Paradyn Parallel Performance Tools

Tutorial

Release 4.2
March 2005

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@cs.wisc.edu

Tutorial

3/21/05

Table of Contents

I o 1= 11 01 =T =S 4..

2 Common tutorial - BUbDa _SEQ........eii 5
2.1 RUNNING &N @PPIICALIONeiiiiiiiiiiiie et e e e e e e e e 5
2.2 Viewing performance Atcceeeioiiieieeeeie e e e e e e e e e e e e e e 9
2.3 Performance Consultant diagnOSIScccuuuiiiiiiiiiiiiie e e 12
A = LS o PP 17.........

3 MPI Tutorial - deCOMP _MPl...... it e e e e e e e e e e e e e e e eaeeeennne 19
3.1 Running the MPI appliCationcooooiiiiiiiiii e 19
3.2 Viewing PerformManCe QALAcceeiiiiiiiiiiiiiiiiii it e e e e e e e e e e e e e 22
3.3 Performance Consultant diagnOSISovvuuiiiiiiiiiiiee e e e e e 23

O U a1 T Y 0] a1 (o] o P 28....
4.1 Contacting the Paradyn deVeIOPErScccooiiiiiiiiiice e 28

Tutorial March 21, 2005 Release 4.2

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:

Tutorial

List of Figures

Paradyn Main Control WINAOW.cooiiiiiiiiiiiiiiii et 5
Paradyn base WHEIE AXIS.cccoiiiiiiieeii ettt s s e e e e e e e e e e eeeeeeeeasannne 6
TheDefine A Process window specifying bubba application processcccc........ 7
Paradyn Main Control window with bubba loaded and ready to run 8
Where Axis after the bubba application process is loadedccccoeeeeiiiiiiiiiiiiiiiiininnn, 8
Selecting a Histogram VISUBIIZALIONcoeiiiiiiiiiiiii e 10
Metrics menu with “cpu” and “cpu_inclusive” selectedccccvvvvvviviiiiiiiiiiee e, 10
Message box shown when instrumentation is deferredccccoeeeiieiiiiiiiiiiiiiiieiiinn, 11
Histogram of global phase with “cpu” and “cpu_inclusive” for two foci 12
The Performance Consultant WiNAOWuuuueeiiiiiiiieee et e e e e e 13
The Performance Consultant bubba exigency searchccccooeeeiiiiii, 15
The Search History Graph showing only exigent bubba nodescccccccceiiinneennn. 16
BarChart visi presenting selected bubba performance dataccccccceeiiiiiiniiennnnn. 16
PhaseTable visi presenting phase durations.cccceeeiiiiiiiieeeeeeeeeeeee e 17
Histogram for global PRaSe ... 18
Histogram Of CUITENT PRASEooviiiiiiii e 18
TheDefine A Process dialog for MPI OM3cooiiiiiiiiiiccieee e 20
Paradyn Main Control window after the MPI application process is started 21
Where Axis after the om3 MPI application process is startedccovvvvvcciiinnnnnnnn. 21
MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected 23
Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive” 24
The Performace Consultant bottleneck search with MPI om3ccccceveiiiiiiinninnnnn. 26
Search History Graph OM3 ... e e e e e e e e e e e e aaaaanns 27

March 21, 2005 Release 4.2

Page 4

1 PRELIMINARIES

This documertt covers the basics for using Paradyn: how to start Paradyn, run an application,
view its performance data, and run the Performance Consultant to automatically find performance
bottlenecks in the application. Several simple example application programs come with the binary
distribution of Paradyn. You can obtain Paradyn and the test programs (binaries and sources) by
anonymous ftp tdtp.cs.wisc.edu . For more information on obtaining and installing Para-
dyn, including setting necessary environment variables, sétatadyn Installation Guide

This tutorial is provided in two parts. The first part covers the basic use of Paradyn, its visual-
izers and Performance Consultant using a simple sequential C applidatioipa]. This is fol-
lowed by an additional tutorials for MPlIdécomp also provided in appropriate binary
distributions), which may not be available on all systems or relevant to all Paradyn users. While
there is some redundancy between the MPI tutorial and the basic tutorial, it considers MPI--spe-
cific functionality of Paradyn and additional examples of the use of Paradyn visualizers and Per-
formance Consultant with message-passing programs.

1. Note that some of the color figures in this document may be unclear when printed in gray-scale.

Tutorial March 21, 2005 Release 4.2

Page 5

2 COMMON TUTORIAL - BUBBA_SEQ

This first tutorial section covers the basic use of Paradyn with a simple sequential application
(bubba) provided as part of the Paradyn binary distribution for every platform Paradyn supports.
This common tutorial section is an introduction to Paradyn and its capabilities, which will be

elaborated in the following section with additional functionality for MPI applications.

2.1 Running an application

Paradyn can start an application on the local or remote machine. The standard output and error
messages of the application are displayed in a separate terminal window. The information dis-
played can be saved to a file.

2.1.1 Start Paradyn and define the application process

Paradyn can be started by entering the following command at a command forompt:

%paradyn
Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the base
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labeled

“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Paradyn
is now ready to load and run the subject application program.

Paradyn Main Control vi.2
ﬁra-
Y

File Setup Phase Visi Help "

UIM status : ready

e |]

Figure 1: Paradyn Main Control window.

To describe an application to Paradyn, sel@efine A Process from theSetup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necessary for
Paradyn to start your application process. This dialog is shown in Figure 3. To describe the appli-
cation and its environment to Paradyn, the following should be specified Deffiree A Process
dialog:

1. User: The login name on the host on which Paradyn will start the application process. In this
example we left theuser field blank, which means that the login will have a value of the
user’s current login name.

2. On Windows NT, the command prompt is accessible via the “Command Prompt” item in the Start menu.
Alternatively, the command may be issued from the “Run...” item in the Start menu. In both cases, the
PATH environment variable must include the Folder in which the Paradyn execpiialdyh.exg
resides in order for Paradyn to run.

