
ParaP

ynTM

Paradyn Paral le l Performance Tools

VisiLib Programmer’s Guide 1/10/02

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

VisiLib
Programmer’s Guide

Release 3.3
January 2002

Table Of Contents

VisiLib Programmer’s Guide January 10, 2002 Release 3.3

1 Preliminaries ..4
1.1 Document revision history ..4
1.2 Overview ...4

2 Visi Interface..5
2.1 Types ...5

2.1.1 Metrics and Resources ...5
2.1.2 Histogram ...6
2.1.3 Data Grid ..6
2.1.4 Phases ...6
2.1.5 visi_timeType ...7
2.1.6 visi_sampleType ..7
2.1.7 visi_TraceData ...7

2.2 VisiLib interface functions ..7
2.2.1 Initialization ...7
2.2.2 Paradyn events ...7
2.2.3 Getting data from the data grid ..9

2.2.3.1 Accessing metric data ...9
2.2.3.2 Accessing resource data ..10
2.2.3.3 Accessing performance data values10
2.2.3.4 Accessing information about DataGrid elements10
2.2.3.5 DataGrid user data ..11
2.2.3.6 Accessing phase data ..12
2.2.3.7 Accessing trace data values ...13

2.2.4 Calls to Paradyn ...13
2.3 Tcl Interface to VisiLib ...14

2.3.1 Initialization ...15
2.3.2 Paradyn events ...15
2.3.3 Getting data from the data grid ..15
2.3.4 Calls to Paradyn ...15

2.4 Using trace data with VisiLib ...17
3 Compiling and Linking a Visi Application..17
4 Adding a Visi description to a PCL file ...18
5 Examples..19

5.1 Example that uses the VisiLib interface ..19
5.1.1 Steps to modify the example application ...20
5.1.2 Source code from the example application ..21

5.2 Example application using the tcl interface to VisiLib24
5.2.1 Source code from the example application ..24

5.3 A complete example application ...25
5.4 An example application using the trace data interface in VisiLib32
5.5 Other examples ...32

6 Comments and Questions ..32

List of Figures

VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Figure 1: Visualization interface ..5
Figure 2: Paradyn event types ..8
Figure 3: TclVisi ...14
Figure 4: Dg commands for Paradyn event callbacks ..15
Figure 5: tclVisi Dg service commands ...16
Figure 6: tclVisi commands that call the Paradyn process ...17
Figure 7: Example Trace Data Metric Definition ...17
Figure 8: traceSend routine. ...18
Figure 9: Example Makefile for a Visi ...18
Figure 10: PCL Visi entry syntax and examples ..19
Figure 11: Example Visualization ..20
Figure 12: Main routine for example application ...22
Figure 13: Callback routine for DATAVALUES event ...23
Figure 14: Code to make calls to Paradyn ..23
Figure 15: Example visualization that uses the Tcl interface to VisiLib24
Figure 16: Dg callback routines for PhaseTable visualization ...25
Figure 17: Tcl code for StartUpdate ...26
Figure 18: Tcl code for PhaseTable visualization ..26
Figure 19: Complete example application ..28
Figure 20: Complete source code for example application ..29
Figure 21: Example sample callback function for trace data. ..33

Page 4

ara-
llows

stor-
calling
adyn

aliza-

n done
ss. By
isabled
zations.
zation
utine

ailed
that

liza-
xam-
1 PRELIMINARIES

This guide documentsVisiLib - a library and remote procedure call interface for accessing P
dyn performance data in real-time. VisiLib provides an open interface to Paradyn data, and a
a programmer to build external visualization processes (visis). All performance visualizations in
Paradyn are implemented as visis.

VisiLib handles all the messy details of communicating with Paradyn, and of receiving and
ing Paradyn performance data. The visi programmer can access performance data by
VisiLib routines. All menu control and selection of the data to be displayed is handled in Par
itself.

1.1 Document revision history

❏ v3.3: minor modifications

❏ v3.2: minor modifications

❏ v3.1: minor modifications

❏ v3.0: minor modifications

❏ v2.1: minor corrections

❏ v2.0: initial release.

