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1 PRELIMINARIES

This document1 covers the basics for using Paradyn: how to start Paradyn, run an application, 
view its performance data, and run the Performance Consultant to automatically find perfor-
mance bottlenecks in the application. Several simple example application programs come with the 
binary distribution of Paradyn. You can obtain Paradyn and the test programs (binaries and 
sources) by anonymous ftp to ftp.cs.wisc.edu. For more information on obtaining and 
installing Paradyn, including setting necessary environment variables, see the Paradyn Installa-
tion Guide.

This tutorial is provided in two parts. The first part covers the basic use of Paradyn, its visual-
izers and Performance Consultant using a simple sequential C application (bubba). This is fol-
lowed by an additional tutorials for MPI (decomp, also provided in appropriate binary 
distributions), which may not be available on all systems or relevant to all Paradyn users. While 
there is some redundancy between the MPI tutorial and the basic tutorial, it considers MPI--spe-
cific functionality of Paradyn and additional examples of the use of Paradyn visualizers and Per-
formance Consultant with message-passing programs.

1. Note that some of the color figures in this document may be unclear when printed in gray-scale.
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2 COMMON TUTORIAL - BUBBA_SEQ

This first tutorial section covers the basic use of Paradyn with a simple sequential application 
(bubba) provided as part of the Paradyn binary distribution for every platform Paradyn supports. 
This common tutorial section is an introduction to Paradyn and its capabilities, which will be elab-
orated in the following section with additional functionality for MPI applications.

2.1 Running an application

Paradyn can start an application on the local or remote machine. The standard output and error 
messages of the application are displayed in a separate terminal window. The information dis-
played can be saved to a file.

2.1.1 Start Paradyn and define the application process

Paradyn can be started by entering the following command at a command prompt:2

% paradyn

Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the base 
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labeled 
“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Paradyn is 
now ready to load and run the subject application program. 

To describe an application to Paradyn, select Define A Process from the Setup menu. This will 
cause a dialog to appear that will allow you to specify the parameters that are necessary for Para-
dyn to start your application process. This dialog is shown in Figure 3. To describe the application 
and its environment to Paradyn, the following should be specified in the Define A Process dialog:

1. User: The login name on the host on which Paradyn will start the application process. In this 
example we left the User field blank, which means that the login will have a value of the user’s 
current login name.

2. Host: The host on which Paradyn will start the application process. A blank value will default 

2. On Windows NT, the command prompt is accessible via the “Command Prompt” item in the Start menu. 

Alternatively, the command may be issued from the “Run...” item in the Start menu. In both cases, the 

PATH environment variable must include the Folder in which the Paradyn executable (paradyn.exe) 

resides in order for Paradyn to run.

Figure 1: Paradyn Main Control window.
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to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one on 
which the Paradyn process is running, then the current directory on the remote machine is the 
home directory of the user specified in the User entry. The Directory field allows you to specify 
a different working directory for the application process. In this example, Paradyn will change 

to /p/paradyn/demo/Paradyn/bubba_seq/@PLATFORM before starting bubba.3 Note that the 
path specified in this field is interpreted on the host specified in the Host field, which is not 
necessarily the host on which Paradyn is running.

4. Command: This entry takes the command that will start the application program. In this 
example we have entered “bubba ../dat/example5”, which specifies the executable file 

(bubba) with one command line argument, ../dat/example5, the input file.4

5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since 
this is a sequential application, the defd daemon is selected. If the application is to be run 
under Windows NT, the winntd daemon should be selected.

Once the fields of the Define A Process window have been filled in, click on the Accept button, 
and Paradyn will start your application process. This step can take anywhere from several seconds 

Figure 2: Paradyn base Where Axis.

3. To simplify this tutorial, the macro @PLATFORM is used as shorthand for the environment variable 

PLATFORM specifying the processor-vendor-OS tuple for this host/executable. Paradyn’s input parser 

currently doesn’t make the appropriate environment variable substitutions itself, therefore, you must man-

ually substitute the appropriate information. (Alternatively, filesystems such as AFS may permit definition 

of a symbolic link called @PLATFORM to achieve this illusion.)