Tutorial March 21, 2005 Release 4.2

Page 6

Selections MNavigate Abstraction

I Whole Program
Code [2
Machine b

SyncObject »

Vi= =

=earch:

Click to select; double—click to expand/un—expand
Shift—double—click to expand/un—expand all subtrees of a node
Ctri-double—click to select/un—select all subtrees of a node
Hold down Alt and mowve the mouse to scroll freely

Figure 2: Paradyn base Where Axis.

2. Host: The host on which Paradyn will start the application process. A blank value will default
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one on
which the Paradyn process is running, then the current directory on the remote machine is the
home directory of the user specified in thser entry. TheDirectory field allows you to spec-
ify a different working directory for the application process. In this example, Paradyn will

change tdp/paradyn/demo/Paradyn/bubba_seq/@PLATFORM before startinghubba 3 Note
that the path specified in this field is interpreted on the host specified adstefield, which
is not necessarily the host on which Paradyn is running.

4. Command: This entry takes the command that will start the application program. In this
example we have enterebubba ../dat/example5” , Which specifies the executable file
(bubba) with one command line argumentgat/example5 , the input file?

5. Daemon: This option allows you to specify which version of the Paradyn daemon to run.

Since this is a sequential application, teed daemon is selected. If the application is to be
run under Windows NT, the winntd daemon should be selected.

Once the fields of thBefine A Process window have been filled in, click on thccept but-

3. To simplify this tutorial, the macr@ PLATFORM used as shorthand for the environment variable
PLATFORMpecifying the processor-vendor-OS tuple for this host/executable. Paradyn’s input parser
currently doesn’t make the appropriate environment variable substitutions itself, therefore, you must
manually substitute the appropriate information. (Alternatively, filesystems such as AFS may permit def-
inition of a symbolic link called@PLATFORM achieve this illusion.)

4. On Windows NT, the bubba executable is callagbba.exe” Also, note that if you choose to use back-
slashes instead of forward slashes, they must be escapedCiantrmand field on Windows NT. For
example, to run the bubba executable located one folder up from the folder specifiddinedtery
field, the command would be “..\\bubba.exe ..\\..\\dat\\example5”.

Tutorial March 21, 2005 Release 4.2

Page 7

ton, and Paradyn will start your application process. This step can take anywhere from several
seconds to several minutes as Paradyn examines and starts your application, depending on its size,
the load on the machine, network connection speed, etc.

Define A Process

User: ||legendre

Host: [cumin
Directory: |/pfparadyndapplications/bubbadhin
Daemon: ¥ defd o Winmntd mpid
MPI type: @ MPICH LAM

Command: |bubba /dat’examples

Accept Cancel
Figure 3: The Define A Process window specifyingbubba application process

2.1.2 Starting an application process manually

After an application has been defined, the Paradyn main window will contain more status lines,
and the Where Axis will contain more entries. The new status lines provide information about
Paradyn and your application process. These are shown in Figure 4 (which shows the Paradyn
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application progranuifba or bubba.exg, the name of
the machine (grilled), the name of the user (self), and the name of the daemon (defd)

2. Processes: A list of the process IDs of all the processes in the application. In this example,
there is one pid (18904) corresponding to the process started on host grilled.

3. Application status: The current status of the application program (either RUNNING,
PAUSED, or EXITED).

4. grilled: Status lines for each host. Once the application starts running these will display the
status of each host (running, paused, or exited).

The new status line for the Paradyn proceast4 Manager) displays the state of Paradyn’s Data
Manager.

Now that Paradyn has had a chance to examine the program executable(s), it is able to add
entries to the Where Axis. The new entries in the Where Axis correspond to resources that can
only be obtained when the application process has been defined and started. These new entries
include modules and procedures in tbade hierarchy, and machine names in tiachine hier-
archy. Figure 5 shows the Where Axis with these new resources added. The Machine hierarchy
contains the machineyfilled.cs.wisc.edu " under which is the processtibba{18904} ”, and

Tutorial March 21, 2005 Release 4.2

Page 8

P

Fle Setup Phase Visi Help (LT
UIM status : ready

Epplication name : program: bubba, machine: cumin, user: legendre, daemon: de
Epplication status

Data Manager : ready
.cumin[@] : PID=263928, ready

Run Pause Export | Exit |

Figure 4: Paradyn Main Control window with bubba loaded and ready to run

the Code hierarchy contains several new entries corresponding to a source code modules. Double-

Selections Navigate Abstraction |

I ‘Whole Program|

Code | Machine| ‘ Syn-::()bject|
—_—]

anneal.cl | partition.-:| | grilled.cs.wisc.edu|

"/ ™

Search: |

Figure 5: Where Axis after thebubba application process is loaded

clicking on nodes with a triangle on their righthand edge expands them to show the nodes they
contain; double-clicking on a head-node folds it into its parent node. Single-clicking on nodes
(including head-nodes) will be used later to select (sets of) resources for metric foci. Locating
particular nodes can be achieved by typing a search string in the labeled field and then enter.

At this point, Paradyn is ready to start running the application. You can now seleRtitie
button from the Paradyn Main Control window to start executioppba, or alternatively first
define some performance measurements and/or views before running it (as described in the fol-
lowing sections). Once execution has commencedPRUSE button can be used to temporarily

Tutorial March 21, 2005 Release 4.2

Page 9

halt it andRUN will resume execution. Note, however, that execution can only be resumed from
the current point and not from the start (without exiting and restarting Paradyn).

2.1.3 Starting an application process automatically

Paradyn can also start an application using a PCL specification file. Below shows a command to
start thebubba application using a PCL file callédbba.pcl

%paradyn -f bubba.pcl
The contents of the PCL fileybba.pcl , are shown as follows:

/I Paradyn configuration file for bubba (generic)
process bubba

{

/lhost "localhost";

dir "/p/paradyn/demo/Paradyn/bubba_seq/@PLATFORM";
command "bubba ../dat/example5";

daemon defd;

}
In the PCL file, the (optional) host, the directory, the command, and the daemon are specified as
when starting an application manually, and on start-up Paradyn automatically loads and prepares
this process ready for execution and analysis.

