
ParaP

ynTM

Paradyn Paral le l Performance Tools

LibThread Programmer’s Guide 5/28/03

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

LibThread
Programmer’s Guide

Release 4.0
May 2003

Table of Contents 2

libthread Table of Contents 5/28/03

User Guide ...3
1 Preliminaries ..3

1.1 Document revision history ...3
1.2 Terms ...3
1.3 Name-space ..3
1.4 Types ..3
1.5 Error codes ...3
1.6 Implementation and Supported Platforms ...4

2 Blocking and Non-blocking Functions ..4
3 The Interface ..5

3.1 The thread interface ...5
3.1.1 Thread creation ..5
3.1.2 Thread termination ...6
3.1.3 Thread synchronization ..7
3.1.4 Thread identification ..7
3.1.5 Thread context switch ..7
3.1.6 Thread control ..8
3.1.7 Thread local data ..8
3.1.8 Thread tracing and error reporting ...10

3.2 The message interface ..11
3.2.1 Binding files to message queues ..12
3.2.2 Message passing ...13
3.2.3 Message queue enquiry and debugging ...15

3.3 The signal interface ..16
3.3.1 Binding signals to message queues ..16

4 Comments and Questions ..17

Tutorial...18
5 Preliminaries ..18
6 Building and Installing libpdthread ...18
7 Compiling a libpdthread program ..18
8 A “hello world” program ...19
9 Sending and Receiving messages ..20
10 Using Thread Local Storage ..22
11 Binding files to Message queues ..24

3

d
ration
torial”
d func-

d

s alle-
with

ames

ything
User Guide

1 PRELIMINARIES

The following user guide documents the interface oflibthread, a non-preemptive user-level threa
library written in and exporting a C programming interface, that provides a seamless integ
of message-based, file-based and signal-based communication. The libthread tutorial [“Tu
on page 18] provides some simple example programs that demonstrate the use of libthrea
tions.

1.1 Document revision history

❏ v3.2: minor modifications.

❏ v3.0: generalized to additionally support WindowsNT threads.

❏ v2.1: minor change to update list of supported platforms and change to build process.

❏ v1.0: initial release version.

1.2 Terms

The thread library will be referred to aslibthread, aclient is any user (-program) of libthread, an
theuser is the person who will run the client.

1.3 Name-space

With every new package, there is an increasing possibility of a name-space conflict. Toward
viating this problem somewhat, libthread reserves all names with external linkage that begin
the prefixthr_ ; this includes both code and data. The client may use such names iff the n
are of static scope and libthread interface headerthread.h is not included in the source.

The only functions that the client may use are those described in this document. Using an
else from libthread is an invitation for disaster.

1.4 Types

The following types are defined and exported by libthread. They can be used by clients.

thread_t : id for threads, same name-space as unsigned integers.

thread_key_t : keys used to access Thread-Specific-Data (TSD).

tag_t : type for message tags, same name-space as unsigned integers.

1.5 Error codes

All functions in libthread are either void or return an integer. The integer return values are:

• THR_ERR (== -1): indicates an error.

• THR_OKAY (== 0): indicates success.
libthread User Guide 5/28/03

4

that
nally

red to
t the

s are
d

lable

thread

ies—
le

will
easy

G

the
man-
le is
on the

a
sump-

time
thread
• Any other return (> 0): indicates special return values.

Each thread within libthread keeps track of a local error number indicating the last error
occurred within that thread. The error number itself is not visible to clients, but is used inter
by error reporting functions.

1.6 Implementation and Supported Platforms

Libthread is implemented using thesetjmp andlongjmp functions in the C library. This was
done for simplicity, not for performance or elegance. The libthread sources are also configu
be compiled only on a small number of supported platforms although it is not difficult to por
library to a new operating system and CPU architecture.

The following platforms are currently supported by libthread, where names of the platform
identical to the<architecture-vendor-os>triples used by the GNU configuration system (an
reported by thesysname script):

sparc-sun-solaris2.6
i386-unknown-solaris2.6
i386-unknown-linux2.2
i386-unknown-nt4.0
mips-sgi-irix6.5
rs6000-ibm-aix4.3

Limited support for older platforms or platforms where ports are in progress may still be avai
on request.

Questions, comments, bug-reports, and porting queries and information regarding the
library should be sent toparadyn@cs.wisc.edu .

2 BLOCKING AND NON-BLOCKING FUNCTIONS

As with any multi-threaded system, the libthread functions are divided into two main categor
BLOCKINGandNON-BLOCKING. A BLOCKING function can block the caller and schedu
the execution of other threads. A NON-BLOCKING function guarantees that no other thread
execute in the duration of the call. The above guarantee for NON-BLOCKING functions is
to ensure for a non-preemptive thread package.

Libthread also distinguishes between different types of BLOCKING and NON-BLOCKIN
functions.

A vanilla BLOCKING function is one through which there exists at least one path in which
calling thread is forced to block and other threads made to run. The blocking is part of the se
tics of the call. There may exist paths through the BLOCKING functions where a reschedu
not necessary. In such cases, the behavior of the function (whether it blocks or not) depends
behavior of the optionally BLOCKING functions (described below).

An optionally BLOCKING function is one in which the blocking of the calling thread is not
necessary part of the semantics. Nevertheless, the blocking of the calling thread and the re
tion of another ready thread will lead to a “fairer” scheduling of the available processor
among all the active threads. Since optional blocking does not affect the correctness of lib
libthread User Guide 5/28/03

5

read

lt,

K-
the
nally
ead

uld
y con-
cution
orces

d.
sify
in

ial,

rface
Each

ads.

e
ead
table

ion call
on by
ully in
ntered,
or its clients, it may be selectively enabled or disabled by a compile time flag. If the libth
sources are complied with the preprocessor symbolALWAYS_RESCHEDULEdefined, optionally
BLOCKING functions will really block (and invoke the libthread scheduler). By defau
libthread is compiled to ALWAYS_RESCHEDULE.

An optionally-optionallyBLOCKING function is one that is the same as the optionally BLOC
ING function, except that the function is lightweight. It generally makes little sense to incur
overhead of a thread context switch when any of these functions are called. Optionally-optio
BLOCKING functions can be made to really block (and invoke the scheduler) if the libthr
sources are compiled with the preprocessor symbolALWAYS_REALLY_RESCHEDULEdefined.
By default, libthread is not compiled withALWAYS_REALLY_RESCHEDULE.

