program is running. /Process means all processes in the program
and /SyncObject means for all types of synchronization used. If you select the root node in each hier-
archy, this means that Paradyn will collect data for a metric for the whole program (all nodes, pro-
cesses, modules, etc.).

Performance data is collected for a particular focus. For example, suppose we made the following
focus selection and requested that CPU time data be collected for this focus: {/Code/Alloc.o/XtCalloc,

/Machine, /Process/psicm.pd.pn{123657_mendota}, /SyncObject}. This selection means “measure the CPU time
spent in function XtCalloc while it’s being executed on any machine, only when executed by process
psicm.pd.pn{123657_mendota}, and for any type and instance of a SyncObject.” In this example, CPU time
is a metric. Paradyn metrics are functions that describe how the behavior of your application pro-
gram changes over time. Metrics and their selection are presented in Section 6.

5.2 The Where Axis display

Resources for your application program are displayed in the Where Axis display. The resource
hierarchy in Figure 15 is an example of a such a window. Many programs will have hundreds, if not
thousands of resources; displaying the complete tree for all of their hierarchies and their nodes (as
in Figure 16) is cumbersome to the user, who will have difficulty finding desired items.

Paradyn allows the user to control how much of the Where Axis is visible at any one time. The
children of a node may be displayed as separate single nodes or be displayed together in a single
listbox. The listbox is a compact way of representing many children of a node. For example, in
Figure 15, the root node (Whole Program) has four (yes, four!) child nodes. Three of these nodes
(Machine, Process, and SyncObject) are combined in the blue listbox. The fourth child of Whole Pro-

gram is the salmon colored single node, Code.

If the listbox contains a large number of nodes, then it may even have a scroll bar on the side. A

Figure 16: Showing all resources in the Where Axis display

Page 5-4

User’s Guide May 30, 2007 Release 4.2

triangle beside a node in a listbox means that it is not a leaf node—that the subtree is presently un-
expanded to conserve screen real estate. Double-clicking on such a node will expand it from the
listbox as a single node. This new single node will be salmon colored with a blue listbox below,
containing its child nodes. The Code node in Figure 15 was originally displayed as a node in the
listbox Whole Program. Double-clicking on the Code resulted in Code being displayed as single node.
Since Code is not a leaf node, its children (a list of modules) are displayed as a listbox below.

After expanding a node, the resource desired may still be buried lower in the hierarchy. You
can continue to double-click on appropriate nodes. Shift-double-click on the parent of a listbox
(that is, on a pink node showing a listbox under it) will expand all listbox items one level.

5.3 How to select foci using the Where Axis

A focus is a selection of one resource from each resource hierarchy. To choose a focus, click the left
mouse button over a resource name, thereby selecting it. Performing this operation on one
resource in each hierarchy selects a single focus. An example of such a selection is shown in
Figure 17. The focus selected in this figure is:

{/Code/anneal.c/a_cost, /Machine/goat, /process, /SyncObject}.

The Where Axis also can be used to select multiple foci at the same time. Multiple selections
are done by making more than one selection in a given hierarchy. The set of foci currently selected
is the cross-product of all resource hierarchy selections. For example, in Figure 18 there are three
resources selected from the Code hierarchy (/Code/channel.c, /Code/anneal.c, and /Code/anneal.c/a_cost), one
resource selected from the Machine hierarchy (/Machine/goat), one resource selected from the Process

hierarchy (/Process), and two resources selected from the SyncObject hierarchy (they are /SyncObject

and /SyncObject/Semaphore). The total number of foci currently selected is therefore (3 × 1 × 1 × 2 =

Figure 17: A single focus selected

Page 5-5

User’s Guide May 30, 2007 Release 4.2

6). They are:

• {/Code/channel.c, /Machine/goat, /Process, /SyncObject}

• {/Code/channel.c, /Machine/goat, /Process, /SyncObject/Semaphore}

• {/Code/anneal.c, /Machine/goat, /Process, /SyncObject}

• {/Code/anneal.c, /Machine/goat, /Process, /SyncObject/Semaphore}

• {/Code/anneal.c/a_cost, /Machine/goat, /Process, /SyncObject}

• {/Code/anneal.c/a_cost, /Machine/goat, /Process, /SyncObject/Semaphore}

5.4 The Where Axis GUI

Locating a resource

Resource names are sorted in every listbox, to ease locating resources. All sibling expanded sub-
trees are sorted left-to-right on screen. A subtree’s sibling listbox is always leftmost, followed by its
expanded items, if any. If all of a subtree’s children are expanded, then no listbox is drawn.

To quickly locate a resource, you may type a resource prefix into the “Search” entry box at the
bottom of the Where Axis window and press return. This feature finds, expands, and scrolls to the
first resource with that prefix (if any). Continuing to press return will find the next prefix match.
The search wraps around to the beginning when no more matches are found. The search is case-
sensitive.

Selecting a resource

Clicking on a resource name (whether in a listbox or expanded) selects it. Clicking again dese-
lects it. A <ctrl-dbl-click> on the root of an expanded subtree will select all of its children (but not
its children’s children; i.e., not recursively). Another <ctrl-dbl-click> deselects the same. Note that

Figure 18: Multiple foci selection

Page 5-6

User’s Guide May 30, 2007 Release 4.2

when a function is selected or deselected in the code hierarchy, the selection state of the corre-
sponding function in the Call Graph is changed (see Section 5.5 for more details).

To deselect every node in the Where Axis, choose Clear from the Selections menu.

Listbox expansion

As previously mentioned, double-clicking on a non-leaf listbox item will expand it. To quickly
expand all (non-leaf) items of a given listbox, <shift-dbl-click> on the listbox’s parent node (which
is always salmon colored). Another <shift-dbl-click> on the listbox’s parent will un-expand all
children back into the listbox.

The navigate menu

If many Where Axis items have been expanded (e.g. a <shift-dbl-click> on a listbox containing
100 elements), it may be difficult finding your way around the Where Axis. The Navigate menu
can help with this. After clicking on any node (whether or not it was a listbox node), the Navigate

menu will contain every ancestor of that node (i.e., its parent, its parent’s parent, and so on up to
the root node). Selecting any item from the Navigate menu will scroll the Where Axis so the cho-
sen item is visible.

Scrolling

The Where Axis contains traditional horizontal and vertical scrollbars for navigation. In addi-
tion, the Where Axis may be scrolled by moving the mouse to the center of the window, holding
down the Alt key, and moving the mouse. The mouse pointer will remain fixed, but the Where
Axis will scroll around it.

5.5 Call Graph display

A new display added to Paradyn provides a representation of the callgraph of each executable
in the application: see Figure 19. Starting from each program’s entry-point function (such as main
for C/C++ applications), the graph of functions called from it are presented, using the same hierar-
chical display and search functionality as the WhereAxis.

The resource selection state of functions in the Call Graph and Where Axis are synchronized
since they represent the same resources. When a function node in the Call Graph is selected, the
shadow nodes in the Call Graph and the corresponding function in the code hierarchy of the
Where Axis are also selected. On the other hand, when a function in the code hierarchy is selected,
the primary and shadow nodes in the Call Graph representing the same function are also selected.

One view option currently supported allows the module containing each function to be
prepended to its name.

The call graph displays statically determined edges, that is function calls that are not made
through function pointers. Function calls made through function pointers will be displayed in the

Page 5-7

User’s Guide May 30, 2007 Release 4.2

call graph when the Performance Consultant instruments the function containing the call through
the function pointer.

Figure 19: Callgraph display

Page 6-1

User’s Guide May 30, 2007 Release 5.0

6 SELECTING METRICS

A metric is a time-varying function that quantifies some aspect of program performance. This sec-
tion illustrates the metrics selection process in Paradyn. Section 6.1 describes how to select met-
rics and Section 6.2 describes all the metrics currently defined in Paradyn.

6.1 How to select metrics

When you wish to display or modify performance data, you must select a focus (see Section 5) and
list of metrics. This section discusses how to select metrics—the type of performance data.

The Metrics Dialog Box appears when Paradyn needs the user to specify one or more metrics
for some operation. Currently, there is only one place in Paradyn where the Metrics Dialog Box is
used: when choosing metric-focus pairs to add to a visi. Choosing a set of metric-focus pairs
involves making selection(s) from both the Metrics Dialog Box (for the metrics) and from the
where axis (for the foci). In this section, we will discuss only metric selection; Section 5 describes
in detail how to make focus selections.

A sample metrics dialog box appears in Figure 20. Note that the metrics which appear in the

dialog box are specific to the platform being run (such as sequential vs. parallel/PVM). In addi-
tion, if the developerMode tunable constant is set (see Section 4.3), the “developer mode metrics”
are also made available. Complete descriptions of the various metrics are provided in Section 6.2;
expert users can use Paradyn Configuration Language’s Metric Description Language (Section) to
add custom metrics.

When the metrics dialog box appears, select one or more metrics from the given list. To select
a metric, simply click the mouse in any checkbox. Selected metrics will have a red square to the left
of the metric name in the dialog box. Figure 21 shows how the metrics dialog box of Figure 20
would look after the metrics cpu, msg_bytes_sent, and procedure_calls were selected. Clicking on a
previously-selected metric will deselect it. Clicking on the CLEAR button at the bottom will deselect

Figure 20: Metrics dialog box

Page 6-2

User’s Guide May 30, 2007 Release 5.0

all selected metrics.

When done with metric selections, press ACCEPT or CANCEL. The metrics dialog box will disap-

pear at that time; it will reappear the next time a metric selection is required1.

6.2 Metric Descriptions

A list of all current metrics is presented in Figure 22. As we have described in the previous Sec-
tion, expert users can create their own custom designed metrics using the Paradyn Configuration
Language. Most of the metrics that appear in Figure 20 and Figure 21 were created using this lan-
guage and are provided within Paradyn. Additionally, an expert user can select Developer Mode
metrics (Figure 22). Developer mode metrics are mostly internal metrics, or metrics that have been
hard coded into Paradyn, that can be used to monitor Paradyn’s own performance or for debug-
ging purposes. Developer mode can be selected from the Tunable Constants option of the Setup
menu, as it is illustrated in Figure 11 (Section 4). After developerMode is selected, a larger list of
metrics will appear in the metrics dialog box.

It is important to make a distinction between three types of metrics: normalized, unnormalized
and sampled. Normalized metrics are time related metrics that are being computed as a percentage
(e.g., cpu). Unnormalized metrics are mainly computed using counters (e.g., procedure_calls) and
they are usually expressed as a rate (e.g., operations per second). Sampled metrics are like unnor-
malized metrics, but the units are not represented as a rate (e.g., operations).

Figure 21: Metrics dialog box with several metrics selected

1. This contrasts with the Where Axis window (Section 5), which is kept open because the ability to browse a
program’s resource hierarchy at any time is desirable.

Page 6-3

User’s Guide May 30, 2007 Release 5.0

Metric Description Units Visi Axis
Label

active_processes Each bin represents the number of processes
active during the corresponding interval of
time. Aggregation is the average number of pro-
cesses active over an interval of time.

of pro-
cesses

opera-
tions

cpu Each bin represents the percentage of CPU time
spent during the corresponding time interval.
Aggregation is total CPU time over an interval.

CPUs CPUs

cpu_inclusive Same as cpu but includes called procedures in
the process time calculation.

CPUs CPUs

exec_time Each bin represents the elapsed wall clock time
per unit during the corresponding time inter-
val. Aggregation is the sum over the interval.

exec
time

CPUs

io_bytes This metric represents the number of bytes for
Input/Output operations. Currently, only “read”
and “write” are supported as input/output oper-
ations for UNIX, MPI, and PVM. On Windows,
“ReadFile” and “WriteFile” are used.

#bytes
read/
written

bytes

io_ops Number of Input/Output operations. IO opera-
tions are the same as for io_bytes.

IO ops opera-
tions

io_wait Time spent during Input/Output operations. IO
operations are the same as for io_bytes.

CPUs CPUs

io_wait_inclusive Same as io_wait but includes called procedures
in the process time calculation.

CPUs CPUs

msgs The total number of messages sent and
received. The unit is operations per unit of
time. Aggregation is the sum of all sends and
receives over the time interval. Send and
receives are defined as follows:

UNIX send:“write”
UNIX recv:“read”

#msgs
sent/recv

msgs

Figure 22: Metrics defined in Paradyn

Page 6-4

User’s Guide May 30, 2007 Release 5.0

pp_msgs Similar to msgs, but it counts the number of
point-to-point messages (only for MPI applica-
tions). Point-to-point communications are
defined as follows: PMPI_Send, PMPI_Bsend,
PMPI_Ssend, PMPI_Isend, PMPI_Issend,
PMPI_Recv, PMPI_Irecv, PMPI_Sendrecv,

PMPI_Sendrecv_replace .