2.2 Viewing performance data

Before you run the application process, you may want to start a visualizeis()ér For this appli-

cation, we will start a time-histogram visualization to view CPU utilization for the application. In
this section, we describe how to start a visualizer, and how to choose the set of metrics and parts
of the program that a visualizer will display.

2.2.1 Starting a visualizer

To start a visualizer, select thési option from the Paradyn main window menubar. This will
open theStart A Visualization dialog that allows you to choose a type of visualization and a
phase for the data. Figure 6 shows this dialog with a Histogram visualization selected for the Glo-
bal Phase (Section 2.4 will discuss phases). Other visualizations allow metric data to be presented
in tabular and barchart form, etc., though all visualizers may not be available on all platforms.

Once the visualization selection has been made, click orstare button and Paradyn will
display a metrics dialog. This dialog, shown in Figure 7, allows you to select the set of metrics to

be displayed by the visualizatiénin this example, we have selectepu (CPU time) and
cpu_inclusivgCPU inclusive). Thepumetric if applied to a function will exclude time spent in
any function it calls, whereas tlopu_inclusivemetric includes time spent in the selected function
and the functions that are called by it.

To choose the parts of the program for which the metric will be collected, you select resources
by clicking on nodes in the Where Axis. A focus is a location in the application for which metric

5. Visualizers do not have to be started now, but doing so before the program starts running will guarantee
that you will get data for the complete execution of the application.
6. The metrics dialog shows all metrics defined for the current platform(s).

Tutorial March 21, 2005 Release 4.2

Page 10

Start A Visualization

Barchart
Histogram
PhaseTable
Table
Terrain

|¢ Global Phase |v Current Phase

Start | Cancel |

Figure 6: Selecting a Histogram visualization

Salect Metrics and Focus(es) below

I number_of_cpus _| exec_time | m=g_bertes

_| pause_tme _| svmc_ops W cpu

_| active_processes _| msgs W cpu_inclusive

_| predicted_cost | smc_weait _| io_ssrait

_| ohzerved _cost | sme_wait_inclusive | io_wait_inclusiv

_| procedure_calls _| msg_btes sent _l io_ops

| procedure_called | msg_bwtes recv | io_bertes
ACCEPT CLEAR CANCEL

Figure 7: Metrics menu with “cpu” and “cpu_inclusive” selected

data can be collected. For example, if you select the hotdba{18904} from the Machine hier-
archy, you limit data collection to the procebabba{18904} If you selectp_makeMG and
a_reversepmove from the Code hierarchy, you limit data collection to functipmakeMGand
a_reversepmove . Figure 5 shows the Where Axis with these nodes selected.

Paradyn combines selections from each of the resource hierarchies to cfeates @ach
selection further restricts the scope of data collection. If you had made the previous process and
module selections, then you limit data collection to activity in the functipnsakeMG and
a_reversepmove Iin the procesdubba{18904} . This selection corresponds to two foci: the
first focus is when the process 18904 is running in funcpianakeMG the second focus is when

Tutorial March 21, 2005 Release 4.2

Page 11

process 18904 is running in functianeversepmove

If no Where Axis nodes are selected then Paradyn uses the ti¢ffialdtProgram .

Once you have made your selections, click onAlgseept button on the metrics menu. Para-
dyn will then try to enable data collection for your selection. The selection is expanded to be the
cross-product of metric-focus pairs from the list of metrics and foci selected. For example, if the
metrics CPU and CPU_INCLUSIVE, and the resource nodésibba{18904} and p_makeMG
were selected, then Paradyn would try to enable four metric-focus pairs:

» CPUtime for process 18904 when it is running in funcfiomakeMG
» CPUtime for process 18904 when it is running in funciiomakeMG
* cpu_inclusiveime for process 18904 when it is running in functiomakeMG

e cpu_inclusiveime for process 18904 when it is running in functiomakeMG
If at least one metric-focus pair was successfully enabled, Paradyn will start the visualization

process and start sending performance data values to the visualiztiostrumentation for any

of the metric-focus pairs had to be deferred because an application process was executing at the
instrumentation point, Paradyn displays a message box similar to the one shown in . If there are
any metric-focus pairs that could not be enabled, Paradyn will display a message listing those
pairs, and re-display the metrics menu for you to modify your selection. If this occurs, and you do
not want to try enabling any other metric-focus pairs, you can chooSeANEEL button on the

metrics menu.

For
cpu_inclusiwve: fCodefanneal. c/fa_anneal, Machine, /SyncObject

Instrumentation for the showve metric/focus pairis) was deferred
becavnse the application process is executing code in the
neighborhood of an instrumentation point. Paradyn will insert
the instrumentation as soon as it is able.

P

oK

Figure 8: Message box shown when instrumentation is deferred

The time-histogram shown in Figure 9 is the result of selecting the metrics “cpu” and
“cpu_inclusive” from the metrics menu andubba{18904} and p_makeMG and
a_reversepmove from the Where Axis.