4. On Windows NT, the bubba executable is called “bubba.exe.” Also, note that if you choose to use back-

slashes instead of forward slashes, they must be escaped in the Command field on Windows NT. For 

example, to run the bubba executable located one folder up from the folder specified in the Directory 

field, the command would be “..\\bubba.exe ..\\..\\dat\\example5”.
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to several minutes as Paradyn examines and starts your application, depending on its size, the load 
on the machine, network connection speed, etc.

2.1.2 Starting an application process manually

After an application has been defined, the Paradyn main window will contain more status lines, 
and the Where Axis will contain more entries. The new status lines provide information about 
Paradyn and your application process. These are shown in Figure 4 (which shows the Paradyn 
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application program (bubba or bubba.exe), the name of 
the machine (grilled), the name of the user (self), and the name of the daemon (defd)

2. Processes: A list of the process IDs of all the processes in the application. In this example, there 
is one pid (18904) corresponding to the process started on host grilled.

3. Application status: The current status of the application program (either RUNNING, 
PAUSED, or EXITED).

4. grilled: Status lines for each host. Once the application starts running these will display the sta-
tus of each host (running, paused, or exited).

The new status line for the Paradyn process (Data Manager) displays the state of Paradyn’s Data 
Manager. 

Now that Paradyn has had a chance to examine the program executable(s), it is able to add 
entries to the Where Axis. The new entries in the Where Axis correspond to resources that can 
only be obtained when the application process has been defined and started. These new entries 
include modules and procedures in the Code hierarchy, and machine names in the Machine hier-
archy. Figure 5 shows the Where Axis with these new resources added. The Machine hierarchy 
contains the machine “grilled.cs.wisc.edu” under which is the process “bubba{18904}”, and 
the Code hierarchy contains several new entries corresponding to a source code modules. Double-

Figure 3: The Define A Process window specifying bubba application process
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clicking on nodes with a triangle on their righthand edge expands them to show the nodes they 
contain; double-clicking on a head-node folds it into its parent node. Single-clicking on nodes 
(including head-nodes) will be used later to select (sets of) resources for metric foci. Locating par-
ticular nodes can be achieved by typing a search string in the labeled field and then enter.

At this point, Paradyn is ready to start running the application. You can now select the RUN

button from the Paradyn Main Control window to start executing bubba, or alternatively first 
define some performance measurements and/or views before running it (as described in the fol-
lowing sections). Once execution has commenced, the PAUSE button can be used to temporarily 
halt it and RUN will resume execution. Note, however, that execution can only be resumed from 
the current point and not from the start (without exiting and restarting Paradyn).

Figure 4: Paradyn Main Control window with bubba loaded and ready to run

Figure 5: Where Axis after the bubba application process is loaded
Tutorial June 20, 2006 Release 5.0
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2.1.3 Starting an application process automatically

Paradyn can also start an application using a PCL specification file. Below shows a command to 
start the bubba application using a PCL file called bubba.pcl: 

% paradyn -f bubba.pcl

The contents of the PCL file, bubba.pcl, are shown as follows:

// Paradyn configuration file for bubba (generic)

process bubba 
{ 

//host "localhost"; 
dir "/p/paradyn/demo/Paradyn/bubba_seq/@PLATFORM"; 
command "bubba ../dat/example5"; 
daemon defd; 

}

In the PCL file, the (optional) host, the directory, the command, and the daemon are specified as 
when starting an application manually, and on start-up Paradyn automatically loads and prepares 
this process ready for execution and analysis. 

2.2 Viewing performance data

Before you run the application process, you may want to start a visualizer (or visi)5. For this appli-
cation, we will start a time-histogram visualization to view CPU utilization for the application. In 
this section, we describe how to start a visualizer, and how to choose the set of metrics and parts of 
the program that a visualizer will display.