1.2 Overview

Figure 1 shows the visualization interface in relation to the Paradyn process, external visu
tion processes, and application processes. It also shows tclVisi, the Tcl interface to VisiLib.

Visualization processes are started by the Paradyn process; once initialization has bee
between the two, requests for performance data can be made by the visualization proce
making requests for data, visualization processes may cause data flow to be enabled or d
from the application processes. Once enabled, data values are sent from Paradyn to visuali
Visualization processes register callbacks on Paradyn events. For example, if a visuali
wants to display performance data as it arrives from Paradyn, it would register a callback ro
that would be called whenever new data arrived from the Paradyn process.

The following sections describe the details of the VisiLib interface. Section 2 gives a det
explanation of VisiLib interface functions. Section 2.3 describes the Tcl interface to VisiLib

can be used to add Tcl/Tk1 visualizations to Paradyn. Section 4 describes how to add a visua
tion definition to a PCL (Paradyn Configuration Language) file, and Section 5 contains two e
ples.

1. “Tcl and the Tk Toolkit”, by John Ousterhout, published by Addison-Wesley.
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 5

ods
iLib,

ce to

ic is a
U time

cution
s (e.g.,
jects. As
the
r

nce a
rmation
2 VISI INTERFACE

The following sections give a detailed description of VisiLib interface functions and the meth
for adding a visualization to Paradyn. Section 2.1 describes the types defined by Vis
Section 2.2 describes the VisiLib interface, and Section 2.3 describes tclVisi (a tcl interfa
VisiLib).

2.1 Types

2.1.1 Metrics and Resources

Visualizations request data by specifying a list of metric and resource combinations. A metr
value that represents some aspect of a program’s performance. Examples of metrics are CP
or procedure calls per second. A resource is a specification of a part of a program’s exe
expressed as a collection of program objects. Example objects are synchronization object
semaphores or message tags), code objects (e.g., modules or procedures), and process ob
an example, a visualization could request data collection for the metric “CPU Utilization” and
resource “/Code/foo.c/Process/{i} ”. In this example, CPU utilization would be measured fo
process {i} when it is actively executing code in module foo.c.

Metric and Resource combinations are initially selected from menus created by Paradyn. O
set of metrics and resources has been selected, a visualization process can obtain info

Figure 1: Visualization interface

Visualization
Processes

Paradyn

Application
Processes

tclVisi
VisiLibVisiLib
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 6

d in

ogram
nterval
stored
ts in
ckets

adja-
previ-
terest
has

ance
d and
ary

in the

xactly
her the
ization
erfor-
isplay
of the
phase

for the
erfor-
entire

echa-
her in

sys-
d time
about this set by making calls to VisiLib functions. These functions are discusse
Section 2.2.3.1 and in Section 2.2.3.2.

2.1.2 Histogram

Histograms are used by VisiLib to store performance data that is sent by Paradyn. The hist
data structure is a fixed length array. Each element (bucket) in the array represents a time i
and stores the value of a metric over that interval. The granularity of the performance data
in a histogram is determined by the bucket width (time interval), and by the number of bucke
the histogram. When the last histogram bucket is filled with a data value, the histogram bu
are folded. Folding consists of doubling the bucket width and combining the values of two
cent buckets into one bucket of the new interval size. The resulting histogram has twice the
ous bucket width, leaving half the buckets empty. Since folding is an event that may be of in
to a visualization, VisiLib provides a mechanism for notifying the visualization when a fold
occurred. This mechanism is discussed in Section 2.2.2.

2.1.3 Data Grid

The DataGrid is a C++ class that provides the visualization application’s interface to perform
data. The DataGrid can be thought of as a two dimensional array that is indexed by metricI
resourceId. Each(i,j) element in the array is a histogram of performance data. The VisiLib libr
contains functions for accessing Paradyn performance data and meta-data that is stored
DataGrid.

2.1.4 Phases

Phases in Paradyn are contiguous time intervals within an application’s execution; there is e
one current phase in the system at any time. Visualization processes can be defined for eit
global phase or the current phase (this is specified through a menu option when the visual
is started from Paradyn). Visualizations that are defined for the global phase, will receive p
mance data that spans the entire run time of the application. Current phase visualizations d
performance data that spans the time interval from the current phase’s start time to the end
current phase. Typically, data for the global phase is at a coarser granularity than current
data.