Once the time-histogram is created, click on BN button from the Paradyn main window
to start the application process. Performance data will then be sent by Paradyn to the time-histo-
gram. The time-histogram contains several menu options for changing the display of the perfor-
mance data and for changing the set of performance data that is currently being displayed. These

7. Metric data isn’t sampled or displayed before the application starts running or while it is paused.

Tutorial March 21, 2005 Release 4.2

Page 12
options are described in detail in tharadyn User’s Guide

Histogram Visualization
ara
File Curve | yn

CFUs

1
0.5 7 J

0.6 7

0.4 7

oo

0.2

e e e T e T e ——

o T T
#40 BOO
Sec

—— cpux/Codelanneal .cfa_reverseprmove, (Machine/grilled .cs wisc.edu/bubba{18904)= (smoothed)
cpu=</Code/partition.c/p_rmakelG, /Machine/grilled cs wisc. edu/bubba{18904}> (smoothed)
—— cpu_inclusive</Codelanneal .cfa_reverseprmove, (Mdachine/grilled. . cs wisc.edu/bubba {18904} (smoothed)

cpu_inclusive</Code/partition. c/p_tmakeMG, /Machine/grilled ce wisc. eduw/bubbal1 8804} = (smmoothed)
Fan £

~ I et

Figure 9: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci

2.3 Performance Consultant diagnosis

The Performance Consultant is the part of Paradyn that performs an automated hierarchical search
for performance bottlenecks. It automatically enables and disables instrumentation for specific
metric-focus pairs as the search progresses. The Performance Consultant starts looking for
course-grained performance problems and then iteratively tries to refine the search to isolate the
performance bottleneck to a specific aspect of the application’s execution. This aspect is specified
as a point in a three dimensional search space defined by a Why Axis, Where Axis, and When
AXis.

2.3.1 The Performance Consultant window

The Performance Consultant is started by selectingén@rmance Consultant option from the
SetUp menu on the Paradyn main window. Figure 10 shows the Performance Consultant window.
We briefly discuss the parts of the Performance Consultant window below:

1. Searches Menu: Allows you to view search history graphs from different phases. (Phases are
discussed later in Section 2.4.)

2. Status line: The status line at the top of the window indicates the phase for which the search is
defined (in this example, the search is defined foGthieal Phase).

3. Search Text Output: This area is used by the Performance Consultant to print status messages
about the state of the search

4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor-

Tutorial March 21, 2005 Release 4.2

Page 13

respond to different points in the search space, and arcs correspond to different refinements
that have been made. Figure 10 shows only the initial MoegegvelHypothesis .

5. Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpret the
color of the nodes and edges in the search history graph, and how to navigate around the win-
dow.

The Performance Consultant
ara
Yl

Searches |

Current Search: Global Phase

Callgraph-hased search for Global Phase. J
4
I TopLevelHypothesis
ExcessiveSyncWaiting Time
ExcessivelOBlocking Time
CPUbound
N =
| FPause
Defarrad
Linknown uninstrumented
False gainstrnentad shadow nods
Wihy Axis Befinement Where Axis Befinement
Hold down Alt and move the mouse ta scrall freely
Click middle button on a node to obtain more info on it

Figure 10: The Performance Consultant window

2.3.2 Starting the search

The search can be started by clicking on Sgarch button in the Performance Consultant win-
dow. As the Performance Consultant search proceeds, status information will be printed to the
window, and the search history graph will be updated to reflect the current state of the search. A
Performance Consultant search is either defined over the entire run of the application (the global
phase), or over a specific phase of the application’s execution. In this example we selected the
Search button in the Performance Consultant window to start a global phase search. Figure 11
shows the Performance Consultant window during the bottleneck search.

By watching the Search History Graph, we can see how the Performance Consultant itera-
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Consultant

Tutorial March 21, 2005 Release 4.2

Page 14

tests is whether there is a bottleneck in the whole program, if this is true, then it starts refining the
search. Each level in the search history graph represents a refinement that was made in the search
process. Refinements are only made on hypotheses that test true, and are used to further isolate the
bottleneck to a particular part of the application’s execution. In general the results of the search
can be obtained by following the blue nodes from the root of the search history graph to a leaf
node. Also, by clicking the right mouse button on any node in the search history graph, you can
see a text string representation of the hypothesis associated with any node in the graph. This string
is displayed in the information line below the search history graph. For example, the information
line below the search history graph in Figure 12 shows the hypothesis associated with the bottom-
most nodes in the graph.

Figure 11 shows the search history graph during the search for a bottlernewkan You can
see that there have been refinements on both the Why and Where axis (these are indicated by yel-
low and purple edges in the search history graph). Also, there are nodes representing hypotheses
that have tested true (blue nodes), nodes representing hypotheses that have tested false (pink
nodes), and nodes representing hypotheses that have not yet been decided (green nodes).

Figure 12 shows the search history graph after the search has progressed further, and with
only the nodes representing true hypotheses shown. The first hypothesis evaluated to true (the
blue coloredrlopLevelHypothesis node at the top of the graph). The first refinement was on the
Why axis and resulted in finding that there was a cpu bottleneck in the applicatioGFthie
ound node is true). Next, the synchronization bottleneck was isolated to the function main and
machine grilled.cs.wisc.edu. The fact that these two nodes are siblings indicates that these refine-
ments were done at the same time. These two nodes were then further refined concurrently. The
result after several such refinements is that the bottleneck is isolated to a specific procedure
(p_makeMQ@. This means that the Performance Consultant found that there is a CPU bottleneck in
procedurep_makeMG At this point, the Performance Consultant was unable to further refine the
bottleneck. However, it will continue to evaluate true nodes in the graph.

2.3.3 Investigating the Performance Consultant’s diagnosis

Typically, after running the Performance Consultant, you would like to see the performance data
corresponding to the bottleneck in the application. To do this, you can start a visualization process
to display performance data. In this example, after running the Performance Consultant, we
started a barchart visualization by choosing BarChart from thesiist A Visualization menu

(like Figure 6). The barchart is shown in Figure 13: it shows that almost all ofphdime for

bubba can be attributed to procedyrenakeMG

Tutorial March 21, 2005 Release 4.2

Page 15

The Performance Consultant

Excessive SyncWaitingTime CPUbound
ExcessivelOBlockingTime
grilled.cs.wisc.edu main

bubba{18904} a_anneal
main a_neighbor

c_getint a_pickapmove
c_makechan a_choosepmove
c_readpins a_dopmove
c_makesnets p_isvalid
c_makegraph

p_init

Figure 11: The Performance Consultanbubba exigency search

Tutorial March 21, 2005 Release 4.2

Page 16

The Performance Consultant

|
CPUbound

grilled.cs.wisc.edu main
bubba{18904} a_anneal
main a_neighbor
a_anneal p_isvalid
a_neighbor p_makehdG
p_isvalid grilled.cs.wisc.edu

p_makeldG EeDba{ T 89043

Figure 12: The Search History Graph showing only exigertbubba nodes

Barchart Visualization

Figure 13: BarChart visi presenting selectedubba performance data

Tutorial March 21, 2005 Release 4.2

Page 17

2.4 Phases

In this section we briefly discuss Paradyn’s notion of phases.

