Paradyn Parallel Performance Tools

LibThread
Programmer’s Guide

Release 4.0
May 2003

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@cs.wisc.edu

LibThread Programmer’s Guide 5/28/03

wWnN

Table of Contents 2

(0 LY=)o] U o [PPSR 3
e (=] 10T = U= PP PPPRPRRRR 3
1.1 Document reVviSion NISTOIYcoovviiiiiiiiiiieis e e e e e e e e e e eees 3
1.2 =100 TP UPP PP 3
1.3 I F= T o] 0= T PPN 3
N Y/ o PP PPPTRPRN 3
15 EFTOI COURS .o e e e e as 3
1.6 Implementation and Supported PIatformsccccoiiiiiiiiiiiieee e 4
Blocking and Non-blocking FUNCLIONSccooiiiiiiiiiiiieeese e 4
TRE INTEITACE ...t e e e e e e 5
3.1 The thread INTErfACEcccooiiiiiiiie e e e 5

3.1.1 TRread Creationccooiiiiiiiiiiiiiiii ettt 5
3.1.2 Thread terminationuuueeiiiiiiieiee e e e e e e eeeeeeenes 6
3.1.3 Thread SYyNCNroNIiZatIONeeeerieiiiiiiiieeaeeeee e 7
3.1.4 Thread identifiCationccccceeeiiiiiiiiiiii e 7
3.1.5 Thread coONteXt SWILCNuuuiiiiiiii e 7
3.1.6 Thread CONroloooeeiiiiiiiee e e e e e eeeaaeees 8
3.1.7 Thread I0Cal datacccuuiiiiiiiiiiiii e 8
3.1.8 Thread tracing and error repPortingccceuvuieeeeeeeeiiiieeeeeeeeiiee e e e eeaenns 10
3.2 The MeSSAQE INLEITACEuuuiiiiiiiiiiiiiiii e e e e e e e e 11
3.2.1 Binding files t0 MeSSAJgE QUEUEScuvururmiiiiiieeeeeeeeeeeeeeeerveesnnes 12
3.2.2 MESSAQE PASSING eevvvuniieiiiiiiiie e ettt e et e e e 13
3.2.3 Message queue enquiry and debuggingcccceeeeeieiiiiiiiiiiiiinnnns 15
3.3 The Signal INterfacecccooiiiiiiiieee e e e 16
3.3.1 Binding signals to MeSSage QUEUESccceeveeriuiiieeeiiiiiiieeeeeeeniiaeeeaeennns 16
Comments and QUESTIONSoeeiiiiiiiiiiiise e e e e e e e e e ee ettt s e e e e e e e e e e e e e e eeeeesaesanna e e eeeeas 17

LU0 = | PP 18
e (] 10T = U =SSR 8. 1
Building and Installing libpdthreadooooiiiiiiiiii e 18
Compiling a libpdthread programccoooiiiiiii e 18
A “hello WOrld” Program ... 19
Sending and RECEIVING MESSAUESciiiiiieeeeeeeiiiieeeeiiiiiiiiasseeeeaeeeaeeeeeeeeaearsennaa s 20
Using Thread LOCal STOrageoiiiiiiiiiiiiieceeei et e e eeaeees 22
Binding fileS t0 MESSAGE QUEUESoiiiiiiiiiieieeeee ettt e e e e e e e e e 24

libthread Table of Contents 5/28/03

User Guide

1 PRELIMINARIES

The following user guide documents the interfacélathread a non-preemptive user-level thread
library written in and exporting a C programming interface, that provides a seamless integration
of message-based, file-based and signal-based communication. The libthread tutorial [*Tutorial”
on page 18] provides some simple example programs that demonstrate the use of libthread func-
tions.

1.1 Document revision history

[0 v3.Z minor modifications.

[0 v3.0: generalized to additionally support WindowsNT threads.

[0 v2.1 minor change to update list of supported platforms and change to build process.
0 v1.0 initial release version.

1.2 Terms

The thread library will be referred to éibthread aclientis any user (-program) of libthread, and
theuseris the person who will run the client.

1.3 Name-space

With every new package, there is an increasing possibility of a name-space conflict. Towards alle-
viating this problem somewhat, libthread reserves all names with external linkage that begin with
the prefixthr_ ; this includes both code and data. The client may use such names iff the names
are of static scope and libthread interface hetlmead.h is not included in the source.

The only functions that the client may use are those described in this document. Using anything
else from libthread is an invitation for disaster.

1.4 Types

The following types are defined and exported by libthread. They can be used by clients.

thread_t :id for threads, same name-space as unsigned integers.
thread_key t : keys used to access Thread-Specific-Data (TSD).
tag_t :type for message tags, same name-space as unsigned integers.

1.5 Error codes

All functions in libthread are either void or return an integer. The integer return values are:
« THR_ERR==-1): indicates an error.
» THR_OKAY== 0): indicates success.

libthread User Guide 5/28/03

* Any other return (> 0): indicates special return values.

Each thread within libthread keeps track of a local error number indicating the last error that
occurred within that thread. The error number itself is not visible to clients, but is used internally
by error reporting functions.

1.6 Implementation and Supported Platforms

Libthread is implemented using tisetimp andlongjmp functions in the C library. This was

done for simplicity, not for performance or elegance. The libthread sources are also configured to
be compiled only on a small number of supported platforms although it is not difficult to port the
library to a new operating system and CPU architecture.

The following platforms are currently supported by libthread, where names of the platforms are
identical to the<architecture-vendor-os>triples used by the GNU configuration system (and
reported by theysname script):

sparc-sun-solaris2.6
i386-unknown-solaris2.6
i386-unknown-linux2.2
i386-unknown-nt4.0
mMips-sgi-irix6.5
rs6000-ibm-aix4.3

Limited support for older platforms or platforms where ports are in progress may still be available
on request.

Questions, comments, bug-reports, and porting queries and information regarding the thread
library should be sent fgaradyn@cs.wisc.edu

2 BLOCKING AND NON-BLOCKING FUNCTIONS

As with any multi-threaded system, the libthread functions are divided into two main categories—
BLOCKING and NON-BLOCKING A BLOCKING function can block the caller and schedule
the execution of other threads. A NON-BLOCKING function guarantees that no other thread will
execute in the duration of the call. The above guarantee for NON-BLOCKING functions is easy
to ensure for a non-preemptive thread package.

Libthread also distinguishes between different types of BLOCKING and NON-BLOCKING
functions.

