
Paradyn Paral le l Performance Tools

Developer’s Guide 4/13/04

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

Release 4.1
April 2004

Developer’s Guide

Table Of Contents

Developer’s Guide April 13, 2004 Release 4.1

1 Overview..5
1.1 Document revision history..5
1.2 New functionality for release 4.0..5
1.3 New functionality for release 3.0..6
1.4 New functionality for release 2.1..6
1.5 Paradyn subsystems and source code structure..7

2 Paradyn Package Dependencies...9
3 Paradyn Front-end..11

3.1 Data Manager..11
3.2 Visi Manager...13
3.3 Visi threads..14
3.4 User Interface (UI) thread...16
3.5 Performance Consultant thread...19

4 Visi Library..20
5 Paradyn Daemon..21

5.1 Introduction...21
5.2 Application processes...22
5.3 Object file processing..22
5.4 Shared-object processing..22
5.5 Performance data sampling...26

5.5.1 Shared-memory sampling..27
5.5.1.1 Synchronization issues for shared-memory sampling.......27
5.5.1.2 The need for a get-remote-time() primitive28
5.5.1.3 Management of instrumentation variables in shared memory29

5.5.2 Alarm sampling..31
5.6 Retroactive instrumentation..31
5.7 Dynamic Heaps...34
5.8 Trampoline Guards...36
5.9 Instrumentation of multi-threaded programs..37

5.9.1 Introduction..37
5.9.2 Paradyn Program Instrumentation...38
5.9.3 Design Issues...38
5.9.4 Current Design...38

5.9.4.1 Data manager...38
5.9.4.2 Instrumentation details...39
5.9.4.3 Base Trampoline..39
5.9.4.4 Mini Trampoline..39
5.9.4.5 Thread Creation...39
5.9.4.6 Thread Deletion...40
5.9.4.7 Inferior RPCs...41

5.9.5 Virtual Timers ..41
5.9.6 Current Status and Limitations..42

5.10 Timer Levels ...42
6 x86 Port..44
7 Linux port...50
8 Run-time instrumentation library...52
9 MDL implementation...53

Table Of Contents

Developer’s Guide April 13, 2004 Release 4.1

9.1 Important files...54
9.2 Lexical and syntax analysis..55
9.3 Semantic analysis and intermediate code generation..57
9.4 Where these classes are defined..58

10 Igen Interface Generation..58
10.1 Overview of Igen ..58

10.1.1 Synopsis...58
10.1.2 Output ..59
10.1.3 Memory ..59
10.1.4 Upcalls ...59
10.1.5 Interface template...59

10.2 Igen grammar..60
11 Makefile Issues...62

11.1 Overview of Makefile organization ..62
11.2 Site-dependency issues...63
11.3 The DEPENDS file...64
11.4 Igen Files...64
11.5 Building on Windows ...64

12 MPI Application Support...65
12.1 MPICH Support..65

12.1.1 MPICH job startup procedure..66
12.1.2 Supporting MPICH on other platforms..66

List of Figures Page -iv

Developer’s Guide April 13, 2004 Release 4.1

Figure 1: Paradyn (and dyninstAPI) subsystems. ...7
Figure 2: Paradyn/dyninstAPI module structure and dependencies.8
Figure 3: Visi Manager interface ..14
Figure 4: VISIthreadGlobals struct members. ..15
Figure 5: Process class and shared objects. ..23
Figure 6: image, module, pdFunction, and instPoint classes. ..24
Figure 7: Data structures of the Paradyn daemon. ...26
Figure 8: Pseudo-code for startTimer and stopTimer operations ...28
Figure 9: Pseudo-code for shared-memory sample of a timer ...28
Figure 10: Final pseudo-code for startTimer/stopTimer operations29
Figure 11: Final pseudo-code for timer sampling ..29
Figure 12: variableMgr and shmMgr ...30
Figure 13: Retroactive instrumentation example. ..34
Figure 14: Crucial MDL files ...54
Figure 15: An example demonstrating how apply() functions work.57
Figure 16: Important MDL classes. ..58
Figure 17: MPICH Job Launch Procedure ...67
Figure 18: Paradyn MPICH Job Launch Procedure ...68

Page 5

Developer’s Guide April 13, 2004 Release 4.1

1 OVERVIEW

This guideis intendedto helpdeveloperswho wantto understandtheParadynsourcecode.It is a
roughoverview to helpwith modifications,extensions,andportingefforts.Thisdocumentis con-
stantlybeingmodifiedandextended.Thisdocumentassumesthatyouarefamiliarwith thefunda-
mentals of Paradyn from the technical papers, manuals, and use of the tool.

We encourageresearchdevelopmentsbasedon Paradynand hopethat this documentis of
somehelp. The ultimatesourceof adviceon Paradyn(other thanthe sourcecodeitself!) is the
Paradyn development group. Feel free to contact us atparadyn@cs.wisc.edu.

1.1 Document revision history

❏ v4.0: minor revisions

• Added section on instrumentation of multi-threaded programs

❏ v3.0: major revision

• Added new section on Linux-specific implementation: Section7

• Added new section on retroactive (catchup) instrumentation: Section5.6

• Added new section on multiple inferior instrumentation heaps: Section5.7

• Add new section on base-trampoline re-entrancy guards: Section 5.8

❏ v2.1: minor revision

• Expanded this overview with summary of new functionality and subsystem dependencies

• Added new section on MDL implementation: Section9

• Expanded discussion of site dependencies and build configuration in Section11.2
(and Section11.5 for Windows)

• General update and correction of typos

❏ v2.0: major revision

1.2 New functionality for release 4.0

In addition to the new featuresof summarizedin the User’s Guide releasenotes(Section1.3),
new functionality for Paradyn 4.0 includes:

• Revamped management of instrumentation variables and shared memory

• Paradynand Dyninst runtime instrumentationlibraries have beendecoupled;Paradynnow
loads the Dyninst RT library separately

• Now using "new" multi-file Solaris /proc interface

• Reorganization to separate Dyninst and Paradyn code

• Support for system call interruption on x86 when doing RPCs

• Increased efficiency of accessing instrumentation variables in MT applications

Page 6

Developer’s Guide April 13, 2004 Release 4.1

1.3 New functionality for release 3.0

In addition to the new featuresof summarizedin the User’s Guide releasenotes(Section1.3),
new functionality for Paradyn 3.0 includes:

• ports for x86/Linux and MIPS/Irix

• support for Irix native MPI and MPICH on x86/Linux and x86/Solaris

• multiple inferior instrumentationheapswhich supportbasetramplocality to instrumented
functions and consequent atomic single-instruction instrumentation points

• retroactive (catchup) instrumentation

• callgraph-based Performance Consultant exigency search

• instrumentation re-entrancy guards

1.4 New functionality for release 2.1

In addition to the new featuresof summarizedin the User’s Guide releasenotes(Section1.3),
new functionality for Paradyn 2.1 includes:

• application re-linking requirement removed for SPARC/Solaris
(Paradynnow dynamicallyloadsits run-timeinstrumentationlibrary andworkswith unmodi-
fied application executables on SPARC/Solaris and x86/Windows)

• automatic code block identification [on Solaris platforms]
(eliminating the requirementto re-link the applicationprogramusing explicit code block
markers,now alsorelevant for x86/Solaris).This removes the needfor DYNINSTstartcode
andDYNINSTendcode markerswhichwerepreviouslynecessaryto delimit “interesting”appli-
cation code, and also leads into the next new feature:

• mergedprocessingof staticallyanddynamically-linkedmodules,allowing generalizedmod-
ule and function exclusion [on Solaris platforms].
In general,thecodefor handlingstaticallyanddynamicallylinkedcodeonSolarishasunified.
This unificationremovesthe requirementof re-linking target applicationprogramswith the
DYNINSTstartcode andDYNINSTendcode markers.It alsogenerallyincreasestheamountof
applicationcodewhich is instrumented,andnecessitatesexplicitly excludingmoremodulesin
the Paradyn configuration files.

• handling of stripped dynamic libraries [under Solaris]
The run-timelinker’s dynamicsymboltable(.dynsym) is now parsedallowing instrumenta-
tion of stripped shared objects and stripped dynamic executable files on SPARC&x86/Solaris.

• 2-pass function relocation and expansion [on SPARC architecture]
Previously, when relocatinga function which could not be instrumentedin place,Paradyn
madea singlepassover the function machinecodeandpatchedtargetsfor machineinstruc-
tionswhich specifya codeaddressduringthis singlepass.This meantthat instructionswhich
specifieda destinationaddressinsidethesamefunction (suchasbranchinstructions)did not
have correcttargetsif any extra codeneededto be insertedbetweentheoriginal locationand
the targetaddress.Functionrelocationis now donein two passes:thefirst passdetectsloca-
tions at which extra instructionswill needto be inserted,and the secondpassrelocatesthe

Page 7

Developer’s Guide April 13, 2004 Release 4.1

function,patchingaddresstargetsinsideof thefunctionaccrordingly. This featureis only cur-
rently implemented on the SPARC architecture.

• better handling of optimized code [on SPARC architecture].
A numberof sequenceswhich appearin heavily optimizedSPARC codearecorrectlyparsed
andinstrumentedby Paradynversion2.1whichwerenotcorrectlyhandledby theParadyn2.0
release.To date thesecode sequenceshave only beenfound in heavily optimizedsystem
libraries (especiallylibc).

• more powerful, simplified MDL syntax for metric definition

• enhanced metrics for I/O in MPI programs [on the SP2]

• scalability to monitor larger numbers of processes

• easier, parameterized source build (with PVM support now a build option)

1.5 Paradyn subsystems and source code structure

Paradyn consists of several subsystems which are listed in Figure1.

“Paradyn” is the front-endcontrol processwhich typically runs on desk-topworkstations.
“Paradynd”is theParadyndaemonprocessthatrun on eachhoston which you run your applica-
tion program.“dyninstAPI“ containsthe codeof the dynamicinstrumentationapplicationpro-

graminterface,or dyninstAPI1 . In a future release,the “dyninstAPI” directorywill containjust
thedyninstAPIlibrary but todayit is an intermediatestagein theseparationof that functionality
from theParadyndaemon.“rtinst” is thesourcefor the library libdyninstRT that is linked into

paradyn Paradyn front-end.

paradynd Paradyn daemon.

dyninstAPI A separatelibrary for dynamicinstrumentation,alsousedaspart of the
Paradyn daemon.

dyninstAPI_RT dyninstAPI run-time instrumentation library (not used by Paradyn).

rtinst Paradyn run-time instrumentation library.

visiClients Visualizationclient programsfor performancedata:rthist (run-timehis-
togram),table,barchart,phaseTable, terrainand tclVisi. Also the term-
Win program for output data of application processes

util Utility functions used by other sub-systems.

thread General purpose custom multithreading package.

igen RPC interface generator.

visi Visi interface library.

Figure 1: Paradyn (and dyninstAPI) subsystems.

1. also available fromhttp://www.cs.umd.edu/projects/dyninstAPI

Page 8

Developer’s Guide April 13, 2004 Release 4.1

eachapplicationprogramto supportParadyn’s dynamicrun-timeinstrumentation.“visiClients”
are separaterun-time visualizationprogramsthat can be startedby Paradynto display perfor-
mancedata.The remainingitems(“util”, “thread”, “igen” and“visi”) are librariesandutilities
used by parts of Paradyn and dyninstAPI: component dependencies are summarized in Figure2.

Note: the terrain visi hasnot yet beenportedto Windows.While the samesource structure
applies, as described in the discussion which follows, differences are dealt with in Section11.5

The root of the Paradynsourcecodetreehasonedirectory for eachoneof thesemodules.
Each module directory is divided into several sub-directories:
h: this directorycontainstheexportedinterfaceof themodule,usuallyC or C++ headerfiles, or

Igen interface specifications (files with suffix .I).
src: thisdirectorycontainsthesourcecodefor themoduleandheaderfiles thatarenotpartof the

exported interface.
compilationdirectories(<arch>-<vendor>-<os>, asprovidedby sysnamefrom theGNU config-

urationsystem,one for eachsupportedplatform): Thesedirectoriescontaina Makefile and
machinederived files that arebuilt aspart of the compilationprocess,suchas intermediate
files generated by Igen, flex, and bison, and object files.

Core subdirectory Component dependencies
Util Visi Igen Other

Basic Components:
libpdutil util
libpdthread thread
libvisi visi h exe
igen* igen h&lib

dyninstAPI:
libdyninstAPI dyninstAPI h dyninstAPI_RT
libdyninstAPI_RT dyninstAPI_RT h

Key Subsystems:
libdyninstRT rtinst h
paradynd* paradynd h&lib exe paradyn, dyninstAPI, rtinst
paradyn* paradyn h&lib h/.I exe (libpd)thread, paradynd

Visualizers:
barChart* visiClients/barchart h&lib h&lib paradyn
phaseTable* visiClients/phaseTable h&lib h&lib paradyn
rthist* visiClients/histVisi h&lib h&lib paradyn
tableVisi* visiClients/tableVisi h&lib h&lib paradyn
tclVisi* visiClients/tclVisi h&lib h&lib paradyn
terrain* visiClients/terrain lib h&lib [paradyn]

Figure 2: Paradyn/dyninstAPI module structure and dependencies.
Libraries andassociatedincludefilesarecommonmoduledependencies,oftensupplemented
with process interface routines generated by Igen from interface specifications. Occasionally,

direct source sharing is also employed (e.g., between the dyninstAPI and paradynd).

Page 9

Developer’s Guide April 13, 2004 Release 4.1

Eachmoduledirectoryalsocontainsaconfigurationfile (make.module.tmpl) thatis included
by the Makefile in the compilation directories.

Therootdirectoryof thesourcecodetreealsocontainsaMakefile,whichcanbeusedto build
all of thecomponentsof thesystem,andthreeconfigurationfiles thatareincludedby theMake-
files in the compilation directories of each module:
make.config: generaldefinitionsfor all Paradynmodules,suchascompilersandotherprograms

to use,flags,searchpathfor includefiles, libraries,etc.Thisfile generallyneedsto beupdated
for eachinstallation,with thedesiredconfigurationoptions,valid pathsto theprograms,and
libraries; see Section11 for further details.

make.library.tmpl: general definitions for modules that generate libraries.
make.program.tmpl: general definitions for modules that generate programs.

The build also usesa shell/commandscript, buildstamp, provided in the scriptsdirectory
(which also includes a copy of sysname).

A morecompletedescriptionof the configurationandMakefilesusedin Paradynappearsin
Section11.

2 PARADYN PACKAGE DEPENDENCIES

This sectionlists thepackagesneededto build Paradynon Unix systems:someWindows differ-
encesarementionedhere,but seeSection11.5for details.For eachpackage,we list wherein the
Paradynsourcecodethepackageis needed,theversionof thepackagecurrentlyused,how to get
the package,andsomeadditionalinformation.If you noticeany packagesthat we have missed
listing below, please let us know.

❏ gcc/g++:

• Where used: compiling all of Paradyn.

• Version: We currentlybuild usinggcc 3.2.2;Paradynmay compilewith gcc-2.95,gcc-2.96
(theso-called“RedHatgcc”), or with gcc-3.0,but wesupportgcc3.2.2andrecommendusing
it for its improved standards compliance and reliability.

• How to get: ftp://ftp.gnu.org/gnu/gcc

• Comments:closeto impossibleto work withoutagoodC++ compiler. Weusesomenon-stan-
dard features (such as long long), which may not be supported by other compilers.

• Windows:VisualC++ 6.0or 7.0 (VC.NET) is usedinstead.CompilingParadynwith gcc/g++
is still untested on this platform.

❏ GNU make:

• Where used: building all modules in Paradyn

• Version: currently using make-3.74

• How to get: ftp://ftp.gnu.org/gnu/make-3.74.tar.gz

• Comments: we use includes, conditional defines, and other features specific to GNU-make.

• Windows:nmake is usedinstead,whichhasadifferentsyntaxandcapabilities,necessitatinga
separatesetof make configurationfiles callednmake.config, nmake.*.tmpl. Theseconfig-

Page 10

Developer’s Guide April 13, 2004 Release 4.1

uration files may be deleted if you’re not working with Windows.

❏ Perl5:

• Where used:in the ‘tcl2c’ script to convert ParadynTcl files to C++; alsoused(thoughthis
could be easily changed) inmake.config

• Version: perl5.xxx

• How to get: http://mox.perl.com/ and explore, or http://wuarchive.wustl.edu/sys-
tems/gnu/perl5.002.tar.gz

• Comments: possible to rewrite tcl2c in almost any language.

• Windows: currently not needed on this platform.

❏ Tcl/Tk:

• Where used: user-interface of Paradyn, tclVisi package, barChart, tableVisi, etc.

• Version: Tcl-8.3.3, Tk-8.3.3 (or higher in the 8.3 series). 8.4.xis not supported.

• How to get: http://tcl.activestate.com and explore.

• Comments: Tcl/Tk enables greater portability for Paradyn’s user interface.

• Windows:we recommendusingthepre-built binaryTcl/Tk packagefrom tcl.activestate.com
on Windows systems.

❏ Xaw, Xext, Xt:

• Where used: 3D terrain visi.

• Version: Xaw-5.0, Xext-4.10, Xt-4.10 (or higher).

• How to get: http://www.x.org/ and explore.

• Comments: other versions may require re-compiling rthist.

• Windows: not used on this platform.

❏ Bison, Flex:

• Where used: Igen, MDL.

• Version: bison v1.24 or 1.25 (1.875 is not supported), flex 2.5.2 (or higher).

• How to get: ftp://ftp.gnu.org/gnu/bison-1.24.tar.gz and flex-2.5.2.tar.gz

• Windows:theseareneededto build paradynd. We recommendthatyou getpre-built versions
which are includedin the cygwin package(www.cygwin.com).You could also build them
from the sources.

❏ libelf: (Linux only)

• Where used: paradyn daemon, dyninstAPI.

• Version: Usea versionappropriatefor your kernelversion.For example,RedHat 6.2 users
can use libelf-0.6.4-4.i386.rpm, Red Hat 7.1 users can use libelf-0.6.4-7.i386.rpm.

• How to get: An RPM is included in Red Hat distributions.

• Comments:This packagecontainsthe libelf library andheaders,usedby Paradyn’s daemon
and dyninstAPI to access ELF files under Linux.

Page 11

Developer’s Guide April 13, 2004 Release 4.1

❏ ONC RPC: (Windows only)

• Where used: Paradyn daemon, dyninstAPI, libpdutil

• Version: v1.10 or later

• How to get: ftp://grilled.cs.wisc.edu/~paradyn/etc/oncrpc112winnt.tar.gz

• Comments:the ONC RPC implementation of Sun RPC for Windows originates from Martin
F. Gergeleit (http://set.gmd.de/~mfg/oncrpc.html), however, the file RPC/XDR.H needs to be
exchanged with the one in the Paradyn release to compile successfully with Visual C++ 6.0.

❏ rshd:

• Windows:if you wish Paradyn to be able to automatically start applications and Paradyn dae-
mon processes on remote Windows systems, an rshdaemon process, such as WRSHDNT, is
required to be running on the remote system.

3 PARADYN FRONT-END

The Paradyn front-end is a multi-threaded system that consists of several modules: the data man-
ager, the user interface, the visualization manager, and the Performance Consultant. Each of these
modules is a separate thread. The Paradyn process starts by creating each module’s thread, and
invoking initialization routines for each thread. After each thread is initialized, the commands in
the Paradyn configuration files are processed, and control is passed to the threads.