2.2.1 Starting a visualizer

To start a visualizer, select the Visi option from the Paradyn main window menubar. This will open 
the Start A Visualization dialog that allows you to choose a type of visualization and a phase for the 
data. Figure 6 shows this dialog with a Histogram visualization selected for the Global Phase 
(Section 2.4 will discuss phases). Other visualizations allow metric data to be presented in tabular 
and barchart form, etc., though all visualizers may not be available on all platforms.

Once the visualization selection has been made, click on the Start button and Paradyn will dis-
play a metrics dialog. This dialog, shown in Figure 7, allows you to select the set of metrics to be 

displayed by the visualization.6 In this example, we have selected cpu (CPU time) and 
cpu_inclusive (CPU inclusive). The cpu metric if applied to a function will exclude time spent in 
any function it calls, whereas the cpu_inclusive metric includes time spent in the selected function 
and the functions that are called by it.

To choose the parts of the program for which the metric will be collected, you select resources 
by clicking on nodes in the Where Axis. A focus is a location in the application for which metric 
data can be collected. For example, if you select the node bubba{18904} from the Machine hierar-
chy, you limit data collection to the process bubba{18904}. If you select p_makeMG and
a_reversepmove from the Code hierarchy, you limit data collection to function p_makeMG and 

5. Visualizers do not have to be started now, but doing so before the program starts running will guarantee 

that you will get data for the complete execution of the application.

6. The metrics dialog shows all metrics defined for the current platform(s).
Tutorial June 20, 2006 Release 5.0
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a_reversepmove. Figure 5 shows the Where Axis with these nodes selected.

Paradyn combines selections from each of the resource hierarchies to create a focus, each selec-
tion further restricts the scope of data collection. If you had made the previous process and mod-
ule selections, then you limit data collection to activity in the functions p_makeMG and 
a_reversepmove in the process bubba{18904}. This selection corresponds to two foci: the 
first focus is when the process 18904 is running in function p_makeMG; the second focus is when 
process 18904 is running in function a_reversepmove.

If no Where Axis nodes are selected then Paradyn uses the default Whole Program.

Once you have made your selections, click on the Accept button on the metrics menu. Para-

Figure 6: Selecting a Histogram visualization

Figure 7: Metrics menu with “cpu” and “cpu_inclusive” selected
Tutorial June 20, 2006 Release 5.0
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dyn will then try to enable data collection for your selection. The selection is expanded to be the 
cross-product of metric-focus pairs from the list of metrics and foci selected. For example, if the 
metrics CPU and CPU_INCLUSIVE, and the resource nodes bubba{18904} and p_makeMG were 
selected, then Paradyn would try to enable four metric-focus pairs: 

• CPU time for process 18904 when it is running in function p_makeMG.

• CPU time for process 18904 when it is running in function p_makeMG.

• cpu_inclusive time for process 18904 when it is running in function p_makeMG.

• cpu_inclusive time for process 18904 when it is running in function p_makeMG.

If at least one metric-focus pair was successfully enabled, Paradyn will start the visualization 

process and start sending performance data values to the visualization.7 If instrumentation for any 
of the metric-focus pairs had to be deferred because an application process was executing at the 
instrumentation point, Paradyn displays a message box similar to the one shown in . If there are 
any metric-focus pairs that could not be enabled, Paradyn will display a message listing those 
pairs, and re-display the metrics menu for you to modify your selection. If this occurs, and you do 
not want to try enabling any other metric-focus pairs, you can choose the CANCEL button on the 
metrics menu.

The time-histogram shown in Figure 9 is the result of selecting the metrics “cpu” and 
“cpu_inclusive” from the metrics menu and bubba{18904} and p_makeMG and a_reversepmove 

from the Where Axis.

Once the time-histogram is created, click on the RUN button from the Paradyn main window 
to start the application process. Performance data will then be sent by Paradyn to the time-histo-
gram. The time-histogram contains several menu options for changing the display of the perfor-
mance data and for changing the set of performance data that is currently being displayed. These 
options are described in detail in the Paradyn User’s Guide.