A vanilla BLOCKING function is one through which there exists at least one path in which the
calling thread is forced to block and other threads made to run. The blocking is part of the seman-
tics of the call. There may exist paths through the BLOCKING functions where a reschedule is
not necessary. In such cases, the behavior of the function (whether it blocks or not) depends on the
behavior of the optionally BLOCKING functions (described below).

An optionally BLOCKING function is one in which the blocking of the calling thread is not a
necessary part of the semantics. Nevertheless, the blocking of the calling thread and the resump-
tion of another ready thread will lead to a “fairer” scheduling of the available processor time
among all the active threads. Since optional blocking does not affect the correctness of libthread

libthread User Guide 5/28/03

or its clients, it may be selectively enabled or disabled by a compile time flag. If the libthread
sources are complied with the preprocessor syMhWAYS RESCHEDUIEfined, optionally
BLOCKING functions will really block (and invoke the libthread scheduler). By default,
libthread is compiled to ALWAYS_RESCHEDULE.

An optionally-optionallyBLOCKING function is one that is the same as the optionally BLOCK-
ING function, except that the function is lightweight. It generally makes little sense to incur the
overhead of a thread context switch when any of these functions are called. Optionally-optionally
BLOCKING functions can be made to really block (and invoke the scheduler) if the libthread
sources are compiled with the preprocessor syhaWAYS REALLY RESCHEDUdE&fined.

By default, libthread is not compiled wikLWAYS_REALLY_RESCHEDULE

Regardless of whether a function is optionally(-optionally) BLOCKING or not, the client should
never make any assumptions about the exact execution order of the threads in libthread. Any con-
sistent interleaving of the threads should be assumed possible. Relying on specific execution
ordering for the correctness of an algorithm is a display of unwarranted chumminess with forces
beyond the control of the client and is a sure road to ultimate grief.

A vacuouslyNON-BLOCKING function is one which does not return to the calling thread.
thr_exit() is the only libthread function of this type. It does not make any sense to classify
such function as BLOCKING or NON-BLOCKING since they break the normal control flow in
the thread.

Any remaining functions in libthread are NON-BLOCKING. These functions perform trivial,
light-weight tasks and it does not matter if they block the caller or not.

3 THE INTERFACE

The description of the interface to libthread is divided into 3 sections: the Thread interface
[Section 3.1], the Message interface [Section 3.2], and the Signal interface [Section 3.3]. Each
section describes the associated interface functions that libthread exports.

3.1 The thread interface

This subsection describes the functions that allows the client to create and manipulate threads.

3.1.1 Thread creation

int thr_create(void* stack, unsigned st_size, void* (*func)(void *),
void* arg, unsigned thr_flags, thread_t* tidp)

The functionthr_create() creates a new threadtack is the user supplied stack (of size
st_size) that the thread will use. A null pointer for this parameter indicates that the thread
library should allocate its own stack for the thread. Too small a stack size will cause unpredictable
results when stack overruns occur. Clients that expect threads to have deeply nested function call
trees or deeply recursive functions should allocate their own stacks. The stack allocation by
libthread should be sufficient for most threads. The trade-off needs to be evaluated carefully in
each case. Currently, libthread performs a stack bounds check whenever the scheduler is entered,
and a warning message is printed if the stack appears close to overflow.

libthread User Guide 5/28/03

Client-allocated stacks becomes the property of libthreadsfdek cannot be reused even after
the death of the thread—since libthread still saves state on this stack.

func is the thread function. It is the main function of the new thread and gets invoked as
func(arg) . if you want to pass a rich argument list to the function, the best thing to do is to
define a structure conforming to your argument set and pass a pointer tetautth variables
viaarg . The functiorfunc will return a similaivoid* result.

thr_flags is present for compatibility of the interface with Solaris-2 threads. The only value
currently supported iSHR_SUSPENDED which suspends the newly created thread. The thread

will start to run following athr_continue() call. If the THR_SUSPENDETfNg is specified,

the value oftidp should not be null since there is no way for the thread creator to know the id of

the new thread. Ifidp is null, a warning is printed but no error is raised—a client that does not
keep track of tids can create garbage threads (these threads do not execute and cannot be manipu-
lated by the client). If multiple flags are applicable, the flags parameter is the bitwis@R

of the individual flags.

tidp is atid pointer. If it is non-null, this is where the id of the new thread will be saved. The tid
is needed to signal the new thread, walit for it to complete, start it if it is being created in a sus-
pended state and to send messages 1o it.

This is as good a place as any to mention that the id of a thread should be treated as an opaque
type. Thread ids need not be consecutive, begin at zero, or increase or decrease monotonically.
The only property of the id of a thread is that it will never change during the lifetime of that
thread. Once a thread dies, its id may be reused to identify another thread. The cliennsveuld

use the thread id for anything other than identifying the thread to the libthread functions.

A return value ofTHR_OKAVYndicates that a new thread with the given specifications was suc-
cessfully created. A return value BHR_ERRnNdicates an error.

thr_create() is optionally BLOCKING

3.1.2 Thread termination
void thr_exit(void* result)

The functionthr_exit() should be called by client threads that wish to terminagsult is

the return value of this terminating thread. Threads can also terminateeiara result;

from the starting function of the thread or simply drop off the end of this function (the last of these
practices is truly despicable). In the former cases, waiters for this thread will get a legal return
value, in the latter, junk (and quite deservedly so).

When a thread exits (or is killed), all file descriptors and signals bound to this thread are automat-
ically unbound (details on binding files and signals to a thread in Section 3.2.1 and Section 3.3.1).
Any data available for reading on these file descriptors, or any signals received by the process will
not be handled by libthread; when another thread binds the files or signals to its message queues,
libthread processing of the data will resume. Any file or signal messages that are currently
unprocessed will bdiscardedsilently.

thr_exit() does not return and is henaecuously NON-BLOCKING

libthread User Guide 5/28/03

3.1.3 Thread synchronization
int thr_join(thread_t waitee, thread_t* departed, void** resultp)

The functionthr_join() causes the current thread to BLOCK uniibitee finishes. If
departed andresultp are non-null, the tid of the finishing thread and its result are returned
through these pointers.

Specifying a validwaitee indicates that the calling thread wants to wait for a specific thread.
The calling thread could also wait for anonymous exiting threads (i.e., choose to join with any
exiting or exited (and non-reaped) threads) by specifywagee to be 0. Itis an error to specify

a thread that has already been reaped asdtiee . It is silly (and an error) to specify oneself.