The User-Interface thread (UI) is responsible for receiving user’s commands and managing
the display windows (the Paradyn Main Console Window, the Where Axis, and the Performance
Consultant Window). The Data Manager thread (DM) is responsible for handling requests from
other threads for data collection, for receiving performance data from the Paradyn daemons and
delivering them to the requesting threads, and for managing information about phase, metrics, and
the resource hierarchy. The Performance Consultant thread (PC) is responsible for the automated
search for performance bottlenecks in the application. The Visi Manager thread (VM) is responsi-
ble for managing visualization processes (like the run-time histogram and barchart processes) and
for communication between each visualization process and the Data Manager.

The source code for the Paradyn process is divided in several directories, including one direc-
tory for each thread: DMthread, PCthread, UIthread, and VMthread. There is also a directory
called TCthread, which has code to handle tunable constants. (Tunable constants are not a thread,
however, they are managed by the UI thread). The met directory contains the parser for the Para-
dyn Configuration Language; the VISIthread directory contains the code for visi threads, which
are created by the VMthread when a new visualization process is started; the pdMain directory
contains the Paradyn main routine.

The following sections describe the major modules of the Paradyn front-end.

3.1 Data Manager

The Data Manager (DM) is one of the threads of the Paradyn main process. The Data Manager
handles requests from other threads for data collection, delivers performance data from the Para-
dyn daemon(s) to the requesting thread(s), and maintains and distributes information about the
metrics and resource hierarchies for the currently defined application.

Page 12

Developer’s Guide April 13, 2004 Release 4.1

Performance data collection

The Data Manager handles requests from other threads for performance data collection. For this
purpose, the DM provides the “public” procedure dataManager::enableDataRequest

(DMpublic.C). This procedure will receive, among other parameters, the metric/focus pair we
want to enable, the perfStreamHandle of the calling thread, the identifier of the phase for which
data is requested, and other necessary information. This procedure will then call the correspond-
ing procedures to enable the data collection process in the Paradyn daemon(s).

In general, all the requests to the DM from other threads, are handled in the file DMpublic.C.

Performance data delivery from the Paradyn daemon(s)

Once the data has been successfully enabled, the Paradyn daemon(s) will start sending data to the
requesting threads through the DM. The DM will receive trace records and send them to the
requesting thread (DMperfstream.C).

Metrics and resource hierarchies management

There are objects that can be created and destroyed and the DM has to notify the corresponding
threads about all these changes. If a new resource is created, for example a new process, then the
Paradyn daemon will make a “call back” to the DM, and then the DM will notify the correspond-
ing threads (e.g. the UI). Call backs are defined in the file DMmain.C.

DM objects

The major objects used in the DM thread are described below. The file in which the class of each
object is defined is given in parenthesis.

These objects, once created, are never destroyed:
resource (DMresource.h): the static items basically manage a “database” of all resources. The

non-static items gives you information about a single resource.
resourceList (DMresource.h): a “list” of all resources in the system.
metric (DMmetric.h): contains all the information related to a metric (e.g. name, units, type,

etc).
phaseInfo (DMphase.h): information about phases in the system.
These objects, once created, can be destroyed:
metricInstance (DMmetric.h): this class contains information about the particular “instances”

of all metrics created during the execution of the application being analyzed. (If a metric is
“enabled”, we are creating a new metric instance; if the same metric is “disabled”, we are
destroying it).

performanceStream (DMperfstream.h): the performanceStream class is basically a consumer
of performance data. Its main function is to provide the means to receive data from the Para-
dyn daemon(s) and send it to the requesting threads.

paradynDaemon (DMdaemon.h): a handle to a running Paradyn daemon (paradynd). This class
provides method functions for process and daemon control as well as for enabling and dis-

Page 13

Developer’s Guide April 13, 2004 Release 4.1

abling data collection. At this moment, if a particular paradynd is removed (e.g., exits), then
Paradyn has to exit too. In other words, we can’t destroy a Paradyn daemon in the current
implementation.
All DM objects should be referred to by their handles outside of the DM thread. The only

operation that clients should perform with DM handles is equality testing (this operation will
always be supported by DM handle types, so clients can compare handle values directly), any
other information that a client needs about a DM object can be obtained by passing the appropri-
ate handle to a dataManager interface routine.

Within the DM thread, care should be taken when using pointers to objects that are not persis-
tent (metricInstance and performanceStream)

DM handles are not reused over the execution of Paradyn, but metricInstance and perfor-

manceStream handles may be invalid. For example, enabling a metric/focus pair, disabling it, and
then re-enabling it may result in two different metricInstance handles to be associated with the
pair.

3.2 Visi Manager

The Visi Manager is a thread in the Paradyn process. It contains information about the visualiza-
tions in the system, and it accepts requests from other threads to start or to kill visualization pro-
cesses. When the visi manager receives a request to start a new visualization, it creates a visi
thread. The visi thread then starts the external visualization process, and acts as an interface
between the visualization process and the Paradyn process.

Visi Manager types

The following is a description of the types used by the visi thread (these types are defined in
VMtypes.h):

VMvisis: The visi manager keeps a vector of VMvisis elements. Each element in the vector con-
tains information about a visualization that has been added to Paradyn. The visi manager uses
this information to start the visualization process. (Note: the matrix and numMatrices ele-
ments are not currently used.)

VMactiveVisi: The visi manager keeps a vector of VMactiveVisi elements. There is one ele-
ment in this vector for each visualization process that is currently executing. When a new
visualization process is started, a new element is added to this vector, and when a visualization
process exits, its corresponding element is removed. The visi manager uses the information in
each element to communicate with the visualization process. Each element contains informa-
tion about the type of visualization that is running, and about the visi thread that is associated
with the visualization process.

visi_thread_args: This struct is used when the visi manager thread creates a visi thread. It con-
tains information that the visi thread needs to start the visualization process. (Note: the matrix
element is not currently used.)

Page 14

Developer’s Guide April 13, 2004 Release 4.1

Visi Manager interface routines

Visi manager interface routines provide information about visualizations in the system, and pro-
vide a mechanism to control visualization process creation and deletion. These routines are
defined in VM.I.

3.3 Visi threads

Visi threads are the only threads that are not persistent over the execution of the Paradyn process.
There may exist zero, one, or more instances of a visi thread at any time. They are the only threads
that can be created and destroyed at any point in Paradyn’s execution.

A visi thread is created by the visi manager thread when it receives a request to start a visual-
ization process. The visi thread starts the external visualization process, and acts as an interface
between Paradyn and the visualization. There is one visi thread for every visualization process
that is executing. The visi thread receives requests from the visualization to change its set of per-
formance data, and forwards these requests to other threads in the Paradyn process. From the
other threads, the visi thread receives performance data and meta data that it packages and for-
wards to the visualization process.

Because there can be multiple instances of a visi thread, visi threads must use thread local data
to keep any unique information that they need to interact with their associated visualization pro-
cess.

Visi thread types

Types used by the visi thread are defined in VISIthreadTypes.h. Each visi thread has an element
of type VISIthreadGlobals in its local data. This element contains state information about the
visualization process it is associated with, and about the other threads with which it needs to com-
municate. Figure 4 provides a description of this struct.

VMActiveVisis Returns a vector of information about all visualization processes
currently running.

VMAvailableVisis Returns a vector of information about all the different visualiza-
tions that are part of Paradyn.

VMAddNewVisualization Takes information about a visualization process, and adds it to its
list of VMvisis elements.

VMCreateVisi Starts a visualization process.

VMDestroyVisi Kills a visualization process.

VMVisiDied Called by a visi thread when its associated visualization process
has exited. It cleans up any state that the visi manager thread has
been keeping for this process.

Figure 3: Visi Manager interface

Page 15

Developer’s Guide April 13, 2004 Release 4.1

The Visi thread and the Visi interface

Each visi thread is a client instance of the visi interface, and each visualization process is a server
instance of the visi interface. The visi interface is defined in visi.h. The visi server routines are
implemented in Paradyn’s visualization library (visiLib). This library is then linked with visual-
izations that want to receive Paradyn performance data. For a complete description of visiLib see
the Paradyn Visi Programmer’s Guide.

The visi thread implements the visi interface client routines. These are upcalls that are made
by the visualization process to the Paradyn process, and they provide a mechanism for a visualiza-
tion process to subscribe or un-subscribe to performance data, or to start a new phase. When the
visi thread receives an upcall from a visualization process, it typically makes one or more calls to
other threads in the Paradyn process to satisfy the visualization’s request.

Field Use

ump Used to call user interface RPCs.

vmp Used to call visi manager RPCs.

dmp Used to call data manager RPCs.

visip Used to communicate with the visualization process.

ps_handle Used as an identifier by the data manager, data manager calls and
callbacks typically have a perfStreamHandle argument.

fd File descriptor used to communicate with the visualization process.

buffer A buffer of performance data (the visi thread sends data to the visu-
alization process a buffer full at a time).

quit Flag that tells the visi thread to exit.

start_up Flag that tells the visi thread that there is some initialization that it
needs to do.

bucketWidth Bucket width associated with the data buckets that are being sent by
the data manager to the visualization process.

currPhaseHandle Handle for the current phase.

args Arguments used to start the visualization process.

mrlist List of metric/focus pairs that the visualization process is currently
subscribed to.

request,
retryList,
numEnabled...

Stores information about any outstanding enable requests that have
been made by the visualization.

Figure 4: VISIthreadGlobals struct members.

Page 16

Developer’s Guide April 13, 2004 Release 4.1

The Visi thread and the Data Manager

The visi thread makes data enable, and disable requests to the data manager thread on behalf of
the visualization process. A data enable request is asynchronous, so the visi thread must keep state
about the request until it receives an asynchronous upcall from the data manager with the
response. Once the visualization has subscribed to some performance data, the data manager
thread will send this data to the visualization’s visi thread. The visi thread packages the data and
sends it to the visualization process.

The visi thread is a data manager client thread, and thus implements data manager client rou-
tines. Since there are other data manager client threads in the Paradyn process, each thread con-
tains code that implements its version of the data manager client thread routine, and then it
registers this routine as a callback with the data manager thread. When the data manager makes an
upcall to a data manager client thread, the client thread’s callback routine is called.

To communicate with the data manager, the visi thread must first create a performance stream.
When the visi thread makes a request to create a performance stream it also registers all its call-
back functions with the data manager. The data manager returns a performance stream handle that
is used in all subsequent communications between the visi thread and the data manager.

Interface routines

The visi thread acts more as a client thread in the Paradyn process, and thus only has one server
routine defined in VISIthread.I:

VISIKillVisi: called by the VM thread when a request is made to kill the visualization pro-
cess.

The file VISIthreadmain.C contains the VISIthread main loop, and callback routines for UI,
and DM upcalls.

The file VISIthreadpublic.C contains VISIthread server routines, and visi interface upcalls.

3.4 User Interface (UI) thread

The user interface (UI) thread handles all graphical displays in Paradyn. It has several tasks to per-
form, including the Where Axis Window, the Tunable Constants Window, the Paradyn Main Con-
sole Window, the Performance Consultant Window, the Error Dialog Window, the Call Graph
Window, etc. For the most part, these tasks are handled via the Tcl/Tk package. Simultaneously,
however, the UI thread must listen for Igen messages from the data manager thread; the most
numerous being “new-resource” messages, which require the UI thread to add items to the Where
Axis display.

UI main loop

UImain() of file UImain.C is the entry point to the UI thread. After creating a number of tunable
constants, it calls initialize_tcl_sources() to read in Paradyn’s Tcl code. The source (.tcl

files) for such code is in the paradyn/tcl directory. When compiling Paradyn, the “tcl2c” script
converts the .tcl files into a tcl2c.C file, which contains a function

Page 17

Developer’s Guide April 13, 2004 Release 4.1

initialize_tcl_sources(). Calling this function (as UImain does now) reads in all of our Tcl
scripts. For this reason, the .tcl files do not need to be distributed in a binary release of Paradyn.

UImain() soon calls msg_bind() on XConnectionNumber() of the X display. In this way, we
can wait for X events. X provides a number of functions (such as XNextEvent()) to do this more
cleanly, but since the UI thread needs to wait not just on X events but also for Igen messages, this
roundabout approach is needed.

The main UI loop is as follows. The routine processPendingTkEventsNoBlock() is called
to process any pending X events (i.e., any Tcl/Tk graphical events) without waiting. Then, we call
libthread’s msg_poll(), which will wait for either an Igen message, an X event, or a keyboard
event (previous calls to msg_bind() determines what msg_poll waits for). We then determine
which of the 3 events occurred, and process the event accordingly. For X events we call
processPendingTkEventsNoBlock(); for keyboard events, we call StdinProc(); for Igen
events we call the appropriate Igen waitLoop() routine. processPendingTkEventsNoBlock()
simply calls Tk_DoOneEvent() until no more Tk events are pending. In this way, we handle
mouse clicks, etc., in all of Paradyn’s windows.

Where Axis

In paradyn/src/UIthread, files dealing with the where axis are whereAxis.h and .C,
where4tree.h and .C, whereAxisTcl.h and .C, where4treeConstants.h and .C, rootNode.h
and .C, and abstractions.h and .C. Miscellaneous graphical routines are supplied in scroll-

bar.h and .C and tkTools.h and .C. Classes helping calculate exactly which node was clicked
on are in simpSeq.h and .C and graphicalPath.h and .C.

Class abstractions (abstractions.h and .C) holds all of the where axes, and also main-
tains variables to manage the Tk window. Method add() is called when a new where axis (a new
abstraction) is created. getCurrent() returns the current where axis structure.
getCurrAbstractionSelections() returns the set of resources selected. Class whereAxis

(whereAxis.h and .C) holds information on a single where axis. Variable rootPtr is the root
node of this where axis. Class where4tree (where4tree.h and .C) holds information on a single
node in the where axis. Member theChildren holds the vector of children of this node.
addChild() is called when a new child is created. draw() draws the node and recursively draws
the children. Method draw_listbox() draws a node’s listbox; method scroll_listbox() han-
dles scrolling it. Class rootNode (rootNode.h and .C) defines the input class to the template
class where4tree<>. File whereAxis.tcl contains the part of the where axis code that is written
in the Tcl/Tk language. It mainly concerns the frame of the window and its menus. The body of
the where axis is drawn in C++ code using a combination of calls to internal Tk C language rou-
tines and Xlib routines (for speed).

Performance Consultant window (Search History Graph)

In paradyn/src/UIthread, files dealing with the Performance Consultant display are
shgPhases.h and shgPhases.C, shg.h and shg.C, shgRootNode.h and shgRootNode.C,
shgTcl.h and shgTcl.C, and shgConsts.h and shgConsts.C. Files shared with the where axis
are where4tree.h and where4tree.C as well as helper classes provided in scrollbar.h and
scrollbar.C, tkTools.h and tkTools.C, simpSeq.h and simpSeq.C, and graphicalPath.h

Page 18

Developer’s Guide April 13, 2004 Release 4.1

and graphicalPath.C. shgPhases.h and shgPhases.C provide class shgPhases, which man-
ages the collection of search history graphs (one per phase). Method change() switches displays;
draw() draws the current search history graph; addNode() adds a node to the current graph;
addEdge() connects a node to its parent; and, configNode() changes a node’s semantics (i.e.
true, false, unknown, etc.). shg.h and shg.C provide class shg, which manages a single search
history graph. There are many internal similarities to the whereAxis class. rootPtr holds the root
node of this shg. draw() draws the shg. addNode() adds a node to the shg; configNode()
changes a node’s semantic meaning; addEdge() connects a node to its parent. where4tree.h and
where4tree.C manage an individual node of class shg; it was discussed above in the where axis.
shgRootNode.h and shgRootNode.C manage class shgRootNode, the template input parameter to
class where4tree<>. File shg.tcl constrains the part of the Performance Consultant window
written in the Tcl/Tk language. It mainly concerns the frame of the window and its menus. As
with the where axis, the shg itself in the center of the window is drawn entirely with calls to inter-
nal Tk C routines or Xlib routines, for speed.

Tunable constants

The tunable constants dialog is managed in tclTunable.tcl in paradyn/tcl. Routine
tunableIntialize() sets things up; routine processShowTunableDescriptions() creates the
Tunable Descriptions dialog.

tclTunable.h and tclTunable.C (in paradyn/src/UIthread) provide the implementation
of a “tclTunable” command that is called from the above .tcl files to gain access to the internal
tunable constants database.

The internal tunable constants database is maintained files tunableConst.h and tunable-

Const.C (in paradyn/src/TCthread).

Status lines

The status lines (which appear in the Paradyn main console window) are managed internally by
Status.h and Status.C (in paradyn/src/UIthread). Some of the code to manage the status
lines is written in Tcl/Tk; file status.tcl (in paradyn/tcl) has that code. Status lines for
nodes/processes are distinguished from generic Paradyn and application status lines, appearing in
a separate resizable and scrollable area of the console window.

Paradyn Main Control window

Most of the Paradyn main window is managed by Tcl/Tk code. File mainMenu.tcl (in
paradyn/tcl) creates the window, its menus, etc. Routines in shg.tcl, whereAxis.tcl,
tclTunable.tcl are invoked when the Performance Consultant, Where Axis, and Tunable Con-
stants, respectively, are chosen from the main window’s menu. These files have been discussed
previously. startVisi.tcl is invoked when “Start A Visi” is chosen from the main window’s
menu. mets.tcl is invoked when Paradyn needs a metric selection from the user (in response to a
visualization add request). applic.tcl maintains the dialog box for starting a new application.

Page 19

Developer’s Guide April 13, 2004 Release 4.1

3.5 Performance Consultant thread

The Performance Consultant (PC) thread conducts an automated search for performance bottle-
necks. One search may be conducted per phase, for a maximum of two simultaneous searches
(one global, one current). The Performance Consultant thread interacts with the DM thread to
enable/disable metric/focus pairs and for information about resources, and interacts with the UI
thread to control the content of the Performance Consultant window. The Performance Consultant
may be viewed as a stream of incoming data, a set of experiment definitions, and a search control
strategy for starting and halting individual experiments.

The data stream

Data is obtained by making instrumentation enable requests of the daemon via the data manager.
The incoming stream of data is handled by a series of filters. A filter is defined by two base
classes, dataProvider and dataSubscriber. There are three types of filters in the Performance Con-
sultant:

PCfilter (dataProvider):
in: raw data manager data for a single metric/focus pair,
out: average metric/focus values for uniform time intervals,
subscribers: one or more PCmetricInsts.

PCmetricInst (dataSubscriber, dataProvider):
in: PCfilter output for uniform time intervals for a set of metric/focus pairs,
out: computed from data plus specified arithmetic operator, for a particular time interval,
subscribers: one or more experiments.

experiment (dataSubscriber):
in: PCmetricInst output (a single value),
out: changeConclusion, changeTruth calls to the search node,
subscribers: none.

Experiment definition

A PCmetric is a set of data manager metrics plus an arithmetic operation (currently +, -, *, /,
max). A hypothesis is a specification of a condition to test for plus the data and computation nec-
essary to perform the test. The computation is specified as a PCmetric plus a threshold. An exper-
iment is defined by a hypothesis plus a particular focus. Using the hypothesis definition, the
appropriate metric/focus pairs are enabled for the PCmetric; once data starts flowing from the
data manager the resulting value is periodically compared to the threshold. The set of hypotheses
is hierarchical and is referred to as the Why Axis.

Search control

All data structures for one search are gathered in an instance of PCsearch: PCmetricInstServer
is the data source; searchHistoryGraph is a DAG which contains all info about the tests per-
formed; and two static PriorityQueues, one global and one current, hold all ready search nodes.

Page 20

Developer’s Guide April 13, 2004 Release 4.1

The total cost of instrumentation is controlled by three thresholds: a cost limit, the total number of
active experiments, and the total number of pending enable requests.