#msgs msgs

cc_msgs Similar to msgs, but it counts the number of col-
lective communications (only for MPI applica-
tions). Collective communications are defined
as follows: PMPI_Bcast, PMPI_Alltoall,
PMPI_Alltoallv, PMPI_Gather,
PMPI_Gatherv, PMPI_Allgather,
PMPI_Allgatherv, PMPI_Reduce,
PMPI_Allreduce, PMPI_Reduce_scatter,
PMPI_Scatter, PMPI_Scatterv,

PMPI_Scan .

#msgs msgs

msg_bytes Number of message bytes sent and received.
Aggregation is the total number of bytes sent
and received. Send and receive are defined as
follows:

UNIX: “read”, “write”

#bytes
sent/recv

bytes

msg_bytes_recv Number of message bytes received per unit of
time. Aggregation is the total number of bytes
received. Message receives are defined as for
msgs.

msg-
bytes
recv’d

bytes

pp_msgBytesRecv Similar to msg_bytes_recv, but only for receive
messages involved in point to point communi-
cations (MPI applications only). These point to
point communications are defined as follows:
PMPI_Recv, PMPI_Irecv, PMPI_Sendrecv,

PMPI_Sendrecv_replace.

msg
bytes
recv’d

bytes

Metric Description Units Visi Axis
Label

Figure 22: Metrics defined in Paradyn

Page 6-5

User’s Guide May 30, 2007 Release 5.0

cc_msgBytesRecv Similar to msg_bytes_recv, but only for receive
messages involved in collective communica-
tions (MPI applications only). These collective
communications are defined as follows:
PMPI_Bcast, PMPI_Alltoall,
PMPI_Alltoallv, PMPI_Gather,
PMPI_Gatherv, PMPI_Allgather,
PMPI_Allgatherv, PMPI_Reduce,
PMPI_Allreduce, PMPI_Reduce_scatter,
PMPI_Scatter, PMPI_Scatterv,

PMPI_Scan .

msg
bytes
recv’d

bytes

msg_bytes_sent Number of message bytes sent per unit of
time. Aggregation is the total number of bytes
sent. Message sends are defined as for “msgs”.

msg-
bytes
sent

bytes

pp_msgBytesSent Similar to msg_bytes_sent, but only for send
messages involved in point to point communi-
cations (MPI applications only). These point to
point communications are defined as follows:
PMPI_Send, PMPI_Bsend, PMPI_Ssend,
PMPI_Isend, PMPI_Issend,

PMPI_Sendrecv, MPI_Sendrecv_replace .

msg
bytes
sent

bytes

cc_msgBytesSent Similar to msg_bytes_sent, but only for send
messages involved in collective communica-
tions (MPI applications only). These collective
communications are defined as follows:
PMPI_Bcast, PMPI_Alltoall,
PMPI_Alltoallv, PMPI_Gather,
PMPI_Gatherv, PMPI_Allgather,
PMPI_Allgatherv, PMPI_Reduce,
PMPI_Allreduce, PMPI_Reduce_scatter,
PMPI_Scatter, PMPI_Scatterv,

PMPI_Scan .

msg
bytes
sent

bytes

number_of_cpus Number of CPUs in the system. #CPUs #CPUs

observed_cost Internal metric: Indicates the effect on the
application from collecting data. Its purpose is
to check that the overhead of data collection
does not exceed pre-defined levels, and should
these levels be exceeded, it reports to the higher
level consumers of data.

slow-
down

slowdown

Metric Description Units Visi Axis
Label

Figure 22: Metrics defined in Paradyn

Page 6-6

User’s Guide May 30, 2007 Release 5.0

pause_time Each bin represents the fraction of time in
which the application program was paused by
Paradyn. Maximum value is 1.0. Aggregation is
the total time paused over an interval.

pause
time

CPUs

predicted_cost Internal metric: Expected overhead of collect-
ing the data necessary to compute a metric for a
particular focus or combination of resources.
The predicted cost is expressed as the percent-
age utilization of CPU.

slow-
down

slowdown

func_calls_to Represents the number of procedure calls to the
specified function or module.

#calls opera-
tions

func_calls_by Represents the number of procedure calls made
by the selected function or by all of the func-
tions in the selected metric.

#calls opera-
tions

sync_ops The number of synchronization operations per
unit of time. Aggregation is the sum. The fol-
lowing are defined as synchronization opera-
tions:

UNIX: “write”, “read”, “recv”, “recvfrom”,
“select”, “sendmsg”, “send”, “sendto”

#sync
ops

opera-
tions

sync_wait The elapsed wall time spent waiting for a syn-
chronization operation. Aggregation is the sum
of all waiting time. The following will be
included in the reported times:

UNIX: “write”, “read”

sync wait
time

CPUs

sync_wait_inclusive Same as sync_wait, but includes called proce-
dures in the process time calculation.

sync wait
time

CPUs

Metric Description Units Visi Axis
Label

Figure 22: Metrics defined in Paradyn

Page 6-7

User’s Guide May 30, 2007 Release 5.0

Metric Description Units Visi Axis
Label

sampling_rate Internal metric: It is the time interval at which
samples are taken of the application by the dae-
mon.

millisec-
onds

millisec-
onds

stackwalk_time Internal metric: Amount of time the Paradyn
daemon(s) spend walking the stack. This is done
when timers or counters need to be manually
started.

stack-
walk
time

CPUs

numOfActCounters Internal metric: The number of active count
based metric-focus pairs. Or the number of
counters that are actively being sampled.

of
counters

opera-
tions

numOfActProcTim-
ers

Internal metric: The number of active process
time based metric-focus pairs. Or the number of
process timers that are actively being sampled.

of tim-
ers

opera-
tions

numOfActWallTim-
ers

Internal metric: The number of active wall time
based metric-focus pairs. Or the number of wall
timers that are actively being sampled.

of tim-
ers

opera-
tions

Figure 23: Developer Mode Metrics defined in Paradyn

Page 7-1

User’s Guide May 30, 2007 Release 5.0

7 CONTROLLING VISIS

This section describes how to start and stop visualizers (known as ‘visis’) from Paradyn.

7.1 Starting

A new visualization can be requested by pressing the Visi button from the Paradyn main window
menubar (Figure 24), which opens the Start A Visualization dialog.

This dialog presents a list of visualizations to choose from as shown in Figure 25. Visualiza-
tions can be started so that they receive either global phase performance data or current phase per-
formance data. The selection in Figure 25 is for a Histogram visualization that will receive
performance data from the global phase of the application’s execution.

Once a visualization has been defined, metric and focus menuing is usually initiated before the
visualization process is started. Whether or not this menuing is done is determined by the force
flag setting in the PCL entry for this visualization. If the force option is set then the visualization
process is started without metric and focus menuing. This is typically used for starting visualiza-

Figure 24: Paradyn Main Control window

Figure 25: Start A Visualization menu

Page 7-2

User’s Guide May 30, 2007 Release 5.0

tions that do not want to enable data flow before starting. The Phase Table visualization is an
example of one which should have the force option set. For other visualizations, once menuing is
done, and at least one metric/focus combination is successfully enabled, the visualization process
is started.

The instrumentation required to collect data to be shown in a visualization can be deferred if
an application process is executing in the neighborhood of an instrumentation point. If instru-
mentation is deferred, Paradyn displays a message box like the one shown in ??? listing the metric-
focus pairs with deferred instrumentation.

7.2 Stopping

Each visualizer has a menu option to quit that invokes the VisiLib QuitVisi routine which takes
care of disabling data collection and cleans up any associated state, then exits.

Figure 26: Message box indicating instrumentation has been deferred

Page 8-1

User’s Guide May 30, 2007 Release 5.0

8 PHASES

Phases in Paradyn are contiguous time-intervals within an application’s execution. There are two
kinds of phases: the global phase and local phases. The global phase starts at the begining of the
program execution and extends to the current time. Local phases are non-overlapping subintervals
of the global phase. When a new local phase is defined in the system, the current local phase ends
and all data collection for the current phase stops. Data collection for the new phase will occur at a
finer granularity than collection for data the global phase. At any time in the program’s execution,
data collection can be enabled for one or both of the the current local phase and the global phase.
Similarly, a Performance Consultant search (Section 9) can be started for the global phase of an
application’s execution, or can be restricted to search over only the current local phase of execu-
tion.

8.1 Starting a new phase

A new local phase can be defined by selecting Start under the Phase menu of the Paradyn main
window (Section 3) or Start Phase from the Phase Table display menu (Figure 27). When a new
phase is defined, any visualizations defined for the current local phase stop receiving performance
data. Similarly, if the Performance Consultant is active for the current phase, its search ends when
a new phase is defined.

8.2 Visualizations and Phases

Visualizations can show data for either the local phase or the global phase. Local phase visualiza-
tions receive and display performance data from the phase’s start time until the phase ends. Typi-
cally, local phase data is collected at a finer granularity than global phase data. Figure 28 shows a
real time histogram visualization that has been defined for the global phase, and Figure 29 shows
one that has been defined for specific phase.

8.3 The Performance Consultant and phases

The Performance Consultant (Section 9) can simultaneously search both the local phase and the
global phase. Complete details are given in the Performance Consultant section; searching on mul-
tiple phases in particular is discussed in that section.

Figure 27: Phase Table Display

Page 8-2

User’s Guide May 30, 2007 Release 5.0

Figure 28: Time Histogram: Global Phase

Figure 29: Time Histogram: Local Phase (3)

Page 9-1

User’s Guide May 30, 2007 Release 5.0

9 PERFORMANCE CONSULTANT

Paradyn provides many options for selecting and displaying performance information about your
application program. Sometimes these options can be overwhelming. In a large, complex program,
it can be difficult to know where to start looking for performance problems, and Paradyn’s Perfor-
mance Consultant is designed to help. The Performance Consultant (PC) helps identify the type of
performance problems (“why”), where in the program these problems occur (“where”) and the
time during the execution during which the problem occurred (“when”). This “why-where-when”

model of searching for performance problems is called the W3 (pronounced “W- cubed”) Search
Model and forms the core of the PC.

The PC is automated so that, in its normal mode of operation, you simply tell it to start search-
ing for performance problems. The PC will continually select and refine which performance met-
rics are enabled and for which foci they will be enabled.

The Performance Consultant in Release 3.0 of Paradyn introduced a couple of significant
changes to previous behavior. Firstly, the former Process/Thread hierarchy is now relocated under-
neath Machine, so that searches progress from considering machines to processes (to threads
where supported), instead of separately considering machines and processes together. Secondly, a
callgraph-based search of the Code hierarchy replaces (as default) the former unwieldy modules-

then-functions search.1

In this section, we describe the W3 Search Model (Section 9.1), the components of the Perfor-
mance Consultant’s window (Section 9.2), how to interpret what the PC tells you (Section 9.4),
and (once you get a bit of experience) how to adjust and fine-tune its operation (Section 9.5).

9.1 The W3 search model

The Performance Consultant automatically locates potential bottlenecks in your code. The PC
describes each bottleneck by stating why there is a problem (the hypothesis), and where in the
application the problem was found (the focus, see Section 5). You can direct the search to find out
when the problem occurred by including either the entire execution or a particular phase of its
execution.

The “Why” Axis: The PC includes the definition of a set of generic performance problems. These
problems, called “hypotheses”, are typically of the form:

PerfMetricX > SpecifiedThreshold

where PerfMetricX is some metric defined in Paradyn (Section 6) and the
SpecifiedThreshold is a value that you can set by using a Tunable Constant (Section 4).
The threshold value is typically expressed as a fraction (between 0 and 1) of the execution time
of the application program. Each hypothesis may also contain pruning directives, which cause
some portion of the resource hierarchy to be ignored while searching.

1. The former search behavior is available by setting (before opening the Performance Con-
sultant window) a developer mode Tunable Constant: PCuseCallGraphSearch.

Page 9-2

User’s Guide May 30, 2007 Release 5.0

The “Where” Axis: A focus in Paradyn allow you to constrain a performance metric to a particu-
lar subset of program resources. The PC makes step-by-step selections in the Where Axis, as it
tries to isolate the cause of performance problems.

The “When” Axis: The PC can look for performance problems whose effect is large enough to
stand out over the total execution of the application program, or it can look for problems that
stand out during a restricted interval of time. You can associate a PC with each phase
(Section 8). The PC associated with the global phases searches for performance problems that
affect the entire program execution; the PC associated with a local phase searches for problems
that affect (at least) that interval of execution.

Depending on the complexity of the application program, i.e., the number of nodes in the
Where Axis for the application, the number of hypothesis/focus pairs that could be explored might
be quite large. On the other hand, the goal is to find the handful of most troublesome bottlenecks
in the application. Any hypothesis/focus pair that doesn’t exceed the threshold does not require
further attention; realistically, any that exceeds the threshold for only a short interval of time won’t
get any attention. For this reason the PC only reports bottlenecks that exist for a significant por-
tion of the overall phase being tuned.

9.1.1 The Why Axis

The space of all possible hypotheses (such as synchronization-bound, CPU-bound, etc.) is

called the Why Axis. The root hypothesis is the generic TopLevelHypothesis. This hypothesis is con-
sidered true if any hypothesis at the next level is true. The remaining hypotheses are:

• CPUbound: Compares CPU time to the tunable constant PC_CPUThreshold. Searching through
/SyncObject and /Process hierarchies is disabled.