Regardless of whether a function is optionally(-optionally) BLOCKING or not, the client sho
nevermake any assumptions about the exact execution order of the threads in libthread. An
sistent interleaving of the threads should be assumed possible. Relying on specific exe
ordering for the correctness of an algorithm is a display of unwarranted chumminess with f
beyond the control of the client and is a sure road to ultimate grief.

A vacuouslyNON-BLOCKING function is one which does not return to the calling threa
thr_exit() is the only libthread function of this type. It does not make any sense to clas
such function as BLOCKING or NON-BLOCKING since they break the normal control flow
the thread.

Any remaining functions in libthread are NON-BLOCKING. These functions perform triv
light-weight tasks and it does not matter if they block the caller or not.

3 THE INTERFACE

The description of the interface to libthread is divided into 3 sections: the Thread inte
[Section 3.1], the Message interface [Section 3.2], and the Signal interface [Section 3.3].
section describes the associated interface functions that libthread exports.

3.1 The thread interface

This subsection describes the functions that allows the client to create and manipulate thre

3.1.1 Thread creation
int thr_create(void* stack, unsigned st_size, void* (*func)(void *),

void* arg, unsigned thr_flags, thread_t* tidp)

The functionthr_create() creates a new thread.stack is the user supplied stack (of siz
st_size) that the thread will use. A null pointer for this parameter indicates that the thr
library should allocate its own stack for the thread. Too small a stack size will cause unpredic
results when stack overruns occur. Clients that expect threads to have deeply nested funct
trees or deeply recursive functions should allocate their own stacks. The stack allocati
libthread should be sufficient for most threads. The trade-off needs to be evaluated caref
each case. Currently, libthread performs a stack bounds check whenever the scheduler is e
and a warning message is printed if the stack appears close to overflow.
libthread User Guide 5/28/03

6

r

d as
s to

lue
ad

d of
not
manipu-

tid
sus-

opaque
nically.
hat

uc-

ese
eturn

omat-
.3.1).

ss will
ueues,

rently
Client-allocated stacks becomes the property of libthread. Thestack cannot be reused even afte
the death of the thread—since libthread still saves state on this stack.

func is the thread function. It is the main function of the new thread and gets invoke
func(arg) . if you want to pass a rich argument list to the function, the best thing to do i
define a structure conforming to your argument set and pass a pointer to suchstruct variables
via arg . The functionfunc will return a similarvoid* result.

thr_flags is present for compatibility of the interface with Solaris-2 threads. The only va
currently supported isTHR_SUSPENDED,which suspends the newly created thread. The thre
will start to run following athr_continue() call. If theTHR_SUSPENDEDflag is specified,
the value oftidp should not be null since there is no way for the thread creator to know the i
the new thread. Iftidp is null, a warning is printed but no error is raised—a client that does
keep track of tids can create garbage threads (these threads do not execute and cannot be
lated by the client). If multiple flags are applicable, thethr_flags parameter is the bitwiseOR
of the individual flags.

tidp is a tid pointer. If it is non-null, this is where the id of the new thread will be saved. The
is needed to signal the new thread, wait for it to complete, start it if it is being created in a
pended state and to send messages to it.

This is as good a place as any to mention that the id of a thread should be treated as an
type. Thread ids need not be consecutive, begin at zero, or increase or decrease monoto
The only property of the id of a thread is that it will never change during the lifetime of t
thread. Once a thread dies, its id may be reused to identify another thread. The client shouldnever
use the thread id for anything other than identifying the thread to the libthread functions.

A return value ofTHR_OKAYindicates that a new thread with the given specifications was s
cessfully created. A return value ofTHR_ERR indicates an error.

thr_create() is optionally BLOCKING.

3.1.2 Thread termination
void thr_exit(void* result)

The functionthr_exit() should be called by client threads that wish to terminate.result is
the return value of this terminating thread. Threads can also terminate via areturn result;
from the starting function of the thread or simply drop off the end of this function (the last of th
practices is truly despicable). In the former cases, waiters for this thread will get a legal r
value, in the latter, junk (and quite deservedly so).

When a thread exits (or is killed), all file descriptors and signals bound to this thread are aut
ically unbound (details on binding files and signals to a thread in Section 3.2.1 and Section 3
Any data available for reading on these file descriptors, or any signals received by the proce
not be handled by libthread; when another thread binds the files or signals to its message q
libthread processing of the data will resume. Any file or signal messages that are cur
unprocessed will bediscardedsilently.

thr_exit() does not return and is hencevacuously NON-BLOCKING.
libthread User Guide 5/28/03

7

ed

ad.
any

of

is

o use

null
ot use

e by

rily
3.1.3 Thread synchronization
int thr_join(thread_t waitee, thread_t* departed, void** resultp)

The function thr_join() causes the current thread to BLOCK untilwaitee finishes. If
departed andresultp are non-null, the tid of the finishing thread and its result are return
through these pointers.

Specifying a validwaitee indicates that the calling thread wants to wait for a specific thre
The calling thread could also wait for anonymous exiting threads (i.e., choose to join with
exiting or exited (and non-reaped) threads) by specifyingwaitee to be 0. It is an error to specify
a thread that has already been reaped as thewaitee . It is silly (and an error) to specify oneself.

A return value ofTHR_OKAYindicates that an appropriate waitee was found. A return value
THR_ERR indicates an error.

thr_join() is BLOCKING.

3.1.4 Thread identification
thread_t thr_self(void)

thread_t thr_parent(void)

const char* thr_name(const char* new_name)

The functionthr_self() returns the calling client thread’s id. The call isoptionally-optionally
BLOCKING.

The functionthr_parent() returns the thread id of the calling thread’s parent. This call
optionally-optionally BLOCKING.

The functionthr_name() defines a string name for current thread.new_name can be any text
string and will be used in trace records to identify the thread. In future, it may be possible t
the text name of a thread as a synonym for its numerical id.

Any input name is truncated to some small number of characters (currently 32). Ifnew_name is
null, the current name is not replaced. When a thread starts off, its default name is t<tid> .

The most recently installed valid name of the thread is always returned. Therefore a
new_name can be specified to get the current installed name of a thread. The caller must n
the returned pointer to modify the thread name (all modifications to the name of the threadmust
go through this function). If this protocol is not followed, no guarantees are (or can be) mad
libthread.

thr_name() is optionally-optionally BLOCKING.