When a new phase is defined in the system, the current phase ends and all data collection
current phase stops. Visualizations defined for the current phase will no longer receive p
mance data from Paradyn. Global phase visualizations will continue to receive data for the
run of the application or until the visualization requests that data collection stop.

Since phase start and end events may be of interest to visualizations, VisiLib provides a m
nism for notifying a visualization when these events occur. This mechanism is discussed furt
Section 2.2.2. VisiLib also provides functions for accessing information about phases in the
tem. Phase information consists of a string name, a unique handle, a start time, and an en
for each phase. These functions are discussed in Section 2.2.3.6.
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 7

m

to-

ently,
f inte-
t con-

2.4.

e the
to

ing

.
n pro-
tines.
regis-

T, the

the
as
s been
pes are
2.1.5 visi_timeType

VisiLib defines the typevisi_timeType for representing Paradyn time valued data. Histogra
bucketwidth, phase start and phase end times are represented byvisi_timeType values. The def-
inition for this type is in the header filevisiTypes.h , and is currently defined as a double.

2.1.6 visi_sampleType

VisiLib defines the typevisi_sampleType for representing Paradyn performance data. His
gram bucket values are represented byvisi_sampleType values. Currentlyvisi_sampleType is
defined as a float.

2.1.7 visi_TraceData

VisiLib defines the type visi_TraceData for representing Paradyn trace data. Curr
visi_TraceData is defined as a class, which has metricIndex of integer type, resourceIndex o
ger type, and dataRecord of byteArray-pointer type as its members. ByteArray is a class tha
tains a pointer to a byte array and its length. The use of trace data is discussed in Section

2.2 VisiLib interface functions

This section describes the VisiLib interface functions. We begin by discussing how to us
VisiLib interface functions directly; then we discuss how to use tclVisi the Tcl interface
VisiLib. Within each section we explain initializing VisiLib, using Paradyn events, access
Paradyn performance data and meta-data, and making calls to Paradyn.

2.2.1 Initialization
PDSOCKET visi_Init()

All visualizations should call thevisi_Init VisiLib function before entering their main loops
This routine takes care of setting up the connection between the Paradyn and visualizatio
cesses. Once this routine is called, the visualization process can call any other VisiLib rou
The returned PDSOCKET represents the connection to Paradyn, and the application should
ter this PDSOCKET as a potential source of input. When input is seen on the PDSOCKE
application should call thevisi_callback VisiLib function to process the input.

If the call fails, the function returns PDSOCKET_ERROR.

2.2.2 Paradyn events
int visi_RegistrationCallback(msgTag event, int (*callBack)(int))

Visualizations can register callback routines on any Paradyn event by calling
visi_RegistrationCallback interface function with an event type and a callback routine
arguments. A Paradyn event corresponds to either data or some type of information that ha
sent by Paradyn and has been received by the visualization process. The different event ty
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 8

l be

a, or
ents
ethod

or the

toring

e func-

vent
he

en
ata-

o the

rid.

is-

as
me
,

ck
listed in Figure 2. A callback is a function that is supplied by the visualization writer that wil
called by a VisiLib routine that handles the associated Paradyn event.

ThecallBack argument tovisi_RegistrationCallback is the name of a function provided by
the visualization writer. The callback routine is called with anint argument that is used by the
DATAVALUES event to indicate the last histogram bucket number with new performance dat
to specify the phase identifier for PHASESTART and PHASEEND events. For all other ev
this parameter is not used. When an event occurs, the callback routine can call DataGrid m
functions to get data corresponding to the event. For example, to add a callback routine f
DATAVALUES event, a visualization writer would make the following call:

int ok = visi_RegistrationCallback(DATAVALUES, myDataHandler);

In this example, the callback routinemyDataHandler would be called by a VisiLib routine when-
ever new performance data is received from Paradyn. The VisiLib routines would handle s
the performance data in the DataGrid, and themyDataHandler callback could then use VisiLib
functions to access the new performance data and update its displays with the new data. Th
tions for accessing performance data are discussed in Section 2.2.3.