Starting up a particular experiment

1. Get estimated cost: when a node is expanded, a request is made to the Data Manager for the
predicted cost for each new child node; pointers to the new PCmetric filters are stored on a
waiting list costServer::costRecords. When the cost is received from the Data Manager,
the record is retrieved, and method updateEstimatedCost() is invoked for the appropriate
PCmetric filter. The PCMetric filter notifies the experiment, which invokes
searchHistoryNode::estimatedCostNotification(). The shn routine places the node
onto the PC run queue.

2. Enable request(s): when a node is launched from the PC run queue, one or more enable
requests are made to the Data Manager for the metric/focus pairs used by that experiment.
None to all of these pairs may already be enabled, in which case the existing data filter is sub-
scribed to and no new request goes to the Data Manager. As each response comes back from
the Data Manager, the PCmetric filter is notified; when all required data is enabled, the exper-
iment is notified and the node display is changed to active.

3. Change to true: when a node’s status changes from unknown to true, both parent and children
may be affected. If the parent is virtual, its truth value is just the OR of its children’s, so its
truth value may change. If the node has not been expanded, it is so at this time, and estimated
cost is requested for each child (step 1 above). If the node has been expanded in the past, then
the child nodes will already have an estimated cost; they are added back to the run queue to
await step 2 above. In most cases a change from false to true is not possible, since nodes are
deactivated when they become false: this can happen, however, if the node is persistent or if
the node’s parent changes.

4. Change to false: when a node’s status changes from unknown to false it is deactivated and not
expanded. If it changes from true to false then it must be deactivated, plus its parent(s) and
children must be notified. Every node but the root must have at least one true parent to remain
active, so notifying the children generally results in deactivating them.

4 VISI LIBRARY

VisiLib is a library and remote procedure call interface for accessing Paradyn performance data in
real-time. VisiLib provides an open interface to Paradyn data, and allows a programmer to build
external visualization processes (Visis). All performance visualizations in Paradyn are imple-
mented as visis. The visi programmer uses the interface defined in visualization.h to access
performance data. VisiLib uses the Igen interface that is defined in visi.h to communicate with
Paradyn. visualization.C contains the implementation of routines defined in both these header
files. VisiLib also defines a type (DataGrid) that is the visualization’s interface to performance
data. A complete description of VisiLib can be found in the Paradyn Visi Programer’s Guide.

Page 21

Developer’s Guide April 13, 2004 Release 4.1

5 PARADYN DAEMON

The Paradyn daemon (paradynd) is the back-end of the Paradyn tool. When running a parallel
program (such as MPI), there will be several daemons running at the same time, one on each
node. Each paradynd communicates, using Igen RPC calls, with the Paradyn front-end. There is
no direct communication between the Paradyn daemons (except in the case where a daemon is
responsible for starting other daemons).

5.1 Introduction

Paradyn daemons have several responsibilities:

1. Starting and controlling the execution of application processes.

2. Reading the application’s symbol table.

3. Reading the application’s binary image to find instrumentation points.

4. Evaluating metrics, generating code, and inserting instrumentation into application processes.

5. Periodically sampling performance data from the application and forwarding values to the
Paradyn front-end (Section 5.5).

Daemons are started by the Paradyn front-end using rsh or rexec (when the Paradyn front-
end runs on a different machine/node than the application) or fork/exec (when the Paradyn front-
end runs on the same machine/node as the application; Windows uses CreateProcess). The
front-end passes the flavor of the daemon (e.g. PVM, MPI, etc.), the name of the machine where
the front-end is running and socket address for connection as command line arguments to the dae-
mon. The daemon then connects to the front-end. When PVM is being used, only one daemon is
started by the front-end. This daemon then uses pvm_spawn to start the other daemons on all
nodes of the PVM virtual machine. (The code to parse arguments and connect to the front-end is
in main.C, and the code to start spawning other Paradyn daemons with PVM is in
pvm_support.C.)

The interface between the paradynd processes and the Paradyn front-end is defined in file
paradyn/h/dyninstRPC.h. In most cases the paradynd acts as a server, receiving requests from
the Paradyn front-end, but there are also many upcalls from the paradynd to the front-end. Most
RPC calls defined in the interface are implemented in dynrpc.C, where calls to other modules of
the paradynd process are made as appropriate.

Daemons start application processes using fork/exec (Windows uses CreateProcess).
Daemons use ptrace or /proc file system calls to insert instrumentation into the application pro-
cesses (Windows uses ReadProcessMemory and WriteProcessMemory). The standard output and
error messages of the application and Paradyn daemon are redirected to a Tcl/Tk front-end termi-
nal window. Output from Paradyn daemon is displayed in a different color from that of the appli-
cation.

The function controllerMainLoop() (defined in perfStream.C) is the main loop of the
paradynd. At each iteration of this loop, the daemon checks for data coming from the application
processes through the pipes, for requests by the front-end, and for signals received by the applica-
tion processes.

Page 22

Developer’s Guide April 13, 2004 Release 4.1

Before going into its main loop, each daemon received metric definitions from the Paradyn
front-end. The representation of the metrics is provided in the paradyn/h/dyninstRPC.h file.

5.2 Application processes

The class process (defined in process.h/process.C) provides a representation for application
processes. It provides machine independent abstractions for creating new process, running, stop-
ping, reading, writing, and intercepting signals of application processes.

Several methods of the class process have platform-dependent implementations, in the form of
ptrace calls or ioctl calls to the /proc file system. This platform-dependent functions are
implemented in the operating system specific files (e.g. solaris.C, aix.C).

The class inferiorHeap, also defined in process.h/process.C, provides a representation
for the inferior heap in the application process, and functions for allocating and de-allocating
memory blocks. The inferior heap is a block of memory in the application process address space
where the daemon writes instrumentation code. In addition, on platforms not supporting shared-
memory data sampling (Section 5.5), the application also stores its counters and timers here.

5.3 Object file processing

The Paradyn daemon reads the object file of an application process to find the symbols (functions,
modules, and global data) and instrumentation points. The class image (defined in symtab.h) pro-
vides a representation for the application’s object image. The first step in the processing of the
object file is to read the a.out format file and obtain the symbols, and the address and size of the
code and data segments. The class symbol (defined in util/h/symbol.h) provides a representa-
tion for symbols. The file util/h/Object.h defines abstract classes for object files. Each plat-
form has its own implementation: Object-elf32.h (for Solaris 2.x), and Object-xcoff.h (for
AIX).

Once the symbol table is processed, the functions of the application process are defined. The
class pdFunction provides a representation for functions. For each function, the method findIn-

stPoints of the class pdFunction is invoked to find the instrumentation points for that function.
The method findInstPoints() has one implementation for each architecture supported by Para-
dyn (currently sparc, mips, x86, and power). The implementations are in files inst-sparc.C,
inst-mips.C, inst-x86.C, and inst-power.C

Class instPoint provides a representation for instrumentation points, defining the address of
the point, the instructions to be relocated, and other relevant information. The class is defined in
the architecture dependent files (inst-sparc.C, inst-power.C and inst-x86.C).

5.4 Shared-object processing

Paradyn supports instrumentation of dynamic executables. A dynamicexecutableis one that is
created by dynamically linking shared libraries (called shared objects). When the Paradyn dae-
mon processes an a.out file of a dynamic executable, many of the symbols are undefined. These
undefined symbols are from shared objects that are bound at runtime by the run-time linker.

Page 23

Developer’s Guide April 13, 2004 Release 4.1

Figure 5 shows the data structures used by the Paradyn daemon to keep track of shared object
information for each process. This figure shows three process objects, one for each process run-

ning on the host. Each process contains pointers to image structures. There is one image object for
each unique executable file and shared object file processed by the Paradyn daemon. In this exam-
ple, process 1 and process 2 are executing the same a.out files; they both contain pointers to the
same a.out image. Process 3 is executing a different a.out file; it contains a pointer to a different
a.out image. Each process object also contains a list of pointers to shared object images and a list
of base addresses associated with these shared objects. Since two different executables can have
the same shared object mapped into their address space at different addresses, the addresses of the
instrumentation points of functions in shared objects may differ across processes. Rather than cre-
ate multiple image objects for shared object files, each process keeps track of the base address of
where it has the shared object mapped and then contains a pointer to the shared object’s image.
This way, only one image object needs to be created for each unique shared object or a.out.

Figure 5: Process class and shared objects.
Process 1 and process 2 are the same executable and share a.out and shared object images.

Process 3 is a different executable, running on the same host, which has some of the same
shared object images as process 1 and 2, but a different a.out image.

a.out

shared objects
base addr
image

base addr
image

base addr
image

a.out libc.so.1 libm.so.1 libdl.so.1 libmp.so.1

a.out
shared objs

a.out

shared objs

a.out

process 1

process 2

process 3

image image image image image image

images shared
by all processes

Page 24

Developer’s Guide April 13, 2004 Release 4.1

Figure 6 shows the relationship between the image, module, pdFunction, and instPoint

classes in the Paradyn daemon. Each image contains a set of modules, and each module consists
of a set of functions. For each such function, a pdFunction object is created. This class contains
information about each function, such as the function’s name, address, and size. Each function
also contains several instrumentation points. Currently, function exit, function entry, and pre- and
post-call site instrumentation points are defined for each function. Paradyn creates an instPoint

object for each of these instrumentation points.

All address information stored in instPoint and pdFunction objects is kept relative to the
image in which it is contained. This means that when inserting instrumentation into functions that
are contained in a shared object, the base address value stored in the process object must be added
to the address in the instPoint to find the correct location to write to in the process’s address space.
As a result, new instPoint, pdFunction, and image objects do not need to be created for every
process that dynamically links a particular shared object.

Metric Evaluation and Code Generation

When a user or the Performance Consultant enable a metric/focus pair, the daemon must evaluate
the metric, generate code, and insert instrumentation into the application process. Most of the
code to do the metric evaluation is in file mdl.C. The metric is evaluated producing an intermedi-
ate code representation in the form of abstract syntax trees (class AstNode defined in file

Figure 6: image, module, pdFunction, and instPoint classes.
Each image consists of a number of modules, each module consists of functions, and each

function consists of a number of instrumentation points.

image

instPoints

modules

pdFunctions

instPoints

Page 25

Developer’s Guide April 13, 2004 Release 4.1

ast.h/ast.C). The abstract trees are then translated into machine code, which can be inserted
into the application processes. There are different implementations of the code generator, one for
each supported architecture, in files inst-sparc.C, inst-power.C and inst-x86.C.

Each metric/focus pair is associated with counters or timers, which are objects allocated in the
inferior heap and operated by the instrumentation code inserted in the application process. Each
allocated timer or counter is represented in the Paradyn daemon in the variableMgr class.

The class instInstance, defined in instP.h, provides a representation for instrumentation
instances (a chunk of code inserted at some instrumentation point in a process). The functions
addInstFunc() and deleteInstFunc(), defined in inst.C, are used to insert and delete instru-
mentation instances in an application process. addInstFunc() allocates base and mini-trampo-
lines as needed, generates branches from the instrumentation points to the base trampolines, and
from trampolines to other trampolines.

Each enabled metric/focus pair is represented by an object of class machineMetFocusNode. A
machineMetFocusNode contains objects of class processMetFocusNode. The processMetFo-

cusNode has objects of class threadMetFocusNode, which represent the threads that are sampled
as part of the metric focus request. A processMetFocusNode also contains objects of class
instrCodeNode. Each one of these represent instrumentation code for either the constraint or the
metric itself. An instrCodeNode contains objects of type instrDataNode. An instrDataNode

represents an instrumentation variable for a constraint or a temporary counter associated with the
selected metric, or it could represent the sampled value for the metric focus request itself. In order
for code to be shared, objects of class instrCodeNode can be shared. This is done by the instr-

CodeNode objects pointing to the same internal object, not by users pointing to the same instr-

CodeNode object. In the same manner, threadMetFocusNode objects can be shared. This is done
so samples taken for an instrumentation variable can just be sent to just one node (the possibly
shared internal object of threadMetFocusNode objects associated with the variable).

Each counter or timer is kept track of in the variable manager (class variableMgr). Sampling
is done by the variableMgr sampling all of the counters and timers it has identified as being sam-
pled. The sampled values are passed by the variableMgr (actually in class varInstanceHK) to
the associated threadMetFocusNode internal object, aggregated with the values from other pro-
cesses or threads, and forwarded to the Paradyn front-end.

Page 26

Developer’s Guide April 13, 2004 Release 4.1

Figure 7 shows the metricFocusNode data structure and its relation to other data structures.

5.5 Performance data sampling

Performance data sampling is (along with dynamic instrumentation) one of the major tasks per-
formed by the Paradyn daemon. Typically, instrumentation code inserted into an application will
write performance data to various counters and timers. Periodically (up to 5 times per second), the

Figure 7: Data structures of the Paradyn daemon.

threadMetFocusNode instrCodeNode

instInstance instPoint AstNode

instPoint * pdFunction

module

image

dataReqNode *

machineMetFocusNode

processMetFocusNode

instrDataNode

variableMgr

variable

instReqNode

bolded nodes can be (internally) shared

*

**

* *

* = possibly multiple children objects per parent

Page 27

Developer’s Guide April 13, 2004 Release 4.1

Paradyndaemonis responsiblefor samplingthesecountersand timers, to be forwardedto the
Paradyn front-end for processing by the Performance Consultant and visis.

Sincetheactualcountersandtimersresidein theapplication’saddressspace,it is not immedi-
atelyobvioushow paradynd canefficientlysamplethem.SinceaParadyndaemonalwaysrunson
the samenodeasthe applicationit is controlling,efficiency andperturbationareconcerns.Cer-
tainly, paradynd could pausethe processandextract the datausingptrace or /proc, but this
would be too slow andintrusive. In this section,we will describethe two (very different)imple-
mentationsof samplingcurrentlyimplementedin paradynd. Thefirst (andmuchmoreefficient)
is calledshared-memorysampling; the secondis calledalarm-sampling. Alarm-samplingis no
longer used. Shared-memory sampling is implemented on all platforms.

5.5.1 Shared-memory sampling

In a shared-memorysamplingparadynd, a shared-memorysegment(createdwith shmget() on
UNIX, CreateFileMapping underWindows) holdsthecountersandtimersthatneedto besam-
pled.Both theapplicationandparadynd in turnattachto thissegment(usingshmat() onUNIX,
OpenFileMapping and MapViewOfFile on Windows). Sinceparadynd is attachedto the seg-
ment,it cansamplethecountersandtimerssimply by readingdirectly from thesegment’s mem-
ory—theapplicationneednot know or carethat it is beingsampled.This contrastswith alarm
sampling (Section5.5.2), which requires the application to take an active role in sampling itself.

Thereare two complicationsthat arisewhen implementingshared-memorysampling.First,
sincethe applicationmay be writing to a counteror timer while paradynd is samplingit, there
needsto besomesynchronization.Second,dueto thesemanticsof samplinganactive timer (one
which hasbeenstartedbut not stopped),paradynd needsthe ability to obtainthe virtual (CPU)
time of the application.Operatingsystemslacking sucha primitive cannotuseshared-memory
sampling, and must use alarm sampling instead.

We now discuss these two complications in greater detail.

5.5.1.1 Synchronization issues for shared-memory sampling

Sinceinstrumentationcodeinsertedinto anapplicationmaywrite to acounteror timer justasit is
beingsampled(read)by paradynd, caremustbetakento ensurethata consistentvaluegetssam-
pled.

For counters(integers),no specialprecautionsare needed.If paradynd samplesan integer
while it is beingmodified,theneithertheold or new valuewill besampled.Sincebothvaluesare
consistent, either is suitable.

Samplingtimersis morecomplicated.Considerthepseudo-codefor startTimer/stopTimer
operations(Figure8), and for paradynd’s shared-memorysampling of a timer (Figure9).
Assumethat we aremeasuringthe time spentin function foo(). To do this, the entry point of
foo() is instrumentedwith startTimer() andtheexit point is instrumentedwith stopTimer().
Furthermore,assumethat foo() is a long-runningfunction (say5 minutes),so a long time can
elapsebetweenthe startTimer() and stopTimer(). If samplingoccursafter the timer was
started,but beforeit wasstopped,t->total will not includethe time that haselapsedsincethe
latestcall startTimer(). Line 3 in Figure9 ensuresthatthesampledvalueincludesthatinterval.

Page 28

Developer’s Guide April 13, 2004 Release 4.1

It assumesthe existenceof a get-remote-time()primitive—a way for paradynd to somehow
obtainthecurrenttime of theapplicationbeingmeasured.(Theterm remotecomesfrom thefact
that they’re different processes.)

Now that we understandthe basiccodefor startTimer, stopTimer, andsampling,we can
explain the needfor synchronization.Imagineif a sampleis taken after the applicationhasexe-
cutedline 1 in Figure8 but beforeit hasexecutedany of line 2. In thatcase,paradynd will seethe
count field non-zero, so it will execute line 3 of Figure9, using an undefined value oft->start!

Clearly, somekind of synchronizationis needed.Notethataninterruptof somesort(suchasa
threadcontext switchor asignalhandler)couldhappenatany time,andif suchcodere-entersthe
instrumentationcode,deadlockwould result.In short,usinglockswould renderinstrumentation
codeunsafefor reentrancy. Oursolutioninvolvesprotectorvariables; two counterswhicharepart
of the timer structure.The startTimer andstopTimer operationsincrementthe first protector
variable,then perform their work, then incrementthe secondprotectorvariable.The sampling
routinereadsthe secondprotectorvariable,thenthe count,start,andtotal fields,andfinally the
first protectorvariable.Notethattheprotectorvariablesarereadin thereverseorderthatthey are
written. If the(sampledvaluesof) the two protectorvariablesareequal,thenthesampledvalues
of thecount,start,andtotal fieldsareconsistent.If not, thesampleis thrown out,andthetimer is
re-sampledlater. Figure10 andFigure11 show the new codefor startTimer, stopTimer, and
sampling.

5.5.1.2 The need for a get-remote-time() primitive

We have not founda way to implementtheget-remote-time()primitive in line 3 of Figure9 (and
line 4 of Figure11) on all platforms;this preventsshared-memorysamplingfrom beingubiqui-
tous.Simply put, thereisn’t a standardway in UNIX to obtainthevirtual (CPU) time of another
process(in this case,paradynd needsto obtainthe virtual time of the applicationprocess).The

 startTimer(tTimer *t) {
(1) if (t->count++ == 0) {
(2) t->start = get-current-time()
(3) }

}

stopTimer(tTimer *t) {
(1) if (--t->count == 0) {
(2) t->total += get-current-time() - t->start
(3) }

}

Figure 8: Pseudo-code for startTimer and stopTimer operations

(1) sampled-value = t->total;
(2) if (t->count > 0) {

// applic has done a startTimer but not (yet)
// a corresponding stopTimer

(3) sampled-value += get-remote-time() - t->start
}

Figure 9: Pseudo-code for shared-memory sample of a timer

Page 29

Developer’s Guide April 13, 2004 Release 4.1

/proc file system does provide a way; hence, shared-memory sampling is implemented on Solaris
(both sparc and x86). Under Windows, we use the GetProcessTimes function to obtain the CPU
time of another process.

5.5.1.3 Management of instrumentation variables in shared memory

The instrumentation variables (ie. the variables that the instrumentation code reads and writes to),
are managed (at the top level) by an object of class variableMgr. Each process object contains a
variableMgr object. A variableMgr contains objects of type varTable, which manage the vari-
ables of a certain type. Currently there are three varTable objects, one for counters, one for wall
timers, and one for process timers. Each varTable contains a vector of varInstance objects. A
varInstance represents an instance of an instrumentation variable. For single-threaded pro-
cesses, this variable would have one location, while for multi-threaded processes, this variable
would have n locations, where n is the hard-coded maximum number of threads for the daemon. If
need be housekeeping information can be associated with each variable location. One case in
which we store housekeeping information for (technically, a location of) a variable is if we are
sampling a variable. In this case, we store information so sample data can be sent to the corre-
sponding threadMetFocusNode.