3.1.5 Thread context switch
void thr_yield(void)

The functionthr_yield() causes the calling thread to give up the virtual processor volunta
and enables the caller to be rescheduled to run later (which may be immediately).

thr_yield() is BLOCKING.
libthread User Guide 5/28/03

8

use

urces
nteed
ources

after

turn

t
little
spends
ends.

y fur-
ited

of

pecify-
nc-
.

thread
ee to

of

on the
3.1.6 Thread control
int thr_kill(thread_t tid, int sig)

int thr_suspend(thread_t tid)

int thr_continue(thread_t tid)

The functionthr_kill() sends a signalsig to threadtid . Currently, all signals have the effi-
cacy ofSIGKILL and will terminate the target thread. Suicide is not permitted—clients must
thr_exit() to terminate.

A kill does not mean immediate termination of the target thread—specifically, the reso
bound to the target may not be freed when this function returns to the caller. All that is guara
is that the next time libthread sees the target thread, it will terminate the thread and free res
bound to it. It is however guaranteed that the target will never execute any more client code
this call returns. It is an error to kill non-existent or exited threads.

A return value ofTHR_OKAYindicates that the target thread was terminated as specified. A re
value ofTHR_ERR indicates an error.

thr_kill() is optionally-optionally BLOCKING.

The function thr_suspend() stops tid from running until a subsequen
thr_continue() . Any thread can suspend any other—although it is an error (and makes
sense) to suspend oneself. It is okay (but ineffectual) to suspend a thread multiple times. Su
are not queued and will be collapsed into one. A single continue will cancel all previous susp

Libthread guarantees that if this function returns successfully, the target will not execute an
ther client code until it is explicitly resumed. It is an error to suspend non-existent or ex
threads.

A return value of THR_OKAYindicates that the target was suspended. A return value
THR_ERR indicates an error.

thr_suspend() is optionally-optionally BLOCKING.

The functionthr_continue() releases a previously suspended threadtid and schedules it to
run. This function is also used to start threads that were created in the suspended state (by s
ing THR_SUSPENDEDin the thread creation flags). The target is scheduled to run by this fu
tion; it may or may not have started to execute by the time this function returns to the caller

It is an error to continue non-existent, exited, or non-suspended threads. Trying to resume a
not already suspended is probably an indication of a race in the algorithm. The client is fr
ignore the error return (but it will have to tolerate a warning message from libthread).

A return value ofTHR_OKAYindicates that the target thread was resumed. A return value
THR_ERR indicates an error.

thr_continue() is optionally-optionally BLOCKING.

3.1.7 Thread local data

Threads in libthread do not have any compiler visible local storage other than that available
libthread User Guide 5/28/03

9

rocess.

otion of

tain a
ters is

ters to

con-
sers

a

d has
ocated

can

thread

h key

lue
runtime stack. Global variables are truly global and are accessible by all threads within a p

Libthread provides support forThread Specific Data(TSD)—a mechanism by which libthread
users can simulate storage that is module-global and thread-local, i.e., TSD separates the n
thenameof a data item (which is shared across a group of threads) from thecontentsof the data
item that is accessible via this name (which is private to each thread in the group).

The TSD is implemented as a repository of pointers to data objects. Each thread can main
small number of such pointers. The allocation of the data objects associated with these poin
the responsibility of the libthread user. Each pointer is also associated with akey(the key is equiv-
alent to the name of the data item). Threads need to use the appropriate key to check poin
data objects in and out of the TSD. The key name-space is managed by libthread.

The canonical idiom for the use of TSD is as follows. If a group of threads need to maintain a
ceptually thread local variablev, then one of the threads (most commonly the parent of the u
of v) creates akey_v for the variablev and stores the key (which is allocated by libthread) in
global variable.

The creation of a key does not result in storage allocation—it simply means that libthrea
been made aware of the fact that sometime in the future one or more threads will use the all
key to manage their TSD.

When each of thev -user threads starts up, it allocates storage of thesizeof v and saves its own
initial copy of v in this area. Each thread then uses the previously createdkey_v to check the
allocated pointer into its TSD. From then on, any function called from within these threads
use the samekey_v to obtain a pointer to the thread-local copy of the data itemv and hence
accessv.

As long as the pointers checked in by each thread are different, the copies of the variablev that
each thread accesses will act like thread local storage. Since any function/module within a
can access this pointer (given the proper key), the variablev acts like a module-global object.

The example program in the Tutorial [Section 10] demonstrates the use of TSD.

int thr_keycreate(thread_key_t* keyp, void (*destructor)(void *))

int thr_setspecific(thread_key_t key, void* data)

int thr_getspecific(thread_key_t key, void** datap)

The functionthr_keycreate() allocates a new key and saves it in*keyp . Any thread may
use this key to save and retrieve a pointer to a data object. The access to*keyp must be synchro-
nized so that a thread does not try to use a key before it has been allocated.

destructor is a pointer to a function that takes a singlevoid * argument and returnsvoid .
It is invoked on thread exit and frees up the storage associated with the data object wit
*keyp . If the saved pointer is not free-able, then thedestructor should be specified as null.

A return value ofTHR_OKAYindicates that a new key was successfully allocated. A return va
of THR_ERR indicates an error.

thr_keycreate() is optionally-optionally BLOCKING.

The functionthr_setspecific() installs the pointerdata with key key in the TSD of the
libthread User Guide 5/28/03

10

gs
t.

. a

as

es can
used

ning
y
ble

hen
ace
are

en to

and
).

ay be
f trace

cing.

lls to
calling thread. The same pointer can be retrieved later by a call tothr_getspecific() .

It is an error to specify invalid keys. Libthread makes no consistency checks ondata —it may be
anything at all. Specifically, ifdata is a pointer to a stack object or is invalid, very nasty thin
can happen when the pointer is used later or when destructors are called during thread exi

A return value ofTHR_OKAYindicates that the pointer was installed with the specified key
return value ofTHR_ERR indicates an error.

thr_setspecific() is optionally-optionally BLOCKING.

The function thr_getspecific() retrieves the previously saved (via
thr_setspecific()) pointer associated with keykey into *datap . If no value was previ-
ously saved, a 0 is returned. It is an error to specify invalid keys.

A return value ofTHR_OKAYindicates that the pointer associated with the given key w
retrieved. A return value ofTHR_ERR indicates an error.

thr_getspecific() is optionally-optionally BLOCKING.