7. Metric data isn’t sampled or displayed before the application starts running or while it is paused.

Figure 8: Message box shown when instrumentation is deferred
Tutorial June 20, 2006 Release 5.0
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2.3 Performance Consultant diagnosis

The Performance Consultant is the part of Paradyn that performs an automated hierarchical 
search for performance bottlenecks. It automatically enables and disables instrumentation for spe-
cific metric-focus pairs as the search progresses. The Performance Consultant starts looking for 
course-grained performance problems and then iteratively tries to refine the search to isolate the 
performance bottleneck to a specific aspect of the application’s execution. This aspect is specified 
as a point in a three dimensional search space defined by a Why Axis, Where Axis, and When 
Axis.

2.3.1 The Performance Consultant window

The Performance Consultant is started by selecting the Performance Consultant option from the 
SetUp menu on the Paradyn main window. Figure 10 shows the Performance Consultant window. 
We briefly discuss the parts of the Performance Consultant window below:

1. Searches Menu: Allows you to view search history graphs from different phases. (Phases are 
discussed later in Section 2.4.)

2. Status line: The status line at the top of the window indicates the phase for which the search is 
defined (in this example, the search is defined for the Global Phase).

3. Search Text Output: This area is used by the Performance Consultant to print status messages 
about the state of the search

4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor-
respond to different points in the search space, and arcs correspond to different refinements 

Figure 9: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci
Tutorial June 20, 2006 Release 5.0



Page 13
that have been made. Figure 10 shows only the initial node, TopLevelHypothesis.

5. Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpret the 
color of the nodes and edges in the search history graph, and how to navigate around the win-
dow.

2.3.2 Starting the search

The search can be started by clicking on the Search button in the Performance Consultant win-
dow. As the Performance Consultant search proceeds, status information will be printed to the 
window, and the search history graph will be updated to reflect the current state of the search. A 
Performance Consultant search is either defined over the entire run of the application (the global 
phase), or over a specific phase of the application’s execution. In this example we selected the 
Search button in the Performance Consultant window to start a global phase search. Figure 11
shows the Performance Consultant window during the bottleneck search.

By watching the Search History Graph, we can see how the Performance Consultant iteratively 
refines its search to isolate the bottleneck. The first hypothesis the Performance Consultant tests is 
whether there is a bottleneck in the whole program, if this is true, then it starts refining the search. 

Figure 10: The Performance Consultant window
Tutorial June 20, 2006 Release 5.0
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Each level in the search history graph represents a refinement that was made in the search process. 
Refinements are only made on hypotheses that test true, and are used to further isolate the bottle-
neck to a particular part of the application’s execution. In general the results of the search can be 
obtained by following the blue nodes from the root of the search history graph to a leaf node. Also, 
by clicking the right mouse button on any node in the search history graph, you can see a text 
string representation of the hypothesis associated with any node in the graph. This string is dis-
played in the information line below the search history graph. For example, the information line 
below the search history graph in Figure 12 shows the hypothesis associated with the bottom-most 
nodes in the graph.

Figure 11 shows the search history graph during the search for a bottleneck in bubba. You can 
see that there have been refinements on both the Why and Where axis (these are indicated by yel-
low and purple edges in the search history graph). Also, there are nodes representing hypotheses 
that have tested true (blue nodes), nodes representing hypotheses that have tested false (pink 
nodes), and nodes representing hypotheses that have not yet been decided (green nodes). 

Figure 12 shows the search history graph after the search has progressed further, and with only 
the nodes representing true hypotheses shown. The first hypothesis evaluated to true (the blue col-
ored TopLevelHypothesis node at the top of the graph). The first refinement was on the Why axis 
and resulted in finding that there was a cpu bottleneck in the application (the CPUbound node is 
true). Next, the synchronization bottleneck was isolated to the function main and machine 
grilled.cs.wisc.edu. The fact that these two nodes are siblings indicates that these refinements were 
done at the same time. These two nodes were then further refined concurrently. The result after 
several such refinements is that the bottleneck is isolated to a specific procedure (p_makeMG). This 
means that the Performance Consultant found that there is a CPU bottleneck in procedure 
p_makeMG. At this point, the Performance Consultant was unable to further refine the bottleneck. 
However, it will continue to evaluate true nodes in the graph.      