Similarly, for trace data, a callback routine can be registered on the TRACEDATAVALUES e
that will be called by a VisiLib routine when the TRACEDATAVALUES event occurs. T

DATAVALUES New data values have arrived from Paradyn and have be
added to the DataGrid. They can be accessed through D
Grid method functions

INVALIDMETRICSRESOURCES A previously valid metric/resource combination has
become invalid.

ADDMETRICSRESOURCES A new set of metrics and resources have been added t
DataGrid

PHASESTART A new phase has been defined.

PHASEEND The current phase has ended.

PHASEDATA A set of phase information has been added to the DataG

FOLD The DataGrid histogram structures have folded.

PARADYNEXITED The Paradyn process has exited. If there is a callback reg
tered on this event it will be called by VisiLib, otherwise
VisiLib kills the visualization process.

TRACEDATAVALUES A new trace data record has arrived from Paradyn and h
been stored in the visi_TraceData instance. Since the sa
instance will be replaced by the next-arriving data record
the record should be copied if it is needed after the callba
returns.

Figure 2: Paradyn event types
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 9

back
alysis

ain
the

ization
these

the

ckets

of all
VisiLib routine will handle storing the trace data in a visi_TraceData instance, and the call
routine could then call a VisiLib function to access the new trace data, and perform any an
on the data. The VisiLib function for accessing trace data is discussed in Section 2.2.3.

Calls to visi_RegistrationCallback should be made before the application enters its m
loop. A visualization writer need only register callback routines for those events in which
visualization is interested. A call tovisi_RegistrationCallback will fail, if an invalid event is
specified. If a call fails, it will return VISI_ERROR_INT; on success, it will return VISI_OK.

2.2.3 Getting data from the data grid

The DataGrid provides the interface to all Paradyn performance data and meta-data. Visual
writers can access this data by calling VisiLib functions that access the DataGrid. Typically
functions are used in callback routines that have been registered on Paradyn events.

2.2.3.1 Accessing metric data
int visi_NumMetrics()

Thevisi_NumMetrics function returns an integer value that is the total number of metrics in
DataGrid, typically used as a loop bound when accessing data values from the DataGrid.

const char *visi_MetricName(int i)

The visi_MetricName function takes an integer argumenti representing theith metric in the Data-

Grid and returns the character string representation of theith metric’s name.

const char *visi_MetricLabel(int i)

Thevisi_MetricLabel method function takes an integer argumenti representing theith metric

in the DataGrid and returns the character string representation of theith metric’s units label. An
example of a units label is “Calls / Second”.

const char *visi_MetricAveLabel(int i)

Thevisi_MetricAveLabel method function takes an integer argumenti representing theith met-

ric in the DataGrid and returns the character string representation of theith metric’s average units
label This would be used for labeling the metric’s units when the average over all the data bu
is being displayed.

const char *visi_MetricSumLabel(int i)

Thevisi_MetricSumLabel function takes an integer argumenti representing theith metric in the

DataGrid and returns the character string representation of theith metric’s sum units name. This
would be used for labeling the metric’s units when the data value being displayed is the sum
the data buckets for the metric. An example of a sum units label is “Calls”.
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 10

rces
Grid.

(

ets that
ucket

ion of
splays
lid-

et-

call-

e

ource

ce
2.2.3.2 Accessing resource data
int visi_NumResources()

Thevisi_NumResources function returns an integer value representing the number of resou
in the DataGrid, typically used as a loop bound when accessing data values from the Data

const char *visi_ResourceName(int i)

Thevisi_ResourceName function takes an integer argumenti representing theith resource in the

DataGrid and returns the character string representation of theith resource’s name.