3.1.8 Thread tracing and error reporting
void thr_do_trace(const char* format, ...)

void thr_trace_on(void)

void thr_trace_off(void)

void thr_perror(const char* msg)

The actions of libthread can be traced for error reporting and for debugging purposes. Trac
be enabled in two ways—statically or under program control. Regardless of which method is
to control tracing, support for tracing must be compiled into libthread. This is done by defi
the preprocessor symbolENABLE_TRACEwhile compiling the libthread sources (this is done b
default). Compiling support for tracing will slow down libthread a little (but not by a noticea
amount).

The static way to enable tracing is to define the environment variable THR_TRACEFLAG w
executing the application. A value of 0 for this variable will enable the tracing of all interf
functions while a value of 1 will include internal functions as well. Values greater than 1
equivalent to a value of 1, i.e., interface and internal tracing is enabled. Traces will be writt
stderr and each trace record is prefixed with a[pid.tid,name] tuple. The environment
variableTHR_TRACEFILEspecifies a filename as the destination of the traces. If a valid
writable file is found, traces will beappendedto the contents of the file (or the file created afresh

With the above static method, tracing is enabled for the complete run of the program and m
useful for detailed trace processing or debugging small runs. For larger runs, the volume o
data can become large and the application will slow significantly.

The second method to trace programs is under client control.thr_trace_on() and
thr_trace_off() calls can be inserted anywhere in client code to enable and disable tra
Tracing begins after thethr_trace_on() call and continues until thethr_trace_off()
call. It makes little sense (although it is perfectly acceptable) to make multiple consecutive ca
eitherthr_trace_on() or thr_trace_off() .
libthread User Guide 5/28/03

11

ort is
The

nd a
part
nt

-

t
e of an
that

—this
ppli-
lf).

egrates
l mes-

. The
g the

finally
ers on
read
essage

d with it.
y of the
s in the

-
 integers.

names

ctions

also
a send
As mentioned before, tracing support should be compiled into the libthread. If tracing supp
not compiled in, neither the environment flags nor the above functions will work.
thr_trace functions will print a warning message.

Clients can make use of the tracing facility of libthread. This is nothing but a wrapper arou
printf -like function which behaves like the trace functions that libthread uses internally. A
from the fact thatthr_do_trace() appends its output to the file specified by the environme
variableTHR_TRACEFILE(or to stderr), this function is also non- interruptible; thus differ
ent threads can use it as a safely interleaved version ofprintf .

This function prints an error messagemsg to stderr followed by a string indicating the mos
recent error that occurred within the calling thread. The error message is based on the valu
internal per-threaderrno variable. Successful calls within a thread reset this variable (note
this different from the semantics associated with the Unix/Cerrno variable, which is not reset
by successful calls).

Neither the internal error number variable nor the message table is exported by libthread
may be done in future if there is good justification for it (for example, if there is need for an a
cation-wide error reporting module which may wish to handle libthread error messages itse

All of the trace and print functions in libthread areNON-BLOCKING.

3.2 The message interface

Libthread provides reliable, ordered, typed messages between threads. The library also int
data from files and signal events into message streams (with special types for file and signa
sages).

The message passing idiom of libthread is identical to that of write/read or send/recv in Unix
client program is responsible for allocating message buffers of the proper size, constructin
message (with any application specific headers and field boundaries) in the buffers, and
deallocating the buffers when they are no longer needed. Libthread does not allocate buff
behalf of the client, or do any additional buffer management or message formatting. Libth
uses internal buffers to save copies of messages when required. This means that when a m
send function successfully completes, the client can safely reuse its buffers.

Libthread messages are tagged—i.e., each message has a tag (or type name) associate
Threads can send messages and wait for messages with specific tags. It is the responsibilit
client to make use of the tag name-space and ensure that no conflicts occur between thread
use of tags. Also,tag-pairsmay be used the client to build anRPCabstraction on top of the mes
sage system provided by libthread. Message tags have the same name-space as unsigned

Libthread reservesthreetag names and associates special semantics with them. These tags
are explained below.

MSG_TAG_ANY: This is the message tag that identifies generic untyped messages and fun
as a wildcard tag when receiving messages.

Sending: MSG_TAG_ANYcan be used for sending untyped messages—however, this tag
has special meaning for a receiver and the client is discouraged from using this tag as
tag except for debugging and testing very simple programs.
libthread User Guide 5/28/03

12

o-

alling
ternal

eneric

to the
ernal

o the
al or

quality
nflict

mes-
he same
ot con-
ds of

y
ays the
al and

ormat-
s since
Receiving: WhenMSG_TAG_ANYis specified by a receiver, it is requesting libthread to pr
vide it with messages ofanytype—this includessignal, internal, andfile messages. Libthread
checks for signal, internal and file messages in that order before deciding to block the c
thread (which it does when there are no appropriate messages to be received). Any in
messages that were sent to a receiver with a tag ofMSG_TAG_ANYwill be dequeued if the
receiver also specified this tag—one of the reasons why sending messages with this g
tag is not a good thing in programs with complex communication patterns.

MSG_TAG_SIG: This is the message tag that identifies signal messages.

Sending: Libthread does not permit the client to useMSG_TAG_SIG for sending messages.

Receiving: If a thread specifiesMSG_TAG_SIG(or the genericMSG_TAG_ANY) during a
receive, libthread will search for and provide (if available) messages from signals bound
calling thread. Specifying this tag also means that libthread will not process any file or int
messages that may be waiting for the caller.

MSG_TAG_FILE: This is the message tag that identifies all file messages.

Sending: Libthread does not permit the client to useMSG_TAG_FILE for sending messages.

Receiving: If a thread specifiedMSG_TAG_FILE(or the genericMSG_TAG_ANY) during a
receive, libthread will search for and provide (if available) messages from files bound t
calling thread. Specifying this tag also means that libthread will not process any sign
internal messages that may be waiting for the caller.

The client should not assume any numeric ordering among these three special tags—only e
and inequality testing make sense. To allow the client to safely select tags without any co
with future special tags that may be defined by libthread, the nameMSG_TAG_USERis also pro-
vided. All client-defined tagsmust satisfy the conditiontag >= MSG_TAG_USER(obviously,
MSG_TAG_USER is numerically greater than any of libthread’s special tags).

In addition to the above three special tags, libthread also allows the client to poll and receive
sages from a specific file descriptor. For such uses the value of the message tag should be t
as the file descriptor. This means that the tag name-space is carefully constructed so as to n
flict with the file descriptor name-space. Libthread does not permit the client to use these kin
tags for sending messages.