A return value ofTHR_OKAMndicates that an appropriate waitee was found. A return value of
THR_ERRNdicates an error.

thr_join() is BLOCKING

3.1.4 Thread identification

thread_t thr_self(void)
thread_t thr_parent(void)

const char* thr_name(const char* new_name)

The functionthr_self() returns the calling client thread’s id. The calbigtionally-optionally
BLOCKING
The functionthr_parent() returns the thread id of the calling thread’s parent. This call is

optionally-optionally BLOCKING

The functionthr_name() defines a string name for current threadw_name can be any text
string and will be used in trace records to identify the thread. In future, it may be possible to use
the text name of a thread as a synonym for its numerical id.

Any input name is truncated to some small number of characters (currently 82wlfname is
null, the current name is not replaced. When a thread starts off, its default natiteis .

The most recently installed valid name of the thread is always returned. Therefore a null

new_name can be specified to get the current installed name of a thread. The caller must not use
the returned pointer to modify the thread name (all modifications to the name of the thusad

go through this function). If this protocol is not followed, no guarantees are (or can be) made by

libthread.

thr_name() isoptionally-optionally BLOCKING

3.1.5 Thread context switch
void thr_yield(void)

The functionthr_yield() causes the calling thread to give up the virtual processor voluntarily
and enables the caller to be rescheduled to run later (which may be immediately).

thr_yield() is BLOCKING

libthread User Guide 5/28/03

3.1.6 Thread control

int thr_kill(thread_t tid, int sig)
int thr_suspend(thread_t tid)
int thr_continue(thread_t tid)

The functionthr_Kkill() sends a signalig to threadid . Currently, all signals have the effi-
cacy of SIGKILL and will terminate the target thread. Suicide is not permitted—clients must use
thr_exit() to terminate.

A Kkill does not mean immediate termination of the target thread—specifically, the resources
bound to the target may not be freed when this function returns to the caller. All that is guaranteed
is that the next time libthread sees the target thread, it will terminate the thread and free resources
bound to it. It is however guaranteed that the target will never execute any more client code after
this call returns. It is an error to kill non-existent or exited threads.

A return value ofTHR_OKANYnNdicates that the target thread was terminated as specified. A return
value ofTHR_ERRnNdicates an error.

thr_kill() is optionally-optionally BLOCKING
The function thr_suspend() stops tid from running untii a subsequent
thr_continue() . Any thread can suspend any other—although it is an error (and makes little

sense) to suspend oneself. It is okay (but ineffectual) to suspend a thread multiple times. Suspends
are not queued and will be collapsed into one. A single continue will cancel all previous suspends.

Libthread guarantees that if this function returns successfully, the target will not execute any fur-
ther client code until it is explicitly resumed. It is an error to suspend non-existent or exited
threads.

A return value of THR_OKAYindicates that the target was suspended. A return value of
THR_ERRNdicates an error.

thr_suspend() is optionally-optionally BLOCKING

The functionthr_continue() releases a previously suspended thitghd and schedules it to

run. This function is also used to start threads that were created in the suspended state (by specify-
ing THR_SUSPENDEIDD the thread creation flags). The target is scheduled to run by this func-
tion; it may or may not have started to execute by the time this function returns to the caller.

It is an error to continue non-existent, exited, or non-suspended threads. Trying to resume a thread
not already suspended is probably an indication of a race in the algorithm. The client is free to
ignore the error return (but it will have to tolerate a warning message from libthread).

A return value of THR_OKAYindicates that the target thread was resumed. A return value of
THR_ERRNdicates an error.

thr_continue() is optionally-optionally BLOCKING

3.1.7 Thread local data

Threads in libthread do not have any compiler visible local storage other than that available on the

libthread User Guide 5/28/03

runtime stack. Global variables are truly global and are accessible by all threads within a process.

Libthread provides support foFhread Specific Dat§TSD)—a mechanism by which libthread

users can simulate storage that is module-global and thread-local, i.e., TSD separates the notion of
the nameof a data item (which is shared across a group of threads) fromahientsof the data

item that is accessible via this name (which is private to each thread in the group).

The TSD is implemented as a repository of pointers to data objects. Each thread can maintain a
small number of such pointers. The allocation of the data objects associated with these pointers is
the responsibility of the libthread user. Each pointer is also associated ketf{the key is equiv-

alent to the name of the data item). Threads need to use the appropriate key to check pointers to
data objects in and out of the TSD. The key nhame-space is managed by libthread.

The canonical idiom for the use of TSD is as follows. If a group of threads need to maintain a con-
ceptually thread local variable then one of the threads (most commonly the parent of the users
of v) creates &ey v for the variablev and stores the key (which is allocated by libthread) in a
global variable.

The creation of a key does not result in storage allocation—it simply means that libthread has
been made aware of the fact that sometime in the future one or more threads will use the allocated
key to manage their TSD.

When each of thg-user threads starts up, it allocates storage o$ibeof v and saves its own
initial copy of v in this area. Each thread then uses the previously créatgdv to check the
allocated pointer into its TSD. From then on, any function called from within these threads can
use the sam&ey v to obtain a pointer to the thread-local copy of the data itelend hence
accesy.

As long as the pointers checked in by each thread are different, the copies of the varibate
each thread accesses will act like thread local storage. Since any function/module within a thread
can access this pointer (given the proper key), the vanadtgs like a module-global object.

The example program in the Tutorial [Section 10] demonstrates the use of TSD.

int thr_keycreate(thread_key_t* keyp, void (*destructor)(void *))
int thr_setspecific(thread_key _t key, void* data)
int thr_getspecific(thread_key _t key, void** datap)

The functionthr_keycreate() allocates a new key and saves it'keyp . Any thread may
use this key to save and retrieve a pointer to a data object. The ac¢&sgpo must be synchro-
nized so that a thread does not try to use a key before it has been allocated.

destructor is a pointer to a function that takes a singted * argument and returnsid .
It is invoked on thread exit and frees up the storage associated with the data object with key
*keyp . If the saved pointer is not free-able, thendastructor should be specified as null.

A return value ofTHR_OKAYndicates that a new key was successfully allocated. A return value
of THR_ERRNndicates an error.

thr_keycreate() is optionally-optionally BLOCKING
The functionthr_setspecific() installs the pointedata with keykey in the TSD of the

libthread User Guide 5/28/03

10

calling thread. The same pointer can be retrieved later by a tatl getspecific()

It is an error to specify invalid keys. Libthread makes no consistency cheattatan—it may be
anything at all. Specifically, iflata is a pointer to a stack object or is invalid, very nasty things
can happen when the pointer is used later or when destructors are called during thread exit.