2.2.3.3 Accessing performance data values
visi_sampleType visi_DataValue(int m,int r,int b)

const visi_sampleType *visi_DataValues(int m,int r)

The visi_DataValue function retrieves data values from the DataGrid. The first argumentm)

specifies the metric, the second (r) specifies the resource, and the third (b) specifies the bucket
number of the corresponding piece of data. Data values are stored as floats. DataGrid buck
do not contain valid performance data have a NaN float value. Visualizations then can test b
values for valid data before calling routines that display the data. For example, in the sect
code below, bucket values are tested for valid data before making a call to a routine that di
the bucket value. A call to theisnanroutine defined in math.h can be used to determine the va
ity of the data. For example:

if(!isnan(visi_DataValue(m,r,b))) {
Display_Data(visi_DataValue(m,r,b));

}

Thevisi_DataValues function returns a pointer to an array of data values for the specified m
ric and resource pair. If there are no data values corresponding to metricm and resourcer , then
this routine returns a NULL pointer. The number of data values in the array can be obtain by
ing thevisi_NumBuckets VisiLib routine. This routine is discussed in Section 2.2.3.4.

visi_sampleType visi_AverageValue(int m,int r)

visi_sampleType visi_SumValue(int m,int r)

The visi_AverageValue and visi_SumValue functions return the average and sum of all th
valid data buckets for the performance data associated with metricmand resourcer . These rou-
tines return a NaN floating point value if there are no valid data buckets for the metric-res
pair.

2.2.3.4 Accessing information about DataGrid elements
int visi_Valid(int m,int r)

int visi_Enabled(int m,int r)

Not every pair(m,r) of a metricmand a resourcer contains a histogram of Paradyn performa
data. Because of this, VisiLib provides functions for testing whether or not an(m,r) pair isvalid
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 11

.

, and
r
te is a

ram
lue is

sto-

e his-
t.

d the

Grid

nd
ata to

ith
s rou-
and for testing whether or not an(m,r) pair isenabled. We define avalid pair as one that has an
associated histogram in the DataGrid and we define anenabledpair as one which is ready to
receive data from Paradyn. Thevisi_Valid andvisi_Enabled functions take two arguments
The first is the index of a metric, and the second is the index of a resource.visi_Valid returns a
value of 1 if the corresponding DataGrid cell contains a histogram of performance data
returns a value of 0 otherwise. Thevisi_Enabled method function returns 1 if data collection fo
the (m,r) pair has been enabled, and 0 otherwise. Note that, since being in the enabled sta
prerequisite for validity, some(m,r) pairs can beenabled but notvalid.

int visi_NumBuckets()

Thevisi_NumBuckets function returns the total number of histogram buckets in each histog
in the DataGrid (note: all DataGrid histograms have the same number of buckets). This va
fixed at runtime; it cannot be changed by a visi and is typically used as a for loop bound.

visi_timeType visi_BucketWidth()

Thevisi_BucketWidth function returns the length of the time interval represented by each hi
gram bucket. This is typically used for computing axis labeling in time-plots.

int visi_FirstValidBucket(int m,int r)

int visi_LastBucketFilled(int m,int r)

These functions return the first and last histogram bucket with valid performance data for th
togram in cell(m,r) . It is possible for spans of invalid data between these two points to exis

int visi_InvalidSpans(int m,int r)

This function returns 1 if there exist invalid spans of data between the first bucket filled an
last bucket filled in the DataGrid cell corresponding to metricm and resourcer . Otherwise, this
routine returns a value of 0.

2.2.3.5 DataGrid user data

VisiLib provides routines that allow a visualization writer to associate other data with Data
cells. VisiLib stores this data as a void pointer.

void *visi_GetUserData(int m,int r)

int visi_SetUserData(int m,int r,void *my_data)

The visi_SetUserData function takes two integer arguments indicating which metric a
resource in the DataGrid to associate the data with. The third argument is a pointer to the d
be added to DataGrid cell(m,r) . This routine returns 1 if the data pointed to mymy_data was
successfully added to the DataGrid, otherwise this routine returns 0.

The routinevisi_GetUserData is used to retrieve user data from a DataGrid cell. It is called w
two arguments; the metric number and the resource number of the cell in the DataGrid. Thi
tine returns a NULL pointer if the user data cannot be retrieved from DataGrid cell(m,r) .
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 12

phase.
a from
perfor-
that

liza-

with

This
tart at

If the
gative

ases
e Dat-

stem.
ned:
info if

iLib

ith
tion.

me
2.2.3.6 Accessing phase data

A visualization is associated with exactly one phase: either the global phase or the current
Visualizations that are associated with the current phase stop receiving performance dat
Paradyn when the current phase ends. Global phase visualizations continue to receive
mance data for the entire run of the application or until the visualization explicitly requests
data collection stop. VisiLib provides functions for accessing information about the visua
tion’s own phase and about all other phases defined in the system.