Phases are contiguous time-intervals within an application’s execution. There are two types of
phases: global phaseand zero or moréocal phasesThe global phase includes the entire period
of execution, from the start of the application program until the current time. This phase is the
default for the Performance Consultant or any visualization. A local phase restricts performance
information to a particular time interval. A local phase can be started at any time; the local phase
ends when a new local phase is started. This means that, at any given time, you can select perfor-
mance data from the global phase and from the current local phase.

One use of phases in Paradyn is to change the granularity of performance data collection after
the application process has been running for some time. Because Paradyn uses fixed-size data
structures to store performance data, the granularity of performance data becomes more coarse the
longer the application runs. For some applications, the interesting behavior may not occur until
several hours into its execution when the granularity of performance data is large. To obtain per-
formance data at a finer granularity, you can start a new local phase. The data collection at the
start of the new phase will be at the finest granularity supported by Paradyn.

To start a new phase, first create a phase table visualization by ch&bsisg Table from the
Start A Visualization menu. A phase table is shown in Figure 14. Next, click onStet A
Phase menu option from the phase table’s menu bar. This will cause the phase table to display an
end time for the previous phasghé@se_0 in the example), and a phase name and phase start time
for the newly created current phapedse_1 and1lm 54s in the example).

Phase Table
ala

File Phase it
Phase Name Start Time End Time
phase 0 0s M mids
phase 1 TTmads

Figure 14: PhaseTable visi presenting phase durations.

Once a new phase is started, you can create visualizations to display data from it by clicking
on theCurrent Phase button in the lower right corner of th8tart A Visualization window.
Figure 15 and Figure 16 are time-histograms for the global and current phases respectively..

Note that the current phase histogram starts at phase_1's start time (11:54) and displays data at
a finer granularity than the same performance data displayed by the global phase histogram.

Tutorial March 21, 2005 Release 4.2

Time Histogram Display ﬁ ra
File Actions View v
Phase: Global
CPUs
6
5 rfx%':ﬂ\"wx\ﬂzm T
4 4
3 - z
0
| O
¢ M
14
L
0 I I I I I I I I I I
0:00 2:40 5:20 8:00 10:40 13120 1600 1840 21:220 2400 26:40

Min:sec
sync wait <Whole Program= (smoothed)
cpu <Whole Program:= (smoothed)

PAN

Figure 15: Histogram for global phase

Time Histogram Display ﬁ -
File Actions View W
FPhase: phase_1
CPUs
B |l' & .
: | ’r\\wm_,-\wrl\ﬁq.-"\\ {-'\kwr'ﬁ_u-“"\mf’h\"\.ﬁvr \\L.’;I\P‘\LH" 1'\«-/-""'"1%'\:’_' e e
i
4 4
3 4 £
0
2] v
1 4
k
0 I I I I I I I I I I
12:00 12:20 12:40 13:00 13:20 13:40 14:00 14:20 14:40 15:00

Min:sec
sync wait <Whole Program= (smoothed)
cpu <\Whole Program: {smoothed}

PAH

Figure 16: Histogram of current phase

Tutorial March 21, 2005 Release 4.2

Page 19

3 MPI TUTORIAL - DECOMP_MPI

This tutorial section covers the use of Paradyn with a simple MPI applicatiol)(provided as
part of the Paradyn binary distribution for platforms where MPI is supported. MPI is not yet sup-
ported by Paradyn on all platforms: seeRagadyn User Guiddor details.

3.1 Running the MPI application

3.1.1 Start Paradyn and define the MPI application process

The first step is to run Paradyn. This is done by entering the following command:
%paradyn

Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the base
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labeled
“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Paradyn
is now ready to loaded and run the subject application program.

To describe an application to Paradyn se®@efine A Process from the Setup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necessary for
Paradyn to start your application process. This dialog is shown in Figure 17. To describe the
application and its environment to Paradyn, the following should be specified iDefiree A
Process dialog:

1. User: The login name on the host on which Paradyn will start the application process. In this
example we left theJser field blank, which means that the login will have a value of the
user’s current login name.

2. Host: The host on which Paradyn will start the application process. A blank value will default
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one on
which the Paradyn process is running, then the current directory on the remote machine is the
home directory of the user specified in thser entry. TheDirectory field allows you to spec-
ify a directory to change to before Paradyn starts the application process. In this example,
Paradyn will change t@/paradyn/applications/mpi/om3 before startingma3.

4. Command: This entry takes the unix command that will start the application program. The
syntax for this command for launching MPI jobs will vary by platform. For MPICH, the entire
command-line including thepirun command and all of its appropriate arguments should be
entered. For AlX, the POE job launchese can be entered or omitted. In this example we
have enteretmpirun -np 4 -machinefile hostfile om3_4node” , Which specifies the
executable filedqm3_4node) with two command line arguments: the number of processgs (
and a file containing node names (hostfile).

5. Daemon: This option allows you to specify which version of the Paradyn daemon to run.
Since this is an MPI application, thgid daemon is selected.

6. MPI Type: This option allows you to specify whether your MPI job is using the LAM or
MPICH implementation. This option only applies if mpid is selected on Daemon.

