Paradyn Parallel Performance Tools

MDL
Programmer’s Guide

Release 4.1
April 2004

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@s. wi sc. edu

MDL Programmer’s Guide 4/13/04

Table of Contents

R 1 00 (1o o 1 SRS 3
P O 0 U 1= = TP UPR PR 3
2.1 Countersareinitialized t0 ZEI0cocerieieeieee e 4
G T I 0= £ S 5
3.1 Every startTimer() must be matched by astopTimer()cccceevveeveeieveerieenns 5
3.2 Use append/append instead of append/prepend for timerscccccveceeveeinrnenne 6
4 Entry-Return INSIrUMENTEEIONcoueiiiiiieieseese e 8
4.1 Return-point execution does NOT imply entry-point executioncccceeu... 8
4.2 Entry-point execution does NOT imply return-point executioncceceeeueene 9
4.3 Avoid using entry-point poSt-iNStrumentationccoceverererieeienesese e 11
4.4 Do NOT use return-point post-inStrumentationccccceevieeevesieeseeiesieesesnens 12
5 Calsite INSIrUMENTALIONoviiieieieiee e sae e 13
5.1 Inexclusive metrics, prelnsn callsite is analogousto func.returnc.ceeeee. 13
5.2 Inexclusive metrics, postinsn callsite is analogous to func.entry 14
6 MISCEIIANEOUS ...ttt b et ae e 14
6.1 All EventCounter-style metric values must increase monotonicaly 14
6.2 Use SampledFunction-style metricsto track valuesin a user application 15
6.3 Instrumenting recursSiVe fUNCLIONSccoveeiierieiieieseesiee e 16
A o g Tox 11 o] o IS 16

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 3

1 INTRODUCTION

Paradynis a parallel performancemeasurementool that performsdynamicinstrumentationon
running applications. Instrumentations a sequenceof instructions,suchas a code fragment
insertedat the beginning of a functionto incrementa countof the numberof timesthefunctionis
invoked. The instructionsare compiledfrom a sourcelanguage called the Metric Description
Languaye (MDL). For Paradynto properlyinstrumentandthusmeasureyour applications per-
formance you mustspecifyall the metricsyou will needusingMDL in a Paradynconfiguation
file. Commonlyusedmetricshave alreadybeenprogrammedor you aspartof the Paradyndistri-
bution in a file namegdar adyn. rc.

This paperis written to helpyou becomemoreproficientin programmingwvith MDL. Specif-
ically, this paperis designedo save youtime andfrustrationsn usingthis new language.MDL is
unlike arny languagehatyou might have used,sowe wantto easeyour introduction.\We assume
you have alreadyfamiliarizedyourselfwith the MDL languagesyntax:if not, pleasereferto the
Paradyn Users Guide We further assumeyou are proficient in programming;MDL is an
unusualprogramminglanguageas you will shortly discover, and understanding@dvancedpro-
gramming concepts will ease your learning.

This paperwalks you throughfrom the bottomup. We first startwith the basicMDL metric
datatypes: countersandtimers. The restof the paperessentiallygoesthroughtips on how to
properly usethem. Even seasonegrogrammerswill be surprisedby how subtlethe program-
ming issuesarewhenusingeven seeminglysimple conceptsuchascountersandtimers. Since
the countersandtimersdo not updatethemselesautomaticallywe go on to actualinstrumenta-
tion code that updates them.

Threetypesof instrumentatiorcanbe specifiedn MDL, with eachtype namedby their loca-
tion (or point of insertion): entry-point,return-pointandcallsite. Entry-pointinstrumentations
insertedat thebeginningof functions. Return-poininstrumentations insertedat theendof func-
tions. Callsite instrumentations insertedat placeswherefunctionscall otherfunctionswhen
dealingwith exclusive metrics. Entry-pointandreturn-pointinstrumentatiorarecloselyrelated,
sowe considerthemtogetherin one section. Callsiteinstrumentatioris describedn a separate
section.