const char *visi_GetMyPhaseName()

The visi_GetMyPhaseName method function returns the character string name associated
the phase for which the visualization is associated.

visi_timeType visi_GetStartTime()

The visi_GetStartTime method function returns the start time associated with the phase.
value is useful for labeling time axes. Only the global phase and the first non-global phase s
time zero.

int visi_GetMyPhaseHandle()

This routine returns the unique phase identifier for the phase in which the visi is defined.
visi is defined for the global phase, then this routine returns -1, otherwise it returns a non-ne
integer value.

int visi_NumPhases()

Thevisi_NumPhases method function returns an integer value representing the number of ph
currently defined in the system. This value can be used as an upper bound when querying th
aGrid about a specific phase.

VisiLib provides functions for accessing information about other phases defined in the sy
This is useful for accessing information about phases for which the visualization is not defi
past phases if the visualization is defined for the current phase, and past and current phase
the visualization is defined for the global phase. The following is a description of the Vis
phase functions:

const char *visi_GetPhaseName(unsigned i)

The visi_GetPhaseName method function returns a character string representation of the
phase’s name. This is typically used for labeling phases that are displayed by the visualiza

visi_timeType visi_GetPhaseStartTime(unsigned i)

Thevisi_GetPhaseStartTime function returns a visi_timeType value representing the start ti
of the ith phase.

visi_timeType visi_GetPhaseEndTime(unsigned i)
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 13

of

. The
lass has
ngth,

hat is
esult in
yn, an
trics
set will

and
nuing

source
t sup-
th any

and
are the
to be
when
n for

argu-
NULL
Thevisi_GetPhaseEndTime function returns a visi_timeType value representing the end time
the ith phase. If the phase has not yet ended, this function returns a value of -1.0.

int visi_GetPhaseHandle(unsigned i)

This routine returns the unique identifier for the ith phase.

2.2.3.7 Accessing trace data values
#include “visi/src/visiTypesP.h”
visi_TraceData *visi_TraceDataValues();

The visi_TraceDataValues function retrieves a pointer to a visi_TraceData class instance
class has three members: metricIndex, resourceIndex, and dataRecord. The dataRecord c
getArray and length as its member functions, which return a pointer to a byte array and its le
respectively. For example:

char *sp = visi_TraceDataValues()->dataRecord->getArray();
int len = visi_TraceDataValues()->dataRecord->length();

2.2.4 Calls to Paradyn

The VisiLib library provides routines to call Paradyn to change the set of performance data t
being sent to the visualization process. These calls are asynchronous, and may eventually r
a Paradyn event arriving from Paradyn. For example, by requesting more data from Parad
ADDMETRICSRESOURCES event may eventually occur indicating that a new set of me
and resources has been added to the DataGrid and that performance data values for this
start arriving. The following is a description of these calls:

void visi_GetMetsRes(char *metres,int numElements)

The visi_GetMetsRes routine requests Paradyn to display menus to select new metric
resource combinations to be enabled. When Paradyn receives this request, it will initiate me
for new metric and resource selections. The first argument is a list of pre-selected metric-re
pairs, and the second argument is the number of pairs in the list. Currently, VisiLib does no
port passing a pre-defined list of metric-resource pairs to enable, so a call to this routine wi
arguments is equivalent to the following:visi_GetMetsRes(0,0) .

void visi_StopMetRes(int metricIndex, int resourceIndex)

The visi_StopMetRes routine requests Paradyn to stop data collection for the metric
resource pair specified by the metricIndex and resourceIndex arguments. These arguments
indices into the DataGrid corresponding the metric-resource pair for which data collection is
terminated. When this request is made, the corresponding DataGrid cell is marked invalid;
the paradyn process receives the request, it will disable data collection for this visualizatio
the specified metric-resource pair.

void visi_DefinePhase(char *name, unsigned with_pc, unsigned with_visis)