Once the fields of thBefine A Process window have been filled in, click on theccept but-

Tutorial March 21, 2005 Release 4.2

Page 20

ton, and Paradyn will start your application process. This step can take anywhere from several
seconds to several minutes, depending on the size of the application.

Define A Process

User:
Host: cZ35
Directory: /piparadynsapplicationsdmpifoma3
Daemon: defd winntd & mpid
MPI type: ¥ MPICH LAM

Command: |mpirun -np 4 -machinefile hostfile om3_4node
Accept Cancel

Figure 17: The Define A Process dialog for MPI om3

3.1.2 Start the MPI application process manually

After an application has been defined, the Paradyn main window will contain more status lines,
and the Where Axis will contain more entries. The new status lines provide information about
Paradyn and your application process. These are shown in Figure 18 (which shows the Paradyn
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application program (in this casgiiun is named), the
name of the machine (c23), the name of the user (self), and the name of the daemon (rshd)

2. Processes: Typically Paradyn will indicate the process ids in this field. In the case of
MPICH, this field is used to indicate that paradyn has identified the job as an MPICH job.

3. Application status: The current status of the application program (either READY, RUN-
NING, PAUSED, or EXITED).

4. Hosts: Status lines for each host. Once the application starts running these will display the
status of each host (running, paused, or exited). In Figure 18 only the hostname ¢23 is shown
as we have not yet started the application.

The new status line for the Paradyn procdsstd Manager) displays the state of Paradyn’s Data
Manager.

Now that Paradyn has had a chance to look over your program, it is able to add entries to the
Where Axis. The new entries in the Where Axis correspond to resources that can only be obtained
when the application process has been defined and started. These new entries include modules and
procedures in th€ode hierarchy, and process IDs in tMachine hierarchy. Figure 19 shows the
new Where Axis with these new resources added. The Process hierarchy contains four new pro-

Tutorial March 21, 2005 Release 4.2

Page 21

Paradyn Main Control
ara|

File Setup Phase Visi Help yrl
UIM status = readn
Application wame : program: mpioan, machine: o223, wser: (self)y, daemon: cshd
Application status
Data Manager = readn
PYOCessps : MFICH
.c23 : PID=23923, rceady.

RUN | | EXPORT | EXIT |

Figure 18: Paradyn Main Control window after the MPI application process is started

cesses (one for each MPI process).

Selections Havigate

j Whole Program

Code Machine SyncObject
I

| - .
DEFAULT_MODULE M E |c23.cs.wisc.edu ¢26.cs.wisc.edu
gz ¥ . .

N [

search: |

Figure 19: Where Axis after the om3 MPI application process is started

At this point, Paradyn is ready to start running the application. You can now seleRtitkiie
button from the Paradyn Main Control window to start executingy or alternatively first define

some performance measurements and/or views before running it (as described in the follow-
ing sections). Once execution has commencedPAUSE button can be used to temporarily halt
it and RUN will resume execution. Note, however, that execution can only be resumed from the
current point and not from the start (without exiting and restarting Paradyn).

Tutorial March 21, 2005 Release 4.2

Page 22

3.2 Viewing performance data

Before you run the application process, you may want to start a visualzer this application,

we will start a time-histogram visualization to view CPU utilization and synchronization blocking
time for the application. In this section, we describe how to start a visualizer, and how to choose
the set of metrics and parts of the program that a visualizer will display.

3.2.1 Starting a visualizer

To start a visualizer, select thési option from the Paradyn main window menubar. This will
open theStart A Visualization dialog that allows you to choose a type of visualization and a
phase for the data. Figure 6 shows this dialog with a Histogram visualizer selected for the Global
Phase (Section 2.4 discusses phases).

Once the visualization selection has been made, click oA¢bept button and Paradyn will
display a metrics menu appropriate for this MPI application. This menu, shown in Figure 20,
allows you to select the set of metrics to be displayed by the visualization. In this example, we
have selectedync_wait_inclusivéinclusive synchronization blocking time) amgu_inclusive
(inclusive CPU time).

To choose the parts of the program for which the metric will be collected, select resources by
clicking on nodes in the Where Axis. A focus is a location in the application for which metric data
can be collected. For example, selecting the nodem3_4nodes{23929} and
om3_4nodes{19624} from the Process hierarchy, limits data collection to these two processes
(23929 on ¢23 and 19624 on c26). Selecting a module from the Code hierarchy limits data collec-
tion to that module. Figure 19 shows the Where Axis.

Paradyn combines selections from each of the resource hierarchies to cfeates @ach
selection further restricts the scope of data collection. If you had made the previous process and
module selections, then you limit data collection to activity in a particular module only in pro-
cesses 23929 and 19624. This selection corresponds to two foci: the first focus is when process
23929 is running in the module you selected; the second focus is when process 19624 is running
in that module.

If no Where Axis nodes are selected then Paradyn uses the tidfaldtProgram .

Once you have made your selections, click on the Accept button on the metrics menu. Paradyn
will then try to enable data collection for your selection. The selection is expanded to be the cross-
product of metric-focus pairs from the list of metrics and foci selected. For example, if the metrics
CPU _inclusive and sync_wait_inclusive , and the resource nodesm3_4nodes{23929} ,
om3_4nodes{19624} , andlibm.so.6 were selected, then Paradyn would try to enable four met-
ric-focus pairs:

» CPU_inclusivetiime for process 23929 when it is running in modiute.so.6
* CPU_inclusivetime for process 19624 when it is running in modiute.so.6
* sync_wait_inclusivéime for process 23929 when it is running in modaie.so.6

1. Visualizers do not have to be started now, but doing so before the program starts running will guarantee
that you will get data for the complete execution of the application.

Tutorial March 21, 2005 Release 4.2

Page 23

* sync_wait_inclusivéime for process 19624 when it is running in modie.so.6

If at least one metric-focus pair was successfully enabled, Paradyn will start the visualization
process and start sending performance data values to the visualization. If there are any metric-
focus pairs that could not be enabled, Paradyn will display a message listing those pairs, and re-
display the metrics menu for you to modify your selection. If this occurs, and you do not want to
try enabling any other metric-focus pairs, you can chooseCeCEL button on the metrics
menu.