Last,we devote a sectionon miscellaneousssueghatdid notfit nicely into any of theabove
mentioned sections and did ncamant separate sections themsslv

To simplify the presentationywe will be providing only MDL codefragmentsandnot com-
pletemetricimplementationsln addition,thoughconstaints arekey to instrumentationnoneof
the MDL examplesareconstrai ned. Thatis, all exampleswill be written asif for whole-pro-
grammetrics. Again, thisis doneto simplify thetext. The metricsyou write, however, will usu-
ally need to beonst r ai ned.

2 COUNTERS

Countersareoneof two metric datatypessupportedby MDL. The secondtimers,will be cov-
ered in Sectio.

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 4

2.1 Countersareinitialized to zero

Therefore, if you are using a counter as a flag, tryf use zero as the “okayahe.

Hereis afragmentof a metricthatcountsthe numberof 1/O functioncalls, exceptthosecalls
madefrom within MPI functions.(MPI is alibrary of functionsusedfor exchangingvaluesin par-
allel programs.)

/1 Good exanple of using a counter as a flag
counter not_in_npi; // Flag is 1 when programis outside an MPI function

foreach func in npi_funcs {

append prelnsn func.entry (* not_in_npi = 0; *)
prepend prelnsn func.return (* not_in_nmpi = 1; *)
}
foreach func in io_funcs {
append prelnsn func.entry (* if (not_in_npi == 1) io_ops++; *)

}

Thenot _i n_npi flagis setonly after a returnfrom an MPI function, andwe incrementthe
i o_ops counteronly if theflag is on. Thatis, we areincrementingthe counterof 1/0 function
callsonly whenwe aresurewe arenot executingwithin anMPI function. Assumingthatthe MPI
functionsdo not call eachother directly or indirectly, it is impossiblefor thenot _i n_npi flagto
have a value of 1 whenwithin an MPI function. To shaw this, we needa caseanalysis. At the
momentof instrumentationthe programis eitherexecutingan MPI functionor it is not, sothere
are only two casesto consider (Note thatif a programis currently within a function at the
momentof instrumentationary new entry-pointinstrumentatiorof the functionmay not be exe-
cuted for the current wocation of the function.)

Case 1: Program is inside an MPI function at the moment of instrumentation.
Sincenot _i n_npi is initialized to zero, the flag has the corre¢tvalue. As a result, we
will not mistalenly increment the 1/O function calls count when inside an MPI function.

Case 2: Program is outside an MPI function at the moment of instrumentation.

Sincenot _i n_npi isinitializedto zero,theflag hastheincorrectoff value.However, this met-

ric was written for an MPI application, so this situation will be corrected shortly atxhe ne

call of an MPI function.

Supposeave mistalenly usedzeroasthe “okay” flag valuefor this metric,asin the following
example.

/1 Bad exanple of using a counter as a flag
counter in_npi; // Flag is 1 when programis inside an MPI function
foreach func in npi_funcs {

append prelnsn func.entry (* in_npi
prepend prelnsn func.return (* in_npi

1, *)
0; *)

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 5

}

foreach func in io_funcs {
append prelnsn func.entry (* if (in_nmpi == 0) io_ops++; *)

}

Using a case analysis, we find that it is possible to mistakenly count 1/O function calls made
from within MPI functions.

Case 1. Programisinside an MPI function at the moment of instrumentation.

Sincei n_npi isinitialized to zero, the flag has the incorrect off value. Asaresult, we
mightmistakenly increment the I/O function calls count when inside the currently executing
MPI function.

Case 2: Program isoutside an MPI function at the moment of instrumentation.
Sincei n_npi isinitialized to zero, the flag has the correct off value.

You may notice that deciding on the “okay” value of a flag depends on the errors the metric
must avoid. Inthe above example, it was required that I/O function calls by MPI functions not be
counted, so we had to choose 1 as the “okay” value. However, there may be situations where you
must use 0 as the “ okay” value.