Each varInstance has associated with it an address pointing to an area of shared memory
where it’s variable(s) (multiple in the case of a multi-threaded process) is stored. This variable in

startTimer(tTimer *t) {
(1) t->protector1++;
(2) if (t->count++ == 0) {
(3) t->start = get-current-time()
(4) }
(5) t->protector2++;

}

stopTimer(tTimer *t) {
(1) t->protector1++;
(2) if (--t->count == 0) {
(3) t->total += get-current-time() - t->start
(4) }
(5) t->protector2++;

}

Figure 10: Final pseudo-code for startTimer/stopTimer operations

(1) prot2 = t->protector2;
(2) sampled-value = t->total;
(3) if (t->count > 0)
(4) sampled-value += get-remote-time() - t->start
(5) prot1 = t->protector1;
(6) if (prot1==prot2) {
(7) use sampled-value; report it to front-end
(8) } else {
(9) throw out the sample; re-sample later

}

Figure 11: Final pseudo-code for timer sampling

Page 30

Developer’s Guide April 13, 2004 Release 4.1

the shared memory is the actual variable which is written to by the instrumentation code in the
application. The following figure should illustrate these relationships further.

Figure 12: variableMgr and shmMgr

ctr1 ctr2 ctr3 ...

thr1

thr2

thr3

MAX

...

3 varInstance
objects

varTable

variableMgr

ctr1 ctr2 ctr3 ...

thr1

thr2

thr3

MAX

...

3 varInstance
objects

varTable

ctr1 ctr2 ctr3 ...

thr1

thr2

thr3

MAX

...

3 varInstance
objects

varTable

(one for intCounters)

(one for wallTimers)

(one for processTimers)

shmMgr

segment 1 segment N

(shared memory manager)

Page 31

Developer’s Guide April 13, 2004 Release 4.1

TheshmMgrcurrentlyjust usesonesharedmemorysegment,however, this will beexpanded
in thefuturesoadditionalsharedmemorysegmentscanbecreatedif freememoryis exhaustedin
existing segments.Noticethatwith thecurrentconfiguration,thememoryallocationrequestsfor
eachvarInstance will beoneof a few sizes.Thesizecouldbe thesizeof oneintCounter (in
thecaseof a single-threadedprocess),thesizeof intCounter timesMAX_THREAD, thesizeof one
tTimer, or thesizeof tTimer timesMAX_THREAD. TheshmMgrwill beoptomizedfor allocation
and deallocation requests of these sizes.

5.5.2 Alarm sampling

This method is no longer used, but is left here as reference. Sinceshared-memorysampling
isn’t ubiquitous,we have retainedthemethodof samplingusedin earlierreleasesof Paradyn;we
call it alarm-samplingbecausesamplingis triggeredvia a SIGALRM in theapplication.During
initializationof theruntimelibrary (Section8), theapplicationis setupsothatit executestherou-
tine DYNINSTalarmExpire() (in RTinst.c of the run-time instrumentationlibrary, rtinst,
directory)several timespersecond.This in turn callsDYNINSTreportSamples, which callsDYN-
INSTsampleValues(). DYNINSTsampleValues() is an interestingfunction; at first glance,it
appearsempty. However, in alarmsampling,paradynd actually instrumentsthis routine to call
DYNINSTreportCounter() or DYNINSTreportTimer() asappropriatefor eachcounterandtimer
thatneedsto besampled.Theseroutinesin turn call DYNINSTgenerateTraceRecord() to (rather
inefficiently) sendthis informationto theParadyndaemonvia apipe.Fromthere,alarmsampling
is similar to shared-memorysampling— bothportionsof paradynd forwardthesampleddatato
Paradynby calling theupdateValue() methodof themetricinstance(metric.C), which eventu-
ally forwards bulk data to Paradyn via thebatchSampleDataCallbackFunc() Igen routine.

5.6 Retroactive instrumentation

[Relevantfiles: paradynd/src/metric.C containsmostof the logic for this mechanismand
dyninstAPI/src/inst-{platform}.C files contain helper functions.]

Retroactive (catchupor ketchup [sic]) instrumentationis a specialmechanismto dealwith a
problemwhich ariseswith dynamicinstrumentation.Whena function is instrumentedwith code
nearthe beginning of a function,andthis instrumentationis insertedwhile the programis run-
ning, thepossibilityarisesof theinstrumentationbeingmissedby thecurrentlyrunningfunction.
In instrumentationwherecodeinsertedneartheendreliesoncodeinsertednearthebeginning,or
wherethefunctiononly runsonce,theinsertedcodemayenteraninconsistentstate,or noteverbe
executed.

A goodexampleis thetiming of afunction.At thebeginningof thefunction,a timer is started.
At the end,a timer is stopped.If the function is executing,the timer will not be startedfor this
executionof thefunction:this is aproblemif asingleexecutionof thefunctionrunsfor longperi-
ods of time.

The solution is to retroactively execute the snippetsof instrumentationwhich have been
missedat the time which the function is being instrumented.Unfortunately, it is impossibleto
know all of the prior executionhistory of an uninstrumentedprocess.It is possible,however, to
recreatea partial (minimal) history which correspondsto the functionscurrently found on the
call-stack:to arrive at thecurrentcall-stackstate,eachfunctionmusthave beenentered(but not
exited) andmadea call to its successor(but not returnedfrom sucha call). Any corresponding

Page 32

Developer’s Guide April 13, 2004 Release 4.1

entry-point and pre-call instrumentation snippets would have also been executed in a previously
instrumented execution, and therefore these snippets should be retroactively executed.

Note that it is entirely likely that additional functions have been called and already exited, e.g.,
a call located earlier in a function than the call currently found on the stack, but there is insuffi-
cient residual evidence to reliably suggest that their associated instrumentation snippets should
now be executed. (A complete control-flow graph for each function would allow some such cases
to be determined, but many cases would require missing dynamic control-flow information.) This
means that the retroactively-constructed instrumentation state is necessarily incomplete where
there is an instrumentation dependence other than the following cases:

• (parent) function entry precedes any internal calls to (child) functions precedes function exit,
and

• function pre-call precedes function post-call (within the context of any function).
Fortunately, these are exactly the relations typically used in instrumentation to delimit inclu-

sive (i.e., entry to exit, or equivalently pre-call to post-call) and exclusive (i.e., entry to exit
excluding internal calls) metrics for functions (or function calls). Other relations may be defined,
such as between two calls or arbitrary points, however, there is insufficient residual information
for retroactive instrumentation to be reliably used in such cases and conforming metrics must
therefore not rely on associated snippets being executed.

Paradyn already contains a mechanism for causing code to be run in the inferior process: the
inferior RPC. By using this mechanism when appropriate, we can preempt the execution of the
current function and execute required snippets of retroactive instrumentation.

The following algorithm is used to determine if it is appropriate to launch a catchup inferior-
RPC for a specific snippet of instrumentation:

• If the instrumentation is to be placed at the function entry point, and that function is currently
anywhere on the call stack, a catchup inferiorRPC should be launched to execute it.

• If the instrumentation is to be placed just before a call site, and that call site is in fact on the
stack, a catchup inferiorRPC should be launched for it. In other words, if the PC of the call
site is on the stack, but not at the top.

This check is performed in the process.C file in the function triggeredInStackFrame.
There are a few additional aspects which need to be addressed:

• On some architectures (SPARC in particular), instrumentation must be deferred if it is not safe
to insert code immediately. If this happens for instrumentation which depends on the instru-
mentation being considered for catchup, we must not do the catchup. Executing the early code
without the late code may cause more inconsistencies than executing only the late code. A
special case of this, is when the function at the top of the stack cannot be instrumented due to
the PC currently being located within a potential instrumentation footprint: not only should
catchup instrumentation not be executed for this particular function instance, it should also not
be executed for any other instances of this function found lower on the stack, as the function
itself is currently uninstrumentable, and there is correspondingly no catch-up to be done.

• On x86 architectures, where traps are used in tight instrumentation points (see Section 6),
inferiorRPC execution may be interrupted by the delivery of a signal raised by a current trap
instruction: since processing traps is relatively time-consuming, interruption at such points is
quite likely. The usual trap handling by DYNINSTtrapHandler, which expects to be delivered

Page 33

Developer’s Guide April 13, 2004 Release 4.1

an instrumentation-trap PC value, must recognize and ignore an inferiorRPC-adjusted PC
value, and resume execution of the inferiorRPC(s) before returning to re-execute (and handle)
the interrupted trap (and its associated instrumentation). Note that traps in code executed by
calls to functions from the inferiorRPC require appropriate handling.

• The ordering of catchup instrumentation within each function and on the stack can be very
important. For each set of instrumentation snippets to be inserted, a list of instrumentation to
be executed via inferiorRPC must be kept: ordering should be chronological with respect to
the implied program execution (derived from the call stack) to arrive at the current state, i.e.,
starting from the base of the stack, each subsequent frame is considered in turn to decide
whether to launch catchup inferiorRPCs for that frame. When the catchup inferiorRPCs are
launched, they must follow this order.

• The address of the PC at each stack frame must be mappable to the function in the program to
which it corresponds. In the cases where the PC is instead within our instrumentation code, we
must properly find the function to which that instrumentation corresponds.

• When we are within instrumentation code on the stack, we must amend the above check for
being within a call site to take into account that we usually relocate the call instruction itself
to within the instrumentation code base-trampoline.

• Furthermore, if the pending instrumentation snippet happens to be new/additional instrumen-
tation for the current instrumentation point, careful analysis needs to be made to determine
whether catchup execution is required. If it has been added to the existing base/mini-trampo-
line infrastructure at a point after the current location, then it will be executed normally and
catchup execution is inappropiate, otherwise a catchup inferiorRPC should be launched to
execute it. For example, if the call-stack contains an instrumentation mini-trampoline for the
same instrumentation point as the pending instrumentation snippet, then catchup execution is
required for prepended snippets but should not be executed for appended snippets.

• The catchup inferiorRPCs must be executed immediately, while the inferior is paused. If the
inferior is allowed to execute anything other than our inferior RPC, the function may exit and
re-enter before the inferior RPC is launched. If this happens, it is quite possible for the inferi-
orRPC to run while the same instrumentation is executing within the inferior on the same data.
This is particularly bad with our timers, which have critical sections which assert on failure.
Therefore, we cannot finish the checking of instrumentation and rely on the main paradynd

loop to launch the inferiorRPCs, we must make a special loop which launches them, and
which keeps the inferior process paused between inferiorRPCs. Note that it is fine for a
catchup inferiorRPC to be launched to start or stop a timer when interrupting a timer operation
corresponding to a distinct metric/focus instance, but not the same metric/focus instance since
in that case the timers are identical. Luckily, if we find ourself interrupting one of our timer
operations, then we can be assured that we are executing an already-instrumented function
and there is consequently no need for retroactive instrumentation.

• In the case of successful instrumentation of an on-stack function with an exclusive metric
(which relocates it’s currently active call instruction to our instrumentation base-trampoline)
and execution of appropriate (entry and pre-call) retroactive instrumentation for it, it is ulti-
mately necessary to update the return address of the succeeding stack frame to return to imme-
diately after the call instruction relocated in the base-trampoline instead of the now-
overwritten location. This thereby ensures the usual execution of corresponding post-call

Page 34

Developer’s Guide April 13, 2004 Release 4.1

instrumentation, which would otherwise be missed, or worse, the resumption of execution
within a now-corrupted instruction sequence.
An example of retroactive function instrumentation is shown in Figure 13

5.7 Dynamic Heaps

Paradyn and Dyninst use a dynamic heap to store code and data for instrumentation and inferior
RPCs in the application process. Dynamic heaps enable an arbitrary amount of instrumentation
code to be placed in the application process. Also, on platforms with restricted single-instruction
branch ranges (e.g., RISC processors), they can be directed to allocate memory near a particular
address in memory. These directed allocations are used to place base trampolines within the range

Figure 13: Retroactive instrumentation example.
The program has been interrupted during the execution of subD2 (with the call-stack as

shown) with a request to instrument subC. In addition to instrumenting the appropriate points
in subC, to support the illusion that subC was already instrumented it is necessary to

retroactively execute its entry-point ➊ and subD2-precall ➋ instrumentation snippets (if they
constitute part of the instrumentation request). Italicized parts of the virtual execution record

can’t be recovered from available state information. To ensure that following the completion of
subD2, execution will correctly continue with any subD2-postcall instrumentation snippets, it
is also necessary to update the return address of subD2’s stackframe ➌ with that of the base-

trampoline now containing the relocated call instruction.

main()
subA()
subB() if (...)
subC()
loop
subD1() if (...)
subD2() if (...)
subD3()

until (...)
subB()

main.entry
main.pre-call(subA)
subA.entry
subA.return
main.post-call(subA)
main.pre-call(subB)
subB.entry
subB.return
main.post-call(subB)
main.pre-call(subC)
subC.entry
subC.pre-call(subD1)
subD1.entry
subD1.return
subC.post-call(subD1)
subC.pre-call(subD2)
subD2.entry
...

Virtual instrumentation
execution record

Fr. currAddr

0. subD2+32
1. subC.subD2
2. main.subC

Call-stack

Code structure

Interrupt execution of subD2
 to (retro-)instrument subC

➌

➋

➊

Page 35

Developer’s Guide April 13, 2004 Release 4.1

of a single instruction branch from the corresponding instrumentation point. Dynamic heaps are
currently not used on Windows.

All memory allocation requests in the Paradyn daemon and Dyninst mutator are made
through inferiorMalloc, defined in process.C. inferiorMalloc maintains the inferiorHeap
data structure, which organizes the memory that has been allocated in the application process for
Paradyn/Dyninst, and includes a list of free memory. inferiorMalloc takes a parameter named
size, the number of bytes to be allocated in the application process. For directed allocation it also
takes an optional near parameter, a pointer to which the requested memory should be close. (The
definition of close is platform-specific and defined at compile-time, as explained below.) Finally,
inferiorMalloc takes a type parameter to specify the type of heap segment used to satisfy the
request. The type parameter includes all heap segments except the low memory heap, which is
explained below.

Ordinarily, inferiorMalloc can satisfy a request by finding suitable space in the inferi-
orHeap free list. When it cannot, it makes an inferior RPC to DYNINSTos_malloc in the run-time
instrumentation library (defined in RTheap.c). DYNINSTos_malloc allocates new segments of the
address space of the application process for use as heap segments by Paradyn/Dyninst. inferi-
orMalloc calls DYNINSTos_malloc in two circumstances: (1) when there is not enough memory
in the free list to satisfy the request, or (2) when the request is directed, but there is not enough
free memory within the range of the near pointer. DYNINSTos_malloc takes three parameters: the
number of bytes to allocate, and low and high address boundaries. DYNINSTos_malloc is not
intended to satisfy a single inferiorMalloc request, but rather to allocate new heap segments in
the inferior process from which subsequent allocation requests can be satisfied; the size parameter
is thus usually much greater than that of the current inferiorMalloc request. On directed alloca-
tions, the address boundaries are the range of the address space in which the new memory can be
allocated. When the request is undirected, they are opened to the entire address space. When an
inferior RPC to DYNINSTos_malloc returns, inferiorMalloc satisfies its current request from
the new heap segment, and adds the remainder of the new segment to the free list.

inferiorMalloc is aggressive in its use of DYNINSTos_malloc. If DYNINSTos_malloc can-
not satisfy its first request, inferiorMalloc makes several additional calls to DYNINSTos_malloc

with increasingly relaxed parameters. For example, it will reduce the request size of the new seg-
ment, and lift the address space boundary restriction. This retry sequence happens in the for loop
of inferiorMalloc.

DYNINSTos_malloc has two mechanisms for allocating new memory. On platforms that use
directed allocation, it calls malloc if the near pointer is within the range of the heap of the inferior
process. Otherwise, DYNINSTos_malloc calls constrained_mmap, which in turn calls mmap.
constrained_mmap reads /proc to determine the layout of its own address space. The platform-
specific memory information returned from /proc is translated into an array of a generic structure
called dyninstmm_t. Within this array constrained_mmap searches for a hole into which mem-
ory of size and location satisfying the DYNINSTos_malloc request can be allocated. It then calls
mmap to try to allocate that memory. As some platforms may restrict the location of mmapped
memory, constrained_mmap makes a call to mmap for every hole it finds until one is successful.
If none are successful it returns an error to inferiorMalloc (which may retry
DYNINSTos_malloc using relaxed parameters). When it is successful, DYNINSTos_malloc returns
the address of the first byte in the newly allocated memory.

Page 36

Developer’s Guide April 13, 2004 Release 4.1

On all platform the run-time instrumentation library contains a static buffer of heap space
called DYNINSTdata. It is added to the free list used by inferiorMalloc, and will be used to sat-
isfy memory allocation requests if it is sufficiently large and, for directed allocations, suitably
located. On platforms that don’t use directed allocations all inferiorMalloc requests are satis-
fied in the static heap before a dynamic heap is allocated (i.e., before a call to DYNINSTos_malloc

is made).
From DYNINSTdata a small static buffer called the low memory buffer is reserved during

heap initialization. Its purpose is to ensure there is always enough space in the inferior process to
make a new dynamic heap allocation. The only time the low memory buffer is used is when an
inferior RPC to DYNINSTos_malloc is made. It is distinguished from the other heap segments by
its heap type lowmemHeap, which no other heap segment has.

Restrictions in the range of address space that can be used to allocate a new heap segments
are determined in two ways. First, the caller of inferiorMalloc can use directed allocation to
make an explict restriction. The range of a directed allocation depends on the range of control
transfer instructions of the processor. This range is computed by the region_lo and region_hi

macros in the architecture header files (e.g., arch-sparc.h). If the control transfer range is unre-
stricted, these macros are defined to include the entire user-accessible portion of the address
space. Second, platform-specific characteristics of the address space may preclude some ranges
from being safe places for new heap segments. For example, it is not safe to allocate new seg-
ments near the top of the stack, as the stack may eventually grow into the segment. The run-time
instrumentation library set these limits with two variables, DYNINSTheap_loAddr and
DYNINSTheap_hiAddr. Their values are checked by DYNINSTos_malloc and they take precedence
over directed allocation constraints. On some platforms (e.g., Solaris) these values can vary from
process to process, and are thus initialized at run time after consultation with /proc.

5.8 Trampoline Guards

The basic trampoline structure has one dangerous flaw: it is possible to inadvertently cause an
infinite recursion in the instrumentation which will cause the instrumented program to crash. Spe-
cifically, instrumentation can never safely call any other function (even in a library) which is
instrumented. Making instrumentation safe in this manner is both difficult to ensure and limiting.

To avoid this effect, Paradyn now includes guards in the trampoline structure which will pre-
vent any recursion from taking place. These guards detect if the current base tramp is being exe-
cuted inside instrumentation, and if so skips the instrumentation contained within the trampoline.
The end result of this is instrumentation can call any function with impunity, without having to
worry about side effects. Currently these guards are implemented on AIX, IRIX, and SPARC-
Solaris. Support on other platforms will be available shortly.

To motivate our use of trampoline guards, let’s use an example. A typical metric used by Para-
dyn is the io-wait metric, which instruments the system call write() with a wall timer. Inside the
instrumentation, we use fprintf() to report timer rollbacks and we assert that the timer is not
started twice without being stopped. With this setup, any timer rollback would cause an infinite
recursion in the process being instrumented. Specifically, the call to fprintf() would cause the
timer to be started again when write() was called. This would trigger the assertion, which would
print an error and terminate the program. Unfortunately, the act of printing the error would cause
the timer to be started yet again and trigger another assert. Using the trampoline guards in this

Page 37

Developer’s Guide April 13, 2004 Release 4.1

case will ensure that the call to fprintf() within the timer routine will not set off any other
instrumentation.