A return value ofTHR_OKAYindicates that the pointer was installed with the specified key. a
return value ofHR_ERRnNdicates an error.

thr_setspecific() is optionally-optionally BLOCKING
The function thr_getspecific() retrieves the previously saved (via
thr_setspecific()) pointer associated with kekey into *datap . If no value was previ-

ously saved, a 0 is returned. It is an error to specify invalid keys.

A return value of THR_OKAYindicates that the pointer associated with the given key was
retrieved. A return value GfHR_ERRnNdicates an error.

thr_getspecific() is optionally-optionally BLOCKING

3.1.8 Thread tracing and error reporting

void thr_do_trace(const char* format, ...)
void thr_trace_on(void)

void thr_trace_off(void)

void thr_perror(const char* msg)

The actions of libthread can be traced for error reporting and for debugging purposes. Traces can
be enabled in two ways—statically or under program control. Regardless of which method is used
to control tracing, support for tracing must be compiled into libthread. This is done by defining
the preprocessor symbBNABLE_TRACHvhile compiling the libthread sources (this is done by
default). Compiling support for tracing will slow down libthread a little (but not by a noticeable
amount).

The static way to enable tracing is to define the environment variable THR_TRACEFLAG when
executing the application. A value of O for this variable will enable the tracing of all interface
functions while a value of 1 will include internal functions as well. Values greater than 1 are
equivalent to a value of 1, i.e., interface and internal tracing is enabled. Traces will be written to
stderr and each trace record is prefixed withpéd.tid,name] tuple. The environment
variable THR_TRACEFILEspecifies a filename as the destination of the traces. If a valid and
writable file is found, traces will bappendedo the contents of the file (or the file created afresh).

With the above static method, tracing is enabled for the complete run of the program and may be
useful for detailed trace processing or debugging small runs. For larger runs, the volume of trace
data can become large and the application will slow significantly.

The second method to trace programs is under client conthol.trace _on() and
thr_trace_off() calls can be inserted anywhere in client code to enable and disable tracing.
Tracing begins after ththr_trace_on() call and continues until théhr_trace_off()

call. It makes little sense (although it is perfectly acceptable) to make multiple consecutive calls to
eitherthr_trace_on() orthr_trace_off()

libthread User Guide 5/28/03

11

As mentioned before, tracing support should be compiled into the libthread. If tracing support is
not compiled in, neither the environment flags nor the above functions will work. The
thr_trace functions will print a warning message.

Clients can make use of the tracing facility of libthread. This is nothing but a wrapper around a
printf -like function which behaves like the trace functions that libthread uses internally. Apart
from the fact thathr_do_trace() appends its output to the file specified by the environment
variableTHR_TRACEFILE(or to stderr), this function is also non- interruptible; thus differ-

ent threads can use it as a safely interleaved versjommnoff

This function prints an error messagesg to stderr followed by a string indicating the most
recent error that occurred within the calling thread. The error message is based on the value of an
internal per-threa@rrno variable. Successful calls within a thread reset this variable (note that
this different from the semantics associated with the Unev@o variable, which is not reset

by successful calls).

Neither the internal error number variable nor the message table is exported by libthread—this
may be done in future if there is good justification for it (for example, if there is need for an appli-
cation-wide error reporting module which may wish to handle libthread error messages itself).

All of the trace and print functions in libthread &®N-BLOCKING

3.2 The message interface

Libthread provides reliable, ordered, typed messages between threads. The library also integrates
data from files and signal events into message streams (with special types for file and signal mes-
sages).

The message passing idiom of libthread is identical to that of write/read or send/recv in Unix. The
client program is responsible for allocating message buffers of the proper size, constructing the
message (with any application specific headers and field boundaries) in the buffers, and finally
deallocating the buffers when they are no longer needed. Libthread does not allocate buffers on
behalf of the client, or do any additional buffer management or message formatting. Libthread
uses internal buffers to save copies of messages when required. This means that when a message
send function successfully completes, the client can safely reuse its buffers.

Libthread messages are tagged—i.e., each message has a tag (or type name) associated with it.
Threads can send messages and wait for messages with specific tags. It is the responsibility of the
client to make use of the tag name-space and ensure that no conflicts occur between threads in the
use of tags. Alsatiag-pairsmay be used the client to build &PCabstraction on top of the mes-

sage system provided by libthread. Message tags have the same name-space as unsigned integers.

Libthread reservethreetag names and associates special semantics with them. These tags names
are explained below.

MSG_TAG_ANY his is the message tag that identifies generic untyped messages and functions
as a wildcard tag when receiving messages.

SendingMSG_TAG_AN¥an be used for sending untyped messages—however, this tag also
has special meaning for a receiver and the client is discouraged from using this tag as a send
tag except for debugging and testing very simple programs.

libthread User Guide 5/28/03

12

ReceivingWhenMSG_TAG_AN specified by a receiver, it is requesting libthread to pro-
vide it with messages afnytype—this includesignal internal, andfile messages. Libthread
checks for signal, internal and file messages in that order before deciding to block the calling
thread (which it does when there are no appropriate messages to be received). Any internal
messages that were sent to a receiver with a tagd®6_TAG_ANWill be dequeued if the
receiver also specified this tag—one of the reasons why sending messages with this generic
tag is not a good thing in programs with complex communication patterns.

MSG_TAG_SIGThis is the message tag that identifies signal messages.

Sending Libthread does not permit the client to 8G_TAG_SIGor sending messages.

Receiving If a thread specifiesISG_TAG_SIGor the generidMSG_TAG_ANYduring a
receive, libthread will search for and provide (if available) messages from signals bound to the
calling thread. Specifying this tag also means that libthread will not process any file or internal
messages that may be waiting for the caller.

MSG_TAG_FILE This is the message tag that identifies all file messages.

Sending Libthread does not permit the client to M8G_TAG_FILEfor sending messages.

Receiving If a thread specifiedlSG_TAG_FILE(or the generidlSG_TAG_ANYduring a
receive, libthread will search for and provide (if available) messages from files bound to the
calling thread. Specifying this tag also means that libthread will not process any signal or
internal messages that may be waiting for the caller.