• ExcessiveSyncWaitingTime: Compares total synchronization waiting time to the tunable con-
stant PC_SyncThreshold.

• ExcessiveIOBlockingTime: Compares total I/O waiting time to the tunable constant
PC_IOThreshold. Searching through the /SyncObject hierarchy is disabled.

Figure 30: The Why Axis

TopLevelHypothesis

ExcessiveSyncWaitingTime CPUbound ExcessiveIOBlockingTime

TooManySmallIOOps

Page 9-3

User’s Guide May 30, 2007 Release 5.0

• TooManySmallIOOps: Compares average number of bytes per I/O operation to
PC_IOOpThreshold. Searching through the /SyncObject hierarchy is disabled.

If a particular hypothesis in the Why Axis tests true, the PC will try to test the children of that
hypothesis next. When the Performance Consultant searches along the Why Axis in this way to
test more detailed hypotheses for a particular focus, we say a Why Axis refinement has been made.

9.1.2 The search strategy

When a new search is started, the Performance Consultant makes instrumentation requests to
evaluate the topmost levels of the why and where axes; that is, it evaluates each top level hypothesis
(CPUBound, SyncWaiting, IOBlocking) for WholeProgram. These particular hypothesis/focus
pairs will continue to be evaluated for the entire phase.

There are two questions of interest here: when is the search expanded, and how is expansion
done? The search is expanded anytime a (hypothesis : focus) pair tests true. The only exception is at
start-up, when an initial set of (hypothesis : focus) pairs are enabled. If, at any time, a
(hypothesis : focus) pair (h : f) tests true, then the following hypothesis:focus pairs will be added to the
search: (h : all child foci of WholeProgram), plus (all child hypotheses of h : f). The why axis, and each of the
resource hierarchies, are trees, so refining one step in the search is defined as moving down along
a single edge in either the why axis or one of the resource hierarchies. For example, from
(ExcessiveIOBlockingTime : WholeProgram), using the resource hierarchy in Figure 17, the following set
of (hypothesis : focus) pairs would be added:

1. One step along the Why Axis:

(TooManySmallIOOps : WholeProgram)

2. One step along the Code hierarchy:

3. One step along the Machine hierarchy:

(ExcessiveIOBlockingTime : goat)

All of the new (hypothesis : focus) pairs resulting from this expansion generate instrumentation
requests, and, if possible, data collection begins immediately. However, the total amount of instru-
mentation active at any given time during the tuning session is limited by an internal cost-tracking
system. If the total cost of currently enabled instrumentation for all visualizations and searches
exceeds the cost threshold, new (hypothesis : focus) pairs are queued and activated after some other
instrumentation is disabled.

Each (hypothesis : focus) pair is represented as a node of a directed acyclic graph (DAG), called
the Search History Graph (SHG). The root node of the SHG represents the pair
(TopLevelHypothesis : WholeProgram), and its child nodes represent the list of possible refinements
chosen as described above. If a SHG node tests false, it is not expanded. After a certain minimum
observation interval, testing on all but the topmost level false nodes is halted. If an already-

(ExcessiveIOBlockingTime : bubba.c) (ExcessiveIOBlockingTime : channel.c)

(ExcessiveIOBlockingTime : graph.c) (ExcessiveIOBlockingTime : outchan.c)

(ExcessiveIOBlockingTime : partition.c) (ExcessiveIOBlockingTime : anneal.c)

Page 9-4

User’s Guide May 30, 2007 Release 5.0

expanded node changes from true to false, then testing is halted for all of its children.

9.2 Running the Performance Consultant

In this section, we describe how to run the Performance Consultant on an application.
Section 9.2.1 describes the Performance Consultant Window, Section 9.2.2 describes starting and
stopping a search, and Section 9.2.3 provides a detailed description of the Search History Graph.

9.2.1 The Performance Consultant window

The Performance Consultant window may be opened any time after an application has been
defined (see Section 2.4) by choosing Performance Consultant from the Setup menu of Paradyn’s
main window. Figure 31 shows a sample Performance Consultant window.

The Searches menu contains a list of all possible phases on which a search has been requested
or may be started, including the default, “Global”, for whole program searches. If you have not
defined any phases for the application, then you will see only two choices, “Global” and “Current.”
The currently displayed phase has a blue diamond next to its name; the others have gray dia-
monds. Choosing items under this menu allows you to page through the search displays for all
active, paused, and completed searches. When a new phase is defined, the Performance Consultant
detects it, and adds the new phase’s name to its Searches menu.

Figure 31: A sample Performance Consultant window

Searches
Menu

Current
Search

Search Status

Search History
Graph

Node Status

SHG Color
Key

Help Tips

Page 9-5

User’s Guide May 30, 2007 Release 5.0

The Current Search line gives the name of the currently displayed search phase. At any given
time, it is always the same as the Searches menu item having a blue diamond before its name.

The Search Status box is a scrolling text display just beneath the Current Search line. From time
to time, the Performance Consultant adds some information about the currently displayed search
in this box; examples include when refinements are made, phases end, and unexpected error con-
ditions occur. As with most items in the Performance Consultant window, the information dis-
played is specific to the currently displayed search; changing searches (by choosing a different item
under the Searches menu) will show different information.

The Search History Graph Display is the resizable window below the status box. The Search His-
tory Graph is a compact graphical display of the history of refinements made by the Performance
Consultant. Each search has a distinct Search History Graph; changing searches will show a differ-
ent Search History Graph. Section 9.2.3 discusses the Search History Graph in detail.

The Node Status displays extra information for a given Search History Graph node. To see the
full description for any node in the SHG display, click the middle mouse button on the node. For
example, the node status line in Figure 35 shows the full hypothesis and focus for the blue node
labeled goat. For convenience, this line of information will remain present until the next time a
node is clicked on with the middle mouse button. The Search and Pause buttons are described in
Section 9.2.2, where we discuss running the Performance Consultant.

The SHG Color Key explains the colors and display styles used in the SHG display. We discuss
each key item in Section 9.2.3. To conserve screen space, the SHG Color Key may be removed by
setting the tunable constant showShgKey to false.

Help Tips describe mouse and key presses in the Performance Consultant window. To conserve
screen space, these may be removed by setting the tunable constant showShgTips to false.

9.2.2 Starting and stopping a search

To start the currently displayed search, click on the Search button in the Performance Consultant
window. The PC directs instrumentation insertion to begin locating application bottlenecks. Note
that the application program must be running for data to be collected for the PC; if the application
has not been started or has been paused, (re-)start it by pressing the RUN button of the Paradyn
Main Window (see Section 2). Current Phase Searches may also be started at the same time a new
phase is defined. To do so, choose Start with Performance Consultant from the Phase menu of Para-
dyn’s main window.

The Pause button stops the Performance Consultant temporarily, and removes all instrumenta-
tion for the particular search displayed. Note that it does not stop the application itself; its only
effect is on the PC’s currently displayed search. To resume a search after pausing, press Resume.

A search ends when its phase ends; for a current phase, this is when you define the start of a
new phase; for the global phase, it is when the application terminates.

Page 9-6

User’s Guide May 30, 2007 Release 5.0

9.2.3 The Search History Graph display

As the Performance Consultant searches for bottleneck(s), it leaves a record of its progress in
the Search History Graph. Initially, the Search History Graph contains only a single item:
TopLevelHypothesis. A few moments after the search begins, the Search History Graph will look like
that in Figure 32. The three items within the listbox below TopLevelHypothesis are what the Perfor-

mance Consultant first tests the program for—excessive synchronization waiting time, excessive I/
O blocking time, or CPU bound. To use the terminology given above, the Performance Consultant
is presently trying to find out why the program is running slowly, as opposed to where (what pro-
gram resource(s)) it is running slowly. Whenever items are added to the Search History Graph, we
say that a refinement has been performed. In this example, a Why Axis refinement has been per-
formed, indicated by the yellow line connecting TopLevelHypothesis to its descendant listbox. As

Figure 32: The Performance Consultant’s search begins

Page 9-7

User’s Guide May 30, 2007 Release 5.0

shown in the window’s key area at the bottom of the Performance Consultant window, a yellow
line is a Why Axis refinement; a purple line is a Where Axis refinement.

Each item in the Search History Graph of Figure 32 has a green background. As shown in the
window’s key area, a green background indicates Unknown status; that is, we do not yet know
whether any of ExcessiveSyncWaitingTime, ExcessiveIOBlockingTime, or CPUBound are true or false, since
we have just begun the Performance Consultant’s search. Also, the text of each item in the listbox
has a white foreground. As shown in the window’s key area, white text indicates an active test; that
is, the Performance Consultant has instrumented the program to perform the test and is collecting
data for it. If an experiment’s instrumentation has been deferred because an application process
was executing in the neighborhood of an instrumentation point, the text of the listbox item will be
drawn in blue. When the instrumentation is eventually inserted, the item’s text will be redrawn in
white.

We continue the search until the Performance Consultant has made a further refinement
(Figure 33). First, note that the Performance Consultant has decided that the program is CPU
bound (because CPUbound is drawn with a blue background). The nodes
(ExcessiveSyncWaitingTime : WholeProgram) and (ExcessiveIOBlockingTime : WholeProgram) have both tested
false, so their background color is now pink. Although all three of these nodes will continue to be
tested (which we see by the white text), only the true node, CPUBound, has been expanded to try
to further refine the bottleneck. As a result of the search, a listbox below CPUbound has appeared.
The line connecting CPUbound to its children is drawn in purple, since is a Where Axis refinement.
Each item in the listbox contains program resources that are being examined with the CPUbound

hypothesis. The Performance Consultant has decided that the program is CPU bound; now it’s try-
ing to refine the bottleneck to (in this case) a certain machine (goat) or in the Code hierarchy.

Double-clicking on a true node (such as CPUbound in Figure 33) collapses the display so its
children are no longer shown. Because it saves screen space, this is useful for traversing large com-
plex search graphs. In the example of Figure 33, double-clicking on CPUbound would put CPUbound

into the listbox with ExcessiveSyncWaitingTime and ExcessiveIOBlockingTime. A triangle will appear next
to CPUbound in the listbox to indicate that it has children which are presently being hidden to save
screen space. To expand the node’s children, double-click on the name in the listbox.

Screen space can be saved in the Search History Graph by hiding certain combinations of node
types. For example, you may wish to view only nodes which the Performance Consultant has
determined to be true bottlenecks (blue nodes). Or, you may wish to show all but those nodes
which have been determined not to be bottlenecks (pink nodes). There are seven such node char-
acteristics; boolean tunable constants (Section 4) can be set to show or not to show nodes of any
given characteristic. We now briefly describe each node characteristic; they are discussed in more
detail in Section 9.4.

9.3 Interpreting the results of callgraph-based search

The callgraph-based search is similar in principle to the module-then-function search, differing in
the way searches and refinements proceed through the Code hierarchy, and in the initial use of
inclusive metrics instead of exclusive metrics. Since inclusive metrics are less costly/intrusive and

Page 9-8

User’s Guide May 30, 2007 Release 5.0

the search is directed by executing functions, the callgraph-based search is typically faster and
more accurate than the module-then-function search.

9.4 Interpreting the results of module-then-function search

Results may change over time because the Performance Consultant continues running for the
duration of the phase being tuned. Figure 35 shows a search in progress and explains how to inter-
pret the PC display. The Performance Consultant has decided that the program is CPU bound
(and it represents this by presenting CPUbound drawn with a blue background). The nodes
(ExcessiveSyncWaitingTime : WholeProgram) and (ExcessiveIOBlockingTime : WholeProgram) have both

Figure 33: The Performance Consultant refines bottleneck to CPUbound

Page 9-9

User’s Guide May 30, 2007 Release 5.0

tested false, so their background color is now pink. Although all three of these nodes remain
active, only the true node, CPUbound, has been expanded to try to further refine the bottleneck.
Each item in the listbox under CPUbound contains program resources that have been tested as pos-
sible refinements of the CPUbound hypothesis. Refinements to two different true nodes (machine
name goat and source code module partition.c) have been made. The Performance Consultant is
capable of making an arbitrary number of simultaneous refinements, because multiple hypothesis/
focus pairs may be tested concurrently. For example, in the Search History Graph of Figure 35, the
Performance Consultant will try to make refinements of the two true nodes below CPUbound: goat

and partition.c.

Two separate search paths may converge through expansion to the same child node. For exam-
ple, the next refinement of goat might be partition.c, and the next refinement of partition.c might be
goat. If so, they would share the same child node: (CPUbound : /Code/partition.c,/Machine/goat,/Process,/

SyncObject). The search display does not connect the two different parent nodes to the same child;
instead, it adds a child node for each, where one is a regular node and the other(s) is a copy. These
copies are called shadow nodes. In Figure 35, the regular node goat has been clicked with the mid-
dle mouse button to provide its details in the information line below the shg, while the listbox item
goat under partition.c is drawn in italics to indicate that it is a shadow node. The color of a shadow
node will be updated to reflect the status of its regular node. Shadow nodes are always leaf nodes;
although the regular node may be expanded in the usual way, the resulting listbox is not be copied

Visual representation
Tunable Constant to
control display look

Description

1. Gray node background shgHideNeverSeenNodes Nodes that the Performance Consultant has not yet
examined.

2. Green node background shgHideUnknownNodes Nodes that the Performance Consultant has not yet
determined to be true or false.