On platforms where the guards are implemented, an additional word of memory is allocated in
the processes address space. This flag (*process::trampFlagGuardAddr) is used to store
whether the current execution point is inside a base tramp or not. The value actually used is plat-
form-dependent. When a base tramp is entered, the value of the flag is checked. If the flag is true,
then the intrumentation is skipped. Otherwise, the flag is set to true and the instrumentation
entered.

The trampoline guards have the following general structure:
<save registers>

if (flag == true) then skip to <restore registers>

<set flag to true>
<enter minitramp>
<set flag to false>
<restore registers>

Note that the guard code is added at the base trampoline level, so it is correct to speak of the
guard code at an instrumentation point, rather than the guard code for a piece of instrumentation
code. All the mini-tramps that are called by the same base tramp are guarded by an unique piece
of guard code that resides in the base tramp. At the present time, there is no way to guard (against
recursion) only certain minitramps. Whether a base tramp is guarded or not is determined when it
is first inserted and is unchangeable.

By default, all Paradyn instrumentation is inserted with the trampoline guard enabled. This
also has another strong benefit: Paradyn can now call functions without disturbing the data being
reported about the inferior process. For example, if a piece of instrumentation calls an instru-
mented function which is particularly CPU hungry, then the CPU usage for the function when
called by instrumentation will not be reported.

5.9 Instrumentation of multi-threaded programs

5.9.1 Introduction

The purpose of this document is to describe the general issues related to the implementation of
the instrumentation of threaded programs using Paradyn (MT-Paradyn). Here, we will explain
what the model is, what data structures are used, how the instrumentation actually works, and
what the current limitations are.

The Paradyn implementation is based on a two-level thread model. The program to be instru-
mented consists of several threads which run at user level. Each thread is assigned to a particular
kernel thread (or light-weight process, LWP) and runs on that LWP from the kernel’s perspective.
All user-level threads share a single address space, and control operations (pause, resume, register
operations) are performed on LWPs.

Page 38

Developer’s Guide April 13, 2004 Release 4.1

5.9.2 Paradyn Program Instrumentation

In the single-threaded version of Paradyn, instrumentation code is inserted and data (counters
and timers) gathered on a per-process basis. Whenever a new metric/focus pair is created, we
insert code into the process and create the corresponding counter or timer data structure.

With a multithreaded application, the situation is quite different. Any modifications we make
to the process may be executed by all the threads in the process, as the process’ address space is
shared among all threads. MT-Paradyn’s instrumentation is more sophisticated to handle this situ-
ation, allowing us to distinguish between threads in the code we insert. This allows us to gather
data on both a per-process and a per-thread basis, without cumbersome locking requirements.

5.9.3 Design Issues

Some of the most important design issues are:

• Every thread shares the same instrumentation code.

• Each thread has its own copy of all counters and timers containing data collected from the
process.

• Threads may be created and destroyed at a rapid pace.

5.9.4 Current Design

MT-Paradyn requires more sophisticated instrumentation to gather accurate per-thread data
about a process, and must also record that data in a manner which is quick to access (from the
application) and able to handle threads being created and deleted on a rapid basis. We will first
describe the extended data layout, and then the instrumentation changes required to access the
new data layout.

5.9.4.1 Data manager

The application stores sampled data values in a shared memory segment which both the appli-
cation and daemon share. The data structures in this shared segment assume there is only one
writer (the application) and multiple readers (the application and the daemon). All timers are pro-
tected by a pair of protector variables, which are used to perform non-blocking synchronization
between the application and the daemon. This is described in the Developer’s Guide.

The implementation of MT-Paradyn keeps this single-writer, multiple-reader approach. We
guarantee that there will be only one writer to any cell in the shared segment by giving each thread
a unique ID (called the thread index) which is used to map into this table. Since no two threads
share the same index, it is not possible for there to be two writers. The mechanism we use to cal-
culate this ID for each thread is described in the instrumentation section.

For each counter or timer (collectively called a "variable") in the process, we create a vector in
the shared memory segment. Currently this vector is a contiguously allocated array. When the
instrumentation in the application is triggered, it looks up the appropriate index of the array and
updates the variable it finds there. When the daemon is gathering the sampled data it simply scans
the entire array to gather the data for all threads. The data layout can be visualized as a two-
dimensional array, with the row being a specific variable and the column marking a unique thread.

Page 39

Developer’s Guide April 13, 2004 Release 4.1

There is no requirement, however, that variables be contiguous -- only that the per-thread data is
contiguous within a variable.

5.9.4.2 Instrumentation details

Some of the most important instrumentation issues are:

• Calculation of the thread index

• Minimal overhead added to instrumentation code

• Handle creation and deletion of threads quickly

5.9.4.3 Base Trampoline

Figure 2 shows the updated base trampoline layout. We have added an "MT Preamble" section
before the pre-instrumentation and post-instrumentation sections. This MT preamble is responsi-
ble for calculating the thread index. Once the thread index is calculated it is stored in a register
which is reserved (within Paradyn), so that each mini trampoline can look up the thread index in
that register.

The thread index is determined by a function call to the runtime instrumentation library, which
performs a series of steps to calculate the index. First, the value in the reserved register is checked.
The runtime library keeps an array mapping thread indices to thread library IDs, which allows us
to check this very quickly. If the index register is correct, that value is returned. This is an optimi-
zation, which is useful if instrumentation is executed quite often. If this quick lookup fails, we fall
back to looking up the index in a section of thread-local storage allocated by the runtime library.

If both of these methods fail to determine the thread index, we conclude that the thread has
been newly created and perform the appropriate steps (described in Section 4.5), which finish
with a new index being allocated. In any case, the calculated thread index is stored in the reserved
register.

5.9.4.4 Mini Trampoline

Whereas singlethreaded Paradyn’s instrumentation operated on data structures stored at fixed
addresses, MT-Paradyn operates on structures whose addresses are thread-dependent. However,
our data layout minimizes the complexity of this operation. Since each variable consists of a con-
tiguous array of per-thread structures, accessing the appropriate structure for a given thread
reduces to an array access. The appropriate formula is: base + (sizeof(variable) * thread_index).
Both the size of the variable and the base address are known at instrumentation time and hard-
coded into the instrumentation. In practice, the size is kept to a power of 2, so the overhead
required for a mini trampoline is the cost of a shift and an add.

Timers inserted have an additional layer of complication: the necessity to gather per-thread
time instead of per-process time. This is described in the Virtual Timer section, below.

5.9.4.5 Thread Creation

Our implementation attempts to have the minimal overhead necessary when thread creation is
detected. We can detect new threads at any instrumentation point, since the code to do so is called
by the thread index calculator if the thread in question has not been seen. This allows us to func-

Page 40

Developer’s Guide April 13, 2004 Release 4.1

tion well with thread libraries we don’t have internal information for. If we know the internal start
function for the thread library we manually instrument it, and capture thread creation events that
way.

When thread creation is detected, a short series of steps is performed by our instrumentation
and the thread is continued. Unlike the previous versions of Paradyn, there is no waiting required
for daemon-side setup.

The application performs the following steps to handle a newly-created thread:

1) Determine the start function (the argument to thread_create()).

2) Allocate an index from the list of free indices.

3) Start the virtual timer for this thread (see Virtual Timers).

4) Signal the daemon about the new thread, including the thread library ID, the thread index,
and the start function.
At this point the thread continues through whatever instrumentation was inserted. This

requires that that thread’s slots in the data manager be empty and ready to write into. This is guar-
anteed by the daemon, and handled at thread deletion (below).

When the daemon receives the new thread message, it performs various actions:

1) Report the new thread to the front end.

2) Build a controller structure for the new thread.

5.9.4.6 Thread Deletion

We detect thread deletion via instrumenting the various thread_exit() functions. As with
thread creation, there is very little application-side processing associated with deletion. However,
since we reuse thread indices, there is synchronization which must occur:

1) Stop the virtual timer for this thread (see Virtual Timers).

2) Mark the thread’s index as pending deletion.

3) Signal the daemon about thread deletion.

4) Continue and exit.

When the daemon receives the signal, it performs the following operations:

1) Take the final sample for all timers and counters inserted.

2) Delete all daemon-side data structures corresponding to the thread.

3) Ensure that that thread’s slot in every counter and timer is in an

 clean state.

4) Mark the thread’s index as reusable.

This allows us to reuse indices from deleted threads, and ensures there will be no data corruption
if two threads are assigned the same index.

Page 41

Developer’s Guide April 13, 2004 Release 4.1

5.9.4.7 Inferior RPCs

We often have the need to run a piece of code at a particular time, instead of a particular place
(as with normal instrumentation). Our mechanism for doing this is called an inferior RPC, since it
mimics the remote procedure call mechanism. The current implementation of Paradyn ensures
that an inferior RPC which is requested on a particular thread runs on only that thread. This holds
to our single-writer model, and is changed from previous implementations.

5.9.5 Virtual Timers

Although we wish to gather data on a per-thread basis, there is no consistent way to gather
per-thread CPU time. What is available is per-LWP CPU time, which is not necessarily the same
if threads migrate between LWPs. We virtualize our own per-thread CPU timers on top of the pro-
vided per-LWP timers. We call these timers "Virtual Timers".

Virtual timers support three operations: start, stop, and query. Virtual timers are started and
stopped in the application, though they could be stopped by the daemon as well. Querying a timer
can be done both from the application and the daemon.

The structure of a virtual timer is very close to that of a standard Paradyn timer. It consists of
the following members:

• Two protector variables (prot1 and prot2)

• A’start’ time

• A ’total’ (accumulated) time

• The LWP this timer is currently running on

• A ’count’ (whether the timer is running or not)

The virtual timer is started by performing the following steps:

1) Increment prot1

2) Get the current LWP for this thread and save it in the timer

3) Get the current CPU time for this LWP and store it in ’start’

4) Set the count to 1

5) Increment prot2

Similarly, a virtual timer is stopped by performing the following:

1) Increment prot1
2) Get the current CPU time for this LWP
3) Subtract the value in ’start’ and increase ’total’ by the
difference.
4) Set the count to 0
5) Increment prot2

Finally, a virtual timer can be "sampled" to provide a per-thread CPU time from both the daemon
and the application by performing these steps:

Page 42

Developer’s Guide April 13, 2004 Release 4.1

1) Get the value of prot2
2) If the VT counter is 0, get the value in "total" as the queried
time.
3) Otherwise:
3.1) Get the LWP the timer is running on.
3.2) Get the current CPU time for this LWP
3.3) The queried time is equal to (current - start) + total
4) Get the value of prot1
5) Compare prot1 and prot2, and if they are unequal go to step 1

There is one virtual timer associated with each thread. The virtual timer is stopped when a thread
is removed from active running, and restarted when the thread is rescheduled. This allows us to
get accurate per-thread CPU times, given only per-LWP CPU time.

5.9.6 Current Status and Limitations

MT-Paradyn has been ported to two platforms, AIX and Solaris. On both platforms we cur-
rently require that threads are run in 1:1 mode. This is the default on Solaris, and can be set on
AIX by settingthe environment variable AIXTHREAD_SCOPE to ’S’. We hope to removethis
limitation in the future. We also intend to port MT-Paradyn to Linux.

We support OpenMP programs under Solaris and AIX, but only asmultithreaded programs.
This means that the underlying structure of the OpenMP program is exposed to the user, which is
not desirable. A future version of Paradyn will be able to display OpenMP constructs in a clear
way.

5.10 Timer Levels

Paradyn includes support for two timer levels for both process and wall timers. This allows
unique time querying functions, native time units, native time bases, availability test functions,
and other features to be associated with timer levels. One of the levels is the hardware timer level
which can be used for time querying functions that are less in time cost or greater in granularity
than the software timer level, typical when directly accessing the hardware. The other timer level
is the software timer level, which is for time querying functions that access the time through soft-
ware and is less desirable than a possible hardware timer level. The notions of software and hard-
ware in regards to timer levels were not meant to be rigid, but serve to inform that the hardware
timer level has a smaller time cost and/or higher granularity than the software timer level. There
are platforms which don’t have both timer levels implemented, yet at least one timer level needs to
be implemented for each platform for process and wall timers. An example of a platform with
only one timer level is the sparc-solaris version of Paradyn. The software timer level for this plat-
form has low time cost and high granularity so hardware timer levels for process and wall timers
are not implemented on this platform. At any point in time, there might also exist platforms for
which a hardware level version of a timer is not possible with the platform’s current state of tech-
nology.

A boolean availability test function is associated with each timer level in order to aid in choos-
ing which timer level to use. The hardware timer level will be chosen if the availability test func-
tion informs that the level is available. If the level is not available, the software timer level will be

Page 43

Developer’s Guide April 13, 2004 Release 4.1

chosen (assuming it is available). However, it is possible to override this mechanism by setting the
environment variables PD_SOFTWARE_LEVEL_WALL_TIMER or
PD_SOFTWARE_LEVEL_CPU_TIMER which will cause the software level timer to be chosen
over the hardware level timer. The timer level that is chosen can be displayed in the terminal by
setting the environment variable PD_SHOW_TIMER_INFO.

One benefit that came with this multiple timer level feature, though not inherently related, is
that the rtinst library no longer needs to convert time into a standard time unit (used to be micro-
seconds). Now time querying functions in the rtinst library can return time in the native time unit
that was queried. The daemon now will do the appropriate conversion from the native time unit
into a generic time object (timeStamp for wall time and timeLength for cpu time). This offloads
work from the time querying functions in the rtinst library and hence the application also. Sam-
pling by the daemon occurs no more frequently than 5 times per second which is much less fre-
quent than the number of times an application calls a time querying function when
instrumentation is being done.

The notion of a level in Paradyn is represented by a class called timeMechanism (para-
dynd/src/timeMechanism.h). The notion of a set of levels is represented by a class called timeM-
anager (paradynd/src/timeMgr.h). The timeMgr handles all interaction to a timer level and
therefore there should not be a need to access a timeMechanism object directly. For example, the
timeMgr class has member functions for installing a timer level (installLevel), determining the
best available timer level (determineBestLevels), or retrieving the native or converted time (get-
Time, getRawTime). The timeMgr class was made a template class in order to handle different
requirements for interacting with timer levels. The first template argument is used for the different
contexts for which given function pointers may be called. For example, the function pointer for a
process time querying function is a member of the process class. This function pointer needs to be
called differently than the function pointer for the wall time querying function, which is not a
member function. The second template argument specifies the type of the argument required
when calling the time querying function. For example, the process time querying function for the
multi-threaded Solaris version of Paradyn requires the light weight process id to be passed as an
argument.

In an execution of Paradyn, there will always be one and only one instantiation of a timeMgr
for handling the wall timers, named wallTimeMgr. Functions for instantiating and accessing the
wallTimeMgr are in paradynd/src/init.[hC]. There, will be one instantiation of a timeMgr for
every process a daemon is monitoring. The timeMgr instantiation for process timers is the vari-
able cpuTimeMgr which is a member of the process class. The process class has functions for
interacting with the cpuTimeMgr such as initCpuTimeMgr, getCpuTime, and getRawCpuTime.

The selection of which timer level to choose is done solely by the daemon. The daemon than
informs the rtinst library of which time querying function to use by assigning the function pointer
pDYNINSTgetCPUtime or pDYNINSTgetWalltime in rtinst the address of the chosen time que-
rying function. The daemon verifies that the chosen timer level is also available in the rtinst
library by checking the value of the rtinst variables hintBestCpuTimerLevel and hintBestWallTi-
merLevel.

Implementing a new timer level

In order to implement a new timer level, there are particular functions that need to be modified
or added. For both process and wall timers, in the RTinst library, in the appropriate RTetc-<plat-

Page 44

Developer’s Guide April 13, 2004 Release 4.1

form>.c file, the time querying function associated with the level (DYNINSTgetCPUtime_hw or
DYNINSTgetCPUtime_sw) will need to be implemented. In this same file, in the
PARADYNos_init function, the appropriate variable hintBestWallTimerLevel or hintBestCpuTi-
merLevel needs to be assigned the macro define HARDWARE_TIMER_LEVEL or
SOFTWARE_TIMER_LEVEL depending on whether the hardware timer level is available.

For implementing a process timer there are changes that need to be made in the daemon also.
In the operating system specific file in dyninstAPI/src (eg. linux.C) the function process::initCpu-
TimeMgrPlt needs to be updated so that the new timer level is installed in the cpuTimerMgr. Also
in this file, the function process::getRawCpuTime_hw or process::getRawCpuTime_sw that cor-
responds to the timer level, needs to be implemented. These functions are the process time query-
ing functions used by the daemon. Also, support functions and class variables may need to be
added to the process class. This may involve an update to process.h for adding member functions
or variables to the process class.

For implementing a wall timer, in the directory paradynd/src in the init-<platform>.C file, in
the function initWallTimeMgrPlt, a level needs to be installed for the new timer level into the
wallTimeMgr. This file is also where wall time querying and availability test functions should be
implemented. For example, for the Windows platform in init-winnt.C, the function
dm_isTSCAvail tests whether the hardware level wall timer is available and the function
dm_getTSC queries the hardware level wall time for the daemon.

6 X86 PORT

Instruction representation

The representation of x86 instructions is different from other platforms. Because the size of
instructions are variable, we represent an instruction by an object of class instruction, which is
defined in the file arch-x86.h. The representation includes a type descriptor, the size of the
instruction in bytes, and a pointer to the actual instruction (in the memory mapped executable
image).

When instructions are processed, we need to decode instructions in order to find the size and
type information about each instruction. The instruction decoder is implemented in the file arch-

x86.C. The decoder is invoked through a method in class instruction (getNextInstruction).

Parsing the executable image

As in other platforms, the executable is parsed one function at a time. We start at the beginning of
each function and decode instructions sequentially until we reach the end of the function (which is
defined by the address of the next symbol in the symbol table).

The entry point is defined as the first instruction in the function. Call points are call instruc-
tions. Return points are return instructions and jumps that leave the current function. There is no
check for tail-call optimization on the x86.

Page 45

Developer’s Guide April 13, 2004 Release 4.1

Data mixed with code (e.g. jump tables) is a problem as they could cause us to decode instruc-
tions incorrectly. We use some heuristics to try to identify some jump tables that may be within
the code. We look for indirect jump instructions of the form

jmp dword ptr [reg + addr]

where reg is one of the general registers and addran immediate address, which is the base the
jump table. If the base address is within the current function and precedes the jump instruction,
we may have parsed instructions incorrectly and we don’t instrument the current function. In most
cases, the jump table is just after the jump instruction, or near the end of the function. In this cases
we can try to guess the size of the table by looking at the words following the base address and
checking if their contents is an address within the current function. If so, we assume that it is part
of the jump table and keep looking at the following addresses until we find an address that is not
within the current function. Those locations that are found to be part of the symbol table are
skipped. While this heuristic can not guarantee that we can find all jump tables, it is effective in
detecting the jump tables generated by many compilers. A more general solution to this problem
would require data and control flow analysis of the executable.

Since instrumentation points may not have enough bytes to replace with a jump (5 bytes), we
may need to get additional instructions and add them to the smaller points. We can get instructions
from before or after the point. For the entry point, we can only get extra instructions from after the
point. For return we would usually only get instructions before the return, but since it is common
to have nops or int3 instructions after a return, we can also use those instructions. For call sites,
we only get instructions from before the point for reasons that are explained later (although most
calls are 5 bytes and don’t need extra instructions).

We must check that there are no jumps into the middle of a sequence of instructions that we
add to a point. To do that, we keep a list of all known jump targets, and check the instruction
sequences against this list. The target of all direct jumps found while the image is parsed are
added to the list, and also the addresses in the jump tables found by the heuristic described above.
Since we can have jumps to other functions, we add the necessary number of instructions to the
point here, and check later, when the point is instrumented that there are no jumps to the middle of
the instruction sequence. Since there may be some indirect jumps for which we don’t know the
target, we may have problems if we use an instruction sequence that can be the target of an indi-
rect jump. With the jump table heuristic above, we should be able to handle most cases.