3TIMERS

Timers are more complex than counters, but they still can be used with afew simple rules. Para-
dyn has four timer functions. st art ProcessTi mer () and st opProcessTi mer () for virtual clock
timers, and startwal | Timer () and st opwval | Ti mer () for wall clock timers. For clarity, we
shall sometimes use the abbreviations st art Ti mer () and st opTi mer () .

3.1EverystartTi ner () must be matched by ast opTi nmer ()

Thisis similar to the syntax of many programming languages. In Pascal, aBEG Nis ended by the
first unmatched END. In C, an open brace { isended by the first unmatched close brace}. InLisp,
an open parenthesis (is ended by the first unmatched close parenthesis). In MDL, astart -
Ti mer (T), for some timer T, is ended by the first unmatched st opTi ner (T) . An unmatched
st opTi mer () has no effect. Calling start Ti mer () on an aready running timer neither restarts
the timer nor starts a new copy of the timer. However, the timer is actually stopped ONLY when
every start Ti mer () hasbeen matched by ast opTi mer ().

Unlike the Pascal, C, and Lisp examples, MDL timer matching is done as the instrumentation
is executed, and not when the metric was written by you. That is, unmatched elementsin Pascal,
C, and Lisp will be caught by acompiler, but unmatched MDL timerswill result in incorrect timer
values. At thispoint, we just want you to be aware of the aboverule. Thelater sections on instru-
mentation will show you how to keep st art Ti mer () and st opTi ner () matched.

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 6

3.2Useappend/append instead of append/pr epend for timers

Software instrumentationinherently perturbsthe original program, so the programs timing
behaior changesFurthermore subsequeninstrumentationcan changethe timing behaior of
previousinstrumentationThefollowing exampleshavs how relative errorsin timerscanbe min-
imized by careful relatve placementof timer instrumentatiorblocks. Let us illustrate this by
examining instrumentation that times theseution of an 1/0 function.

We startwith an1/O function that hasalreadybeeninstrumentedasfollows. E1 andE2 are
two piecesof entry-pointinstrumentation.R1 andR2 aretwo piecesof return-pointinstrumenta-
tion.

I/ O Func El E2

R1 R2
- -

Now we want to insert our timer instrumentation, written in MDL as fofo

/1 The nost obvious way to inplenent an I/O function tiner netric

foreach func in io_funcs {
append prelnsn func.entry (* startVallTimer(T); *)
prepend prelnsn func.return (* stopWall Tiner(T); *)

}

The following figure shavs how thingswould look after we have actually instrumentedhe
I/O function with the code gen abee.

I/ O Func El E2 startWal | Ti mer (T)

B i g -

stopVal | Ti mer (T) R1 R2

g R B

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 7

Notice that for a singletimer metric, this is the bestplacemenif the instrumentation. By
appending st art Wal | Ti ner (T), we avoid including the executiontimes of the existing entry-
point instrumentation. By pr epending st op\al | Ti mer (T), we avoid including the execution
times of the existing return-pointinstrumentation. However, let us now considerwhat happens
whenmultiple timersareinserted. For example,we may have insertedonetimer to keepthel/O
time for theentireprogram,onetimer to keepthel/O time for amodule(a setof procedures)and
one timer to kep the I/O time for a particular procedure.

Below we have instrumentatiorfor timersT1, T2, andT3; insertedjn thatorder Forthesale
of clarity, let us assume thereaw no predsting instrumentation on the I/O function.

/O Func startTimer(T1) start Ti mer (T2) startTi mer (T3)
- | -

st opTi ner (T3) st opTi ner (T2) stopTi ner (T1)
> > >

Noticethat T3 getsthe bestplacemenfor beinginsertedlast. Meanwhile,T1 getsthe worst
placementfterbeinginsertedirst. As new timersareinsertedtheearliertimersgetlessandless
accurate because thmust also timall the nev timers’ instrumentation.