The client should not assume any numeric ordering among these three special tags—only equality
and inequality testing make sense. To allow the client to safely select tags without any conflict
with future special tags that may be defined by libthread, the 8@ _TAG_USER also pro-

vided. All client-defined tagmust satisfy the conditionag >= MSG_TAG_USERobviously,
MSG_TAG_USER numerically greater than any of libthread’s special tags).

In addition to the above three special tags, libthread also allows the client to poll and receive mes-
sages from a specific file descriptor. For such uses the value of the message tag should be the same
as the file descriptor. This means that the tag name-space is carefully constructed so as to not con-
flict with the file descriptor name-space. Libthread does not permit the client to use these kinds of
tags for sending messages.

3.2.1 Binding files to message queues

int msg_bind(int fd, unsigned special)
int msg_bind_buffered(int fd, unsigned special,

unsigned (*will_block)(void *), void* desc)
int msg_unbind(int fd)

The functionmsg_bind() binds file descriptofd to the calling thread. Binding means that any

data arriving orfd can be received as messages sent to this thread. File messages are always the
last type of message to be checked for during a message receive (with a priority below signal and
internal messages). The boolean #agcial indicates if the file descriptdd is specialor not.
Messages on special files are not dequeued by libthread—the client needs to do this itself. Format-
ted data streams (such as XDR or X-windows connections) should be treated as special files since

libthread User Guide 5/28/03

13

special libraries are used to process data that arrive on these streams.

It is not possible to bind the same file descriptor to multiple threads. Mappings cannot be changed
directly—the way to map an already mapgddis to do anunbindin the owningthread followed

by abind by the newowner When a thread dies, all files bound to it are automatically released by
libthread—this is similar to the freeing of file descriptor resources on process exit.

A return value ofTHR_OKAYndicates thatd was successfully bound to the calling thread. A
return value ofHR_ERRnNdicates an error.

Libthread uses the Unix system ca#lect() to determine if there is any data available on a
bound file descriptor. If the client buffers data on these file descriptors, then the client may be
ready to run (if messages are available in the buffers) but libthread will not schedule the client
since theselect() function may not indicate a file descriptor ready for reading. This can lead
to a runnable thread being delayed for arbitrary lengths of time.

To allow buffered streams to be handled by libthread, the funetisg_bind_buffered() is
provided. Thed andspecial arguments have the same semantics as thosegf bind()
In addition, this function takes two arguments)l block and desc . will_block is a

function that, when called with descriptdesc as its argument, will return a boolean that indi-
cates if the client buffer associated wittesc is empty. For such files, libthread uses the
will_block function first to check for buffered messages, before polling the actual file descrip-
tors. This function is useful for handlistdio andXDRstreams.

A return value ofTHR_OKAVYndicates thatd was successfully bound to the calling thread. A
return value ofHR_ERRnNdicates an error.

msg_bind() andmsg_bind_buffered() areoptionally BLOCKING

The functionmsg_unbind() removes the currently existing bindingfof in the calling thread.
Bindings made by another thread cannot be deleted. Itis also an error (albeit an innocuous one) to
unbind a non-bound file descriptor.

During an unbind (either explicitly or implicitly when a thread dies), any file messages that may
be waiting orfd are silently ignored. Since libthread never dequeues file messages unless the cli-
ent specifically posts a request for them, there is no dandesioigmessage bytes (compare with

the semantics of signal messages).

A return value of THR_OKAMnNdicates thaftd was unbound from the calling thread. a return
value ofTHR_ERRNdicates an error.

msg_unbind() is optionally BLOCKING

3.2.2 Message passing

int msg_send(thread_t tid, tag_t tag, void* buf, unsigned size)
int msg_recv(tag_t* tagp, void* buf, unsigned* countp)
int msg_poll(tag_t* tagp, unsigned block)

The functionmsg_send() sends a message of typey and sizesize bytes, pointed to by
buf to threadid .tid can also be any file descriptor that can be written to.

libthread User Guide 5/28/03

14

If tid refers to a file descriptor, arite() system call is invoked and the return value of the
write becomes the return value of the send function.

If tid is athread id, an internal message send is invoked If has posted a receive for a mes-
sage of the same tag or a wildcard td§&G_TAG_ANYhe message is directly copied into the
receiver’s buffers—else the message is copied into an internal buffer and queued at the receiver.

tag can be any valid tag excemMSG_TAG_FILEor MSG_TAG_SIGwhich simply means that
a thread cannot masquerade as a file or a signal).

If the size of the message is larger than what the receiver is prepared to deal with, a warning mes-
sage is printed and an incomplete buffer is copied, but no error is raised (partly because this can-
not be done when the incoming message is queued at the receiver). The buffer is re-usable by the
sender as soon as the message send completes.

A return value ofTHR_OKAYndicates that the message was successfully sent. A return value of
THR_ERRIindicates an error.

msg_send() isoptionally BLOCKING

msg_recv() is a complicated function to describe since it does so many things and since the
meanings of its arguments and return values are overloaded. However, this internal complexity
should make thinterfaceeasy to use. The semantics of this function will be explained based on
the different types of messages that can be received.

Signal messaged.ibthread will process signal messages*itagp is MSG_TAG_ANYor
MSG_TAG_SIG-in the former case it will look for signal messages first and in the latter case, it
will look only for signal messages. Libthread chooses an arbitrary sgygrabwith unprocessed
messages and which is bound to the calling thread and designate this signatesdemf the
messagettagp is set toMSG_TAG_SIG*countp is set to thenumberof unprocessedigno
signals received so faibuf is not modified in any way. The function retusigna

As mentioned in the description of signal handling, libthread does not deliver signal messages in

the same order that the signals were received. It also collapses multiple signals into a single mes-
sage (although it keeps tracks of multiple signals when this is supported by the underlying operat-

ing system).