Inserting instrumentation

Whenever we need to replace a sequence of multiple instructions, we must check that there are no
jumps into the middle of the instructions. To do that, we keep a list of all known jump targets, and
check the instruction sequences against this list. The list contains the target of all direct jumps
found while the image is parsed, and the addresses found by the heuristic to skip jump tables
(described above). Since there may be some indirect jumps for which we don’t know the target,
we may have problems if we use an instruction sequence that can be the target of an indirect jump.
With the jump table heuristic, we should be able to handle most cases.

When we replace an instruction sequence with a jump, we must also check that the program is
not currently executing in the middle of the sequence. Since we are modifying that sequence, we
could execute the wrong code. If this is the case, we change the program counter to the address of
the relocated instruction in the basetramp. We could also have a problem if we had calls in the

Page 46

Developer’s Guide April 13, 2004 Release 4.1

middle of an instruction sequence. The call could be active, and eventually the callee could return
to an invalid location. For this reason, we avoid putting calls in the middle of instructions
sequences that are replaced with jumps. We should also check all possible contexts of the applica-
tion (threads and exceptions), but this is not being done yet.

In some cases, we can’t find enough instructions to replace with a jump, but we may be able to
insert an indirection. We take enough space for two jumps in the entry point (if possible). If
another point does not have enough space for a long jump (5 bytes), but has enough space for a
short jump (2 bytes), and that point is within a short distance from the entry point (less than 128
bytes), we can insert a jump to the basetramp in the second jump slot of the entry point, and insert
a short jump to this slot. In this case, whenever we activate the second point (which uses the entry
point slot), we must also activate the entry point, even if there are no instrumentation requests for
the entry point

Function Relocation

If there are not enough instructions to replace with a jump, and we cannot make an indirect jump
to the basetramp, we expand and relocate the function. This involves creating a copy of the func-
tion with nop instructions inserted into those instrumentation points that are too small to replace
with a jump instruction. The nops expand the instrumentation points, making them large enough
to hold 5-byte jump instructions. A jump to the expanded copy of the function is then placed at the
entry to the original function. It should be noted that function expansion and relocation often
causes the targets of PC-relative call and jump instructions to be incorrect, since the relative loca-
tions of these instructions has changed. This requires that we update the displacements of some
PC-relative instructions. In the extreme case, where the target address of a 2-byte jump instruction
is no longer within the range of the jump, we must change the 2-byte jump into a 5-byte jump.

The relocation of a function is done the first time a request to instrument the function is made.
This occurs even if the current instrumentation request is for an instrumentation point that is large
enough to replace with a jump. Currently there are three types of functions that we do not relo-
cate. These are functions that contain a jump table, are too small (less than 5 bytes), or are too
large (greater than 16384 bytes). In such functions, when we can’t find enough instructions to
replace with a jump, we must insert a breakpoint instruction (int3). When the breakpoint is exe-
cuted it generates an exception that can be caught in the application or by the Paradyn daemon.
The address of the base tramp is entered into a hash-table, that is used by the breakpoint handler
to find the address of the base tramp. The handler then changes the context of the application so
that it executes the base tramp. On Solaris, the handler runs in the application, while in Windows
and Linux, it runs in paradynd.

Base trampoline

The base trampoline for the x86 has some differences from other platforms. First the relocated
instructions do not always go in the same place. Only the instruction at the point goes at the usual
slot for relocated instructions, in the middle of the base tramp code. Any extra instructions from
before the point, are relocated to the beginning of the trampoline, and extra instructions from after
the point are relocated to the end of the trampoline, right before the jump back to the application
code. One of the advantages of placing the instructions in different points of the base trampoline
is that we can add jump instructions to a point when we need extra instructions. For example, if

Page 47

Developer’s Guide April 13, 2004 Release 4.1

we have a return after a conditional jump, we can use that jump to insert a jump to the base tram-
poline for the return. Since the jump is relocated to the beginning of the trampoline, if the jump is
taken the rest of the trampoline code will not be executed (which is the right thing).

The base trampoline for the x86 is not of fixed size, like in other platforms, since the size of
the relocated instructions is variable. Unlike in the other platforms, where there is a template for
the base trampoline code, in the x86 the code is generated when the trampoline is created.

There is one special case when the instruction at the point is a conditional jump. We relocate it
to the top of the base trampoline, and change the code so that the trampoline is executed only if
the branch is taken.

Code generation

The code generated for the x86 platform uses virtual registers, that are allocated on the stack.
They are addressed as an offset from the frame pointer register (EBP). The virtual register are
allocated on the base trampoline.

Example

Here we show the instrumentation of a function, and sample trampoline code.

f: pushl %ebp
f+1: movl %esp,%ebp
f+3: subl $0x4,%esp
f+6: movl $0x0,0xfffffffc(%ebp)
f+13: subl %eax,%eax
f+15: incl %eax
f+16: movl %eax,0xfffffffc(%ebp)
f+19: cmpl $0x3e8,%eax
f+24: jl <f+15>
f+26: subl %eax,%eax
f+28: leave
f+29: ret
f+30: nop
f+31: nop

This function has two instrumentation points: the entry point (the first instruction, at address f)
and the return point (the ret instruction, at address f+29). Both places have one byte instructions,
that can’t be replaced by a jump. For the entry point, we can add the instructions at f+1 and f+3,
which sum to a total of 6 bytes. For the return point, we need to add instructions from before the
return. We need to add the instructions at f+28 (leave), f+26 (subl), and f+24 (jl).

Page 48

Developer’s Guide April 13, 2004 Release 4.1

After the insertion of instrumentation for the entry and return points, the function will look
like:

f: jmp baseTramp0
f+5: *** garbage ***
f+6: movl $0x0,0xfffffffc(%ebp)
f+13: subl %eax,%eax
f+15: incl %eax
f+16: movl %eax,0xfffffffc(%ebp)
f+19: cmpl $0x3e8,%eax
f+24: jmp baseTramp1
f+29: ret
f+30: nop
f+31: nop

(Note that most debuggers will not disassemble this code correctly, they get confused by the
garbage at location f+5).

Base trampoline for the entry point:

// relocated extra instructions from before the point go here
// there are no extra instructions from before the point in this case

// pre-point instrumentation
baseTramp0: jmp <baseTramp0+5>// slot to skip pre instrumentation
baseTramp0+5: pushl %ebp // set-up stack frame for minitramps
baseTramp0+6: movl %esp,%ebp
baseTramp0+8: subl $0x80, %esp // allocate virtual registers
baseTramp0+14: pusha // save registers
baseTramp0+15: pushf
baseTramp0+16: jmp <minitramp> // jump to minitramp
baseTramp0+21: popf // restore registers
baseTramp0+22: popa
baseTramp0+23: leave // undo minitramp stack frame
baseTramp0+24: addl 0x29, DYNINSTobsCost // update observed cost

// relocated instruction at entry point
baseTramp0+34: pushl %ebp

// post-point instrumentation
baseTramp0+35: jmp <baseTramp0+51> // skip post-instrumentation
baseTramp0+40: pushl %ebp // set-up stack frame for minitramps
baseTramp0+41: movl %esp,%ebp
baseTramp0+43: subl 0x80, %esp // allocate virtual registers
baseTramp0+49: pusha // save registers
baseTramp0+50: pushf

Page 49

Developer’s Guide April 13, 2004 Release 4.1

baseTramp0+51: jmp <baseTramp0+48> // slot for jump to minitramp
baseTramp0+56: popf // restore registers
baseTramp0+57: popa
baseTramp0+58: leave // undo minitramp stack frame

// relocated extra instructions at entry point
baseTramp0+59: movl %esp,%ebp
baseTramp0+61: subl $0x4,%esp

// jump back to application code
baseTramp0+64: jmp 0x805038a <f+6>

The base tramp for the return point:

// relocate instructions before the point
baseTramp1+0: jl 0x8050393 <f+15>
baseTramp1+6: subl %eax,%eax
baseTramp1+8: leave

// pre-point instrumentation
baseTramp1+9: jmp <baseTramp0+5> // slot to skip pre instrumentation
baseTramp1+14: pushl %ebp // set-up stack frame for minitramps
baseTramp1+15: movl %esp,%ebp
baseTramp1+17: subl 0x80, %esp // allocate virtual registers
baseTramp1+23: pusha // save registers
baseTramp1+24: pushf
baseTramp1+25: jmp <minitramp> // jump to minitramp
baseTramp1+30: popf // restore registers
baseTramp1+31: popa
baseTramp1+32: leave // undo minitramp stack frame
baseTramp1+33: addl 0x29,DYNINSTobsCost // update observed cost
// relocated instruction at point
baseTramp1+43: ret

// post instrumentation -- never reached in this case
baseTramp1+44: jmp <baseTramp1+63>//slot to skip post instrumentation
baseTramp1+49: pushl %ebp // setup stack frame
baseTramp1+50: movl %esp,%ebp
baseTramp1+52: subl 0x80, %esp // allocate virtual registers
baseTramp1+5: pusha // save registers
baseTramp1+44: pushf
baseTramp1+45: jmp <baseTramp1+60> // slot for jump to minitramp
baseTramp1+50: popf // restore registers
baseTramp1+51: popa
baseTramp1+52: leave // undo stack frame

// relocated extra instructions from after the point go here
// there are no extra instruction from after the point in this case

// return to user code
baseTramp1+60: jmp <f+30>

The base tramp for the return point is similar to the base tramp for the entry point, except that
the extra instructions added to the point, the jl, the subl and the leave, which were taken from

Page 50

Developer’s Guide April 13, 2004 Release 4.1

beforethepoint,arerelocatedto thebeginningof thetramp.In this example,if thejl instruction
branches, no instrumentation code will be executed.

The following example shows a minitramp for astartWallTimer primitive:

minitramp: movl $0x8044f390,0xfffffffc(%ebp) // load timer address
 // in virtual register

minitramp+7: pushl 0xfffffffc(%ebp) // push argument
minitramp+10: movl $0x80585a4,%eax // load function address
minitramp+15 call *%eax // call startWallTimer
minitramp+17: addl $0x4,%esp // pop argument
minitramp+23: movl %eax,0xfffffffc(%ebp) // store result
minitramp+26: jmp <baseTramp>

Thereferencesto 0xfffffffc(%ebp) are referencesto a virtual register. (We arenot doing
code optimizations, though there are many opportunities to optimize this code.)

7 LINUX PORT

Inferior process modification and information throughptrace and/proc

[dyninstAPI/src/linux.C]

The first major differencein Linux from Solarisis that the /proc interfacedoesn’t support
many of theprocesscontrol features.TheLinux /proc filesystemis a generallyread-onlysetup,
with most files simply providing information about the process in a text format.

Within /proc, thereis adirectoryfor eachprocess,ratherthanafile onSolaris.Eachdirectory
containsdifferentfiles for differentpiecesof informationabouttheprocess.In Solaris,eachfile
containstheprocess’memoryspace,andIOCTLson thatfile areusedto gatherotherinformation
and control that process.

/proc/*/mem containsthe process’memoryspace,but it is currentlyread-only, dueto con-
cerns about the possibility of overwriting kernel memory in corner cases.

/proc/*/stat containsa list of numbersin ASCII format,space-delimited.Usedinformation
includes the process state (that is a char), and the process CPU times.

/proc/*/maps containsa list of mappedregions in the processmemoryspace,along with
devicenumberandinodenumber, if theregion is afile mappedto memory. This is especiallyuse-
ful in finding shared libraries which are loaded into memory.

/proc/*/exe is a link to the executable file for the process.
See ‘man proc’ and/usr/src/linux/fs/proc for further information.
Instead of using/proc to control and modify the process, we use the olderptrace interface.
For readingfrom the processmemoryspace,we first try to simply readfrom /proc/*/mem,

andif this fails,weuseptrace(PTRACE_PEEKTXT, ...) whichreadsasingleword from thepro-
cessat a time. Therefore,we mustimplementa function which readsa word at a time from the
process,realignsthewords,andre-packstheminto thepropermemorylocationin theparentpro-
cess.

For writing to theprocessmemoryspace,we useptrace(PTRACE_POKETXT, ...) andwrite
the data one word at a time, properly realigned to the addresses in the inferior process.

To obtaintheregistersfrom theinferior process,weuseptrace(PTRACE_GETREGS, ...) and
ptrace(PTRACE_GETFPREGS, ...) which write the registers to a buffer.

Page 51

Developer’s Guide April 13, 2004 Release 4.1

To changethe registersin the inferior process,we useptrace(PTRACE_SETREGS, ...) and
ptrace(PTRACE_SETFPREGS, ...) which write the registersfrom a buffer to the inferior pro-
cess.

NOTE: The registerptrace commandsareonly availablein linux-2.0.35andhigher. We no
longer support older versions of linux-2.0.x!

To obtain the actualstateof the inferior process(running,stopped,etc.),we readfrom the
/proc/*/stat file. Thethird spacedelimitedfield is a characterwhich specifiesthestatus.‘R’ is
running, ‘T’ is stopped, etc.

To wait on theinferior processfor signals,weusewaitpid, whichsimplywaitsuntil theinfe-
rior processreceivesasignal.Wethencheckto seeif thesignalis oneweshoulddealwith. If it is
not, the signal is forwardedback to the processusing ptrace(PTRACE_CONT, ...), the last
parameter of which is the signal to send to the inferior process.

To continue the inferior process, we usePTRACE_CONT again with no signal.
To stop the inferior process, we simply usekill(SIGSTOP).
To obtaintheCPUtimeof theinferior process,wereadthevaluesfor theinferior processuser

andsystemCPUtime from /proc/*/stat, anddo theproperarithmetic.Thevaluesarein ticks,
or timeslices,which on a standardx86 Linux systemoccur at a rate of 100/second.This is
checkedfor, however, througha one-timepieceof codewhich findsthesystemidle time in ticks
and in seconds and figures out the ticks/second.

Handling shared libraries in the inferior process[dyninstAPI/src/linuxDL.C]

Theprocessfor handlingsharedlibrariesin the inferior processis very similar to theprocess
usedon Solaris.Themaindifferenceis theproblemof finding the ld.so library, which handlesall
of theothersharedlibraries.OnLinux 2.0.xsystems,the/proc/*/maps file showsall of themap-
pings,alongwith devicenumberandinodenumberinformation,but thereis nowayto find thefile
from this informationdirectly. Therefore,thereis no way to tell which file is ld.so. Themethod
usedis to searchtheexpecteddirectoryfor afile matchingthepattern“ld*.so”, finding its device
andinodenumber, andcomparingit againsteachmapping.Then,thesharedlibrary handlingcan
continueby theELF methodusedin Solaris.On Linux 2.2.xandhigher, however, themaps files
alsocontainsa pathto eachsharedlibrary. In this case,the pattern“ld*.so” is checked against
these, and the file is found much more easily.

Inserting a shared library into the inferior process
process::dlopenDYNINSTlib [dyninstAPI/src/linux.C]

In orderto inserta sharedlibrary into the inferior process,we dependon insertingcodeinto
the inferior to call dlopen on our library. This workswell on Solaris,andfor someprogramson
Linux. However, theversionof libc currentlyusedon Linux (glibc 2.x) doesnot includethepub-
lic interfaceto dlopen. Instead,a separatelibrary calledlibdl.so is used.If we insertcodeto call
dlopen into a programnot alreadylinked to libdl.so, it will not work. Fortunately, the internal
_dl_open functionis availablein all Linux programswhich aredynamicallylinked.By inserting
codeto call this function instead,we canassurecompatibilitywith all dynamically-linkedLinux
programs.

Page 52

Developer’s Guide April 13, 2004 Release 4.1

To deal with differences in glibc, we search for the __libc_version symbol, which contains
a version string. If the string matches a known version of glibc, we work with that version. If the
string is not found, or the version is unknown, we use the 2.0.x method.

In glibc 2.0.x, _dl_open takes the same parameters as dlopen, and the process is as simple as
changing the name of the function to call.

In glibc 2.1.x, _dl_open takes an extra parameter of the modules which called dlopen. In this
case, we need to provide this address, which is straightforward. Additionally, _dl_open uses a
special function call convention because it is internal to glibc. Instead of pushing the parameters
onto the stack, it passes all three in registers. To deal with this problem, we have to avoid the Ast-
Node structure and generate a raw call and modify the registers for the parameters directly.

NB: This will probably change with each minor version change of glibc, and this code must
be updated.

Inferior RPCs[dyninstAPI/src/process.C]

The majority of the usual method for executing inferior RPCs works fine on Linux. The prob-
lem is only in the checking for and dealing with the case where the inferior process is within a
system call. It is dangerous to simply change the location to which the system call will return
(which is the most simple approach), as this can corrupt the return value from the system call.
Using PTRACE_SYSCALL seems promising, but this call traps at the entry and exit of the next sys-
tem call, and so it would need to be used for every system call in the program, rather than just the
current one: this is grossly inefficient. Instead, we simply find the location the system call will
return to, and set a trap (or illegal instruction, actually) there. When this is hit, we restore the orig-
inal code, save the registers, and move the process to the code we wish to execute. Since the regis-
ters were save after the system call instead of during it, the return value is safe.

Paradyn front-end threading package [libthread]

The threading package in Paradyn makes use of setjmp and longjmp. This is not generally a
problem, except that we use a function pointer to the appropriate setjmp and longjmp functions
on that platform. In Linux, setjmp is simply a macro to sigsetjmp, with the additional parameter
specificied. This necessitates changing the threading package to use a macro for setjmp in the
Linux case, as a function pointer simply will not work.

8 RUN-TIME INSTRUMENTATION LIBRARY

The run-time instrumentation library (rtinst, libdyninstRT) contains auxiliary functions and
data for dynamic instrumentation. It contains functions to get wall and process time used by a pro-
cess, to start and stop metric timers, to sample timers and counters, to report values to the Paradyn
daemon, to report resources (such as message tags), and to report that a process is forking or
doing and exec.

When an application process starts, it receives a signal that is caught by the Paradyn daemon
(this signal is set up by ptrace or /proc file system calls). At this point, the daemon inserts the
initial instrumentation in the application process. The initial instrumentation consists of inserting
calls in some functions and system calls to call initialization and termination functions, or to

Page 53

Developer’s Guide April 13, 2004 Release 4.1

reports events of interest, such as new resources, a fork, or an exec. The following functions are
instrumented:
main: call to DYNINSTinit() and the entry point of main, and DYNINSTexit() at the return point.
exit: call to DYNINSTexit() at the entry point.
fork: call to DYNINSTfork() at the return point
execve: call to DYNINSTexec at entry point, call to DYNINSTexecFailed() at return point.
pvm_send: call to DYNINSTrecordTag() at entry point.
DYNINSTsampleValues: call to DYNINSTreportNewTags() at the entry point.

The function DYNINSTinit() is called at the start of the application process to initialize the
run-time instrumentation library. Its main function is to set an alarm that sends a signal to the
application process periodically. The alarm handler, DYNINSTalarmExpire(), is responsible for
calling the functions to sample timers and counters and report the values to the Paradyn daemon.
It also calls DYNINSTreportBaseTramps() to report the cost of instrumentation.

Enabled timers and counters are sampled by a call to DYNINSTsampleValues(). This is an
empty function, but it is instrumented each time a metric is enabled, so that timers or counters are
sampled when this function is called. The code that is inserted calls either
DYNINSTreportTimer() or DYNINSTreportCounter() to read the timer or counter. The values
are reported through a pipe that is created when the application is started by the Paradyn daemon,
or by a stream socket that is created after the application has forked.