To reducethe rate of decreasen timer accuraciesye can use append/append insteadof
append/pr epend in our metrics. That is, the MDL description becomes theviahg.

// An 1/O function tiner netric that causes |l ess interference

foreach func in io_funcs {
append prelnsn func.entry (* startVallTiner(T); *)
append prelnsn func.return (* stopVWall Tinmer(T); *)

}

Hereagain we have instrumentatiorfor timersT1, T2, andT3; inserted,in thatorder How-
ever, this time, the return-pointinstrumentatiorhasbeenappended, insteadof prepended. As
new timersareinsertedthe earliertimersstill getlessaccurateput the rateof decreaseén accu-
ragy hasbeenlessenedecausehey musttime only half the new timers’ instrumentation.Also,
noticethatif all the instrumentatiorpiecestake the sameamountof time to execute,eachtimer
will seethe sameamountof error. This may be betterbecausehenyou won't have metricsdis-
agreeing with each other about the amount of time this 1/0 functies.tak

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 8

/O Func startTinmer(T1) startTi mer (T2) start Ti mer (T3)
> o >

st opTi ner (T1) st opTi ner (T2) st opTi ner (T3)
- | -

Using pr epend/pr epend also has the same relative-error minimization property, but reduces
the chances of instrumentation being executed at the earliest possible opportunity. To seethis, the
following figure illustrates the situation after instrumentation for T1 and T2 have been inserted
with pr epend/pr epend. Suppose the program is executing the st ar t Ti mer (T2) instrumentation
when we need to insert instrumentation for T3. Since start Ti mer (T3) will be prepended in
front of start Ti mer (T2), start Ti mer (T3) will not get executed for this invocation of the 1/0
function. However, had we instead been appending, the st art Ti mer (T3) will get executed for
thisinvocation.

/0O Func startTiner(T2) start Ti mer(T1)
| |

st opTi mer (T2) st opTi mer (T1)
|

4 ENTRY-RETURN INSTRUMENTATION

In the previous sections, we looked at the basic properties of counters and timers. In this section,
we look at how we can properly update the counters and timersin our entry-point and return-point
instrumentation. Section 5 will cover callsite instrumentation.

4.1 Return-point execution does NOT imply entry-point execution
The ssimplest example is the case where the program was executing within the function when the

function becomes instrumented. The entry-point instrumentation will not get executed for this
invocation of the function because the entry point has already been passed. However, the return-

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 9

point instrumentation may get executed as part of the function’s return. We use an example to
illustrate how to handle this situation.

Here are the most obvious MDL statements for an inclusive constraint flag. const r ai nt Fl ag
isnonzero if thereis any known active invocation of the instrumented function.

counter constraintFl ag;

append prelnsn func.entry (* constraintFlag += 1; *)
append prelnsn func.return (* constraintFlag -= 1; *)

L et us make a simple walk-through of the above MDL statements. Aswith all counters, con-
straintFl ag isinitialized to zero. On entry to the instrumented function, constr ai nt Fl ag is
incremented to 1. On return from the instrumented function, const r ai nt Fl ag is decremented
back to 0. Should the instrumented function be recursive, the recursive invocation will first
increase const rai nt Fl ag on entry, but will properly restore constraint Fl ag on return. It
seems that the above MDL statements correctly give constrai nt Fl ag a honzero value when
there is an active invocation of the function.

However, suppose that the program was executing within the function at the moment of instru-
mentation. Then the entry-point instrumentation will not be executed, but the return-point instru-
mentation is. Theresult isthat const rai nt Fl ag getssetto-1 at return. Now constrai nt Fl ag isS
nonzero even when there is no active invocation of the function. It getsworse. On the next invo-
cation of the function, the entry-point instrumentation will increase const r ai nt FI ag to zero, and
the return-point instrumentation will decrease constrai nt Fl ag back to -1. Therefore, con-
strai nt Fl ag is zero when there is a known active invocation of the function. If thisfunction is
nonrecursive, our instrumentation has failed in every case.