Thevisi_DefinePhase routine makes a request to Paradyn to start a new phase. The first
ment is a name that can be specified to be associated with the new phase. Passing in a
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 14

ch will
rch

end

ror
he

n
the
reter
value will result in Paradyn creating a name for the new phase. Ifwith_pc is 1 and the Perfor-
mance Consultant window is open in Paradyn, then a new Performance Consultant sear
begin on this new phase immediately. Ifwith_pc is 0, then a new Performance Consultant sea
will not be started with the new phase. Thewith_visis option is not yet implemented. Invoking
this routine will eventually result in a PHASEEND event from Paradyn corresponding to the
of the current phase, and a PHASESTART corresponding to the start of the new phase.

void visi_showErrorVisiCallback(const char *msg)

The visi_showErrorVisiCallback routine makes a request to Paradyn to display the er
message specified by the argumentmsg. Paradyn will use it’s error message window to display t
error message. For more information on Paradyn’s error message interface see theParadyn User’s
Guide.

2.3 Tcl Interface to VisiLib

We provide a tcl interface for the visi interface,tclVisi, that allows programmers to use Parady
performance data in tcl applications. Figure 3 shows tclVisi in relation to VisiLib, Paradyn,
application processes, and the tcl code for the visualization. TclVisi contains a tcl interp
which interprets the visualization’s tcl code.

Figure 3: TclVisi

Paradyn

Application
Processes

VisiLib

tclVisi

Visi-specific
Tcl File

Visi
Process
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 15

tion
ted.
r
nts.
in

ce
Grid
face.
gers
, in the

nds

t

2.3.1 Initialization

Tcl applications do not need to explicitly call thevisi_Init VisiLib routine. This routine is called in
tclVisi’s main routine.

2.3.2 Paradyn events

To be notified of a Paradyn event, a tcl visualization writer needs to implement aDg command
corresponding to the event. Thevisi_RegistrationCallback VisiLib routine does not need to
be called by the tcl visualization writer; this routine is called by tclVisi. Instead, the visualiza
writer needs to writeDg commands for any Paradyn event in which the visualization is interes
The behavior of the command is left to the visi writer. AllDg command routines take an intege
argument that has meaning only for the DATAVALUES, PHASESTART, and PHASEEND eve
Figure 4 lists the prototypes for theDg commands; the description of the event types is given
Figure 2.

2.3.3 Getting data from the data grid

TclVisi provides a tcl command calledDg that a visualization process may call to get performan
information. To use tclVisi, a programmer writes a tcl application and makes calls to Data
commands (Dg commands). Figure 5 contains the set of commands provided by the tcl inter
Metric identifiers (mids), resource identifiers (rids), and phase identifiers (pids) are inte
between 0 and the number of metrics, or the number of resources, or the number of phases
DataGrid.

2.3.4 Calls to Paradyn

The tclVisi interface providesDg commands for calling Paradyn. Figure 6 lists these comma
and provides a brief description of their function.

proc DgDataCallback {lastBucket} callback for DATAVALUES event

proc DgInvalidCallback {} callback for INVALIDMETRICSRESOURCES even

proc DgConfigCallback {} callback for ADDMETRICSRESOURCES event

proc DgPhaseStartCallback {phaseid} callback for PHASESTART event

proc DgPhaseEndCallback {phaseid} callback for PHASEEND event

proc DgPhaseDataCallback {} callback for PHASEDATA event

proc DgFoldCallback {} callback for FOLD event

proc DgParadynExitedCallback {} callback for PARADYNEXITED event

Figure 4: Dg commands for Paradyn event callbacks
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 16
Dg nummetrics returns the number of currently defined metrics

Dg metricname <mid> returns the name of metric <mid>

Dg metriclabel <mid> returns the units label of the metric <mid>

Dg metricavelabel <mid> returns the AVE units label of the metric <mid>

Dg metricsumlabel <mid> returns the SUM units label of the metric <mid>

Dg numresources returns the number of currently defined resources

Dg resourcename <rid> returns the name of resource <rid>

Dg valid <mid> <rid> returns 1 if a time histogram exists for metric
<mid> and resource <rid>, otherwise returns 0

Dg enabled <mid> <rid> returns 1 if data collection has been enabled for
this <mid> and <rid> combination