New dynamic heap segments are allocated in the application process by calling
DYNINSTos_malloc. Section 5.7 describes dynamic heaps in detail.

Other functions of rtinst are called to report new resources, such as message tags
(DYNINSTreportNewTags()), and to handle fork and exec by an application (DYNINSTfork() and
DYNINSTexec()).

9 MDL IMPLEMENTATION

The Metric Description Language is used to specify what performance data to collect, and
where. For the language specification, see the Paradyn User’s Guide. For a good high-level
description of the implementation techniques, see the paper “MDL: A LanguageandCompilerfor
DynamicProgramInstrumentation” (Hollingsworth et. al.). The purpose of this section is to pro-
vide a better understanding of the MDL code, describing features and issues that are not docu-
mented elsewhere, and for providing a complementary and hopefully better reference than the
code itself.

The MDL code consists of two parts: the front-end Paradyn process and the back-end Paradyn
daemon. The front-end MDL code does lexical analysis, syntax analysis, and some type checking
(which is part of the semantic analysis in the parlance of programming languages); the back-end
does the rest of semantic analysis and intermediate code generation. The reason for the semantic
checking being done by both the front-end and the back-end is due to the feature of dynamic
instrumentation: the decision about what to instrument is deferred until after execution starts.
Therefore, there are certain things that the front-end cannot check and must be relegated to the
back-end. An example is an MDL expression containing a function call. The front-end can only
check that the arguments of the call are valid MDL expressions and that the function call is used
in valid syntactic context; whether the function exists in the application and is instrumentable can

Page 54

Developer’s Guide April 13, 2004 Release 4.1

only be checked by the back-end MDL. However, the idea is to push static checking as much as
possible into the front-end, so that errors can be caught early before the metrics are specified at
runtime. Flex and Bison are used for lexical and syntax analysis.

The intermediate code generation is the process of translating a piece of MDL code into a
DAG of AstNodes (see Section 5.4). The code generation is the process of translating the Ast-

Nodes into trampolines and inserting them into the application. This section does not describe the
code generation of MDL, which is part of Paradyn’s dyninstAPI (see the Dynamic Instrumenta-
tion API Guide). We first list the important files of the MDL implementation. We then go through
each stage of the analyses. At the end of this section we give a short reference list of the defini-
tions of some frequently seen C++ classes in the MDL implementation.

9.1 Important files

Figure 14 lists the most important files in the MDL implemetation together with brief descrip-
tions.

paradyn/h/dyninstRPC.I An igen file containing class definitions for all of the
MDL components such as Metric, Constraint, State-
ment, and Expression. Used by both the front-end and
the back-end.

paradyn/src/met/mdl.h Constant definitions and definitions for classes
mdl_var, mdl_env. If you see some constants with all
upper case letters while reading the MDL code,
chances are that they are #define’d in this file. An
mdl_var is an MDL variable, and the mdl_env is a
repository of mdl_vars. You can think of mdl_env as
the symbol table of MDL plus some methods. The
MDL variables are collected into the static data mem-
ber mdl_env::all_vars. MDL variables are pushed
into mdl_env::all_vars when their scopes are
entered, and popped out when their scopes are exited.
Used by both the front-end and the back-end.

paradyn/src/met/globals.h This file contains the declaration of global variables
that both the front-end and the back-end need access to.
The global variables include all MDL metrics, con-
straints, and resource lists. These MDL components are
collected during the syntax analysis phase. Used by
both the front-end and the back-end.

paradyn/src/met/metScanner.l The input file to Flex for lexical analysis. All tokens
and keywords can be found here. Only used by the
front-end.

Figure14: Crucial MDL files

Page 55

Developer’s Guide April 13, 2004 Release 4.1

9.2 Lexical and syntax analysis

Lexical and syntax analysis are done by the Paradyn front-end. The associated files are under
the directory paradyn/src/met. It is important to be familiar with Flex and Bison before reading
metScanner.l and metParser.y, and it is a good idea to get familiar with these two files, or the
parts that you are interested in, before going on to others.

We do not explain the details of the files here2, as the code itself serves exactly that purpose.
Here we only point out some of the interactions among the files to help navigate.

 The scanning and parsing of the configuration files starts from the routine metMain() in
metMain.C. This routine calls open_N_parse() that calls the Bison function yyparse(), which

in turn triggers the scanner and parser actions in metScanner.l and metParser.y3. Files
meClass.C and metParse.h are support files for the scanner and parser, for example; they contain
the definition of struct parseStack.

A bulk of the work done by the Paradyn front-end is type checking, which is done after Flex
and Bison have already disected and collected all the syntactic parts. In the code, this occurs in

paradyn/src/met/metParser.y The input file to Bison for syntax analysis. Contains the
entire MDL grammar, and hence is the definitive refer-
ence for the syntax and for determining whether some
features are (should be) supported. Metrics, con-
straints, statements, etc. are created as part of the
parse/grammar actions and collected into the global
repositories declared in globals.h. Only used by the
front-end.

paradyn/src/met/mdl.C Type checking and apply() functions. See Section 9.2.
Only used by the front-end.

paradynd/src/mdl.C The major file of the back-end of MDL. Semantic
checking and intermediate code generation. Only used
by the back-end.

paradynd/src/metric.C The definition of the class metricDefinitionNode,
which describes metric instances. There are two types
of node: aggregates and non-aggregates. For the aggre-
gates, an metricDefinitionNode contains a vector of
other metricDefinitionNodes, for non-aggregates, a
node contains a vector of dataReqNodes. Only used by
the back-end.

2. Those who do not need to know the details of MDL implementation, yet have to consult metParser.y
for MDL grammars, may wonder what the symbols $$, $1, $2, etc. mean in metParser.y. $$ represents
the left-hand-side of the rule, and $i represents the ith component on the right hand side of the rule, with i
starting from 1. The type of those $-symbols is struct parseStack as specified by the line #define
YYSTYPE struct parseStack in both metScanner.l and metParser.y.

3. In fact, Flex functions are called by Bison functions.

Figure 14: Crucial MDL files

Page 56

Developer’s Guide April 13, 2004 Release 4.1

metMain.C ’s mdl_apply() , after open_N_parse() is done. The type checking is implemented in
routines with a heavily overloaded name: apply() . Many developers consider the apply() func-
tions one of the most difficult to understand parts of the MDL implementation, probably because
there are so many of them−not only in the front-end, but also in the daemon−and each apply()

does different things. For a good grasp of those functions, we need a clear picture of the corre-
sponding C++ classes and their relationships. File paradyn/src/met/dyninstRPC.I is the place
to look for the class definitions of those syntactic components such as mdl_metric,

mdl_constraint, mdl_stmt , etc. Let’s use an example to show how apply() functions work.
Below is a metric called “procedureCalls” taken from config/paradyn.rc .

metric procedureCalls {
name “procedure_calls”;
units operations;
unitStyle unnormalized;
aggregateOperator sum;
style EventCounter;
flavor = { winnt, unix, cow, pvm, mpi };

constraint procedureConstraint /Code/* is replace counter {
prepend preInsn $constraint[0].entry
(* procedureCalls++; *)

}
constraint moduleConstraint /Code is replace counter {

foreach func in $constraint[0].funcs {
prepend preInsn func.entry (* procedureCalls++; *)

}
}
base is counter {

foreach func in $procedures {
append preInsn func.entry constrained
(* procedureCalls++; *)

}

}
}

We draw a tree (Figure 15) to show the action of the parser. The tree also reflects the syntactic
structure in this metric, with the relationship of the parent and children of the “nodes” being a
containing relationship (e.g, procedureCalls metric contains a base statement and two con-
straints). We number each node to make the exposition clearer. Shown in parentheses are the
actual C++ classes implementing the components.

The way apply() member functions work is essentially a pre-order visit of the tree starting
from the root. mdl_metric::apply() (node 1) gets called, which would call the apply() mem-
ber function on the statements in the base part of the metric (node 2), then
mdl_for_stmt::apply()(node 3) , which in turn calls mdl_instr_stmt::apply()(node 4) ,
and then mdl_icode::apply()(node 5) , etc. After the subtree rooted at node 2 is done, the
subtree rooted at node 7 is visited, and so on until the whole tree is “applied”, and
mdl_metric::apply()(node 1) returns.

Page 57

Developer’s Guide April 13, 2004 Release 4.1

While visiting the tree, different checks are done inside apply() depending on which object
the function is invoked. For instance, when mdl_v_expr::apply() is invoked on the expression
procedureCalls++, it checks that proceduceCalls is of valid type (integers or counters).

At run-time, the sequence of apply() member functions starts from the mdl_apply() in met-

Main(), in the file metMain.C.

9.3 Semantic analysis and intermediate code generation

Semantic analysis and intermediate code generation are done by the back-end of Paradyn.
This part of MDL comprises a few files under paradynd/src, with the major one being mdl.C.
The two mdl.C’s (one in the front-end, one in the daemon) use the same class definitions in para-

dyn/h/dyninstRPC.I. In other words, the C++ classes for MDL metrics, constraints, statements,
etc. encapsulate a superset of the functionalities needed for both the front-end and the daemon.
Because of this, we can see some dummy function definitions in either file, since all definitions
must be present to pass the compiler, even though they may not actually be used.

Due to the above reason, and also for symmetry, the semantic analysis and intermediate code
generation of the daemon are also implemented with the hierarchies of apply() member func-
tions. Again, the code is executed in the same pre-order-visit tree-like fashion as in the example of
Section 9.2, with the exception of replace constraints as we will explain in a moment. This time,
we generate intermediate code instead of mere checkings inside each apply(). For instance, for
the expression procedureCalls++ (node 6 in Figure 15), mdl_v_expr::apply(AstNode*) is
called, and we generate an AstNode* as a result of evaluating this expression. After node 1 is suc-
cessfully applied, a metricDefinitionNode is generated.

In the front-end, the syntax analysis is done on every syntactic component in the configuration
file, yet the intermediate code and trampolines are only generated for those components that are
actually used. For our example, if the metric procedureCalls is not enabled with a focus, it
would not get processed by the back-end, and no intemediate code or trampolines would be gener-
ated for it. Furthermore, the two replace constraints (see the Paradyn User’s Guide for a descrip-
tion of replace constraints) procedureConstraint and moduleConstraint would be applied

Figure 15: An example demonstrating how apply() functions work.

prepend... (mdl_instr_stmt)

(* procedureCalls++; *) (mdl_icode)

procedureCalls++; (mdl_expr)

procedureCalls (mdl_metric)

base... (mdl_stmt)

foreach... (mdl_for_stmt)

append... (mdl_instr_stmt)

(* procedureCalls++; *) (mdl_icode)

procedureCalls++; (mdl_expr)

procedureConstraint (mdl_constraint) moduleConstraint (mdl_constraint)

foreach... (mdl_for_stmt)

prepend... (mdl_instr_stmt)

(* procedureCalls++; *) (mdl_icode)

procedureCalls++; (mdl_expr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Page 58

Developer’s Guide April 13, 2004 Release 4.1

only if their match paths (/Code/* and /Code respectively) match the focus. If neither one
matches the focus, neither would be applied; if one matches the focus (note that there would be at
most one match), the instrumentation statements inside the matching replace constraint are
applied, and the instrumentation statements in the base of the metric are not. This is one exception
in our apply() tree visit in our example: some subtrees may not be visited, hence applied, at all.

When the back-end receives a request to enable a metric-focus pair, it uses the MDL to gener-
ate intermediate code in the form of a DAG of AstNodes. The AstNodes specify what code to
generate for the metric-focus pair. For each metric-focus pair a metricDefinitionNode is cre-
ated (in createMetricInstance() in paradynd/src/metric.C). The metricDefinitionNode

contains the DAG of AstNodes and the information about where the generated instrumentation
code (trampolines) should be inserted. After the metricDefinitionNode is successfully created,
the trampolines are generated and inserted into the application executable, see AstNode::gener-

ateCode() and AstNode::generateCode_phase2() (code generation is part of dyninstAPI).

9.4 Where these classes are defined

The classes below are important to the MDL implementation. Although tools like ctags/etags
can be used to pinpoint their definitions, they are listed here just for reference. (This is a very
short list, hope to add some more).

10 IGEN INTERFACE GENERATION

10.1 Overview of Igen

Igen automates the creation of remote interfaces. Interfaces are like remote procedure calls, but
the endpoints (client and server) can be threads or processes. Igen supports generation of RPC
calls using either threads or XDR (or PVM?) as transport.

10.1.1 Synopsis

igen -xdr | -thread | -pvm [-header | -code] <spec>.I

Class Where it is defined

AstNode dyninstAPI/src/ast.h

dataReqNode paradynd/src/metric.h

function_base dyninstAPI/src/symtab.h

instPoint dyninstAPI/src/instPoint-power.h
dyninstAPI/src/instPoint-sparc.h
dyninstAPI/src/instPoint-x86.h

resource paradynd/src/resource.h

metricDefinitionNode paradynd/src/metric.h

Figure 16: Important MDL classes.

Page 59

Developer’s Guide April 13, 2004 Release 4.1

10.1.2 Output

The <spec>.I file specifies the interface template to use to generate the source and header
files. All generated files will use <spec> in their name:

<spec>.C – bundlers for the types that can be passed.
<spec>.CLNT.C – client side code for users of the interface.
<spec>.SRVR.C – server code for providers of the interface.
<spec>.h, <spec>.CLNT.h, <spec>.SRVR.h – class headers.
Note that member functions declared in <spec>.SRVR.h are not generated by Igen, except

for the class constructor and mainLoop. These functions are called by the server when it receives
a request from the client. These functions must be provided by the programmer.

10.1.3 Memory

Igen frees all memory that it allocates, with one exception. Return types in the client code may
be a structure or an array class. The memory allocated for these return types will not be deallo-
cated by Igen.

10.1.4 Upcalls

Upcalls from the server to the client are supported, however, they will only be seen when
the client is waiting for a response from a synchronous call to the server. There is a way to force
the client to attempt to handle an upcall. The client has a member function awaitResponce which
will handle any upcall requests that exist, but awaitResponce will block. The file descriptor
should be checked to see if it is ready for reading before calling awaitResponce.

10.1.5 Interface template

 An interface looks like:
 $remote <interfaceName> {

$base <int>;
$version <int>;
$virtual [$async | $array] <member function definitions>
$virtual $upcall [$async] <member function definitions>
$cmember type variable;
$smember type variable; }

The $array keyword causes igen to genarate an array class and use this as the array type. The
class has a member specifying the size of the array and a pointer to the data.

The $virtual keyword causes the igen generated functions to be declared virtual. For upcalls,
the client function is declared virtual. For non-upcalls, the server function is declared virtual.

The $smember and $cmember keywords cause igen to put the type and variable declaration
into the client or server class. $smember specifies that the server class is to include the type and
variable as a public data member. $cmember specifies that the client class is to include the type
and variable as a public data member.

Page 60

Developer’s Guide April 13, 2004 Release 4.1

The $base keyword defines the first message tag to use for creating request and responce mes-
sage types. Since TAGS should be unique to an application, this value should not confilct with
other interfaces that might get linked into the same process.

The integer after the keyword $version indicates the protocol version of this interface. For
XDR based protocols this version is verified when the client and server rendevous. For thread
based interfaces, Igen relies on the fact that changes to an interface generally change the signature
of at least one function in the interface, and that version incompatabilities should be resolved by
the C++ linker in that case.

The member functions are the basis of the interface. A provider of an interface defines the
member functions in the class <interfaceName>. Igen generates a shadow class <interface-
Name>User with the same member functions. The <interfaceName>User member functions are
really RPC style stubs that invoke the remote member functions.

The $upcall keyword permits interfaces to support upcalls. Upcalls are a way for an interface
to indicate to its user that an "interesting" event has occured. Upcalls are by default synchronous,
but can be made asynchronous by adding the keyword $async after the keyword $upcall.

The $async keyword placed before a function definition prevents igen from generating a wait
for reply after make the remote procedure call. No reply will be made by the receiver of the
remote procedure call.

10.2 Igen grammar

[Words in lowercase are nonterminals; words with punctuation in them (e.g., $), surrounded
by quotes, and in all CAPITALS are terminals.]

completeDefinition -> parsableUnitList
| error

parsableUnitList -> parsableUnitList parsableUnit
| lambda

parsableUnit -> interface_spec
| typeSpec

interfacePreamble -> interfaceName { interfaceBase interfaceVersion
interface_spec -> interfacePreamble definitionList } ;
interfaceName -> IDENTIFIER
interfaceBase -> $base UNSIGNED_INT_LITERAL ;
interfaceVersion -> $version UNSIGNED_INT_LITERAL ;
forward_spec -> ‘forward’ IDENTIFIER ;
definitionList -> definitionList definition

| lambda
optUpcall -> $virtual

| $async
| $virtual $async
| $upcall $async

Page 61

Developer’s Guide April 13, 2004 Release 4.1

| $virtual $upcall $async
| lambda

optFree -> $free
| lambda

optRef -> &
| lambda

definition -> optFree optUpcall optConst typeName pointers optRef
IDENTIFIER (arglist) ;

| $cignore[^$]*$cignore
| $signore[^$]*$signore

optIgnore -> $ignore[^$]*$ignore
| lambda

optAbstract -> ‘abstract’
| lambda

classOrStruct -> optAbstract ‘class’
| ‘struct’

typeSpec -> classOrStruct IDENTIFIER optDerived {
fieldDeclList optIgnore } ;

optDerived -> : IDENTIFIER
| lambda

fieldDeclList -> fieldDeclList fieldDecl
| lambda

fieldDecl -> optConst typeName pointers IDENTIFER ;
typeName -> IDENTIFIER

| IDENTIFIER : : IDENTIFIER
| IDENTIFIER < typeName pointers >

optConst -> ‘const’
| lambda

pointers -> * pointers
| lambda

funcArg -> optConst typeName pointers
| optConst typeName pointers IDENTIFIER
| optConst typeName & IDENTIFIER
| optConst typeName &

nonEmptyArg -> funcArg
| nonEmptyArg , funcArg

arglist -> nonEmptyArg
| lambda

Page 62

Developer’s Guide April 13, 2004 Release 4.1

11 MAKEFILE ISSUES

11.1 Overview of Makefile organization

The files make.config, make.program.tmpl, and make.library.tmpl (located at the root of the
Paradyn source code tree) are the basis for compiling the Paradyn system. They define generic
rules and Makefile dependencies, and are flexible enough that most Makefiles for Paradyn sys-
tem components are kept short and simple. The shadow files nmake.config, etc., are similar and
only required by nmake on Windows; they are also simpler, supporting only that one platform.

A Makefile for a given platform (such as SPARC/Solaris) and given program (such as Para-
dyn, Paradynd, or Igen) is typically organized as follows. Several Makefile variables are first
defined; for example, you will see lines such as USES_TCLTK=true and USES_FLEX=true in the

Paradyn platform Makefiles4. Then the Makefile executes the line include ../../make.config,
which reads in the file make.config. This file defines default dependencies, default compiler
flags, library paths, include directories, and so on. At many points, make.config will check to see
if certain Makefile variables (such as USES_TCLTK and USES_FLEX) are defined; if so, it performs
additional tasks.

For example, if USES_TCLTK is defined, then make.config sets the TCL2C makefile variable to
the appropriate path (for when the tcl2c script is run), adds the path to the Tcl/Tk include files to
the compiler flags, and adds the path to the Tcl/Tk libraries to the compiler’s library-search path.