To correct the situation, hereis abetter MDL implementation. const rai nt Fl ag iSnonzero if
and only if it has been incremented at entry to the function. Using this knowledge, the new imple-
mentation executes the return-point instrumentation only if the entry-point instrumentation has
been executed. Another way to look at it is that we simply do not decrement const r ai nt Fl ag
below zero. Of course, if instrumentation occurred while the program was executing within the
function, const r ai nt Fl ag may still have the incorrect value of zero for the duration of the func-
tion’s current invocation.

/1 Being careful in return-point instrunmentation
counter constraintFl ag;

append prelnsn func.entry (* constraintFlag += 1; *)
append prelnsn func.return (* if (constraintFlag != 0) constraintFlag -= 1;*)

4.2 Entry-point execution does NOT imply return-point execution
Some functions will return abnormally. For example, suppose there was an exception. Some lan-

guages with exception handling will allow a function to unwind the callstack to an arbitrary depth
until it finds a function that can handle the exception. Another example isthel ongj np() library

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 10

function from the C programming language. Calling this function essentially unwinds the call-
stack. Yet another example is a case where we did not detect an instruction sequence as a func-
tion-return sequence. There are many ways to return from afunction. With optimizing compilers
and creative assembly programmers, we do not claim to know all the instruction sequences that
may be used to return from a function. As a result, we may not have instrumented all return
points of afunction.

Let uslook at atimer example. Here are the most obvious MDL statements to measure the
execution time of afunction. Timer Tison if and only if thereis aknown active invocation of the
function.

append prelnsn func.entry (* startProcessTimer(T); *)
append prelnsn func.return (* stopProcessTiner(T); *)

Let us take a simple walk-through of the above code. On entry to the function, timer T is
started. On return from the function, timer T is stopped. If the program was executing within the
function at the moment of instrumentation, then we will ssmply stop a timer that was not started,
which has no effect. Thingslook good so far.

However, suppose there was a normal entry to the function (timer T started) followed by a
rarely used exceptional return (timer T not stopped). Remember that timers are stopped only if all
start Timer () calls are matched by stopTiner() cals. In this case, the startProcess-
Ti mer (T) a entry was not matched by the st opProcessTi mer (T) at return, so timer T is still
running. On the next invocation of the function, we execute a new st art ProcessTi ner (T), SO
we now have two unmatched st art ProcessTi ner (T). At normal return, we execute st opPr o-
cessTi nmer (T) to match the new st art ProcessTi mer (T), but the other unmatched st ar t Pr o-
cessTi mer (T) is still unmatched. So at return, the timer T is still running. In fact, timer T will
always remain running, regardless of whether or not the function is actually being executed.

To solve this problem, we write a better MDL implementation that has a* self-healing” prop-
erty. The next normal execution of the function will correct the instrumentation problems of the

previous exceptional execution of the function®. We accomplish this by making sure that there is
never more than one unmatched st ar t ProcessTi mer (T) . The new MDL code follows. (Unfor-
tunately, there is no simple way to extend this technique to recursive functions.)

/1 A self-healing tiner netric

counter T_is_running; // Flagis 1 if timer T is running

append prelnsn func.entry
(* if (T_is_running == 0) startProcessTiner(T);
T is_running = 1;

*)

append prelnsn func.return
(* T_is_running = O;
st opProcessTi mer(T);

1. Note, however, that this“healing” of the instrumentation problem such that subsequent execution will be
correct, doesn’t correct or compensate for spurious accounting which takes place in the interrim.

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 11

*)

We are using the counter T_i s_runni ng as a flag that is true when there is an unmatched
startProcessTimer (T). T_is_running is correctly initialized to zero since the timer T is not
running at the moment of instrumentation. At entry to the function, we turn the timer on if and
only if it has not already been turned on. Then we set T_i s_r unni ng to 1 to indicate that at this
point we are sure the timer isrunning. Notice that no matter how many times you repeatedly exe-
cute this entry-point instrumentation, there is at most one st art ProcessTi mer (T) that actually
gets executed. At normal return from the function, the st opPr ocessTi ner (T) will match the sin-
gle unmatched st art ProcessTi ner (T). We aso set T_i s_runni ng to zero since we are sure
there will be no unmatched st art ProcessTi mer (T) .