3.2.1 Binding files to message queues
int msg_bind(int fd, unsigned special)

int msg_bind_buffered(int fd, unsigned special,
 unsigned (*will_block)(void *), void* desc)

int msg_unbind(int fd)

The functionmsg_bind() binds file descriptorfd to the calling thread. Binding means that an
data arriving onfd can be received as messages sent to this thread. File messages are alw
last type of message to be checked for during a message receive (with a priority below sign
internal messages). The boolean flagspecial indicates if the file descriptorfd is specialor not.
Messages on special files are not dequeued by libthread—the client needs to do this itself. F
ted data streams (such as XDR or X-windows connections) should be treated as special file
libthread User Guide 5/28/03

13

anged

by

A

a
y be

client
ead

i-
e

crip-

A

one) to

may
he cli-
h

rn
special libraries are used to process data that arrive on these streams.

It is not possible to bind the same file descriptor to multiple threads. Mappings cannot be ch
directly—the way to map an already mappedfd is to do anunbindin theowningthread followed
by abindby the newowner. When a thread dies, all files bound to it are automatically released
libthread—this is similar to the freeing of file descriptor resources on process exit.

A return value ofTHR_OKAYindicates thatfd was successfully bound to the calling thread.
return value ofTHR_ERR indicates an error.

Libthread uses the Unix system callselect() to determine if there is any data available on
bound file descriptor. If the client buffers data on these file descriptors, then the client ma
ready to run (if messages are available in the buffers) but libthread will not schedule the
since theselect() function may not indicate a file descriptor ready for reading. This can l
to a runnable thread being delayed for arbitrary lengths of time.

To allow buffered streams to be handled by libthread, the functionmsg_bind_buffered() is
provided. Thefd andspecial arguments have the same semantics as those ofmsg_bind() .
In addition, this function takes two arguments,will_block and desc . will_block is a
function that, when called with descriptordesc as its argument, will return a boolean that ind
cates if the client buffer associated withdesc is empty. For such files, libthread uses th
will_block function first to check for buffered messages, before polling the actual file des
tors. This function is useful for handlingstdio andXDR streams.

A return value ofTHR_OKAYindicates thatfd was successfully bound to the calling thread.
return value ofTHR_ERR indicates an error.

msg_bind() andmsg_bind_buffered() areoptionally BLOCKING.

The functionmsg_unbind() removes the currently existing binding offd in the calling thread.
Bindings made by another thread cannot be deleted. It is also an error (albeit an innocuous
unbind a non-bound file descriptor.

During an unbind (either explicitly or implicitly when a thread dies), any file messages that
be waiting onfd are silently ignored. Since libthread never dequeues file messages unless t
ent specifically posts a request for them, there is no danger oflosingmessage bytes (compare wit
the semantics of signal messages).

A return value ofTHR_OKAYindicates thatfd was unbound from the calling thread. a retu
value ofTHR_ERR indicates an error.

msg_unbind() is optionally BLOCKING.

3.2.2 Message passing
int msg_send(thread_t tid, tag_t tag, void* buf, unsigned size)

int msg_recv(tag_t* tagp, void* buf, unsigned* countp)

int msg_poll(tag_t* tagp, unsigned block)

The functionmsg_send() sends a message of typetag and sizesize bytes, pointed to by
buf to threadtid . tid can also be any file descriptor that can be written to.
libthread User Guide 5/28/03

14

e

-
e
eiver.

mes-
is can-
by the

e of

e the
lexity
on

e, it

ges in
e mes-
perat-

al
.
is
es

e in

s
ugh
If tid refers to a file descriptor, awrite() system call is invoked and the return value of th
write becomes the return value of the send function.

If tid is a thread id, an internal message send is invoked. Iftid has posted a receive for a mes
sage of the same tag or a wildcard tagMSG_TAG_ANY, the message is directly copied into th
receiver’s buffers—else the message is copied into an internal buffer and queued at the rec

tag can be any valid tag exceptMSG_TAG_FILEor MSG_TAG_SIG(which simply means that
a thread cannot masquerade as a file or a signal).

If the size of the message is larger than what the receiver is prepared to deal with, a warning
sage is printed and an incomplete buffer is copied, but no error is raised (partly because th
not be done when the incoming message is queued at the receiver). The buffer is re-usable
sender as soon as the message send completes.

A return value ofTHR_OKAYindicates that the message was successfully sent. A return valu
THR_ERR indicates an error.

msg_send() is optionally BLOCKING.

msg_recv() is a complicated function to describe since it does so many things and sinc
meanings of its arguments and return values are overloaded. However, this internal comp
should make theinterfaceeasy to use. The semantics of this function will be explained based
the different types of messages that can be received.

Signal messages: Libthread will process signal messages if*tagp is MSG_TAG_ANYor
MSG_TAG_SIG—in the former case it will look for signal messages first and in the latter cas
will look only for signal messages. Libthread chooses an arbitrary signalsignowith unprocessed
messages and which is bound to the calling thread and designate this signal as thesenderof the
message.*tagp is set toMSG_TAG_SIG. *countp is set to thenumberof unprocessedsigno
signals received so far.*buf is not modified in any way. The function returnssigno.

As mentioned in the description of signal handling, libthread does not deliver signal messa
the same order that the signals were received. It also collapses multiple signals into a singl
sage (although it keeps tracks of multiple signals when this is supported by the underlying o
ing system).

Internal messages: Libthread will process internal messages if*tagp is MSG_TAG_ANYor not
less thanMSG_TAG_USER—in the former case it will look for internal messages after sign
messages and before file messages and in the latter case, it will lookonly for internal messages
The first message (from some arbitrary sendersender) waiting in the receiver’s message queue
processed.*tagp is set to the tag with whichsendersent the message. Libthread assum
*countp to indicate the number of bytes that the receiver is willing to receive into*buf (buf
must point to a buffer at least this large). The message fromsenderis copied into*buf and
*countp is set to the minimum of the actual size of the message and the original valu
*countp . The function returnssender.