2.3.3 Investigating the Performance Consultant’s diagnosis

Typically, after running the Performance Consultant, you would like to see the performance data 
corresponding to the bottleneck in the application. To do this, you can start a visualization process 
to display performance data. In this example, after running the Performance Consultant, we 
started a barchart visualization by choosing BarChart from the list Start A Visualization menu 
(like Figure 6). The barchart is shown in Figure 13: it shows that almost all of the cpu time for 
bubba can be attributed to procedure p_makeMG. 
Tutorial June 20, 2006 Release 5.0
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Figure 11: The Performance Consultant bubba exigency search
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Figure 12: The Search History Graph showing only exigent bubba nodes

Figure 13: BarChart visi presenting selected bubba performance data
Tutorial June 20, 2006 Release 5.0
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2.4 Phases

In this section we briefly discuss Paradyn’s notion of phases.

Phases are contiguous time-intervals within an application’s execution. There are two types of 
phases: a global phase and zero or more local phases. The global phase includes the entire period of 
execution, from the start of the application program until the current time. This phase is the 
default for the Performance Consultant or any visualization. A local phase restricts performance 
information to a particular time interval. A local phase can be started at any time; the local phase 
ends when a new local phase is started. This means that, at any given time, you can select perfor-
mance data from the global phase and from the current local phase.

One use of phases in Paradyn is to change the granularity of performance data collection after 
the application process has been running for some time. Because Paradyn uses fixed-size data 
structures to store performance data, the granularity of performance data becomes more coarse 
the longer the application runs. For some applications, the interesting behavior may not occur 
until several hours into its execution when the granularity of performance data is large. To obtain 
performance data at a finer granularity, you can start a new local phase. The data collection at the 
start of the new phase will be at the finest granularity supported by Paradyn.

To start a new phase, first create a phase table visualization by choosing Phase Table from the 
Start A Visualization menu. A phase table is shown in Figure 14. Next, click on the Start A Phase

menu option from the phase table’s menu bar. This will cause the phase table to display an end 
time for the previous phase (phase_0 in the example), and a phase name and phase start time for 
the newly created current phase (phase_1 and 11m 54s in the example).

Once a new phase is started, you can create visualizations to display data from it by clicking on 
the Current Phase button in the lower right corner of the Start A Visualization window. Figure 15
and Figure 16 are time-histograms for the global and current phases respectively..

Note that the current phase histogram starts at phase_1’s start time (11:54) and displays data at 
a finer granularity than the same performance data displayed by the global phase histogram.

Figure 14: PhaseTable visi presenting phase durations.
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Figure 15: Histogram for global phase

Figure 16: Histogram of current phase
Tutorial June 20, 2006 Release 5.0
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3 MPI TUTORIAL - DECOMP_MPI

This tutorial section covers the use of Paradyn with a simple MPI application (om3) provided as 
part of the Paradyn binary distribution for platforms where MPI is supported. MPI is not yet sup-
ported by Paradyn on all platforms: see the Paradyn User Guide for details.

3.1 Running the MPI application

3.1.1 Start Paradyn and define the MPI application process

The first step is to run Paradyn. This is done by entering the following command:

% paradyn

Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the base 
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labeled 
“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Paradyn is 
now ready to loaded and run the subject application program.

To describe an application to Paradyn select Define A Process from the Setup menu. This will 
cause a dialog to appear that will allow you to specify the parameters that are necessary for Para-
dyn to start your application process. This dialog is shown in Figure 17. To describe the applica-
tion and its environment to Paradyn, the following should be specified in the Define A Process 

dialog:

1. User: The login name on the host on which Paradyn will start the application process. In this 
example we left the User field blank, which means that the login will have a value of the user’s 
current login name.