Let us look at the case where we enter the function normally, execute st art Process-
Ti mer (T), and return exceptionally without executing the return-point instrumentation. Now the
timer T isincorrectly running, and the T_i s_r unni ng flag is still set to 1. On the next invocation
of the function, the st art ProcessTi mer (T) isnot executed. If the function returns normally this
time, the st opPr ocessTi mer (T) will correctly turn off the timer, and the T_i s_r unni ng flag will
be correctly set to 0. Our instrumentation is now “healed”.

4.3 Avoid using entry-point post-instrumentation

The sequence in which Paradyn executes instructions at an instrumentation point is as follows.
First, any pre-instrumentation is executed, then the program instructions located at the instrumen-
tation point, and afterwards, any post-instrumentation is executed. Thisisillustrated below.

> prel > pre2

l

B programinstructions at point

:

post 1 post 2

You should try to avoid using entry-point post-instrumentation because the program instruc-
tions found at the point may be branch instructions. These instructions will divert execution flow
away from the post-instrumentation, as illustrated in the figure below. When this happens, any
post-instrumentation will not be executed. In practice, we have not found it necessary to use
entry-point post-instrumentation.

MDL Programmer’s Guide April 13, 2004 Release 4.1

prel

pre2

:

B branch instructions

di verted execution fl ow

-

postlnsn ignored

post 1

|

post 2

Page 12

Therefore, you should avoid using any MDL statements that ook like the following. Future

versions of Paradyn may even treat them as syntax errors.

append postlnsn func.entry
prepend postlnsn func.entry

4.4 Do NOT usereturn-point post-instrumentation

/1 Rl SKY!

// Just as RI SKY!

Return-point post-instrumentation does not work and does not make sense. Therefore, Paradyn

treats any attempt to use such instrumentation as a syntax error.

append postlnsn func.return
prepend postlnsn func.return

MDL Programmer’s Guide

/1 Syntax ERROR!
/1 Syntax ERROR!

April 13, 2004

Release 4.1

Page 13

SCALLSITE INSTRUMENTATION

Callsite instrumentation is commonly used in exclusive timer metrics. These metrics measure the
execution time of afunction, but they must exclude the time spent in functions called by the func-
tion being timed. Hereisatypica example of MDL code for an exclusive timer.

counter T_is_running; // Flagis 1 if timer T is running

append prelnsn func.entry
(* if (T_is_running == 0) startProcessTinmer(T);
T_is_running = 1;

*)

append prelnsn func.return
(* T_is_running = 0;
st opProcessTi mer(T);

*)

foreach callsite in func.calls {
append prelnsn callsite
(* T_is_running = 0;
st opProcessTi ner(T);

*)

append postlnsn callsite
(* if (T_is_running == 0) startProcessTinmer(T);
T_is_running = 1;

*)

Let us take a simple walk-through. At entry to the function, the timer is started. At return
from the function, the timer is stopped. This times the execution of the function. Now we pro-
ceed to exclude the execution times of functions called by this function. We accomplish this by
instrumenting the callsites. At each callsite, we stop the timer before entering the called function,
and we restart the timer after returning from the called function.

Notice in the MDL code given above that the callsite pre-instrumentation is the same as the
function return-point instrumentation and that the callsite post-instrumentation is the same as the
function entry-point instrumentation. In general, thisistrue for all exclusive metrics.

5.11n exclusvemetrics, prel nsn cal | sit eisanalogoustofunc. return

At a callsite, the function being measured is going to temporarily stop executing until the called
function returns. At function return, the function is going to temporarily stop executing until the
next invocation of the function. To an exclusive metric, the difference in why the function is stop-
ping execution isirrelevant. All that matters is that the exclusive metric must halt until the func-
tion resumes execution.