As mentioned in the description ofmsg_send() , libthread will copy only as many bytes a
specified by*countp . Any excess data in the actual message will be discarded (altho
libthread will warn of this).
libthread User Guide 5/28/03

15

se
es-

ad
ad
read

d.

f mes-

e and

d

value
nd

ication

, the
or set
state of
File messages: Libthread will process file messages if*tagp is MSG_TAG_ANYor
MSG_TAG_FILEor is a valid file descriptor bound to the calling thread—in the first ca
libthread will look for file messages (from all bound file descriptors) after signal and internal m
sages, in the second case, libthread will lookonly for file messages, and in the third case libthre
will look for file messagesonly on the specified file. If no special file tag is specified, libthre
chooses an arbitrary filefd with unprocessed messages and which is bound to the calling th
as thesenderof the message. When a special file tag is specified, thesenderbecomes the specified
fd (assuming there is a message waiting).*tagp is always set toMSG_TAG_FILE. As with
internal messages,*countp is assumed to specify the size of*buf . A maximum of*countp
bytes are read in fromfd into *buf and*countp is set to the actual number of bytes receive
The previous two sentences are true iffd was not bound as a special file. Iffd is special,*tagp
is still set toMSG_TAG_FILE, but no bytes are copied into*buf nor is*countp modified. In
all cases, the function returnsfd .

The above three execution pathways describe what happens whenmsg_recv() finds a waiting
message of the appropriate type. However, libthread may need to block the calling thread i
sages are not ready.

Wherever appropriate, the receiver is responsible for allocating buffers of the proper siz
managing them.

The return value of this function indicates thesenderof the message (this is the only libthrea
function that uses a rich return value). As always a return value ofTHR_ERR indicates an error.

msg_recv() is optionally BLOCKING if messages are waiting,BLOCKING otherwise.

Having explained the semantics ofmsg_recv() , it is easy to explain the function
msg_poll() . Instead of copying messages into buffers, this function simplycheckfor messages
that may be waiting for the calling thread. If a message is found, the value of*tagp is set to the
tag of the actual message waiting for the thread.

If no messages are immediately available, then the behavior of this function depends on the
of the boolean flagblock . If this flag is set to 0, then the calling thread does not block a
returns immediately with a value ofTHR_ERRand sets the internalerrno to THR_ENOMSG.
This is one case where a return ofTHR_ERRis not really an error. If the flagblock is set to 1,
then the calling thread blocks until an appropriate message is available and returns an ind
of thesender of the message in the same way thatmsg_recv() does.

msg_poll() is optionally BLOCKINGif messages are waiting (orblock is unset),BLOCK-
ING otherwise.

3.2.3 Message queue enquiry and debugging
void msg_dump_state(void)

This function prints tostderr the current state of libthread’s messaging system. As they say
output is self-explanatory. The client-visible state consists of the current global file descript
(the set of file descriptors whose owner threads are blocked waiting for messages), and the
the <local file descriptors, polling state, and the message queues>of each active thread in the
system.
libthread User Guide 5/28/03

16

, you

ssing
some
d by
g are

ueue.
they

ad in a
ber of

r this
get

al.

t’s
hould

age is
that

rder

ernel
ignal

hread.
(or to
This function can be invoked either by the client or from within a debugger. In the latter case
may catch libthread in an inconsistent state depending on when you invoke the function.

 This function isNON-BLOCKING.

3.3 The signal interface

Libthread also provides some support for signals. In general, distributing signal proce
responsibilities between libthread and the client code is not advised—since there can be
very subtle interactions that are difficult to detect and debug. The signal handling provide
libthread is clean (and for that reason simple, since a lot of the complexities in signal handlin
abstracted away from the user). Be warned.

The signal abstraction that libthread provides is similar to that of files as a type of message q
A simple view of signals would be as follows. Threads bind signals to themselves, much like
bind files (but there are no special signals). As long as a signal remains bound to some thre
process, libthread handles the occurrence of these signals itself. It keeps a count of the num
times each of the different bound signals occurs.

When a thread wishes to receive a message, it should specify a message tag ofMSG_TAG_ANYor
MSG_TAG_SIG. If there are any pending signals, these will be converted into messages fo
thread. When a message tag ofMSG_TAG_ANYis specified by the receiver, signal messages
top priority, over internal messages and finally file messages.

When a signal is unbound, libthread attempts to restore the original disposition of that sign

The client should keep in mind three aspects of this model:

• Signal messages arenot delivered in the order in which they were received—if the clien
algorithm depends on the specific ordering of two or more signals, then these signals s
be handled outside libthread.

• Multiple signals of the same type are collapsed into a single message. When the mess
actually generated, the client will get a count of the number of signals of a given type
were received. Therefore if a process receives 10 signals of the typeSIGFOO, then the thread
which has boundSIGFOOto it may see 1 message with 10SIGFOOs, 10 messages with 1
SIGFOOeach or any combination thereof, all depending on the exact interleaving of the o
of signal delivery and execution of the message receive calls.

• Libthread uses the underlying signal handling semantics of the operating system. If the k
does not queue signals, then libthread cannot either. Libthread only simplifies the s
abstraction that the kernel provides, it does not enhance it in any way.

3.3.1 Binding signals to message queues
int sig_bind(int signo)

int sig_unbind(int signo)

The functionsig_bind() binds signalsigno to the calling thread. Anysigno signals that
the process receives will be tracked by libthread and will turn up as messages to the calling t
It is an error to try to bind a non-existent signal or a signal currently bound to another thread
libthread User Guide 5/28/03

17

f

nal

nd an

f

d to
oneself).

A return value ofTHR_OKAYindicates thatsigno was bound successfully. A return value o
THR_ERR indicates an error.

sig_bind() is optionally BLOCKING.

The function sig_unbind() removes the existing between the calling thread and sig
signo . If there are any queued signalssigno , they will beDISCARDED silently. The disposi-
tion of signo prior to the binding will be restored. Any future signals of typesigno will go
unnoticed and unprocessed by libthread, until the next binding occurs. It is an error to unbi
invalid signal, or one that is currently unbound or one that is bound to another thread.

A return value ofTHR_OKAYindicates thatsigno was unbound successfully. A return value o
THR_ERR indicates an error.

sig_unbind() is optionally BLOCKING.

4 COMMENTS AND QUESTIONS

The source distribution of libthread also contains tutorial sources, test suites,Unix style man
pages, and aREADMEfile. All questions and comments regarding libthread should be directe
paradyn@cs.wisc.edu .
libthread User Guide 5/28/03

18

struc-
func-

ution.
stribu-

read
bdirec-
orm
iron-

. Edit
iately

,

ble.

ws
xten-

ys-
the

i-
Tutorial

5 PRELIMINARIES

The following tutorial explains writing simple C and C++ programs that uselibpdthread. The
examples are meant only to illustrate the use of libpdthread functions; error checking, and
tured programming are given secondary importance. The complete interface to libpdthread
tions is documented in the User Guide [Section 3].