2. Host: The host on which Paradyn will start the application process. A blank value will default 
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one on 
which the Paradyn process is running, then the current directory on the remote machine is the 
home directory of the user specified in the User entry. The Directory field allows you to specify 
a directory to change to before Paradyn starts the application process. In this example, Paradyn 
will change to /p/paradyn/applications/mpi/om3 before starting om3.

4. Command: This entry takes the unix command that will start the application program. The 
syntax for this command for launching MPI jobs will vary by platform. For MPICH, the entire 
command-line including the mpirun command and all of its appropriate arguments should be 
entered. For AIX, the POE job launcher poe can be entered or omitted. In this example we 
have entered “mpirun -np 4 -machinefile hostfile om3_4node”, which specifies the 
executable file (om3_4node) with two command line arguments: the number of processes (4), 
and a file containing node names (hostfile).

5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since 
this is an MPI application, the mpid daemon is selected.

6. MPI Type: This option allows you to specify whether your MPI job is using the LAM or 
MPICH implementation. This option only applies if mpid is selected on Daemon.

Once the fields of the Define A Process window have been filled in, click on the Accept button, 
Tutorial June 20, 2006 Release 5.0
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and Paradyn will start your application process. This step can take anywhere from several seconds 
to several minutes, depending on the size of the application.

3.1.2 Start the MPI application process manually

After an application has been defined, the Paradyn main window will contain more status lines, 
and the Where Axis will contain more entries. The new status lines provide information about 
Paradyn and your application process. These are shown in Figure 18 (which shows the Paradyn 
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application program (in this case, mpirun is named), the 
name of the machine (c23), the name of the user (self), and the name of the daemon (rshd)

2. Processes: Typically Paradyn will indicate the process ids in this field. In the case of MPICH, 
this field is used to indicate that paradyn has identified the job as an MPICH job.

3. Application status: The current status of the application program (either READY, RUNNING, 
PAUSED, or EXITED).

4. Hosts: Status lines for each host. Once the application starts running these will display the sta-
tus of each host (running, paused, or exited). In Figure 18 only the hostname c23 is shown as 
we have not yet started the application.

The new status line for the Paradyn process (Data Manager) displays the state of Paradyn’s Data 
Manager. 

Now that Paradyn has had a chance to look over your program, it is able to add entries to the 
Where Axis. The new entries in the Where Axis correspond to resources that can only be obtained 
when the application process has been defined and started. These new entries include modules 
and procedures in the Code hierarchy, and process IDs in the Machine hierarchy. Figure 19 shows 
the new Where Axis with these new resources added. The Process hierarchy contains four new 

Figure 17: The Define A Process dialog for MPI om3
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processes (one for each MPI process).

At this point, Paradyn is ready to start running the application. You can now select the RUN

button from the Paradyn Main Control window to start executing om3, or alternatively first define

some performance measurements and/or views before running it (as described in the follow-
ing sections). Once execution has commenced, the PAUSE button can be used to temporarily halt it 
and RUN will resume execution. Note, however, that execution can only be resumed from the cur-
rent point and not from the start (without exiting and restarting Paradyn).

Figure 18: Paradyn Main Control window after the MPI application process is started

Figure 19: Where Axis after the om3 MPI application process is started
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3.2 Viewing performance data

Before you run the application process, you may want to start a visualizer1. For this application, we 
will start a time-histogram visualization to view CPU utilization and synchronization blocking 
time for the application. In this section, we describe how to start a visualizer, and how to choose 
the set of metrics and parts of the program that a visualizer will display.

3.2.1 Starting a visualizer

To start a visualizer, select the Visi option from the Paradyn main window menubar. This will open 
the Start A Visualization dialog that allows you to choose a type of visualization and a phase for the 
data. Figure 6 shows this dialog with a Histogram visualizer selected for the Global Phase 
(Section 2.4 discusses phases).