After make.config is read in, the Makefile may make a few changes to the Makefile vari-
ables, as make.config has assigned them. For example, the line CXXFLAGS += -O3 would make
C++ compile its files with the highest level of optimization (because the Makefile variable CXX-

FLAGS is in turn used by GNU make when compiling C++ files).
Next, a Makefile should have the line include ../make.module.tmpl. This file is the plat-

form-independent part of the module build (just as the Makefile is the platform-specific part). Its
function is to set Makefile variables that will be used by ../../make.program.tmpl, which is
included next. The most important of these Makefile variables are TARGET (which specifies the

name of the final binary that the linker should write to)5, SRCS (which specifies the source files),
LIBS (which specifies additional libraries not automatically defined by make.config), and SYS-

LIBS (similar to LIBS, but intended for non-Paradyn libraries). Note that these Makefile variables
are usually appended to, as opposed to overwritten.

For example, we see the line LIBS += -lpdutil -lpdthread in the make.module.tmpl for
Paradyn, instead of the line LIBS = -lpdutil -lpdthread. This is important, because typically,
make.config will already have defined some initial values for these Makefile variables, which
should be appended to, rather than overwritten.

Makefiles for libraries (such as VisiLib) follow a similar approach; the major difference is that
at the last step ../../make.library.tmpl is included instead of ../../make.program.tmpl.

4. Note that most Makefile tests concern whether something is defined (ifdef), and therefore any non-
empty definition is equally considered: be careful to comment-out or undefine undesired definitions
rather than ineffectively setting USES=false (which will still be considered defined!). For consistency,
true is the prefered definition when one is required.

5. Some modules require to (sometimes) build/install multiple TARGETS or an alternative ALT_TARGET.

Page 63

Developer’s Guide April 13, 2004 Release 4.1

Note that there are features used in the make configuration files that are specific to the GNU
version of make (we currently use version 3.74) and may not be understood by other makes.

11.2 Site-dependency issues

While the top-level Makefile is (Unix) system-independent), the file make.config will need to
be edited to conform to your system’s configuration. For example, the path to your Tcl/Tk library,
the path to your flex library, and the path to X-Window’s include files will likely differ from set-
tings we have used. You should edit the make.config file and make the following changes:

• The destinations for installing Paradyn libraries and programs are specified, relative to the
core of the Paradyn source distribution, by LIBRARY_DEST and PROGRAM_DEST. Note that
while alternate locations may be specified, modification of the standard Paradyn build and
install directory structure is not recommended. Whenever make is performed from the
toplevel source (core) directory, a check is made to determine whether these directories
already exist, an attempt is made to automatically create them. If this fails, or make is run
directly from module subdirectories without these directories existing (and writable), the build
will likely be unsuccessful, as it relies on installing and using components as they are built.

• Search for BACKUP_CORE, and replace its path with either “../..” or the location of the root of
the Paradyn distribution (PARADYN_ROOT). Most sites will not need to use this variable; it spec-
ifies alternate locations to search in the event that the primary TO_CORE variable doesn’t find
that it was looking for. Search the make.config file for uses of TO_CORE and BACKUP_CORE to
get an understanding of how they are used as (primary and secondary) directory prefixes.

• Search for the line TCLTK_DIR and replace the path with the location where Tcl/Tk has been
installed on your system. Also check that the names of your Tcl and Tk libraries corresponds
to those listed in TCLTK_LIBS: on some systems the libraries may be called tcl8.3 and tk8.3

instead of simply tcl and tk. More specifically, the directory $(TCLTK_DIR)/lib should con-
tain libtcl.a and libtk.a (or the equivalent names specified by TCLTK_LIBS).

• Search for FLEX_DIR and change its value to the location where the flex library (libfl.a or
libfl.lib) has been installed on your system.

• Depending on where the X-Windows include files have been installed on your system, you
may need to tell the compiler where to find them. Search for USES_X11 and observe the con-
tents of what’s already there. There are checks for different platforms and corresponding
changes. For some platforms, nothing is done because in our configuration, the compiler
doesn’t need to be told where the X-Windows include files are, where the X-Windows librar-
ies are, and so on. Depending on your system setup, you may need to make some changes here
to X11_LIB, X11DIR and possibly others.

• Check that utilities, such as YACC (bison) and PERL (version 5 or later) are available with the
names (and perhaps paths) specified.

• A private make.config.local file is read (if it exists) after make.config itself, and can be
used to override general make configuration defaults. This is generally an appropriate place to
(optionally) define BUILD_MARK and BUILD_NUM (build identifiers), etc.

• The nmake.config file for Windows is similar (and generally simpler) and should be modi-
fied as described above. One additional configuration option relates to the use of Unix shell

Page 64

Developer’s Guide April 13, 2004 Release 4.1

utilities (such as those freely available from Cygnus) or roughly-equivalent standard Windows
commands: currently if nmake is run from a shell (and the SHELL environment variable is duly
defined) then the more functional Unix utilities are used.

11.3 The DEPENDS file

The first time a program is compiled for a given platform (e.g., paradynd/sparc-sun-

solaris2.4), the equivalent of the command make depend is automatically issued. It creates a
file DEPENDS in the platform directory which contains header file dependencies for all of the
source code files; these dependencies will automatically be included by make.program.tmpl.
You can manually recreate this file (a good idea if you change the source code in such a way that
you modify what .h files are included in one or more .C files) by typing make depend.

If the Makefile variable EXPLICIT_DEPENDS is not defined, then the make system will (for
consistency) perform a make depend every time a source file changes. This can take a good bit of
time, so you may wish to define EXPLICIT_DEPENDS in a platform-specific Makefile to avoid this
(or you could define it in make.config to make it the default). Simply put the line
EXPLICIT_DEPENDS=true in the appropriate location (before make.program.tmpl is included).

Note that automatic generation of DEPENDS files is not supported under Windows. The
DEPENDS files must be manually updated as dependencies change.

11.4 Igen Files

Paradyn, VisiLib and Paradynd use Igen-language files (with the .I suffix) to define the remote
procedure call interface between them. Whenever you change .I files, it is important to re-com-
pile all Paradyn components which use them. To do this, type “make clean” followed by make in
the appropriate platform directories for these programs.

11.5 Building on Windows

Currently, we are using the Visual C++ 6.0 compiler and Microsoft nmakeprograms to build Para-
dyn on Windows. However, Paradyn will not build with a stock installation of Visual C++ 6.0
because of outdated header files. To build Paradyn using Visual C++ 6.0, first replace these head-
ers by installing a recent Platform SDK, which is available for free download from Microsoft. We
also support building Paradyn with Visual C++ 7.0 (VC.NET), which includes a Platform SDK
that is recent enough to build Paradyn. (Of course, one might wish to upgrade to a recent Platform
SDK in any case, as upgrades usually contain bug fixes and feature improvements.)

Because the configuration and Makefiles used on other platforms are not compatible with
nmake, there are a different set of configuration files for Windows called nmake.config,
nmake.module.tmpl, nmake.library.tmpl and nmake.program.tmpl. Each file is the equiva-
lent of the similarly named configuration file for the Unix platforms. To compile a module, go to
the Windows platform directory in the module (i386-unknown-nt4.0) and type nmake (or nmake
install). There is no top-level Makefile (the core/Makefile will not work with nmake), though
the scripts directory contains both Unix shell (make-nt.sh) and command (make-nt.bat)
scripts that will try to compile everything.

Page 65

Developer’s Guide April 13, 2004 Release 4.1

The following packages are needed to build Paradyn: bison, flex, Tcl/Tk, and ONC RPC (an
implementation of Sun RPC). One of the include files in the ONC RPC package, RPC/xdr.h,
needs to be modified to compile with the Visual C++ compiler. (We have these packages installed
under p:/paradyn/packages/winnt, and this path should be updated as appropriate for your
system. A gzipped tarfile of ONC RPC v1.12 with the RPC/xdr.h file already modified is avail-
able from ftp://grilled.cs.wisc.edu/paradyn/etc/oncrpc112winnt.tar.gz).

To run the Paradyn daemon on Windows, the dynamic link library oncrpc.dll must be in
some directory that is listed on your PATH environrment variable, so that the Paradyn daemon can
use Sun RPC calls to communicate with the Paradyn front-end. Additionally, to run the Paradyn
daemon on Windows NT or 2000, a recent version of the library dbghelp.dll must be in the
same directory as paradynd.exe (Windows XP supplies a correct version). A sufficiently recent
version is packaged with the Paradyn binary release. Alternatively, a recent version is available as
a free download from Microsoft; at the time of this writing, it was distributed as a part of the the
“Debugging Tools for Windows” package.

12 MPI APPLICATION SUPPORT

Paradyn currently supports native MPI on AIX/SP and MPICH on x86/Linux and x86/Solaris.
Metrics based on MPI library functions are defined in the usual way in the Paradyn configuration
file (paradyn.rc). This section describes special support for starting MPI applications (i.e.,
distributed collections of MPI processes) under Paradyn control. Since application startup is not
specified in the MPI standard, the mechanisms used by each implementation typically vary and
Paradyn requires implementation-specific support for each case. In all cases, support is currently
only available for creating/starting MPI applications under Paradyn control, rather than attaching
to existing collections of MPI application processes.

12.1 MPICH Support

Paradyn includes support for MPICH applications on collections of workstations. The current
implementation has several limitations which are given below.

• Cluster nodes should share a common file system with the host used to launch the application.
For each MPI application being launched, the Paradyn frontend creates a startup file that
should be accessible from all nodes in the cluster. In the future, the frontend may ship this file
to other nodes via an rcp-like mechanism or use environment variables to avoid this need.

• Only x86/Linux and x86/Solaris platforms are currently supported, both as homogeneous and
heterogeneous collections. A proper SPARC/Solaris implementation would require an ability
to access function arguments off the stack (parameter 7 and higher).

• Paradyn requires MPICH version 1.2.0. Older versions of MPICH can be supported by re-
linking an MPI application with the profiling library libpmpich.a and the Paradyn wrapper
library libpdmpich-1.1.0.a.

• Paradyn currently does not support any MPICH drivers other than the default P4 driver, how-
ever, other drivers can be handled in a similar fashion. The pure shared memory
driver(shmem) can be supported by enabling the default follow-fork instrumentation in the
daemon. The same method may be sufficient for the mixed P4+shmem driver, however, the

Page 66

Developer’s Guide April 13, 2004 Release 4.1

last driver performs several exec() system calls at startup which may not be handled reliably
by Paradyn. A potential solution may be to allow the exec() calls to happen unnoticed,
which should not involve many changes in the daemon.

12.1.1 MPICH job startup procedure

Consider an MPI application that is to be started on 3 nodes (A, B, C) via the following com-
mand: mpirun -np 3 hello. Figure 17 provides a step-by-step description of the default P4
driver startup procedure. In the diagrams, black/solid arrows indicate process creation, red/dashed
arrows indicate communication and blue/dotted arrows indicate process control.Long dashed lines
indicate machine boundaries. Figure 18 describes startup of the same hello application under
Paradyn. The core idea is to make MPICH start Paradyn daemons instead of the real application
nodes. It is the daemon’s responsibility to launch the application after that.

12.1.2 Supporting MPICH on other platforms

Most of the described infrastructure is platform-independent. To support MPICH on a new plat-
form, one may not need to change the frontend. Following is a list of the required changes to the
daemon. See paradynd/src/init-linux.C for details.

• Instrument fork() with the specialized DYNINSTmpi_fork() routine instead of the standard
DYNINSTfork(). Currently, we do not need to follow fork() in MPI applications. The goal
of the DYNINSTmpi_fork() routine is to perform cleanup after fork().

• Do not instrument the exec() call.

• Invoke instMPI() to instrument several MPI functions with tag and group- recording code
snippets.

Page 67

Developer’s Guide April 13, 2004 Release 4.1

Figure 17: MPICH Job Launch Procedure

The mpirun command is issued on Host A.

The mpirun script performs certain preprocessing
steps: creates a procgroup file with the three host
names and sets up environment variables, if neces-
sary. After that, it launches the first copy of the
application locally, passing the procgroup file
name (PI1234) as an argument. This program
instance (the “master”) plays a special role in the
startup process, but it becomes an ordinary compu-
tational process once all nodes are started.

The master starts running and hits the MPI_Init()
function. This function analyzes the procgroup file
and creates computational processes (slaves) on
the other nodes (B and C). Actual process creation
may happen either through an rsh-like program or
through the special P4 daemon. Each slave is
started with the master location (hostA, port#)
passed through the command line:
hello -p4amslave hostA port#

Notice that user-supplied command line arguments
are hidden from the slaves at this point.

The slaves run until they hit the MPI_Init() func-
tion. This function analyzes the command line
arguments and connects back to the master. The
master ships the user-supplied command line argu-
ments to the slaves, completes the initialization
and all processes start running.

Host A
mpirun -np 3 hello

Host A

master

hello -p4pg PI1234

mpirun

Host A
mpirun

master

hello

Host B Host C

hello

rshrsh

Host A
mpirun

master

hello

Host B Host C

hello

rshrsh

Page 68

Developer’s Guide April 13, 2004 Release 4.1

Figure 18: Paradyn MPICH Job Launch Procedure

The user enters a complete mpirun command in a
Paradyn command file or in the Paradyn (Setup,
Define a New Process) command field. Paradyn
parses the command line, creates a helper script,
replaces the program name with the script name in
the command line and executes the command line
on the specified target machine. The purpose of the
script is to start paradynd with proper arguments
(frontend_host,frontend_port,prog_name).
These arguments can not be included in the user-
specified command line, because MPICH hides it
from slave processes (paradynd’s) until they com-
plete MPI_Init().

mpirun proceeds as described in Figure 17 and
starts the first pdd script. The script launches para-
dynd, paradynd starts the user application, stops it
at the beginning of main() and communicates to
the frontend.

The user hits the “Run” button and the application
starts running. This instance becomes the master,
so it attempts to create slaves, but runs our scripts
on the remote hosts instead. The scripts create
Paradyn daemons. The Paradyn daemons create
inferior processes and communicate to the front-
end. The frontend adds these processes to the
resource hierarchy and tells paradynd’s to continue
them. Finally, slave processes hit MPI_Init(),
notify the master of arrival and the MPI applica-
tion starts running.

Paradyn: create the script

mpirun -np 3 pdd.AAA_saGEA

pdd.AAA_saGEA

Host P

Host A

rsh

mpirunParadyn

Host P Host A

pdd.AAAparadynd

hello

ready

stop

Host P

Host A

pdd.AAA

paradynd

hello

Host B Host C

pdd.AAA

paradynd

hello

run run

pdd.AAA

paradynd

hello

run

mpirun

Paradyn

run

readyready

	Developer’s Guide
	1 Overview
	1.1 Document revision history
	1.2 New functionality for release 4.0
	1.3 New functionality for release 3.0
	1.4 New functionality for release 2.1
	1.5 Paradyn subsystems and source code structure
	Figure�1: Paradyn (and dyninstAPI) subsystems.
	Figure�2: Paradyn/dyninstAPI module structure and dependencies.
	Libraries and associated include files are common module dependencies, often supplemented with pr...

	2 Paradyn Package Dependencies
	3 Paradyn Front-end
	3.1 Data Manager
	Performance data collection
	Performance data delivery from the Paradyn daemon(s)
	Metrics and resource hierarchies management
	DM objects

	3.2 Visi Manager
	Visi Manager types
	Visi Manager interface routines
	Figure�3: Visi Manager interface

	3.3 Visi threads
	Visi thread types
	Figure�4: VISIthreadGlobals struct members.

	The Visi thread and the Visi interface
	The Visi thread and the Data Manager
	Interface routines

	3.4 User Interface (UI) thread
	UI main loop
	Where Axis
	Performance Consultant window (Search History Graph)
	Tunable constants
	Status lines
	Paradyn Main Control window

	3.5 Performance Consultant thread
	The data stream
	Experiment definition
	Search control
	Starting up a particular experiment
	1. Get estimated cost: when a node is expanded, a request is made to the Data Manager for the pre...
	2. Enable request(s): when a node is launched from the PC run queue, one or more enable requests ...
	3. Change to true: when a node’s status changes from unknown to true, both parent and children ma...
	4. Change to false: when a node’s status changes from unknown to false it is deactivated and not ...

	4 Visi Library
	5 Paradyn Daemon
	5.1 Introduction
	1. Starting and controlling the execution of application processes.
	2. Reading the application’s symbol table.
	3. Reading the application’s binary image to find instrumentation points.
	4. Evaluating metrics, generating code, and inserting instrumentation into application processes.
	5. Periodically sampling performance data from the application and forwarding values to the Parad...

	5.2 Application processes
	5.3 Object file processing
	5.4 Shared-object processing
	Figure�5: Process class and shared objects.
	Process 1 and process 2 are the same executable and share a.out and shared object images. Process...
	Figure�6: image, module, pdFunction, and instPoint classes.
	Each image consists of a number of modules, each module consists of functions, and each function ...
	Metric Evaluation and Code Generation
	Figure�7: Data structures of the Paradyn daemon.

	5.5 Performance data sampling
	5.5.1 Shared-memory sampling
	5.5.1.1 Synchronization issues for shared-memory sampling
	Figure�8: Pseudo-code for startTimer and stopTimer operations
	Figure�9: Pseudo-code for shared-memory sample of a timer
	Figure�10: Final pseudo-code for startTimer/stopTimer operations
	Figure�11: Final pseudo-code for timer sampling

	5.5.1.2 The need for a get-remote-time() primitive
	5.5.1.3 Management of instrumentation variables in shared memory
	Figure�12: variableMgr and shmMgr

	5.5.2 Alarm sampling

	5.6 Retroactive instrumentation
	Figure�13: Retroactive instrumentation example.
	The program has been interrupted during the execution of subD2 (with the call-stack as shown) wit...

	5.7 Dynamic Heaps
	5.8 Trampoline Guards
	5.9 Instrumentation of multi-threaded programs
	5.9.1 Introduction
	5.9.2 Paradyn Program Instrumentation
	5.9.3 Design Issues
	5.9.4 Current Design
	5.9.4.1 Data manager
	5.9.4.2 Instrumentation details
	5.9.4.3 Base Trampoline
	5.9.4.4 Mini Trampoline
	5.9.4.5 Thread Creation
	5.9.4.6 Thread Deletion
	5.9.4.7 Inferior RPCs

	5.9.5 Virtual Timers
	5.9.6 Current Status and Limitations

	5.10 Timer Levels
	Implementing a new timer level

	6 x86 Port
	Instruction representation
	Parsing the executable image
	Inserting instrumentation
	Base trampoline
	Code generation
	Example

	7 Linux port
	Inferior process modification and information through ptrace and /proc [dyninstAPI/src/linux.C]
	Handling shared libraries in the inferior process [dyninstAPI/src/linuxDL.C]
	Inserting a shared library into the inferior process process::dlopenDYNINSTlib [dyninstAPI/src/li...
	Inferior RPCs [dyninstAPI/src/process.C]
	Paradyn front-end threading package [libthread]

	8 Run-time instrumentation library
	9 MDL implementation
	9.1 Important files
	Figure�14: Crucial MDL files

	9.2 Lexical and syntax analysis
	Figure�15: An example demonstrating how apply() functions work.

	9.3 Semantic analysis and intermediate code generation
	9.4 Where these classes are defined
	Figure�16: Important MDL classes.

	10 Igen Interface Generation
	10.1 Overview of Igen
	10.1.1 Synopsis
	10.1.2 Output
	10.1.3 Memory
	10.1.4 Upcalls
	10.1.5 Interface template

	10.2 Igen grammar

	11 Makefile Issues
	11.1 Overview of Makefile organization
	11.2 Site-dependency issues
	11.3 The DEPENDS file
	11.4 Igen Files
	11.5 Building on Windows

	12 MPI Application Support
	12.1 MPICH Support
	12.1.1 MPICH job startup procedure
	Figure�17: MPICH Job Launch Procedure
	Figure�18: Paradyn MPICH Job Launch Procedure

	12.1.2 Supporting MPICH on other platforms