6 BUILDING AND INSTALLING LIBPDTHREAD

Currently, the libpdthread sources are distributed only as part of the Paradyn source distrib
Assuming that the environment variable PD holds the location where the Paradyn source di
tion was installed, the libpdthread library sources are in the $PD/core/thread directory.

The $PD/core/thread directory contains a subdirectory named ‘src’ containing the libpdth
source, a subdirectory named ‘h’ containing the libpdthread external header, and a set of su
tories named for the supported platforms. (The library will be built in the appropriate platf
subdirectory.) Throughout the rest of this document, we assume that the PLATFORM env
ment variable contains the appropriate specification for the target platform.

To build the library, change to the appropriate platform subdirectory under $PD/core/thread
the Makefile in that directory to ensure that any platform-specific variables are set appropr
for your platform.

❏ v2.1: During compilation (ofarch-os.C) ARCH_STACK_DIRECTIONmust be set to
eitherDIRECTION_DOWNWARDor DIRECTION_UPWARDas appropriate for the platform
as shown by the following line added to platform Makefiles:

CFLAGS += -DARCH_STACK_DIRECTION=DIRECTION_DOWNWARD

This replaces a previous on-the-fly test for stack direction which was found to be unrelia

When you are ready to build the library, type ‘make’ (on UNIX systems) or ‘nmake’ (on Windo
systems) to build the library. Note that although the library’s source files are named with .c e
sions, the library is implemented in C++ and must be compiled with a C++ compiler.

To install the library, type ‘make install’ (on UNIX systems) or ‘nmake install’ (on Windows s
tems) from the $PD/core/thread/$PLATFORM directory. The library will be installed into
$PD/lib/$PLATFORM directory.

7 COMPILING A LIBPDTHREAD PROGRAM

All libpdthread programs must include the header file“thread/h/thread.h” . The location
of this file needs to be specified via the-I command line option during compilation of the appl
cation program. libpdthread programs must also be linked with the librarylibpdthread.a .
The location of this library needs to be specified either via the-L command line option or as a
pathname during linking.
libthread Tutorial 5/28/03

19

file
a C

uch as

.

d in

ntrol

-

itch
ntext
All libpdthread programs must include the header “thread/h/thread.h”. The location of this
must be specified to the compiler via the -I command line option. For example, to compile
source file named ‘main.c’ that uses the libpdthread library, one could use a command line s

gcc -c -I$PD/core main.c

where the PD environment variable contains the location of the Paradyn source distribution

Although the library may be used with both C and C++ programs, the library is implemente
C++ and uses some

Currently, libpdthread is implemented in C++. Therefore, a C++ compiler must be used to co

linked by C++, with -lpdthread and -lsocket.

8 A “HELLO WORLD” PROGRAM

The “hello.c” program creates two threads, namedfoo and bar . Each thread uses the libp
dthread print functionthr_do_trace() to print a“hello world” message. Themain program
waits for each thread to terminate. The libpdthread functionsthr_create() and
thr_join() are invoked with default arguments.

Each thread loops for a different number of iterations, and voluntarily invoke a context sw
each iteration. If libpdthread tracing is enabled during the execution of the program, the co
libthread Tutorial 5/28/03

20

s

th

her
switch between the two threads can be seen in the trace output.

#include <stdio.h>
#include <stdlib.h>
#include “thread/h/thread.h”

static void* foo(void * junk) {
unsigned i;
thr_name(“foo”); thr_do_trace(“HELLO WORLD”);
for (unsigned i = 0; i < 10; ++i) { thr_yield(); } // loop
return 0;

}

static void* bar(void *) {
unsigned i;
thr_name(“bar”); thr_do_trace(“hello world”);
for (i = 0; i < 20; ++i) { thr_yield(); } // loop
return 0;

}

int main() {
thread_t tfoo, tbar;

thr_create(0, 0, foo, 0, 0, &tfoo); // create foo
thr_create(0, 0, bar, 0, 0, &tbar); // create bar

thr_name(“main”); thr_do_trace(“tfoo=%u, tbar=%u”, tfoo, tbar);

thr_join(0, 0, 0); // join with foo or bar
thr_join(0, 0, 0); // join with the other

return 0;
}

Figure 1: Program “hello.c”

9 SENDING AND RECEIVING MESSAGES

The “msg.c” program illustrates the use of simple messages. Themain program creates thread
reader andwriter . Thewriter thread sends a series of messages to thereader thread.
The reader prints out the values that it receives. Thereader andwriter threads use the
message tagRW_TAG to communicate.

Since the creation of thereader andwriter threads can be arbitrarily separated in time, bo
threads synchronize with themain program using message tagRW_READY. Once each thread
receives the ready message from themain program, it starts exchanging messages with the ot
libthread Tutorial 5/28/03

21
thread.

#include <stdio.h>
#include <stdlib.h>
#include “thread/h/thread.h”

static thread_t tmain, treader, twriter;

#define RW_READY (MSG_TAG_USER+1)
#define RW_TAG (MSG_TAG_USER+2)

static void* reader(void * junk) {
unsigned i; tag_t tag;
thread_t tid = THR_TID_UNSPEC;
msg_send(tmain, RW_READY, 0, 0); // send ready to main
tag = RW_READY; msg_recv(&tid, &tag, 0, 0); // sync with main
for (i = 0; i < 10; ++i) {

unsigned msg, size;
tag = RW_TAG; size = sizeof(msg);
msg_recv(&tid, &tag, &msg, &size);
thr_do_trace(“msg=%u”, msg); // receive and print message

}
return 0;

}

static void* writer(void * junk) {
unsigned i; tag_t tag;
thread_t tid = THR_TID_UNSPEC;
msg_send(tmain, RW_READY, 0, 0); // send ready to main
tag = RW_READY; msg_recv(&tid, &tag, 0, 0); // synch with main
for (i = 0; i < 10; ++i) {

msg_send(treader, RW_TAG, &i, sizeof i); // send message
}
return 0;

}

int main() {
tag_t tag;
tmain = thr_self();
thr_create(0, 0, reader, 0, 0, &treader); // create reader
thr_create(0, 0, writer, 0, 0, &twriter); // create writer

tag = RW_READY; msg_recv(&treader, &tag, 0, 0); // wait for reader
tag = RW_READY; msg_recv(&twriter, &tag, 0, 0); // and writer
msg_send(treader, RW_READY, 0, 0); // release reader
msg_send(twriter, RW_READY, 0, 0); // and writer

thr_join(0, 0, 0);
thr_join(0, 0, 0);

return 0;
}

Figure 2: Program “msg.c”
libthread Tutorial 5/28/03

22

en the
y, dif-
ent data

rs the
10 USING THREAD LOCAL STORAGE

libpdthread implements thread local storage via theThread Specific Datamechanism. Threads
register pointers to heap data objects in a repository, associating a key with each pointer. Wh
thread requests a key from the repository, it gets the pointer that was checked in. In this wa
ferent threads can use the same key to indicate a shared name, but still get access to differ
objects. The“tsd.c” program demonstrates the use of thread specific data.