Once the visualization selection has been made, click on the Accept button and Paradyn will 
display a metrics menu appropriate for this MPI application. This menu, shown in Figure 20, 
allows you to select the set of metrics to be displayed by the visualization. In this example, we have 
selected sync_wait_inclusive (inclusive synchronization blocking time) and cpu_inclusive (inclu-
sive CPU time).

To choose the parts of the program for which the metric will be collected, select resources by 
clicking on nodes in the Where Axis. A focus is a location in the application for which metric data 
can be collected. For example, selecting the nodes om3_4nodes{23929} and om3_4nodes{19624}

from the Process hierarchy, limits data collection to these two processes (23929 on c23 and 19624 
on c26). Selecting a module from the Code hierarchy limits data collection to that module. 
Figure 19 shows the Where Axis.

Paradyn combines selections from each of the resource hierarchies to create a focus, each selec-
tion further restricts the scope of data collection. If you had made the previous process and mod-
ule selections, then you limit data collection to activity in a particular module only in processes 
23929 and 19624. This selection corresponds to two foci: the first focus is when process 23929 is 
running in the module you selected; the second focus is when process 19624 is running in that 
module.

If no Where Axis nodes are selected then Paradyn uses the default Whole Program.

Once you have made your selections, click on the Accept button on the metrics menu. Paradyn 
will then try to enable data collection for your selection. The selection is expanded to be the cross-
product of metric-focus pairs from the list of metrics and foci selected. For example, if the metrics 
CPU_inclusive and sync_wait_inclusive, and the resource nodes om3_4nodes{23929}, 
om3_4nodes{19624}, and libm.so.6 were selected, then Paradyn would try to enable four metric-
focus pairs: 

• CPU_inclusive time for process 23929 when it is running in module libm.so.6.

• CPU_inclusive time for process 19624 when it is running in module libm.so.6.

• sync_wait_inclusive time for process 23929 when it is running in module libm.so.6.

1. Visualizers do not have to be started now, but doing so before the program starts running will guarantee 

that you will get data for the complete execution of the application.
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• sync_wait_inclusive time for process 19624 when it is running in module libm.so.6.

If at least one metric-focus pair was successfully enabled, Paradyn will start the visualization 
process and start sending performance data values to the visualization. If there are any metric-
focus pairs that could not be enabled, Paradyn will display a message listing those pairs, and re-
display the metrics menu for you to modify your selection. If this occurs, and you do not want to 
try enabling any other metric-focus pairs, you can choose the CANCEL button on the metrics 
menu.

The time-histogram shown in Figure 21 is the result of selecting the metrics 
“sync_wait_inclusive” and “cpu_inclusive” from the metrics menu with machine c23 selected in 
the WhereAxis.

Once the time-histogram is created, click on the RUN button from the Paradyn main window 
to start the application process. Performance data will then be sent by Paradyn to the time-histo-
gram. The time-histogram contains several menu options for changing the display of the perfor-
mance data and for changing the set of performance data that is currently being displayed. These 
options are described in detail in the Paradyn User’s Guide.

3.3 Performance Consultant diagnosis

The Performance Consultant is the part of the Paradyn tool that performs a search for perfor-
mance bottlenecks. It automatically enables and disables instrumentation for specific metric-focus 
pairs as the search progresses. The Performance Consultant starts looking for course-grained per-
formance problems and then iteratively tries to refine the search to isolate the performance bottle-
neck to a specific location in the application’s execution. This location is specified as a point in a 
three dimensional search space defined by a Why Axis, Where Axis, and When Axis.

3.3.1 The Performance Consultant window

The Performance Consultant is started by selecting the Performance Consultant option from the 
SetUp menu on the Paradyn main window. Figure 10 shows the initial Performance Consultant 
window. We briefly discuss the parts of the Performance Consultant window below:

Figure 20: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected
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1. Searches Menu: Allows you to view search history graphs from different phases.