Internal messaged.ibthread will process internal messagestdgp is MSG_TAG_ANWr not

less thanMSG_TAG_USERIn the former case it will look for internal messages after signal
messages and before file messages and in the latter case, it withthdptor internal messages.
The first message (from some arbitrary sersarde) waiting in the receiver’'s message queue is
processed*tagp is set to the tag with whiclsendersent the message. Libthread assumes
*countp to indicate the number of bytes that the receiver is willing to receive*iotb (buf

must point to a buffer at least this large). The message Benderis copied into*buf and
*countp is set to the minimum of the actual size of the message and the original value in
*countp . The function returnsender

As mentioned in the description ofisg_send() , libthread will copy only as many bytes as
specified by*countp . Any excess data in the actual message will be discarded (although
libthread will warn of this).

libthread User Guide 5/28/03

15

File messages Libthread will process file messages itagp is MSG_TAG_ANYor
MSG_TAG_FILEor is a valid file descriptor bound to the calling thread—in the first case
libthread will look for file messages (from all bound file descriptors) after signal and internal mes-
sages, in the second case, libthread will looky for file messages, and in the third case libthread
will look for file message®nly on the specified file. If no special file tag is specified, libthread
chooses an arbitrary fitel with unprocessed messages and which is bound to the calling thread
as thesenderof the message. When a special file tag is specifiedseghdeibecomes the specified

fd (assuming there is a message waitingagp is always set taMSG_TAG_FILE As with
internal messagescountp is assumed to specify the size*iuf . A maximum of*countp

bytes are read in froffd into *buf and*countp is set to the actual number of bytes received.
The previous two sentences are trutglif was not bound as a special filefdf is special;*tagp

is still set toMSG_TAG_FILE but no bytes are copied intbuf nor is*countp modified. In

all cases, the function returfts.

The above three execution pathways describe what happensmsgenecv() finds a waiting
message of the appropriate type. However, libthread may need to block the calling thread if mes-
sages are not ready.

Wherever appropriate, the receiver is responsible for allocating buffers of the proper size and
managing them.

The return value of this function indicates teenderof the message (this is the only libthread
function that uses a rich return value). As always a return vallElRf ERRndicates an error.

msg_recv() isoptionally BLOCKINGIf messages are waitinB.OCKINGotherwise.

Having explained the semantics ohsg_recv() , it is easy to explain the function
msg_poll() . Instead of copying messages into buffers, this function sirdpdckfor messages
that may be waiting for the calling thread. If a message is found, the valtiagg is set to the
tag of the actual message waiting for the thread.

If no messages are immediately available, then the behavior of this function depends on the value
of the boolean flagplock . If this flag is set to O, then the calling thread does not block and
returns immediately with a value dfHR_ERRand sets the interna@rrno to THR_ENOMSG

This is one case where a returnTdilR_ERHSs not really an error. If the flaglock is setto 1,

then the calling thread blocks until an appropriate message is available and returns an indication
of thesenderof the message in the same way thay_recv() does.

msg_poll() is optionally BLOCKINGIif messages are waiting (dfock is unset) BLOCK-
ING otherwise.

3.2.3 Message gueue enquiry and debugging
void msg_dump_state(void)

This function prints testderr the current state of libthread’s messaging system. As they say, the
output is self-explanatory. The client-visible state consists of the current global file descriptor set
(the set of file descriptors whose owner threads are blocked waiting for messages), and the state of
the <local file descriptors, polling state, and the message queusseach active thread in the
system.

libthread User Guide 5/28/03

16

This function can be invoked either by the client or from within a debugger. In the latter case, you
may catch libthread in an inconsistent state depending on when you invoke the function.

This function iIINON-BLOCKING

3.3 The signal interface

Libthread also provides some support for signals. In general, distributing signal processing
responsibilities between libthread and the client code is not advised—since there can be some
very subtle interactions that are difficult to detect and debug. The signal handling provided by
libthread is clean (and for that reason simple, since a lot of the complexities in signal handling are
abstracted away from the user). Be warned.

The signal abstraction that libthread provides is similar to that of files as a type of message queue.
A simple view of signals would be as follows. Threads bind signals to themselves, much like they
bind files (but there are no special signals). As long as a signal remains bound to some thread in a
process, libthread handles the occurrence of these signals itself. It keeps a count of the number of
times each of the different bound signals occurs.

When a thread wishes to receive a message, it should specify a messagel 8@ ofFAG_ ANYT
MSG_TAG_SIGIf there are any pending signals, these will be converted into messages for this
thread. When a message tagMG_TAG_AN¥ specified by the receiver, signal messages get
top priority, over internal messages and finally file messages.

When a signal is unbound, libthread attempts to restore the original disposition of that signal.
The client should keep in mind three aspects of this model:

» Signal messages armt delivered in the order in which they were received—if the client’s
algorithm depends on the specific ordering of two or more signals, then these signals should
be handled outside libthread.

* Multiple signals of the same type are collapsed into a single message. When the message is
actually generated, the client will get a count of the number of signals of a given type that
were received. Therefore if a process receives 10 signals of th&t@ieOQ then the thread
which has boun&IGFOOto it may see 1 message with BIGFOGs, 10 messages with 1
SIGFOOeach or any combination thereof, all depending on the exact interleaving of the order
of signal delivery and execution of the message receive calls.

» Libthread uses the underlying signal handling semantics of the operating system. If the kernel
does not queue signals, then libthread cannot either. Libthread only simplifies the signal
abstraction that the kernel provides, it does not enhance it in any way.

3.3.1 Binding signals to message queues
int sig_bind(int signo)
int sig_unbind(int signo)

The functionsig_bind() binds signakigno to the calling thread. Angigno signals that
the process receives will be tracked by libthread and will turn up as messages to the calling thread.
It is an error to try to bind a non-existent signal or a signal currently bound to another thread (or to

libthread User Guide 5/28/03

17

oneself).

A return value ofTHR_OKAMndicates thasigno was bound successfully. A return value of
THR_ERRNdicates an error.

sig_bind() is optionally BLOCKING

The function sig_unbind() removes the existing between the calling thread and signal
signo . If there are any queued signaigno , they will beDISCARDED silently. The disposi-

tion of signo prior to the binding will be restored. Any future signals of tygigno will go
unnoticed and unprocessed by libthread, until the next binding occurs. It is an error to unbind an
invalid signal, or one that is currently unbound or one that is bound to another thread.

A return value ofTHR_OKAYndicates thasigno was unbound successfully. A return value of
THR_ERRNdicates an error.

sig_unbind() is optionally BLOCKING

4 COMMENTS AND QUESTIONS

The source distribution of libthread also contains tutorial sources, test suesstyle man
pages, and READMEfile. All questions and comments regarding libthread should be directed to
paradyn@cs.wisc.edu

libthread User Guide 5/28/03

18

Tutorial

5 PRELIMINARIES

The following tutorial explains writing simple C and C++ programs that ligedthread The
examples are meant only to illustrate the use of libpdthread functions; error checking, and struc-
tured programming are given secondary importance. The complete interface to libpdthread func-
tions is documented in the User Guide [Section 3].