Select Metrics amd Focus(es) helow

sampling_rate procedure_called cc_ms(gBytesSent
number_of_cpus exec_time cc_msgBytesRecv
stackwalk_time Cpu msgs
numOfActCounters o cpu_inclusive msyg_bytes_sent
numOfActProc Timers SYNC_0Ops msyg_bytes_recv
num OfActWallTimers sync_wait io_ops
pause_time B sync_wail_inclusive io_wait
active_processes pp_msgs io_wait_inclusive
predicted_cost pp_msgBytesSent io_bytes
observed_cost pp_msgBytesRecv
procedure_calls CC_Msygs

ACCEPT CLEAR CANCEL

Figure 20: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected

The time-histogram shown in Figure 21 is the result of selecting the metrics
“sync_wait_inclusive” and “cpu_inclusive” from the metrics menu with machine c23 selected in
the WhereAxis.

Once the time-histogram is created, click on BN button from the Paradyn main window
to start the application process. Performance data will then be sent by Paradyn to the time-histo-
gram. The time-histogram contains several menu options for changing the display of the perfor-
mance data and for changing the set of performance data that is currently being displayed. These
options are described in detail in tharadyn User’'s Guide

3.3 Performance Consultant diagnosis

The Performance Consultant is the part of the Paradyn tool that performs a search for perfor-
mance bottlenecks. It automatically enables and disables instrumentation for specific metric-focus
pairs as the search progresses. The Performance Consultant starts looking for course-grained per-
formance problems and then iteratively tries to refine the search to isolate the performance bottle-
neck to a specific location in the application’s execution. This location is specified as a point in a
three dimensional search space defined by a Why Axis, Where Axis, and When Axis.

3.3.1 The Performance Consultant window

The Performance Consultant is started by selectingénermance Consultant option from the
SetUp menu on the Paradyn main window. Figure 10 shows the initial Performance Consultant
window. We briefly discuss the parts of the Performance Consultant window below:

Tutorial March 21, 2005 Release 4.2

Page 24

Histogram Visualization
ara
File Curve | yn

CPUs
0.9

0.&

0.7

0.6 7

0.5 7

s

0.4 a
0

0.5 m

0.2

0.1 7

o T T T T
4:00 L20 40 S:00
hin: Sec
——— cpu_inclusives fachinepc? 3.05.wiscedu, » (smoothed)
sunc_wait_inclusives filachinefc2 3.c5.wisc.edu. > (smoothed)
Fan F |
I'\I I Eal

Fhase: Global

Figure 21: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”

1. Searches Menu: Allows you to view search history graphs from different phases.

. Status line: The status line at the top of the window indicates the phase for which the search is
defined (in this example, the search is defined foGthieal Phase).

3. Search Text Output: This area is used by the Performance Consultant to print status messages
about the state of the search.

4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor-
respond to different points in the search space, and arcs correspond to different refinements
that have been made.

5. Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpret the
color of nodes and edges in the search history graph, and how to navigate around the window.

3.3.2 Starting the search

The search can be started by clicking on Sgarch button in the Performance Consultant win-

dow. As the Performance Consultant search proceeds, status information will be printed to the
window, and the search history graph will be updated to reflect the current state of the search. A
Performance Consultant search is either defined over the entire run of the application (the global

Tutorial March 21, 2005 Release 4.2

Page 25

phase), or over a specific phase of the application’s execution. In this example we selected the
Search button in the Performance Consultant window to start a global phase search. Figure 22
shows the Performance Consultant window during the bottleneck search.

By looking at the Search History Graph, we can see how the Performance Consultant itera-
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Consultant
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refining the
search. Each level in the search history graph represents a refinement that was made in the search
process. Refinements are only made on hypotheses that test true, and are used to further isolate the
bottleneck to a particular part of the application’s execution. In general the results of the search
can be obtained by following the blue nodes from the root of the search history graph to a leaf
node. Also, by clicking the right mouse button on any node in the search history graph, you can
see a text string representation of the hypothesis associated with any node in the graph. This string
is displayed in the information line below the search history graph. For example, the information
line below the search history graph in Figure 23 shows the hypothesis associated with the node
representing theync_wait_inclusivéime for the whole program.

Figure 22 shows the search history graph during the search for a bottleneek iMou can
see that there have been refinements on both the Why and Where axis (these are indicated by yel-
low and purple edges in the search history graph). Also, there are nodes representing hypotheses
that have tested true (blue nodes), nodes representing hypotheses that have tested false (pink
nodes), and nodes representing hypotheses that have not yet been decided (green nodes). Note that
this application is CPU-bound.

Figure 23 shows the search history graph after the search has progressed further. The first
hypothesis evaluated to true (the blue colorepLevelHypothesis node at the top of the graph).

The first refinement was on the Why axis and resulted in finding that the application is CPU
bound (theCPUbound node is true). Next, the synchronization bottleneck was isolated to a spe-
cific function in the applicationnfain). and to specific machines43, c26, c39, c48). The fact

that thesenodes are siblings indicates that these refinements were done at the same time. These
nodes were then further refined in parallel.