2. Status line: The status line at the top of the window indicates the phase for which the search is 
defined (in this example, the search is defined for the Global Phase).

3. Search Text Output: This area is used by the Performance Consultant to print status messages 
about the state of the search.

4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor-
respond to different points in the search space, and arcs correspond to different refinements 
that have been made.

5. Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpret the 
color of nodes and edges in the search history graph, and how to navigate around the window.

3.3.2 Starting the search

The search can be started by clicking on the Search button in the Performance Consultant win-
dow. As the Performance Consultant search proceeds, status information will be printed to the 
window, and the search history graph will be updated to reflect the current state of the search. A 
Performance Consultant search is either defined over the entire run of the application (the global 

Figure 21: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”
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phase), or over a specific phase of the application’s execution. In this example we selected the 
Search button in the Performance Consultant window to start a global phase search. Figure 22
shows the Performance Consultant window during the bottleneck search.

By looking at the Search History Graph, we can see how the Performance Consultant itera-
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Consultant 
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refining the 
search. Each level in the search history graph represents a refinement that was made in the search 
process. Refinements are only made on hypotheses that test true, and are used to further isolate the 
bottleneck to a particular part of the application’s execution. In general the results of the search can 
be obtained by following the blue nodes from the root of the search history graph to a leaf node. 
Also, by clicking the right mouse button on any node in the search history graph, you can see a text 
string representation of the hypothesis associated with any node in the graph. This string is dis-
played in the information line below the search history graph. For example, the information line 
below the search history graph in Figure 23 shows the hypothesis associated with the node repre-
senting the sync_wait_inclusive time for the whole program.

Figure 22 shows the search history graph during the search for a bottleneck in om3. You can see 
that there have been refinements on both the Why and Where axis (these are indicated by yellow 
and purple edges in the search history graph). Also, there are nodes representing hypotheses that 
have tested true (blue nodes), nodes representing hypotheses that have tested false (pink nodes), 
and nodes representing hypotheses that have not yet been decided (green nodes). Note that this 
application is CPU-bound.

Figure 23 shows the search history graph after the search has progressed further. The first 
hypothesis evaluated to true (the blue colored TopLevelHypothesis node at the top of the graph). 
The first refinement was on the Why axis and resulted in finding that the application is CPU 
bound (the CPUbound node is true). Next, the synchronization bottleneck was isolated to a spe-
cific function in the application (main). and to specific machines (c23, c26, c39, c48). The fact that 
thesenodes are siblings indicates that these refinements were done at the same time. These nodes 
were then further refined in parallel.  
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Figure 22: The Performace Consultant bottleneck search with MPI om3
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Figure 23: Search History Graph om3
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4 FURTHER INFORMATION

This tutorial has not covered all of the features in Paradyn. It was intended to guide you 
through a few start-to-finish sessions with Paradyn, using the more common features. Note that 
some of the functionality shown in this tutorial differs from earlier versions of Paradyn, which are 
no longer supported. For a complete description of the features in Paradyn, and information on 
how to prepare applications for use with Paradyn, see the Paradyn User’s Guide.

4.1 Contacting the Paradyn developers

There are various ways to get in touch with the Paradyn developers. We are happy to try and 
answer questions and appreciate feedback.

n

e-mail: paradyn@cs.wisc.edu

The project e-mail address. Use this address for technical questions or requests.

Web: http://www.paradyn.org

The project home page. From this page, you can find out how to get a binary or source version 
of Paradyn. You can also get updates and news on the current release of Paradyn.

FTP: ftp://ftp.cs.wisc.edu/pub/paradyn/

The project ftp site. In the “paradyn” directory, you will find subdirectories containing the bi-
nary and source versions of the Paradyn release. Make sure to look at the README files!

FAX: +1 (608) 262-9777

Postal: Paradyn Project 
c/o Prof. Barton P. Miller 
Computer Sciences Department 
University of Wisconsin 
1210 W. Dayton Street 
Madison, WI  53706-1685
U.S.A.
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