6 BUILDING AND INSTALLING LIBPDTHREAD

Currently, the libpdthread sources are distributed only as part of the Paradyn source distribution.
Assuming that the environment variable PD holds the location where the Paradyn source distribu-
tion was installed, the libpdthread library sources are in the $PD/core/thread directory.

The $PD/core/thread directory contains a subdirectory named ‘src’ containing the libpdthread
source, a subdirectory named ‘h’ containing the libpdthread external header, and a set of subdirec-
tories named for the supported platforms. (The library will be built in the appropriate platform
subdirectory.) Throughout the rest of this document, we assume that the PLATFORM environ-
ment variable contains the appropriate specification for the target platform.

To build the library, change to the appropriate platform subdirectory under $PD/core/thread. Edit
the Makefile in that directory to ensure that any platform-specific variables are set appropriately
for your platform.

(0 v2.L During compilation (ofarch-os.C) ARCH_STACK DIRECTIONnust be set to
eitherDIRECTION_DOWNWARDDIRECTION_UPWARBs appropriate for the platform,
as shown by the following line added to platform Makefiles:

CFLAGS +=-DARCH_STACK_DIRECTION=DIRECTION_DOWNWARD
This replaces a previous on-the-fly test for stack direction which was found to be unreliable.

When you are ready to build the library, type ‘make’ (on UNIX systems) or ‘nmake’ (on Windows
systems) to build the library. Note that although the library’s source files are named with .c exten-
sions, the library is implemented in C++ and must be compiled with a C++ compiler.

To install the library, type ‘make install’ (on UNIX systems) or ‘nmake install’ (on Windows sys-
tems) from the $PD/core/thread/$PLATFORM directory. The library will be installed into the
$PD/lib/$PLATFORM directory.

7 COMPILING A LIBPDTHREAD PROGRAM

All libpdthread programs must include the header ‘fiteead/h/thread.h” . The location
of this file needs to be specified via tHe command line option during compilation of the appli-
cation program. libpdthread programs must also be linked with the libiigpdthread.a

The location of this library needs to be specified either via-thecommand line option or as a
pathname during linking.

libthread Tutorial 5/28/03

19

All libpdthread programs must include the header “thread/h/thread.h”. The location of this file
must be specified to the compiler via the - command line option. For example, to compile a C
source file named ‘main.c’ that uses the libpdthread library, one could use a command line such as

gcc -c -I$PD/core main.c
where the PD environment variable contains the location of the Paradyn source distribution.

Although the library may be used with both C and C++ programs, the library is implemented in
C++ and uses some

Currently, libpdthread is implemented in C++. Therefore, a C++ compiler must be used to control

linked by C++, with -lpdthread and -Isocket.

8 A “HELLO WORLD” PROGRAM

The “hello.c” program creates two threads, nanfed andbar . Each thread uses the libp-

dthread print functiomthr_do_trace() to print a“hello world” message. Theain program
waits for each thread to terminate. The libpdthread functighs create() and
thr_join() are invoked with default arguments.

Each thread loops for a different number of iterations, and voluntarily invoke a context switch
each iteration. If libpdthread tracing is enabled during the execution of the program, the context

libthread Tutorial 5/28/03

20

switch between the two threads can be seen in the trace output.

#include <stdio.h>
#include <stdlib.h>
#include “thread/h/thread.h”

static void* foo(void * junk) {
unsigned i;
thr_name(“foo”); thr_do_trace(*"HELLO WORLD");
for (unsigned i = 0; i < 10; ++i) { thr_yield(); }// loop

return O;

}

static void* bar(void *) {
unsigned i;
thr_name(“bar”); thr_do_trace(“hello world");
for (i = 0; i < 20; ++i) { thr_yield(); } // loop
return O;

}

int main() {
thread_t tfoo, thar;
thr_create(0, 0, foo, 0, 0, &tfoo); // create foo
thr_create(0, 0, bar, 0, 0, &tbar); // create bar
thr_name(“main”); thr_do_trace(“tfoo=%u, tbar=%u", tfoo, tbar);
thr_join(0, 0, 0); // join with foo or bar
thr_join(0, 0, 0); // join with the other
return O;

}

Figure 1: Program “hello.c”

9 SENDING AND RECEIVING MESSAGES

The"msg.c” program illustrates the use of simple messages.rii@@ program creates threads
reader andwriter . Thewriter thread sends a series of messages tadhder thread.
Thereader prints out the values that it receives. Treader andwriter threads use the
message taBW_TAGo communicate.

Since the creation of theeader andwriter threads can be arbitrarily separated in time, both
threads synchronize with thmain program using message t&yVW_READYOnce each thread
receives the ready message from th&n program, it starts exchanging messages with the other

libthread Tutorial 5/28/03

21

thread.

#include <stdio.h>
#include <stdlib.h>
#include “thread/h/thread.h”

static thread_t tmain, treader, twriter;

#define RW_READY (MSG_TAG_USER+1)
#define RW_TAG (MSG_TAG_USER+2)

static void* reader(void * junk) {

unsigned i; tag_t tag;

thread_t tid = THR_TID_UNSPEC;

msg_send(tmain, RW_READY, 0, 0); // send ready to main

tag = RW_READY; msg_recv(&tid, &tag, 0, 0); // sync with main

for (i=0; i< 10; ++i) {
unsigned msg, size;
tag = RW_TAG,; size = sizeof(msg);
msg_recv(&tid, &tag, &msg, &size);
thr_do_trace(“msg=%u", msgq); // receive and print message

}

return O;

}

static void* writer(void * junk) {
unsigned i; tag_t tag;
thread_t tid = THR_TID_UNSPEC;
msg_send(tmain, RW_READY, 0, 0); // send ready to main
tag = RW_READY; msg_recv(&tid, &tag, 0, 0); // synch with main
for (i=0; i< 10; ++i) {
msg_send(treader, RW_TAG, &i, sizeof i); // send message

}

return O;

}

int main() {
tag_t tag;
tmain = thr_self();
thr_create(0, O, reader, 0, 0, &treader); // create reader
thr_create(0, 0, writer, 0, 0, &twriter); // create writer

tag = RW_READY; msg_recv(&treader, &tag, 0, 0); // wait for reader
tag = RW_READY; msg_recv(&twriter, &tag, 0, 0); // and writer
msg_send(treader, RW_READY, 0, 0); // release reader
msg_send(twriter, RW_READY, 0, 0); // and writer

thr_join(0, 0, 0);
thr_join(0, 0, 0);

return O;

Figure 2: Program “msg.c”

libthread Tutorial 5/28/03

22

10 USING THREAD LOCAL STORAGE

libpdthread implements thread local storage via Theead Specific Datanechanism. Threads
register pointers to heap data objects in a repository, associating a key with each pointer. When the
thread requests a key from the repository, it gets the pointer that was checked in. In this way, dif-
ferent threads can use the same key to indicate a shared name, but still get access to different data
objects. Thétsd.c” program demonstrates the use of thread specific data.