3. Blue node background shgHideTrueNodes Nodes that the Performance Consultant has deter-
mined to be true.

4. Pink node background shgHideFalseNodes Nodes that the Performance Consultant has deter-
mined to be false.

5. White node text shgHideActiveNodes Nodes with white text are those that are active—the
Performance Consultant has instrumented the pro-
gram and is collecting performance data for it.

6. Black node text shgHideInactiveNodes Nodes with black text are inactive—the Performance
Consultant has not instrumented the program to col-
lect performance data for it.

7. Red node text Nodes with red text are deferred—the daemon has
communicated to the performance consultant that
the metric-focus request is delayed. The delay can
vary depending on the function and the program.

8. Italicized node text shgHideShadowNodes Nodes with italicized text are shadow nodes; they are
discussed in Section 9.4.

Figure 34: Search History Graph tunable constants for saving screen space

Page 9-10

User’s Guide May 30, 2007 Release 5.0

to the shadow nodes. In this example, the node goat under partition.c is a shadow node because it
has the same hypothesis/focus pair (CPUbound : /Code/partition.c,/Machine/goat,/Process,/SyncObject) as
the listbox item partition.c under goat.

Figure 36 shows the contents of the Search History Graph after the next set of refinements are
made. First, the node partition.c under goat has been found true; this is the hypothesis/focus pair
CPUbound : /Code/partition.c,/Machine/goat,/Process,/SyncObject discussed above. This focus can be read
as, “code in module partition.c when executing on machine goat”. The shadow node goat under parti-

tion.c is also true; no attempt is made to refine anything beyond it, however, because it’s just a
shadow node of partition.c under goat. Additionally, the node p_makeMG under partition.c is now
true. Its hypothesis/focus pair is (CPUbound : /Code/partition.c/p_makeMG,/Machine,/Process,/SyncOb-

Figure 35: The Performance Consultant refines bottleneck beyond CPUbound

Page 9-11

User’s Guide May 30, 2007 Release 5.0

ject). Note that p_makeMG has just a single element in the listbox below it (goat), and it’s a shadow
node. The hypothesis/focus pair for this node is shown in Figure 36 (i.e., we have clicked the mid-
dle button on that node). It can be read as “function p_makeMG of module partition.c; machine goat”.
This item is a shadow node of p_makeMG, located in the listbox below partition.c which is in turn
under goat. Hence, in Figure 36, two searches are in progress. The first has tentatively concluded
that a bottleneck exists for module partition.c on machine goat. The other has tentatively concluded
that a bottleneck exists for the function p_makeMG (of module partition.c), and is trying to refine
further.

Figure 36: The second set of Search History Graph refinements

Page 9-12

User’s Guide May 30, 2007 Release 5.0

The state of the Performance Consultant after the next (and last) refinement is shown in
Figure 37. In the middle of the figure, we see that p_makeMG (under partition.c, in turn under goat) is

true. Its hypothesis/focus pair is shown below the Search History Graph (i.e., we have clicked the
middle button on the node). It can be read “function p_makeMG of module partition.c; machine
goat”. In addition, the shadow node goat under p_makeMG (in turn under partition.c) has been set to
true, to reflect the change in truth value of the actual node for which it is a marker.

In this example, we are done. The Performance Consultant has found the bottleneck, and will
not refine any further nodes. After a few more moments, the green items (unknown) in the listbox

Figure 37: Final Search History Graph bottleneck refinement

Page 9-13

User’s Guide May 30, 2007 Release 5.0

below partition.c will turn pink (false); though we do not show a picture of it here. The Performance
Consultant will continue to re-evaluate all true nodes and top level hypotheses so that a change in
application behavior will update the search.

All nodes which are true (blue) at the end of the search indicate hypothesis/focus pairs that
have remained true for a significant portion of the phase searched. The PC refines all true nodes to
as specific a focus as possible; in some cases the focus will be refined down to the leaf level of the
resource hierarchies, but in others the bottleneck is spread across some number of foci and so
refinement stops earlier. For example, total CPU time for a module may exceed the current
PC_CPUThreshold, but the module may contain a number of functions with roughly equal CPU
times. If no single function exceeds the threshold, refinement will terminate at the module level.

Whenever a node tests true, a note is added to the Search Status Box near the top of the window.
During your tuning session you may scroll through this list to see a history of test results.

Note that it is possible for the Performance Consultant to report false negatives: that is, it may
fail to detect bottlenecks in the code for any of the following reasons: you start a search after the
behavior has started and ended; you perform a search on a phase that contains several distinct
behavioral phases, so no individual bottleneck occurs throughout the entire phase; or the bottle-
neck is of relatively short duration, relative to the length of the phase being tested. The PC may fail
to completely refine a given bottleneck, if the individual refinement changes from false to true
after the PC has tested and found it false.

9.5 Customizing the search parameters

The Performance Consultant has several kinds of controls that you can set to customize its search
operation. These controls are tunable constants that set the threshold for deciding when a perfor-
mance problems exists. Setting the tunable constants is easily done following the instructions in
Section 4.

Several user-level tunable constants are currently defined to control the search:
PC_CPUThreshold, PC_SyncThreshold, PC_IOThreshold, and PC_IOOpThreshold. For example, if
PC_CPUThreshold is set to 0.3 (30% of the phase), then any focus with CPU time greater than 30%
of the phase’s elapsed time will be reported as a bottleneck. Other tunable constants control the
sensitivity of the hypothesis testing.

The tunable constants determine the thresholds used for testing hypotheses:

PC_CPUThreshold: used for hypothesis CPUbound.

PC_SyncThreshold: used for hypotheses ExcessiveSyncWaitingTime.

PC_IOThreshold: used for hypothesis ExcessiveIOBlockingTime.

PC_IOOpThreshold: used for hypothesis TooSmallIOOps.

These tunable constants determine search parameters:

minObservationTime: all tests will be continued for at least this interval of time before any conclu-

Page 9-14

User’s Guide May 30, 2007 Release 5.0

sions are drawn. This protects against transitory effects at the start of a phase.

costLimit: determines an upper bound on the total amount of instrumentation that can be active at
a given time while the application runs. A low value permits less concurrent instrumentation,
so the search may proceed more slowly but perturbation of the application will also be lower. A
high value increases perturbation, which may result in less accurate values for all visualizations
as well as the Performance Consultant.

Page 10-1

User’s Guide May 30, 2007 Release 5.0

10 STANDARD VISI MODULES

Paradyn provides an open interface to its performance data. All visualization modules (visis) in
Paradyn are external processes that use the Paradyn-provided library and remote procedure call
interface (VisiLib) to access performance data in real time. Existing visualizations can be easily
added to Paradyn by modifying them to use VisiLib routines to access Paradyn performance data.
Paradyn currently has visis for a time-histogram, bar chart, table and 3D terrain visualization.
These visualizations are described in the following sections, and the VisiLib library is described in
a separate document, the VisiLib Programmer’s Guide.

10.1 Time Histogram visi

The time-histogram visualization plots performance data for metric/focus pairs over time.
Figure 38 displays a time-histogram showing three curves corresponding to three enabled metric/
focus pairs. The time axis begins at the start time for the phase over which the data is being dis-
played (in this case the data is displayed for the global phase which begins at time 0). The time-his-

togram can display multiple y-axes. In Figure 38 there are two y-axes displayed; the rightmost one
corresponding to the metric “CPU utilization”, and the leftmost corresponding to the metric “Pro-
cedure Calls”. Each y-axis is labeled with the units in which its corresponding metric is measured.
The y-axis labels can be seen in Figure 38.

Time-histogram is launched by choosing Histogram from the Start A Visualization dialog produced
by pressing the Visi button in the Paradyn Main Control window. A dialog box with a list of all visis
known to Paradyn is brought up; choose Histogram and click Accept.

Figure 38: Time Histogram with selected curve

Page 10-2

User’s Guide May 30, 2007 Release 5.0

10.1.1 File menu

The Histogram visi’s File menu contains two items for operations that apply to the Histogram visu-
alization as a whole. The Keep on Paradyn Exit item is a check box that specifies that the Histogram
display should not terminate when Paradyn is closed. This behavior is useful in case the user
wishes to make screen dumps of the histogram display after the application under study has com-
pleted and Paradyn has been closed. By default, this behavior is disabled (i.e., the Histogram win-
dow closes when Paradyn is closed).

The Close item closes the Histogram visi window, disabling instrumentation and removing
resources no longer required.

10.1.2 Curve menu

The Curve Menu contains items that manipulate curves in the Histogram visi window. Most of the
items operate on the selected curve(s). To select a curve, click on its name in the legend of the His-
togram visualization window. See Figure 38 for an example of a selected curve.

The Add... menu item adds curves to the Histogram visualization. When selected, the “Paradyn
Metrics Menu” dialog will be displayed to allow the user to choose which metrics are to be shown
in the Histogram. The Where Axis is also used in adding a new curve, in that the current selection
in the Where Axis is the focus for the new curve. The Add... menu item is the only item in the
Curve menu that does not require a current selection.

The Remove menu item removes one or more curves from the Histogram visualization. When
this item is chosen, the curves selected in the Histogram visualization window’s legend are
removed from the Histogram visualization. If possible, the instrumentation that was used to col-
lect the data for that curve is removed from the application under study.

The Smooth menu item smoothes the data for the selected curve(s). A smoothed curve is one
that shows the effects of passing a filter over the data to remove spikes from the curve’s data. The
curves shown in Figure 38 are smoothed. By default, curves are smoothed when added to the His-
togram.

The Unsmooth menu item removed the smoothing effect from the selected curve(s). For com-
parison with the smoothed curves of Figure 38, see the same curves unsmoothed in Figure 39.

The Show menu item reshows a hidden curve in the Histogram visualization window. Con-
versely, the Hide menu item hides a visible curve in the display. Both operations work on the
selected curve(s) only. In Figure 39, the “cpu<Whole Program>” curve has been hidden in the dis-
play..

10.1.3 Panning and zooming

The scroll bars at the bottom and right of the time-histogram allow the interval of time displayed
in the histogram window to be adjusted. The zoom bar can be adjusted to get a more detailed view
of a particular time interval along the x-axis. As the zoom bar is moved upwards, the percent of the
total x-axis displayed decreases. Also, once the zoom bar has been moved, the pan bar can be used
to change the time interval that is currently being displayed in the window. Figure 40 shows the

time-histogram with a zoomed and panned view.

Page 10-3

User’s Guide May 30, 2007 Release 5.0

Figure 39: Time Histogram with unsmoothed and hidden curves

Figure 40: Zoomed Time Histogram

Page 10-4

User’s Guide May 30, 2007 Release 5.0

10.2 Barchart visi

Barchart is an external visualization module that enables many metric-focus pairs to be viewed in
real time. Barchart receives its data through the visi lib. The visi lib is described in the VisiLib Pro-
grammer’s Guide; we do not discuss it further here.

Figure 41 shows the Barchart window. The vertical axis contains the names of all foci selected
for viewing. There are also a certain number of metrics currently selected for viewing; they (along
with a range of values) are displayed in the horizontal axis. Note that each metric has its own color;
this helps identify the bars emanating horizontally next to each focus.

Barchart is designed to view many metric/focus pairs. In Figure 41, there are seven foci and

two metrics, leading to metric/focus pairs. Barchart can easily handle far more; it is
not unusual to display 30 or more foci, and five or more metrics. This contrasts with the Histo-
gram visi (see Section 10.1), which is restricted to eleven metric/focus pairs at a time. On the other
hand, Barchart has no way to show how metric/focus pairs change over time.

Barchart is launched by choosing it from the Start A Visualization dialog produced by pressing the
Visi button in the Paradyn Main Control window. A dialog box with a list of all visis known to
Paradyn is brought up; choose Barchart and click Accept.

A dialog box containing all metrics known to Paradyn will appear. Paradyn is asking you to select
some initial metric-focus pair(s) for the Barchart. Choose metric(s) by selecting desired check-

boxes in the metrics dialog box1. Choose foci by selecting desired resources in the Where Axis

window.2 The metric-focus pairs generated will be the cross-product of the foci and metrics.

Figure 41: Barchart visualization window

1. For details on selecting metrics, refer to Section 6.
2. For details of focus selection, and the Where Axis in general, refer to Section 5.

7 2× 14=

Page 10-5

User’s Guide May 30, 2007 Release 5.0

At this point, the Barchart window (as in Figure 41) should appear, with the metrics and foci you
selected. If Paradyn is running an application, data should begin appearing immediately.