Themain program creates a fresh respository key and saves it in the global variabletsd_key .
Each foo thread then allocates a private heap object, saves some data in it, and registe
pointer to this data in the respository with the keytsd_key . Subsequent calls to functionbar by
each of the threads retrieves the distinct pointers to the heap data.

#include <thread.h>
#include <stdio.h>
#include <stdlib.h>

struct Tsd {
int i;
double d;
char c;
void* p;

};

static thread_key_t tsd_key;

static void myfree(void* ptr) {
thr_do_trace(“destructor called on pointer %p”, ptr);
delete (Tsd *) ptr;

}

static void bar() {
thread_t me = thr_self();
Tsd* ptr;

thr_getspecific(tsd_key, (void **) &ptr);

if (ptr->i != (int) me) { thr_do_trace(“i is %d”, ptr->i); }
if (ptr->d != (double) me) { thr_do_trace(“d is %g”, ptr->d); }
if (ptr->c != (char) me) { thr_do_trace(“c is %d”, ptr->c); }
if (ptr->p != (void *) me) { thr_do_trace(“p is %p”, ptr->p); }

}

static void* foo(void *) {
thread_t me = thr_self();
Tsd* ptr = new Tsd;

ptr->i = (int) me;
ptr->d = (double) me;
ptr->c = (char) me;
ptr->p = (void *) me;

thr_setspecific(tsd_key, (void *) ptr);
libthread Tutorial 5/28/03

23
thr_do_trace(“installed data, yielding to others”);

for (unsigned i = 0; i < 10; ++i) { thr_yield(); }

bar();
thr_do_trace(“finishing, verify destructor on %p”, ptr);
return 0;

}

int main() {
thr_keycreate(&tsd_key, myfree);
thr_do_trace(“tsd key = %u”, tsd_key);

for (unsigned i = 0; i < 10; ++i) {
thr_create(0, 0, foo, 0, 0, 0);

}
for (unsigned i = 0; i < 10; ++i) {

thr_join(0, 0, 0);
}

return 0;
}

Figure 3: Program “tsd.c”
libthread Tutorial 5/28/03

24

avail-
program

ds

ormat-
sages,
11 BINDING FILES TO MESSAGE QUEUES

libpdthread allows readable files to be bound to message queues. Data on these files will be
able as messages to the thread that binds the file descriptor to its message queues. The
“filemsg.c” demonstrates the use of file descriptor binding in libpdthread.

The threadfoo opens the file“/vmunix” (or some similarly large file on the system), and bin
the associated file descriptor to its message queue using the callmsg_bind() . The thread then
reads 10 messages of size 32 bytes from this file. Since the data comes from a file, it is unf
ted and unbuffered. If a thread wishes to bind streams having formatted and/or buffered mes
the descriptor must be bound as special and/or buffered.

#include <thread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>

static void* foo(void *) {
int fd = open(“/vmunix”, O_RDONLY);
msg_bind(fd, 0); // bind descriptor as non-special file

for (unsigned i = 0; i < 10; ++i) {
char msg[32];
tag_t tag;
unsigned size;
int who;

tag = MSG_TAG_FILE; size = sizeof msg;
who = msg_recv(&tag, msg, &size);

thr_do_trace(“got %u bytes from %d”, size, who);
}

msg_unbind(fd);
return 0;

}

int main() {
thr_create(0, 0, foo, 0, 0, 0);
thr_join(0, 0, 0);
return 0;

}

Figure 4: Program “filemsg.c”

■

libthread Tutorial 5/28/03

	LibThread Programmer’s Guide
	User Guide 3
	1 Preliminaries 3
	1.1 Document revision history 3
	1.2 Terms 3
	1.3 Name-space 3
	1.4 Types 3
	1.5 Error codes 3
	1.6 Implementation and Supported Platforms 4

	2 Blocking and Non-blocking Functions 4
	3 The Interface 5
	3.1 The thread interface 5
	3.1.1 Thread creation 5
	3.1.2 Thread termination 6
	3.1.3 Thread synchronization 7
	3.1.4 Thread identification 7
	3.1.5 Thread context switch 7
	3.1.6 Thread control 8
	3.1.7 Thread local data 8
	3.1.8 Thread tracing and error reporting 10

	3.2 The message interface 11
	3.2.1 Binding files to message queues 12
	3.2.2 Message passing 13
	3.2.3 Message queue enquiry and debugging 15

	3.3 The signal interface 16
	3.3.1 Binding signals to message queues 16

	4 Comments and Questions 17

	Tutorial 18
	5 Preliminaries 18
	6 Building and Installing libpdthread 18
	7 Compiling a libpdthread program 18
	8 A “hello world” program 19
	9 Sending and Receiving messages 20
	10 Using Thread Local Storage 22
	11 Binding files to Message queues 24

	User Guide
	1 Preliminaries
	1.1 Document revision history
	1.2 Terms
	1.3 Name-space
	1.4 Types
	1.5 Error codes
	1.6 Implementation and Supported Platforms

	2 Blocking and Non-blocking Functions
	3 The Interface
	3.1 The thread interface
	3.1.1 Thread creation
	3.1.2 Thread termination
	3.1.3 Thread synchronization
	3.1.4 Thread identification
	3.1.5 Thread context switch
	3.1.6 Thread control
	3.1.7 Thread local data
	3.1.8 Thread tracing and error reporting

	3.2 The message interface
	3.2.1 Binding files to message queues
	3.2.2 Message passing
	3.2.3 Message queue enquiry and debugging

	3.3 The signal interface
	3.3.1 Binding signals to message queues

	4 Comments and Questions

	Tutorial
	5 Preliminaries
	6 Building and Installing libpdthread
	7 Compiling a libpdthread program
	8 A “hello world” program
	Figure�1: Program “hello.c”

	9 Sending and Receiving messages
	Figure�2: Program “msg.c”

	10 Using Thread Local Storage
	Figure�3: Program “tsd.c”

	11 Binding files to Message queues
	Figure�4: Program “filemsg.c”