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 14

5.2 In exclusive metrics, post I nsn cal | si t eisanalogoustofunc. entry

Immediately following a callsite, the function being measured is going to resume execution after
temporarily stopping to let another function execute. At function entry, the function is going to
resume execution after being temporarily stopped between invocations. To an exclusive metric,
the difference in why the function is resuming execution isirrelevant. All that matters is that the
exclusive metric must be restarted until the function stops execution again.

6 MISCELLANEOUS

This section contains MDL programming tips that could not nicely fit within any of the previous
sections and that could not warrant a separate section by themselves.

6.1 All EventCounter-style metric values must increase monotonically

The values of your EventCounter metrics should not be allowed to decrease in value, no matter

how dlightly or for how short an amount of ti me.2 Paradyn rigorously checks this condition and
will immediately abort if the check ever fails. A typical example of such ametric isone that accu-
mulates a count of the number of bytes transferred by the 1/0 functions. Sample MDL code is
given below. The I/O functions give the number of bytes transferred as the return value.

/1 Blindly adding function return val ues

counter in_sanpling; /1 Flag is O if DYN NSTal arnExpire() is not
/1 currently being executed

foreach func in io_funcs {
prepend prelnsn func.return constrained
(* if (in_sanpling == 0) io_bytes += $return; *)

foreach func in DYN NSTal ar nExpire {
prepend prelnsn func.entry
(* in_sanpling = 1; *)

append prelnsn func.return
(* in_sanpling = 0; *)

However, the 1/0 functions also return -1 if they encounter errors. Infact, it isageneral prac-
ticein C programming for functionsto return negative valuesto indicate errors. Therefore, when-
ever an 1/O function returns due to error, our instrumentation will add a negative number to the

2. SampledFunction-style metrics, of which an example is provided in Section 6.2, allow reported values to
change arhitrarily, however, they must still remain non-negative.

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 15

metric value counter i o_bytes. Paradyn will detect this decrease in the metric’s value, and
immediately abort, ending your application’s performance measurement session with it.

To solve this problem we simply check the numbers before adding them to their respective
metric value counters. The MDL code from above is corrected below by adding such a check.

/1 Careful when adding function return val ues

counter in_sanpling; /1 Flag is O if DYN NSTal arnExpire() is not
/1l currently being executed

foreach func in io_funcs {
prepend prelnsn func.return constrai ned
(* if ((in_sanmpling == 0) && ($return > 0)) io_bytes += $return; *)
}

foreach func in DYN NSTal ar nExpire {
prepend prelnsn func.entry
(* in_sanpling = 1; *)

append prelnsn func.return
(* in_sanpling = 0; *)

6.2 Use SampledFunction-style metricsto track valuesin a user application

One use of MDL likely to be of particular interest to application or library developers, is the abil-
ity to query a program value and track its evolution. Thisis generally achieved in two steps: spec-
ification of a query function in the user program which returns the value of interest (smilar to
those common for returning the values of private members of C++ classes), and a specification of
when this value should be queried when the metric is enabled.

Because Paradyn uses a shared-memory sampling approach for efficiently extracting perfor-
mance data from the application, a suitable user function needs to be identified as the point when
values should be sampled: this may well be the function (or list of functions) which actually
update the value of interest.

The following example functions from a user program query and update a program value
(whichin this caseisaglobal variable, but could have been accessed by any other means):

unsi gned int val ue;
unsi gned int programvalue() { return (value); }
voi d update_programval ue (unsigned int new value) { val ue=new val ue; }

The metric itself should be specified of style Sanpl edFunction (and unitsType sanpl ed),
such that the current value is available, rather than the delta from the previously sampled value.
This aso has the advantage of allowing values to both increase and decrease, rather than restrict-
ing the value to increase monotonically asis the case with the EventCounter style of metric. Note,
however, that sampled values need to be unsigned integers.