10.2.1 Changing metrics and foci being viewed

You must specify an initial metric/focus set when launching a barchart. You may later add as many
more metric/focus pairs as desired (duplicates will be correctly filtered). To do this, choose Add

Bars from the Barchart’s Actions menu. The interface for adding metrics and foci at this point is the
same as upon startup; you will be shown the metrics dialog box for choosing metrics, and the
where axis for choosing foci.

You may delete foci by clicking on their names and choosing Delete Selected Foci from the Actions

menu.

10.2.2 Viewing data

Values being viewed in a Barchart are, by default, current. Each time a screenful of new data
arrives (from Paradyn), Barchart immediately displays the most recent values, thereby overwriting

the previous screenful of data, which cannot be re-displayed later3.

There are two other ways of viewing data. Under the View menu, we could choose to view Average

values. In this case, what we see on the screen will be the average (over time) of all values collected
by this instantiation of Barchart. After a short time, the bars will probably setting down to a steady
state; this is to be expected when viewing average values. The third way of viewing data is to view
Total values. This causes the bar values to monotonically increase over time. Figure 42 shows a Bar-

chart, otherwise similar to that of Figure 41, with Total instead of Current values displayed. Note

3. To get a feeling for metric/focus pair changes over time, try the run-time Histogram visi (Section 10.1).

Figure 42: Barchart showing total values

Page 10-6

User’s Guide May 30, 2007 Release 5.0

that the metric units (the lower left corner of Figure 42) changes accordingly, and that the metric
bounds (the lower right part of Figure 42) adjust accordingly.

10.3 Table visi

Like the Time Histogram (Section 10.1) and Barchart (Section 10.2), Table is a Paradyn visualiza-
tion module (visi) that receives its data through the visi lib (described in the document VisiLib
Programmer’s Guide) interface.

Figure 43 shows the Table window. The columns are metrics; the rows are foci. Note that there

are two lines describing each metric: the first name (in blue) is the metric name; the line below it
(in black) gives the metric’s units.

Like Barchart, Table uses screen real estate efficiently—it can show many metric-focus pairs at

a time. For example, Figure 43 has four metrics and eight foci for a total of metric-
focus pairs. It is reasonable for a Table to show hundreds of metric/focus pairs at a time. However,
like Barchart, Table cannot show how metric/focus pair values are changing over time.

Table is launched from the Start A Visualization dialog resulting from pressing the Visi button in
the Paradyn Main Control window menubar. A dialog with a list of all visis known to Paradyn is
brought up; choose Table and click Accept.

A dialog box containing all metrics known to Paradyn will appear (see Section 6). Paradyn is
asking you to select some initial metric-focus pair(s) for the Table. Choose metric(s) by selecting
desired checkboxes in the metrics dialog box. Choose foci by selecting desired resources in the
Where Axis window (see Section 5). The metric-focus pairs generated will be the cross-product of
the foci and metrics.

At this point, the Table window (as in Figure 43) should appear, with the metrics and foci you
specified. If the application is running, data should begin appearing immediately.

Figure 43: Table visualization window

4 8× 32=

Page 10-7

User’s Guide May 30, 2007 Release 5.0

10.3.1 Actions menu

Launching Table requires an initial metric/focus set to be specified. However, you may later add or
delete metric-focus pairs as desired (when adding, duplicate pairs will be correctly filtered). To
add metric-focus pairs, choose Add Entries from Table’s Actions menu. The interface for adding
metric/focus pairs is the same as when starting Table (Section 10.3); choose entries from the met-
rics dialog box and the Where Axis window.

Deletion in Table can take 3 forms; you can delete a focus (an entire row of the table), a metric
(an entire column of the table), or a single metric-focus pair (a single cell of the table) with one
delete operation. First you select what to delete by clicking once with the left mouse button on the
appropriate item. To delete a focus, click on the focus name itself on the left side of the table; the
entire row will become highlighted. To delete a metric, click on the metric name itself at the top of
the table; the entire column will become highlighted. To delete an individual metric/focus pair,
click on the cell value; it will become highlighted. Once you have selected an item, the second
entry of the Actions menu (named Delete Selected Focus (entire row), Delete Selected Metric (entire col-

umn), or Delete Selected Cell, as appropriate) will become active. Choose that menu item to perform
the deletion.

10.3.2 View menu

 Long vs. short names

Focus names can be displayed in long form (e.g., /Code/anneal.c) or in short form (e.g.,
anneal.c). To toggle between the long and short forms, choose Long Names from Table’s View

menu. The default is to show long names. Figure 44 shows the equivalent of Figure 43 with short
instead of long names..

 Current vs. average vs. total values

By default, Table cells are “current”: As soon as a screenful of new data arrives from Paradyn,

Figure 44: Table visualization showing short focus names

Page 10-8

User’s Guide May 30, 2007 Release 5.0

Table redraws the cells with the new values. As with Barchart, there are two other ways to view
data. Under the View menu, we could choose to view Average values. In that case, metric/focus pair
values shown will be the average (over time) of all values collected by this instantiation of Table.
After a short time, the values shown will probably settle down to a steady state; this is to be
expected when viewing averages. The third way of viewing data is Total values. This causes the bar
values to monotonically increase over time.

 Sorting metrics

By default, Table displays the columns (metrics) in the order in which they were added. To sort
them by name, choose Sort Metrics (ascending) from Table’s View menu. To change back to the
default, choose Don’t Sort Metrics from Table’s View menu.

 Sorting foci

By default, Table displays the rows (foci) in the order in which they were added. To sort by
name, choose Sort Foci (ascending) from Table’s View menu. Note that sorting foci is sensitive to the
current setting of Long Names in the View menu: if long focus names are displayed, sorting is
according to these long names; if short focus names are displayed, sorting is according to the short
names.

There is another way to sort foci: by value. Choosing Sort Foci By Values (of Selected Metric)

effectively turns Table into a profiler; whenever a screenful of new data arrives from Paradyn, the
foci (rows) are reordered to match the new values. When viewing Current Values, rows can seem to
jump around so quickly that they are difficult to read. Sorting foci by value clearly works best
when viewing Average Values or Total Values, which reach a steady state quickly.

In order to sort foci by value, Table needs to know which metric to sort by. To give an example,
sorting the foci of the table in Figure 44 would yield very different orderings between the foci
procedure_calls and cpu. In the former, graph.c has a higher value than partition.c; not so the latter.

 Significant digits

Individual metric/focus pairs are floating point values. You can change the number of signifi-
cant digits in which these values are viewed by choosing the desired item under the View menu.
Figure 44 is shown to five significant digits. Figure 45 shows the same table with two significant
digits. Scientific notation is used when necessary.

10.4 3D Terrain visi

Like all the previous visis, Terrain is a Paradyn visualization module (visi) that receives its data

through the visi lib (described in the document VisiLib Programmer’s Guide) interface.4 The Ter-
rain visualization displays data in 3D, allowing the performance data to be analyzed using a surface
rather than curves or bars. This visualization can be particularly useful when we want to compare

4. Note that the Terrain visi is not supported on Microsoft Windows.

Page 10-9

User’s Guide May 30, 2007 Release 5.0

a particular metric for different foci (like the example shown below in Figure 46, which displays
CPU time for machines “beaufort”, “cham” and “poona”).

10.5 Viewing the application output display

A special graphical window, called the termWin, is created whenever Paradyn starts an applica-
tion. This window displays the output of the application. The output information displayed in this
window can be edited and saved to a file. In developer mode, debug information from Paradyn

Figure 45: Table visualization with values shown to two significant digits

Figure 46: 3D Terrain visualization

Page 10-10

User’s Guide May 30, 2007 Release 5.0

daemon is also displayed in this window; a different color is used to identify the debugging output.
An example is shown in Figure 46.

There are two commands available: the File|Save menu option, which creates a standard save
dialog for the application output; the Option|Close menu option, which controls when the window
can be closed. By default it is closed when Paradyn exits. Alternatively, it will remain even after
Paradyn exits, so that the user can continue working on it.

There currently is no termWin visi for Paradyn on the Windows platform. On this platform,
application output is directed to a terminal window.

Figure 47: Application output window

Page 11-1

User’s Guide May 30, 2007 Release 5.0

11 EXPORTING PARADYN DATA

Paradyn profiling, resource, and search data may be saved for external analysis or examination by
pressing the EXPORT button from the Paradyn main control window. This opens the EXPORT dia-
log, presenting a variety of options for writing Paradyn data to files as shown in Figure 48. You

may select one or more types of data to be saved: raw Paradyn performance data, the Paradyn
Where Axis, and/or Performance Consultant Search Data. Depending on your selections, one or
more files will be written into the directory you specify in the dialog window. Next we describe
each specific option in detail.

11.1 Saving Performance Data

Paradyn allows one to save the performance data that is collected during monitoring of an applica-
tion.

11.1.1 Saving Performance Data From Front-End

To save raw performance data select Global Data or Phase Data in the Export dialog. Global or
Phase correspond to the phase Paradyn was in when the data was collected, which is user speci-
fied, so if you didn’t start new phases during your Paradyn session there will be only data for the
global phase. Type in the name of the directory to which you want the data written. Then select
“EXPORT.”

Two types of files are written into the specified directory. An index file (“index”) is generated,
with one line per data file written, of the form: “filename metric focus”. Then, each existing internal
Paradyn histogram is written to a separate data file into the same directory. If the tunable constant
“persistentData” was set during the Paradyn session, there is one Paradyn histogram for each met-
ric/focus pair instrumented at any time during the current execution. Otherwise, there is one
Paradyn histogram for each metric/focus pair instrumented at the time the Export button was
pressed. The files are named hist_0, hist_1, ... hist_n where n is the total number of Paradyn histo-
grams.

Each data file starts with a 3-line header containing the following:

Figure 48: Export dialog window

Page 11-2

User’s Guide May 30, 2007 Release 5.0

• Line 1: dataType metric

• Line 2: focus

• Line 3: maxNumBins binSize.

At present, dataType is always “histogram” for exported Paradyn data. The metric is the particular
measurement instrumented, such as CPU time (metric “cpu”) or I/O waiting time (metric
“io_wait”). See Section 6.2 for a description of metrics available in Paradyn. The focus is the partic-
ular part of the program run measured, which might be the whole program or perhaps one func-
tion or one process out of many in the whole program.

The header is followed by a list of up to maxNumBins values, one per line. The header and first few
data values of a data file is shown in Figure 49. To calculate the start and end time for each mea-
sured value, use the binSize: each data value represents one binSize unit of time in seconds, starting
at time 0. In the example shown, the bin size is 0.2 seconds, so the first value was measured for

time 0 to time 0.2, second value was measured for time interval 0.2 to 0.4, etc. Note that “NaN”
indicates that no value was measured for a particular time interval. Since Paradyn instrumentation
may be inserted and deleted freely during execution, the common case is to have measured values
for only a subset of the total number of data bins. Missing values at the start and middle of the time
period are indicated with a “NaN” entry. The total number of bins that can be stored for the Para-
dyn histogram, maxNumBins, is indicated in the third row of the Data File header. There may be
fewer than maxNumBins total data values written in the file, since trailing NaN’s are not written.
However, the maximum number of lines in the data file is 3 (for the header) plus maxNumBins
(one line per data value).

After all data files and the index file are successfully written, the UIM status bar is updated as
shown in Figure 50.

Figure 49: Performance Data File Header and Data Format

Page 11-3

User’s Guide May 30, 2007 Release 5.0

11.1.2 Saving Performance Data From the Visis

The previous sub-section describes how to do a "bulk" save of all the performance data being col-
lected at the Paradyn front-end. This section discusses how a user may selectively choose the his-
togram data he wishes to save.

For each of the following visis, Time Histogram, Barchart and Table, a Save function is available
from the FILE menu. When selected, a dialog window like the one shown in Figure 51 pops up.
This dialogue presents a list of all the valid Metric-Focus pairs that the current visi is subscribed to
in the format <Metric:Focus>. The user chooses the Metric-Focus pairs he is interested in and
clicks the *Export* button. A standard TCL dialogue box now pops up allowing the user to select a
directory in which to save the performance data files. Clicking the OK button on this dialogue
instantiates an exportation of the selected performance data to the chosen directory. The format of
the files is similar to those obtained when doing the bulk data exportation described previously.
Note that saving to an existing directory overwrites any previously stored performance data.

Figure 50: The Paradyn Main Window after saving performance data.

Figure 51: Visi Menu to Export Paradyn Data

Page 11-4

User’s Guide May 30, 2007 Release 5.0

11.2 Saving the Where Axis

Generate a list of all valid resource nodes for the application session by selecting “Where Axis”
from the Export Menu. The resulting file (named “resources”) is a simple text file with one
resource name per line. The complete Where Axis may be reconstructed from this file. After the
resources are successfully written, the UIM status bar is updated as shown in Figure 52.