Themain program creates a fresh respository key and saves it in the global vagdbleey .
Eachfoo thread then allocates a private heap object, saves some data in it, and registers the
pointer to this data in the respository with the kegl_key . Subsequent calls to functidrar by

each of the threads retrieves the distinct pointers to the heap data.

#include <thread.h>
#include <stdio.h>
#include <stdlib.h>

struct Tsd {
int i;
double d;
char C;
void* p;

%
static thread_key ttsd_key;

static void myfree(void* ptr) {
thr_do_trace(“destructor called on pointer %p”, ptr);
delete (Tsd *) ptr;

}

static void bar() {
thread_t me = thr_self();
Tsd* ptr;

thr_getspecific(tsd_key, (void **) &ptr);

if (ptr->i 1= (int) me) { thr_do_trace(“i is %d", ptr->i); }
if (ptr->d != (double) me) { thr_do_trace(“d is %g", ptr->d); }
if (ptr->c != (char) me) { thr_do_trace(“c is %d", ptr->c); }
if (ptr->p != (void *) me) { thr_do_trace(“p is %p”, ptr->p); }

}

static void* foo(void *) {
thread_t me =thr_self();
Tsd* ptr = new Tsd;

ptr->i = (int) me;
ptr->d = (double) me;
ptr->c = (char) me;
ptr->p = (void *) me;

thr_setspecific(tsd_key, (void *) ptr);

libthread Tutorial 5/28/03

23

thr_do_trace(“installed data, yielding to others”);
for (unsigned i = 0; i < 10; ++i) { thr_yield(); }

bar();
thr_do_trace(*finishing, verify destructor on %p”, ptr);
return O;

}

int main() {
thr_keycreate(&tsd_key, myfree);
thr_do_trace(“tsd key = %u”, tsd_key);

for (unsigned i = 0; i < 10; ++i) {
thr_create(0, O, foo, 0, 0, 0);
}

for (unsigned i = 0; i < 10; ++i) {
thr_join(0, 0, 0);
}

return O;

Figure 3: Program “tsd.c”

libthread Tutorial 5/28/03

24

11 BINDING FILES TO MESSAGE QUEUES

libpdthread allows readable files to be bound to message queues. Data on these files will be avail-
able as messages to the thread that binds the file descriptor to its message queues. The program
“filemsg.c” demonstrates the use of file descriptor binding in libpdthread.

The threadoo opens the filé/vmunix” (or some similarly large file on the system), and binds

the associated file descriptor to its message queue using thasmlbind() . The thread then

reads 10 messages of size 32 bytes from this file. Since the data comes from a file, it is unformat-
ted and unbuffered. If a thread wishes to bind streams having formatted and/or buffered messages,
the descriptor must be bound as special and/or buffered.

#include <thread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>

static void* foo(void *) {
int fd = open(“/vmunix”, O_RDONLY);
msg_bind(fd, 0); // bind descriptor as non-special file

for (unsigned i = 0; i < 10; ++i) {
char msg[32];

tag_t tag;
unsigned size;
int who;

tag = MSG_TAG_FILE; size = sizeof msg;
who = msg_recv(&tag, msg, &size);

thr_do_trace(“got %u bytes from %d”, size, who);

}

msg_unbind(fd);
return O;

}

int main() {
thr_create(0, 0, foo, 0, 0, 0);
thr_join(0, 0, 0);
return O;
Figure 4: Program “filemsg.c”

libthread Tutorial 5/28/03

	LibThread Programmer’s Guide
	User Guide 3
	1 Preliminaries 3
	1.1 Document revision history 3
	1.2 Terms 3
	1.3 Name-space 3
	1.4 Types 3
	1.5 Error codes 3
	1.6 Implementation and Supported Platforms 4

	2 Blocking and Non-blocking Functions 4
	3 The Interface 5
	3.1 The thread interface 5
	3.1.1 Thread creation 5
	3.1.2 Thread termination 6
	3.1.3 Thread synchronization 7
	3.1.4 Thread identification 7
	3.1.5 Thread context switch 7
	3.1.6 Thread control 8
	3.1.7 Thread local data 8
	3.1.8 Thread tracing and error reporting 10

	3.2 The message interface 11
	3.2.1 Binding files to message queues 12
	3.2.2 Message passing 13
	3.2.3 Message queue enquiry and debugging 15

	3.3 The signal interface 16
	3.3.1 Binding signals to message queues 16

	4 Comments and Questions 17

	Tutorial 18
	5 Preliminaries 18
	6 Building and Installing libpdthread 18
	7 Compiling a libpdthread program 18
	8 A “hello world” program 19
	9 Sending and Receiving messages 20
	10 Using Thread Local Storage 22
	11 Binding files to Message queues 24

	User Guide
	1 Preliminaries
	1.1 Document revision history
	1.2 Terms
	1.3 Name-space
	1.4 Types
	1.5 Error codes
	1.6 Implementation and Supported Platforms

	2 Blocking and Non-blocking Functions
	3 The Interface
	3.1 The thread interface
	3.1.1 Thread creation
	3.1.2 Thread termination
	3.1.3 Thread synchronization
	3.1.4 Thread identification
	3.1.5 Thread context switch
	3.1.6 Thread control
	3.1.7 Thread local data
	3.1.8 Thread tracing and error reporting

	3.2 The message interface
	3.2.1 Binding files to message queues
	3.2.2 Message passing
	3.2.3 Message queue enquiry and debugging

	3.3 The signal interface
	3.3.1 Binding signals to message queues

	4 Comments and Questions

	Tutorial
	5 Preliminaries
	6 Building and Installing libpdthread
	7 Compiling a libpdthread program
	8 A “hello world” program
	Figure�1: Program “hello.c”

	9 Sending and Receiving messages
	Figure�2: Program “msg.c”

	10 Using Thread Local Storage
	Figure�3: Program “tsd.c”

	11 Binding files to Message queues
	Figure�4: Program “filemsg.c”