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 16

/I sample/report a program value after it is updated in a user program

resourceList update_function_list is procedure {
items { “update_program_value” }; /[user’s update function
flavor { unix };
library false;

}

metric programValue {
name “program_value”;
style SampledFunction;
units value_units;
unitsType sampled,;
aggregateOperator sum;
flavor { unix };

base is counter {
foreach func in update_function_list {
append prelnsn func.return constrained
(* programValue = program_value(); *) // user’s sampling function
}
}
}

Instead of invoking the user function progam_value() to obtain the value of interest, MDL
provides the specially-defined readSymbol query function to directly read a global variable:
(* programValue = readSymbol(“value”); *) /l read global symbol value

Finally, it is worth noting that while the requested value is updated and stored as specified in
the application program’s space, sampling of this value and its reporting by the Paradyn daemon
to the Paradyn front-end happens completely asynchronously. A consequence of this will be that
Paradyn will generally miss data value updates (or repeatedly re-sample the same value) leading
to spurious accumulations (in totals or averages) when compared to sample accumulations by the
user program itself. At best, the reported samples are an approximation of the actual sample
updates requested.

6.3 Instrumenting recur sive functions

Recursive functions present particular difficulties for instrumentation metrics, and a number
of the techniques presented in this guide do not readily apply to this class of funtions, or become
considerably more complicated when they must robustly deal with cases of already executing
recursive functions and exceptional returns.

Particular care (and experimentation) is required writing metrics for these cases.

7 CONCLUSION

This paper was written to help you become more proficient in programming with Paradyn’s Met-
ric Description Language (MDL). Specifically, it was designed to save you time and frustrations
in using this new and unusual language. We discussed the two basic MDL metric value types:

MDL Programmer’s Guide April 13, 2004 Release 4.1

Page 17

counters and timers. We covered tips on how to properly update them in instrumentation. We also
covered how to keep metric values from decreasing.

We have tried to keep this document brief and readable so that you may be encouraged to read
it inits entirety. For more MDL examples, the best source is the par adyn. r ¢ configuration file
provided to you. However, some metrics in the par adyn. r ¢ were implemented using in-depth
knowledge about the functions and/or computing platforms involved, so some of the program-
ming tips developed in this paper were skipped without affecting the correctness of those metrics.
Please keep in mind that such discrepancies do not invalidate the advice given in this paper since
you may not have (or want to acquire) such detailed information about your computing platform.

To simplify the presentation, we provided only MDL code fragments, and not compl ete metric
implementations. In addition, though constaints are key to instrumentation, none of the MDL
examples given were const r ai ned. All examples were written as if for whole-program metrics.
Again, thiswas done to simplify the text. The metricsyou write, however, will usually need to be
constr ai ned.

Thank you for your interest in Paradyn. We hope this paper was useful to you and that each
future reading continues to provide you new insights. If you have additional questions, please
send email to par adyn@s. wi sc. edu.

|

MDL Programmer’s Guide April 13, 2004 Release 4.1

	MDL
	Programmer’s Guide
	1 Introduction
	2 Counters
	2.1 Counters are initialized to zero

	3 Timers
	3.1 Every startTimer() must be matched by a stopTimer()
	3.2 Use append/append instead of append/prepend for timers

	4 Entry-Return Instrumentation
	4.1 Return-point execution does NOT imply entry-point execution
	4.2 Entry-point execution does NOT imply return-point execution
	4.3 Avoid using entry-point post-instrumentation
	4.4 Do NOT use return-point post-instrumentation

	5 Callsite Instrumentation
	5.1 In exclusive metrics, preInsn callsite is analogous to func.return
	5.2 In exclusive metrics, postInsn callsite is analogous to func.entry

	6 Miscellaneous
	6.1 All EventCounter-style metric values must increase monotonically
	6.2 Use SampledFunction-style metrics to track values in a user application
	6.3 Instrumenting recursive functions

	7 Conclusion