11.3 Saving Performance Consultant Search Data

Save the contents of one or more Search History Graphs by selecting Global Search or Phase
Search(es) from the Export Menu. One file (“shg.txt”) is generated that lists the contents of all
Search History Graphs in the format shown in Figure 53. Note that “#” is used as a comment char-
acter in the file. There is one Search History Graph for each phase that was diagnosed in the Para-
dyn session. If Phase Search(es) was selected, this file will contain data for one Search History
Graph for each phase-level search either in progress or completed. A banner of the form “# search-
Num Performance Consultant Search History Graph” starts each set of search data; the example
shown lists search 0, which is the global search. A banner of the form “*** search history node ***”
starts each search history node listing. Each node listing has the following format:

• Row 1: nodeID

• Row 2: hypothesisName::Focus

• Row 3: experiment defined?

• Row 4: experimentStartTime experimentEndTime currentValue currentThreshold.

NodeID is a unique integer id assigned to each node of a single Search History Graph. Hypoth-
esisName is the Performance Consultant test name as described in Chapter 9, and focus is the par-
ticular part of the program run that was measured, e.g. function foo or process 1.
ExperimentDefined? is 0 if this search node’s experiment was never activated, for example, if the
search was halted before the instrumentation was inserted; otherwise its 1. ExperimentStartTime
and experimentEndTime are the timestamps on the first and last piece of data received for the

Figure 52: The Paradyn Main Window after saving resource names.

Page 11-5

User’s Guide May 30, 2007 Release 5.0

experiment. currentValue is the calculated value, averaged over the interval, of the hypothesis, and
currentThreshold is the value currentValue was compared against to determine a result of true or
false.

After all Performance Consultant data is successfully saved, the UIM status bar is updated as
shown in Figure 54.

Figure 53: Format for exported search data in shg.txt.

Figure 54: Paradyn Main Window after saving Performance Consultant data.

Page 12-1

User’s Guide May 30, 2007 Release 5.0

12 PARADYN CONFIGURATION LANGUAGE

The Paradyn configuration language (PCL) is used for defining daemons, processes, and visis, set-
ting value of tunable constants, and defining new metrics. Paradyn reads commands from one or
more of the following files (in this order):

1. a file named $PARADYN_ROOT/paradyn.rc , where PARADYN_ROOTis a shell environ-
ment variable defining a path, or if this file is not found, a file named paradyn.rc in the
current working directory (see Section 2.2, and also the Paradyn Installation Guide);

2. a file named $HOME/.paradynrc in the user’s home directory;

3. a configuration file given as a command line argument to Paradyn with the ‘-f ’ option (e.g.
“paradyn -f foo ”).

The remainder of this chapter describes the syntax and semantics of the Paradyn configuration
language.

12.1 Notation

We use an extended-BNF (EBNF) notation to describe the syntax of the language. Nonterminal
symbols in the grammar are written in italics, terminal symbols (tokens) in courier , and reserved
keywords and symbols are written in boldface.

In the description of the grammar the symbol ::= is used to introduce the definition for a non-
terminal symbol, a vertical bar | represents a choice, braces {} represent zero or more repetitions,
and brackets [] are used to represent an optional item. Parentheses are used for grouping.

12.2 Lexical conventions

The tokens of the language are identifiers (Ident), integer (Integer), floating-point (Float), and
string (string) constants, and the reserved keywords and symbols enumerated below. White
spaces, tabs, newlines, and comments are ignored, except to separate tokens. A comment is started
by the characters //. All characters from the // until the first newline are considered as part of the
comment and are ignored.

Identifiers are a sequence of letters, digits, and underscore, starting with a letter or underscore.
Identifiers are case sensitive and may be of arbitrary length. Predefined identifiers start with a $
(dollar) sign.

Some identifiers are reserved for use as keywords and cannot be used in any other way.
Figure 55 is a list of all keywords in the language (all keywords are case sensitive, except for “true”
and “false”). The four words “setCounter”, “addCounter”, “subCounter”, “functionCall” are obso-
lete, but they are reserved so that MDL can detect an old configuration file.

There are six words: “readAddress”, “readSymbol”, “startProcessTimer”, “stopProcessTimer”,
“startWallTimer”, “stopWallTimer”, which are not keywords, but are considered as Paradyn stan-
dard function calls. See Section 12.9.10 for an explanation of their meanings.

Page 12-2

User’s Guide May 30, 2007 Release 5.0

There are three types of constants: strings, integers, and floating-point. A string is a sequence
of zero or more characters (not containing a newline or a double quote) surrounded by double
quotes. (Note that the usual expansion of control characters does not apply, e.g. “\n” is a string
containing two characters, a ‘\’ and a ‘n’, not a string containing the newline character.)

Integer and floating-point constants are unsigned and defined as:
Integer ::= digit { digit }
Float ::= Integer . Integer

The following operators are currently supported. More operators may be added in the future.

& = + += - -= / * < > <= >= == != && || () [] , . ++

A statement is teminated with a semicolon, and statements are grouped together with curly braces.
Instrumentation code are inside brackets (* and *), see Section 12.9.12.

12.3 Language structure

A Paradyn configuration file consists of a sequence of zero or more definitions of daemons, pro-
cesses, visis, metrics, values for tunable constants, and functions excluded from shared objects.

DefinitionList ::= { Definition }

$arg $return addCounter

aggregateOperator append avg

base Call command

constraint constrained counter

daemon default derived

developer dir EventCounter

exclude false flavor

float force foreach

functionCall host if

is in int

items library limit

list max metric

min mode module

name normal normalized

postInsn preInsn prepend

procedure process processTimer

replace resourceList SampledFunction

setCounter string style

subCounter sum true

tunable_constant units unitsType

unnormalized user visi

void wallTimer

Figure 55: List of MDL keywords

Page 12-3

User’s Guide May 30, 2007 Release 5.0

Definition ::=
DaemonDef |
ProcessDef |
TunableDef |
VisiDef |
ExcludeDef |
mdlDef

Each definition introduces a name to an object. The scope of names is global. A name may be
redefined, in which case the new definition replaces the old one. Thus, all references to a redefined
name become a reference to the newest object that is bound to the name, even if the use is made
before the redefinition. However, different types of objects have different name spaces, so a dae-
mon and a process may have the same name, for example. The name and scope rules for metric
definitions differ from the rules for other definitions (see Section for a complete description).

One attribute that can appear in many object definitions is a flavor. Paradyn may have different
versions that are used on different systems. Currently, there are five versions, one for standard
Unix systems, one for Unix systems running PVM, one for MPI, one for Microsoft Windows and
one for COW (cluster of workstations). Each of these versions is called a Paradyn flavor. A PCL file
can have many object definitions, some of which may make sense only for some flavors of Para-
dyn. The flavor of an object tells Paradyn that this object is meaningful only for some subset of the
flavors of Paradyn, and that it should be ignored for all of the other flavors. When we run Paradyn
only those objects that are of the same flavor of the Paradyn that is being used are considered. The
others are ignored.

12.4 Daemon definition

DaemonDef ::= daemon Ident { { DaemonField } }

DaemonField ::=
remoteShell string ; |
command string ; |
MPItype string ; |
flavor Ident ;

A daemon definition defines a new daemon with a given name. The name is used to identify
the daemon in other PCL definitions, such as the process definition. A daemon definition does not
cause the daemon to be started immediately; the daemon only starts when an application process
that uses that daemon is run.

A daemon definition must include at least one field (the command field). The other fields are
optional. The command field gives the command (that is, the executable file name and command
arguments) that Paradyn uses to start the daemon. The executable path may be a relative path-
name, in which case Paradyn searches for the file like the shell does, using the user’s PATH envi-
ronment variable on the machine where the daemon will run.

The field MPItype should be either “MPICH” or “LAM.” Paradyn defaults to MPICH. Using

Page 12-4

User’s Guide May 30, 2007 Release 5.0

the wrong MPITtype can have unpredictable results.

The field flavor should be one of pvm, unix, winnt, mpi . Defining a daemon to be of a
wrong flavor can have unpredictable results.

The optional remoteShell field allows a substitute start-up shell/mechanism to be specified, to
be used instead of the default “rsh” for starting the daemon process.

Example:

daemon pd_daemon {
remoteShell “/bin/ssh”;
command "/u/mjrg/bin/sparc-sun-solaris2.4/paradynd";
flavor unix;

}

This PCL command defines a unix daemon named pd_daemon that is started via /bin/ssh

with the command “/u/mjrg/bin/sparc-sun-solaris2.4/paradynd ”.

Paradyn provides predefined daemons, defd and pvmd, that are defined as follows.

daemon defd {
command “paradynd”;
flavor unix;

}

daemon pvmd {
command “paradynd”;
flavor pvm;

}

12.5 Process definition

ProcessDef ::=
process Ident { { ProcessField } }

ProcessField ::=
command string; |
daemon Ident; |
host string; |
user Ident; |
dir string;

A process definition defines an application program to be run by Paradyn. When the user defines
a process to Paradyn (either through a configuration file or with the graphic user interface), Para-
dyn starts the necessary daemons, which read symbol table information from the executable file,
inserts the initial instrumentation, and leave the program in a ready to run state. The application
processes can then be run by using the appropriate commands from the Paradyn main menu. A
process definition is equivalent to the Define a Process command in the Paradyn main menu (see
Section 2.4).

Page 12-5

User’s Guide May 30, 2007 Release 5.0

A process definition has five fields. The required command field specifies the command that
Paradyn uses to start the process, including the command arguments, if any. The required daemon
field specifies the daemon that will run that process. The optional host field specifies the name of
the machine where the process will run. If no host field is present, it will default to the default host
specified with the -default_host command line option (or the local machine, that is, the
machine on which Paradyn is running, if the -default_host option is not used). The optional
user field specifies the user name (login) under which the process will run. The local user, that is
the user that runs Paradyn, must be authorized to login as the designated user in the designated
host. If no user field is present, it will default to the same user name under which Paradyn was
started. The optional dir field specifies the working directory for the process. If no dir field is
present, it will default to user’s home directory on the remote machine.

Example:

process foo {
command "/u/mjrg/bin/mp3d arg1 arg2";
daemon defd;

}

This example defines a process named foo that is started by the command mp3d with argu-
ments arg1 arg2 , and is monitored by the daemon defd .

Paradyn only searches for the executable file in the directory specified by the dir field. If this
field is not given, then the path to the executable file must be absolute.

12.6 Tunable constant definition

TunableConstant ::=
tunable_constant TunableItem |
tunable_constant { { TunableItem } }

TunableItem ::=
string Integer; |
string Float; |
string true; |
string false;

A tunable constant definition gives a value for a tunable constant. For a list of all available tunable
constants and their values, see Section 4.

Example:

tunable_constant "minObservationTime" 10.0;
tunable_constant "suppressSHG" false;

In this example, the value of the tunable constant minObservationTime is set to 10.0 and the

Page 12-6

User’s Guide May 30, 2007 Release 5.0

value of suppressSHG is set to false. Alternatively, these two commands could be rewritten as:

tunable_constant {
"minObservationTime" 10.0;
"suppressSHG" false;

}

12.7 Visi definition

VisiDef ::= visi Ident { { VisiItem } }

VisiItem ::=
command string; |
dir string ; |
user Ident ; |
host string ; |
force Integer; |

limit Integer;

A visi definition gives the command that Paradyn uses to start a new visualization module. The
only required field is command, which gives the file path (and optional arguments) to the visi pro-
gram. Paradyn searches for commands according to the shell rules, using the PATH environment
variable. force is interpreted as a boolean value, and any non-zero value will cause the visi to start
without asking the user for metric selections. limit is an upper bound on the number of met-
ric/focus pairs that the visi can have enabled at one time. If this field is not specified, or if it has a
non-positive value, then there is no upper bound. dir, user and host have the same previously dis-
cussed meaning.

Example:

visi Histogram {
command "rthist";

}

12.8 Exclude definition

ExcludeDef ::= exclude string;

The exclude definition specifies a shared object (or dynamically-loaded library) or a function
therein that cannot be included in any focus. Performance data cannot be collected from excluded
functions or modules. Also, the Performance Consultant will not search in excluded functions or
modules. The string that specifies the shared object function or shared object to exclude should be
of the form “/Code/shared_library_name/function_name” or “/Code/shared_library_name” (for
Paradyn versions 2.1 and above, or of the form “shared_library_name/function_name” or
“shared_library_name” for versions below 2.1). The “*” character can be used within exclude defi-
nitions as a wildcard which matches zero or more characters in a library name or function name.
Modules and functions from a.out files cannot be excluded.

Paradyn versions 2.1 and above allow exclusion of both statically and dynamically linked mod-

Page 12-7

User’s Guide May 30, 2007 Release 5.0

ules and functions. Static and dynamic code is excluded identically, using the mechanism
described above. All modules and functions are included (not excluded), unless otherwise speci-
fied, and accordingly all functions, including those in dynamically linked libraries, appear in the
$procedures variable described in “Metric Definition Language” section below. This behavior is
different from that encountered in older versions of Paradyn in which shared object code was
treated differently than statically linked code with respect to exclusion.