Tutorial March 21, 2005 Release 4.2

Page 26

- —

ExcessiveSyncWaitingTime CPUbound
EzcessivelOBlockingTime

c23.cs.visc.edu c26.cs.isc.edu ¢39.cs.wisc.edu c48.cs.wisc.edu main

om3_dnodes{23929} ||| om3_dnodes{19624) |[{[om3_dnodesfia7z; ||| om3_dnodes(z6069) || (| PMPI_init

PMPI_Buffer_attach
PMPI_Type_veclor
PHMPI_Type_commit
PMPI_Comm_rank
PMPI_Comm_size

glohal_open
read_geometry
read_stress
reail_annual_temp
read_annual_salt
wrile_picture

init_state
time_step
wtite_history
PMPI_Finalize

Figure 22: The Performace Consultant bottleneck search with MPl om3

Tutorial March 21, 2005 Release 4.2

Page 27

Figure 23: Search History Graph om3

Tutorial March 21, 2005 Release 4.2

Page 28

4 FURTHER INFORMATION

This tutorial has not covered all of the features in Paradyn. It was intended to guide you
through a few start-to-finish sessions with Paradyn, using the more common features. Note that
some of the functionality shown in this tutorial differs from earlier versions of Paradyn, which are
no longer supported. For a complete description of the features in Paradyn, and information on
how to prepare applications for use with Paradyn, seBatadyn User’'s Guide

4.1 Contacting the Paradyn developers

There are various ways to get in touch with the Paradyn developers. We are happy to try and
answer questions and appreciate feedback.

e-mail:

Web:

FTP:

FAX:

Postal:

paradyn@cs.wisc.edu

The project e-mail address. Use this address for technical questions or requests.

http://lwww.paradyn.org

The project home page. From this page, you can find out how to get a binary or source version
of Paradyn. You can also get updates and news on the current release of Paradyn.

ftp://ftp.cs.wisc.edu/pub/paradyn/

The project ftp site. In the “paradyn” directory, you will find subdirectories containing the bi-
nary and source versions of the Paradyn release. Make sure to look at the README files!

+1 (608) 262-9777

Paradyn Project

c/o Prof. Barton P. Miller
Computer Sciences Department
University of Wisconsin

1210 W. Dayton Street
Madison, WI 53706-1685
US.A.

Documentation Overview March 21, 2005 Release 4.2

	Tutorial
	1 Preliminaries
	2 Common tutorial - bubba_seq
	2.1 Running an application
	2.1.1 Start Paradyn and define the application process
	Figure�1: Paradyn Main Control window.
	Figure�2: Paradyn base Where Axis.
	1. User: The login name on the host on which Paradyn will start the application process. In this ...
	2. Host: The host on which Paradyn will start the application process. A blank value will default...
	3. Directory: If the host on which the application is to be started is different from the one on ...
	4. Command: This entry takes the command that will start the application program. In this example...
	5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since th...

	Figure�3: The Define A Process window specifying bubba application process

	2.1.2 Starting an application process manually
	1. Application name: The name of the application program (bubba or bubba.exe), the name of the ma...
	2. Processes: A list of the process IDs of all the processes in the application. In this example,...
	3. Application status: The current status of the application program (either RUNNING, PAUSED, or ...
	4. grilled: Status lines for each host. Once the application starts running these will display th...
	Figure�4: Paradyn Main Control window with bubba loaded and ready to run
	Figure�5: Where Axis after the bubba application process is loaded

	2.1.3 Starting an application process automatically

	2.2 Viewing performance data
	2.2.1 Starting a visualizer
	Figure�6: Selecting a Histogram visualization
	Figure�7: Metrics menu with “cpu” and “cpu_inclusive” selected
	Figure�8: Message box shown when instrumentation is deferred
	Figure�9: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci

	2.3 Performance Consultant diagnosis
	2.3.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search history graphs from different phases. (Phases are dis...
	2. Status line: The status line at the top of the window indicates the phase for which the search...
	3. Search Text Output: This area is used by the Performance Consultant to print status messages a...
	4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor...
	5. Buttons: These allow you to start or pause the search.
	6. Search History Graph Key: The bottom portion of the window describes how to interpret the colo...
	Figure�10: The Performance Consultant window

	2.3.2 Starting the search
	Figure�11: The Performance Consultant bubba exigency search
	Figure�12: The Search History Graph showing only exigent bubba nodes

	2.3.3 Investigating the Performance Consultant’s diagnosis
	Figure�13: BarChart visi presenting selected bubba performance data

	2.4 Phases
	Figure�14: PhaseTable visi presenting phase durations.
	Figure�15: Histogram for global phase
	Figure�16: Histogram of current phase

	3 MPI Tutorial - decomp_MPI
	3.1 Running the MPI application
	3.1.1 Start Paradyn and define the MPI application process
	1. User: The login name on the host on which Paradyn will start the application process. In this ...
	2. Host: The host on which Paradyn will start the application process. A blank value will default...
	3. Directory: If the host on which the application is to be started is different from the one on ...
	4. Command: This entry takes the unix command that will start the application program. The syntax...
	5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since th...
	6. MPI Type: This option allows you to specify whether your MPI job is using the LAM or MPICH imp...
	Figure�17: The Define A Process dialog for MPI om3

	3.1.2 Start the MPI application process manually
	1. Application name: The name of the application program (in this case, mpirun is named), the nam...
	2. Processes: Typically Paradyn will indicate the process ids in this field. In the case of MPICH...
	3. Application status: The current status of the application program (either READY, RUNNING, PAUS...
	4. Hosts: Status lines for each host. Once the application starts running these will display the ...
	Figure�18: Paradyn Main Control window after the MPI application process is started
	Figure�19: Where Axis after the om3 MPI application process is started

	3.2 Viewing performance data
	3.2.1 Starting a visualizer
	Figure�20: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected
	Figure�21: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”

	3.3 Performance Consultant diagnosis
	3.3.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search history graphs from different phases.
	2. Status line: The status line at the top of the window indicates the phase for which the search...
	3. Search Text Output: This area is used by the Performance Consultant to print status messages a...
	4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor...
	5. Buttons: These allow you to start or pause the search.
	6. Search History Graph Key: The bottom portion of the window describes how to interpret the colo...

	3.3.2 Starting the search
	Figure�22: The Performace Consultant bottleneck search with MPI om3
	Figure�23: Search History Graph om3

	4 Further information
	4.1 Contacting the Paradyn developers