The Paradyn Control Language files distributed with releases 2.1 and above have been modi-
fied to take these changes into account. Existing unmodified PCL files should be updated as fol-
lows:

1. Names of excluded modules and functions should be proceeded by “/Code ”.

2. All dynamic libraries or functions therein whose members should not be included in $pro-
cedures should be explicitly excluded.

Example (version 2.1 and above):

exclude “/Code/libc.so.1”; #exclude all functions from libc.so.1
exclude “/Code/libthread.so/read”; #exclude function read from libthread.so

Example (version 2.0 and below):

exclude “libc.so.1”; #exclude all functions from libc.so.1
exclude “libthread.so/read”; #exclude function read from libthread.so

12.9 Metric Description Language

The metric description language (MDL) is a sub-language of the PCL that is used for defining new
metrics. A metric is a time-varying function that characterizes some aspect of a parallel program
performance, such as CPU utilization or number of synchronization operations. Metrics can be
computed for the entire program or they can be restricted to program components (called
resources) such as a particular procedure, or a particular processor. Metrics can be computed for
the global phase (from the start of application execution until the present time) or the currently
defined phase. (Phases are described in Section 8.)

A list of resources of interest to the user is called a focus. A metric definition provides a tem-
plate (the base metric) that is used to compute the metric, and a list of constraints that are com-
bined with the base metric to restrict it to a particular focus. A constraint defines a flag that is set
whenever a particular resource is active.

For example, consider a metric that counts how many functions are called. The metric declara-
tion must provide code to increment a counter every time a function is called. The constraints for
this metric can provide ways of restricting the computation to a single function, to a single mod-
ule, or to a single process. When combined with a focus, such as function f and process p, the met-
ric will count how many times the function f is called in process p.

If there’s no constraint declaration or replace constraint inside a metric definition, the metric
can only be applied to the whole program.

Page 12-8

User’s Guide May 30, 2007 Release 5.0

Metric and constraint definitions are not evaluated until there is a request to compute a partic-
ular set of metrics for particular focus. At this time the requested metrics are evaluated, taking as
input the focus. The result of the metric evaluation is a collection of code blocks that are inserted
into the application code to compute the metric. In the remainder of this section, the phrase “met-
ric evaluation time” or “metric insertion time” refer to time a metric is evaluated to generate the
code to be inserted into the application, and “metric execution time” or simply “metric execution”
refer to the time when the generated code is executed.

12.9.1 Metric definition

An MDL definition consists of declarations of one or more MDL objects: resource lists, con-
straints, and metrics:

mdlDef ::=
resourceListDef |
constraintDef |
metricDef

Each definition introduces a new object with a given name, which is used for references to that
object. A name may be redefined, in which case the definition of the old object is replaced with the
definition of the new object. The new object is used in all occurrences of the name, including those
that precede the redefinition. Therefore, redefinitions of objects must be done with care, or unex-
pected results may occur. For example, the value of foo at the foreach statement in the example
below is “bar”, because the name msgFilt has been redefined after the constraint definition.

Example:

resourceList msgFilt is procedure {
items { "foo" };
library false;
flavor {unix};

}

constraint msgTagConstraint /SyncObject/Message is counter {
foreach func in msgFilt {

prepend preInsn func.entry (*
if ($arg[1] == $constraint[0])

msgTagConstraint = 1;
*)
append preInsn func.return (*

msgTagConstraint = 0;
*)

}
}

resourceList msgFilt is procedure {
items { "bar" };
library false;
flavor {unix};

}

Page 12-9

User’s Guide May 30, 2007 Release 5.0

12.9.2 Variables

There are two classes of variables that can be used in metric descriptions: metric insertion vari-
ables and instrumentation variables. A metric insertion variable is simply a name that is bound to
an object (a list, constraint, or metric). As explained above, the value of these variables can only be
modified by binding the name to a new object. Instrumentation variables are like variables in an
imperative language (that is, they denote a memory location) and can only be used in instrumen-
tation blocks, that is, the code to be inserted at the application. Metric insertion variables can be
used at any place in a metric definition, including an instrumentation block. Instrumentation
blocks are delineated in PCL by the (* and *) tokens.

12.9.3 Types

Instrumentation variables can have one of three types: counter, wallTimer, or processTimer. A
counter is equivalent to an integer variable in imperative languages like C or C++. WallTimer and
processTimer are abstract types used to record time and can only be manipulated with timer spe-
cific functions. A set of predefined functions, that can only be used in instrumentation requests, is
provided for operations with timers: startProcessTimer, stopProcessTimer, startWallTimer, stop-
WallTimer.

Metric insertion variables can have several different types: integer, floating-point, string, point,
procedure, module, memory, and list. The types integer, floating-point, and string have the usual
meaning.

Type: Point

A point is an abstract type that represents a well-defined location in an application code
where instrumentation can be inserted (currently available points are function entry, exit, and
individual call sites).

Type: Procedure

Procedure is a structured type that describes a procedure (function) in the application code:

procedure {
string name;
point list calls;
point entry;
point return;

}

The value of each member is implicitly initialized by Paradyn, and cannot be modified. Nameis
the name of the procedure, as defined in the symbol table in the application program’s executable
file. Calls is the list of calls made in the procedure code. Entry and return are the entry and
return points of the procedure.

The dot operator “.” is used to access the value of each member of a structured objects like pro-
cedures and modules. If proc is a procedure object, then proc.name gives the name of the proce-

Page 12-10

User’s Guide May 30, 2007 Release 5.0

dure, and proc.entry gives the entry point of the procedure.

Type: Module

Module is a structured type with two fields that describe the module name and its functions.
The value of these fields is implicitly initialized by Paradyn.

module {
string name;
procedure list funcs;

}

Type: List

The type list consists of an ordered collection of elements of the same type. The elements of a
list can be accessed sequentially with the foreach statement, or one particular element may be
obtained with the subscript operator [] .

The foreach statement applies a metric statement to each element in a list. For example,

foreach callsite in proc.calls
<< metric statement >>

applies metric statement (metric statements are defined in Section 12.9.8) to each element of
the list proc.calls . The expression proc.calls[1] returns the first element in list proc.calls .

12.9.4 Predefined variables

MDL provides a number of predefined variables, described in Figure 56.

Variable Name Type Explanation

$constraint procedure, module,
or int

The list of components in the resource path.
Each component can be accessed through an
incremental index, starting from the last ele-
ment; for example $constraint[0] is the last
component, $constraint[1] is the second to
last. Each component can be of a different
type. (see Section 12.9.3).

$arg int The list of arguments to a procedure call. A
specific argument can be selected with index-
ing. for example: $arg[2] .

$return int The return value of a function.

$start point The entry point of the program (usually
main).

Figure 56: Predefined variables

Page 12-11

User’s Guide May 30, 2007 Release 5.0

12.9.5 Resource lists

A resource list statement defines a new MDL variable of type list:

resourceListDef ::=
resourceList Ident is ListType {

items { StringList } ;
flavor { IdentList } ;
library OptLibrary:

}

ListType ::=
string |
procedure |
module |
float |
int

StringList ::= string { , string }

IdentList ::= IDENT { , IDENT }

OptLibrary ::=
true | false

The identifier after the keyword resourceList gives the MDL variable that will be bound
to the list. ListType specifies the type of the elements of the list. Items give the list of elements.
Library is used when elements are of type procedure, and tells whether the functions in the list are
library functions or not. Flavor gives the Paradyn flavors of this list (e.g., unix or pvm).

The elements of a list can be accessed with the foreach statement, described in Section 12.9.8,
or via indexing (e.g. foo[1]).

$exit point The exit point of the program (e.g.
_exithandle for Solaris).

$procedures procedure list The list of functions in a module.

$modules module list The list of modules in a program.

$machine string The machine where a program is running.

$globalId int An unique identifier to a particular met-
ric/focus/phase combination. It can be used
by metrics that need to maintain extra infor-
mation on a per metric instance basis.

Variable Name Type Explanation

Figure 56: Predefined variables

Page 12-12

User’s Guide May 30, 2007 Release 5.0

Example:

resourceList generic_lib_pvm is procedure {
items {"write", "read"};
library true;
flavor {pvm};

}

declares a variable generic_lib_pvm, of type procedure list, with two elements (write and read),
which are library functions. This definition of the variable is valid only for PVM.

12.9.6 Constraints

Constraints provide a mechanism to restrict a metric to a subset of the resources in the resource
hierarchy. A constraint definition declares a new counter instrumentation variable that is concep-
tually a boolean flag. This flag is set whenever a certain resource, such as a function or a module, is
active.

constraintDef ::=
constraint Ident matchPath is default ;
constraint Ident matchPath is counter { metricStmt }

matchPath ::= { / Ident }

A constraint definition creates a new constraint with a given name that can be used in several
metrics. The matchPath specifies the resources to be constrained. A matchPath is a sequence of
resource names, with a “/ ” used as a delimiter, and it defines a path in the resource hierarchy. The
resource that is constrained is determined by the last element in the path. For example, a path
/SyncObject/Message specifies that the constraint is to children of this path, in this case a partic-
ular message class instance; /Code specifies that the constraint is applied to modules in a program.
A wildcard, “*”, is used as a matchPath resource name; for example, /Code/* specifies that the con-
straint is applied to functions in a specific module, which is unknown at the time the constraint
was created.

At metric insertion time, the selected focus is compared to the matchPath of each constraint in
a metric to determine which constraints to apply. For example, the matchPath /Code matches the
foci /Code/Mod1 and /Code/Mod2 where Mod1 and Mod2 are modules in the application; and, the
matchPath /Code/* matches the foci /Code/Mod1/F1 and /Code/Mod2/F2 modules where F1

and F2 are functions in the application. The matchPath /Code/F1/* matches the foci
/Code/Mod1/F1/loop_1 and /Code/Mod2/F1/loop_1.1 modules where loop_1 and loop_1.1

are loops in F1.

The predefined variable $constraint is initialized at metric insertion time to the list of com-
ponents in focus. If path is /Code/* , and the foci is /Code/Mod1/F1 and /Code/Mod2/F2 , then the
value of $constraint[0] is a procedure list with F1 and F2, and $constraint[1] is a module
list with Mod1 and Mod2.

A default constraint defines a constraint that matches some focus. It does not generate any

Page 12-13

User’s Guide May 30, 2007 Release 5.0

instrumentation code. Usually, a metric must provide a constraint for each resource that may be
specified in a focus. If there is no constraint that matches a given resource, then the metric will fail.
Default constraints are used in cases where no action is needed to constrain a particular resource.

Example: a constraint for modules must define a counter that is set to one only if a function in
the module is being executed. The constraint definition must direct Paradyn to insert code to set
the flag to one whenever a function in the module is called, and set it to zero when the function
exits. In addition, we may want to set the flag to zero whenever a function call is made from a
function in the module, and reset it after this that call has returned. In this case, the module would
not be considered active when an external function is called. The definition of this metric is the
following:

01: constraint moduleConstraint /Code is counter {
02: foreach func in $constraint[0].funcs {
03: prepend preInsn func.entry (*
04: moduleConstraint = 1;
05: *)
06: append preInsn func.return (*
07: moduleConstraint = 0;
08: *)
09: foreach callsite in func.calls {
10: append preInsn callsite (*
11: moduleConstraint = 0;
12: *)
13: prepend postInsn callsite (*
14: moduleConstraint = 1;
15: *)
16: }
17: }
18: }

Line 1 in this program declares a constraint moduleConstraint , of type counter , that is to be
applied to modules. At metric insertion time, the variable $constraint[0] will be set to a partic-
ular module in the application (usually selected from the Paradyn where axis). $con-

straint[0].funcs is the list of all functions in the module. Line 3 says that code to set the flag
should be inserted before the entry point of each function in the module, and line 6 says that code
to reset the flag should be inserted before the return point of each function. Lines 9, 10, and 13 say
that the flag should be set before any call made inside the function, and reset after the call returns.

12.9.7 Metric definitions

metricDef ::=
metric Ident {

name string ;

units Ident;

unitsType (normalized | unnormalized | sampled) ;
aggregateOperator (avg | sum | min | max) ;
style (EventCounter | SampledFunction);
flavor { IdentList } ;

Page 12-14

User’s Guide May 30, 2007 Release 5.0

{ mode (developer | normal); }
{ Constraint }
{ counter Ident ; }
base is (counter | processTimer | wallTimer)
{ metricStmt } ;

}

Constraint ::=
constraint Ident ; |
constraint Ident { / Ident } is
replace (counter | processTimer | wallTimer)
{ metricStmt } ;

IdentList ::=
Ident { , Ident }

A metric definition defines a new metric with a given internal name (the identifier following
the metric keyword). A metric definition must specify several fields. The name is a string that
gives the external name of the metric, that is how Paradyn users refer to this metric. Units and
unitsType specifies the label to be used by Paradyn and visis when displaying values of a metric.
Units can be any string and unitsType must be either normalized, unnormalized or sampled.
Figure 57 shows how a label is displayed, for each unit type.

AggregateOperator gives the operator used to combine values of the metric for different pro-
cesses to compute a single value. The Style field specifies how to interpret the metric value. Cur-
rently, only event counter and sampled function metrics are supported. In an event counter metric,
Paradyn samples the value of a metric at periodic intervals, with the difference since the last sam-
ple as the reported value. The sampled function metric, however, does not take the difference. One
example is to use the sampled function metric to measure the memory access pattern. The flavor
field gives the flavors of Paradyn for which this metric should be used. The mode field indicates
whether the metric is for developers. The default is normal if this field is not specified.

The rest of the metric definition gives an optional list of constraints that are used to restrict the
metric to specific resources, an optional list of auxiliary counters that can be used in instrumenta-
tion requests, and the template code for the instrumentation code to compute the metric. A con-
straint declaration either gives the name of a constraint defined elsewhere, or defines a
replacement constraint that replaces the base definition of the metric. If a constraint declaration
matches the focus, the constraint is used to restrict the metric to the specified program compo-
nent. If a constraint definition (inside a metric definition, this is called replace constraint) matches
the current focus, the constraint replaces the base statement of the metric.

Units Type Data label Average label Total label

normalized units units units_seconds

unnormalized units/sec units/sec units

sampled units units units

Figure 57: Metric labels.

Page 12-15

User’s Guide May 30, 2007 Release 5.0

12.9.8 Metric statements

There are four metric statements, foreach statement, if statement, single instrumentation request,
and a block of multiple instrumentation requests.

metricStmt ::=
foreach Ident in MetricExpr metricStmt |
if MetricExpr metricStmt |
InstrRequest |
{ { metricStmt } } ;

The foreach statement evaluates a metric expression that should evaluate to a list, and applies a
metric statement to each element in the list. It defines a new variable with a name given by Ident

and that has the same type as the elements of the list. The scope of this variable is metricStmt, and
its value is bound at each iteration to one element of the list.

The if statement evaluates a metric expression that must be of type integer, and it executes met-
ricStmt if the value is non-zero.

A single instrumentation request defines instrumentation to be added to an application code.
Each instrumentation request will generate a mini-trampoline in the application core.

12.9.9 Metric expressions

MetricExpr ::=
Literal |
(Ident) { . Ident } |
Call (“Ident” [, ArgList]) |
Ident ([ArgList]) |
MetricExpr BinOP MetricExpr |
PreUOp MetricExpr |
MetricExpr PostUOp |
Ident AssignOp MetricExpr |
Ident [MetricExpr] |
(MetricExpr)

Literal ::= Integer | string

ArgList ::=
MetricExpr { , MetricExpr }

BinOp ::=
+ | - | / | * | < | > | <= | >= | == | && | ||

PreUOp ::= & | -

PostUOp ::= ++

Page 12-16

User’s Guide May 30, 2007 Release 5.0

AssignOp ::= = | += | -=

More operators will be supported in the future.

A literal is an expression of type integer or string, that has the integer or string literal as its
value. An identifier is an expression that has the type and value of the variable bound to the identi-
fier. If the identifier is followed by an expression that evaluates to an integer n between brackets,
the identifier must be bound to a list, and the value of the indexed expression is the nth element of
the list. The list elements are numbered from zero, and n must be less than the number of elements
in the list.

If an identifier is followed by a sequence of dots and identifiers, it must be of a structured type
(procedure or module). The second identifier must be the name of a field in the structure. The
value and type of the expression are the value and type of this field.

The arithmetic operators +, - , * , and / , and the relational operators <, >, <=, and >= can be
applied to two binary expressions of type integer or floating-point. The operators have the usual
meaning and associativity rules. Parenthesized expressions may be used to enforce a different eval-
uation order. If the two sub-expressions are not of the same type, the values are converted to float-
ing-point. The logical operators && (and) and || (or) can be applied to a pair of integer
expressions. A zero value denotes false, and any nonzero value denotes true.

The & operator returns the address of a variable. The argument reference expression returns
the value of one of the arguments of a function. For example, arg[0] returns the value of the first
argument. Only the value of arguments passed in registers can be obtained.

12.9.10 Function calls

The MetricExpr syntax indicates that an metric expression can be a function call. Usually a
function call is an identifier followed by a list of arguments in parenthesis. If the function name
has conflict with Paradyn’s reserved keywords, the alternative syntax of Call(“Ident”[,Arglist]) can
be used, with the Ident being the function name. Note that the name must be quoted. The function
name can be any legal identifier. However, there are six words which, although are not reserved,
are treated as Paradyn standard functions if used as function names. The six words are: “readSym-
bol”, “readAddress”, “startProcessTimer”, “stopProcessTimer”, “startWallTimer”, “stopWallTimer”.

The expression readSymbol("sym") returns the integer value stored in a memory location
named sym, where sym must be defined in the symbol table of the application. For example. if
_intvar is an integer variable in an application, the expression readSymbol("_intvar") returns
the value of _intvar . readAddress returns the integer value at a given address (in base 10), which
must be a valid address for the application. startProcessTimer, stopProcessTimer, startWall-
Timer, stopWallTimer start and stop recording time into a timer variable.

The maximum number of arguments that can be passed to a function call may be limited (the
limit is architecture dependent, and usually is the maximum number of arguments that can be

Page 12-17

User’s Guide May 30, 2007 Release 5.0

passed in registers). The return value of a function is treated as an integer.

12.9.11 Instrumentation requests

An instrumentation request defines a block of instrumentation code to be inserted at a specific
point of an application code:

instrRequest : := position where point [constrained] (* { instrumentationCode } *)

position ::= append | prepend

where ::= preInsn | postInsn

point ::= metricExpr

Position gives the order in which this instrumentation block will be inserted in the list of
instrumentation blocks for this point, and can be used to control the order of execution of multiple
blocks at a point. If position is append , then the instrumentation block is inserted at the end of the
list of instrumentation blocks at the point. If position is prepend , the instrumentation block is
inserted as the first block in the list.

Where gives the place where the instrumentation block will be inserted, either before
(preInsn) or after (postInsn) the instruction at the instrumentation point is executed. For exam-
ple, if the point is a call site, preInsn specifies that the instrumentation code is to be inserted
before the call is made and postInsn specifies that it should be inserted after the call returns.

Point is a metric expression (Section 12.9.9) that must evaluate to a point; it gives the point in a
program where instrumentation is to be inserted. Currently, the possible points are function entry
and exit points, and function calls.

Constrained determines if constraints should be applied to this request. If constrained is not
specified, no constraints will be applied to the request.

12.9.12 Instrumentation code

The instrumentation code gives a list of statements to be inserted at a point. A statement is either
an if statement or a simple instrumentation statement.

instrumentationCode ::=
if (metricExpr) instrStmt |
instrStmt

The if statement evaluates the metricExpr and if it the result is a nonzero value, then the
instrStmt is executed.

An instrumentation statement is an MetricExpr terminated by a semicolon.

Page 12-18

User’s Guide May 30, 2007 Release 5.0

The following are examples of valid instrumentation code:

cntr = 1;

cntr += foo(cntr);
cntr += Call (“foo”, cntr);

if (readSymbol("_foos") == 1) cntr -= readAddress(123456));

startWallTimer(tmr);

cntr = cntr - $arg[2];

The first example sets the value of counter cntr to 1. cntr must be a variable of type counter
declared in a constraint declaration, a metric declaration, or a in a counter declaration. The second
example calls a function foo in the application code, passing the value of counter cntr as an argu-
ment, and then adds the value returned by this call to counter cntr . foo must be a function taking
one integer argument and returning an integer value, and it must be defined in the application’s
symbol table.

The third example reads the value of a global variable foos (note that if the variable name is
foos it must be referenced as _foos) in the application and if the value is equal to 1, subtracts the
integer value at address 123456 in the application address space from counter cntr . The fourth
example starts recording time in timer tmr , which must be declared in a metric declaration. The
timer will record time until a call to stopWallTimer is made on it. The last example subtracts the
value of the third argument to a function call (the function that is being instrumented) from timer
cntr .

12.9.13 Interaction of constraints and metrics

When creating a constraint and metric, one of the things you must do is specify where the primi-
tives (for the constraints) and predicates (for the metrics) are placed. They can go before the
instruction you are placing it at, or after. Then, for each location (preInsn or postInsn) there is an
ordered list for the instructions; and, you are able to specify if you want to append or prepend the
instrumented code. The following rules, and patterns, should be adopted when doing this

Constraints:
prepend preInsn func.entry
append preInsn func.return

Callsites within constraints (if necessary):
foreach callsite in func.calls {

append preInsn callsite
prepend postInsn callsite

}
Metrics:

foreach func in XXX {
append preInsn func.entry
prepend preInsn func.return

}

This is done to make sure the metrics and predicates are checked at a time when all the con-
straints and primitives are set with their correct values. This set of rules and patterns have the con-

Page 12-19

User’s Guide May 30, 2007 Release 5.0

straints and primitives be the first thing set when entering a function (prepend preInsn func.entry)
and then the last thing cleared when returning from a function (append preInsn func.return).
Along the same lines, the metrics and predicates are the last thing checked when entering a func-
tion (append preInsn func.entry) and the first thing checked when returning from a function
(prepend preInsn func.return). For example, if you have a metric M1 using constraint C1, which is
set when your in a specific function and cleared when you leave that function. With these rules
and patterns, C1 will be the first thing set, before M1 is executed at the beginning of the function;
and, at the end of the function M1 will be executed before C1 is cleared again.

12.9.14 A complete example

This section presents a complete metric definition. We will define a metric called SyncWait that
computes the time spent on by an application on synchronization operations. The first step in the
definition of SyncWait is to identify the synchronization operations (functions) of the application.
These depend on the specific system that is being used. For example, for PVM applications, we can
consider the functions pvm_send and pvm_recv as synchronization functions.

Next, we defined a resource list with the synchronization functions.

resourceList pvm_sync_ops is procedure {
items { “pvm_send”, “pvm_recv” };
flavor { pvm };
library true;

}

To compute the synchronization time we must start a timer every time one of the functions in
pvm_sync_ops is called (lines 2 and 3 in the following code block), and stop the same timer when

Page 12-20

User’s Guide May 30, 2007 Release 5.0

the function returns (lines 4 and 5).

01: foreach func in pvm_sync_ops {
02: append preInsn func.entry constrained
03: (* startWallTimer(p_syncWait); *)
04: prepend postInsn func.return constrained
05: (* stopWallTimer(p_syncWait); *)
06: }

The complete metric definition must define all of the metric attributes and constraints. The
constraints define how to compute the metric for specific resources, such as a function, or a mod-
ule. To constraint the metric to a function, we need to set a flag when the function is entered (lines
2 and 3 in the code block below), and reset it when the function exits (lines 4 and 5). We also reset
the flag before any function call inside the function, and set it when the call returns (lines 6 to 10).

1: constraint funcConstraint /Code/* is counter {
2: prepend preInsn $constraint[0].entry
3: (* funcConstraint = 1; *)
4: append postInsn $constraint[0].return
5: (* funcConstraint = 0; *)
6: foreach callsite in $constraint[0].calls {
7: append preInsn callsite
8: (* funcConstraint = 0; *)
9: prepend postInsn callsite
10: (* funcConstraint = 1; *)
11: }
12: }

We can also define a constraint for message tags, in case we are interested in finding the time
the application is waiting for a particular message tag. At the entry point of each synchronization
function (lines 3 to 5 in the code block below) we must check if the tag of the message (the second
argument in a call to pvm_send or pvm_recv) is equal to the tag specified in the focus (line 4), and
if so set the constraint flag to one (line 5). The flag is set to zero again at the return point of the
function (lines 7 and 8).

1: constraint msgTagConstraint /SyncObject/Message is counter {
2: foreach func in pvm_sync_ops {
3: prepend preInsn func.entry constrained
4: (* if ($arg[1] == $constraint[0])
5: msgTagConstraint = 1;
6: *)
7: append preInsn func.return constrained
8: (* msgTagConstraint = 0; *)
9: }
10: }

Finally we must specify the remaining attributes of the metric, such as the name that will
appear in the Paradyn metric selection menu, PVM SyncWait . The unit is seconds since this
metric measures time, and the unit style is normalized. Aggregate operator is avg, so when we
aggregate values from different processes, we get the average value. The flavor is pvm.

The complete definition of the metric follows. The constraint moduleConstraint was

Page 12-21

User’s Guide May 30, 2007 Release 5.0

defined in Section 12.9.6.

metric p_syncWait {
name “PVM SyncWait”;
units Seconds;
unitStyle normalized;
aggregateOperator avg;
style EventCounter;
flavor = { pvm };

constraint functionConstraint;
constraint moduleConstraint;
constraint msgTagConstraint;

base is wallTimer {
foreach func in pvm_sync_ops {

append preInsn func.entry constrained (*
startWallTimer(p_syncWait);

*)
prepend preInsn func.return constrained (*

stopWallTimer(p_syncWait);
*)

}

}
}

For useful hints and guidelines for writing metrics, consult the MDL Programmer’s Guide.

n