Dg value <mid> <rid> <bin> returns a time histogram data value associated
with metric <mid>, resource <rid>, bucket <bin>

Dg sum <mid> <rid> returns the sum of all buckets of the time histo-
gram of metric <mid> resource <rid>

Dg average <mid> <rid> returns the average of all time histogram buckets
for metric <mid> resource <rid>

Dg numbins returns the number of buckets in time histograms

Dg binwidth returns the time histogram bucket width

Dg lastbucket <mid> <rid> returns the last time histogram bucket containing
performance data

Dg firstbucket <mid> <rid> returns the first histogram bucket with valid data

Dg myphasename returns the name of the visi’s phase

Dg myphasestartT returns the start time of the visi’s phase

Dg myphasehandle returns the unique identifier for the visi’s phase

Dg numphases returns the number of phases currently defined

Dg phasename <pid> returns the name of phase <pid>

Dg phasestartT <pid> returns the start time of phase <pid>

Dg phaseendT <pid> returns the end time of phase <pid>

Figure 5: tclVisi Dg service commands
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 17

ions to
d on a
aradyn

cer), and
st be

etric

en-
a flag
the
-

ter of
ch

alling a
g the

lity
++

)

2.4 Using trace data with VisiLib

Paradyn’s support for trace data streams allows Paradyn to move trace data from applicat
visis. Visis are used as analysis and/or display tools for the trace data. The support is base
dynamic tracing model where Paradyn does not interpret the semantics of the trace data; P
supports moving raw trace data from applications to visis.

To use trace data, some code needs to be added to the application process (the trace produ
to the visi (the trace consumer). For the trace producer side, a trace metric definition mu
added to a Paradyn configuration file. A metric definition is written using Paradyn’s m
description language (MDL). MDL is described in more detail in theParadyn User’s Guide. The
trace metric should be defined so that it calls code in the application that will call DYNINSTg
erateTraceRecord with parameters specifying the metric ID number and the trace dat
(TR_DATA). For example, Figure 7 shows the metric definition for a metric that computes
total number of pvm_send calls. ThetraceSend function (shown in Figure 8) needs to be com
piled and linked into the application. Note that$globalId , which is the metric identifier, is trans-
ferred along with a trace data record all the way to a trace visi by setting it to the first parame
theDYNINSTgenerateTraceRecord . If there is more than one record type for a metric, then ea
type must be included in the record. The trace data consumer accesses trace data by c
VisiLib function described in Section 2.2.3.7. Section 5 contains an example application usin
trace data interface in VisiLib.

3 COMPILING AND LINKING A VISI APPLICATION

In order to compile and link a visi, the VisiLib header filevisualization.h must be included in
the visi’s source code. Also, the visi must be linked with VisiLib and with the Paradyn Uti
library. For visis that are compiled using gcc, the visi must additionally be linked with the C
standard library (stdc++). Figure 9 shows a portion of a Makefile for a visi (xtext).:

Dg start start new histograms (a request to Paradyn to display
menus to select new metric and resource combinations

Dg stop <mid> <rid> stop data collection for a histogram

Dg phase <phasename>
<with_pc> <with_visis>

start a new phase

Figure 6: tclVisi commands that call the Paradyn process

base is void { // neither a counter nor a timer is needed

foreach func in pvm_msg_send {
append preInsn func.entry (* traceSend($globalId, 1); *)

}

}

Figure 7: Example Trace Data Metric Definition
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 18

to be
rocess
ries for
n user.

n.
rocess.

and
isual-
4 ADDING A VISI DESCRIPTION TO A PCL FILE

Once a visualization has been modified to use the VisiLib interface, an entry for it needs
added to a Paradyn Configuration Language (PCL) file. PCL files are read by the Paradyn p
as part of paradyn start-up. Paradyn uses the information in these files to create menu ent
visualizations and to start visualization processes that have been selected by the Parady
Figure 10 shows the syntax for a PCL file visualization entry, followed by two examples.

All visualization entries start with the key wordvisi , followed by a name for the visualization
that will be used as a visualization menu entry. The body of the definition (between “{” and “}”)
must contain the key wordcommandfollowed by the command string for starting the visualizatio
The command string contains the command and the arguments to start the visualization p
The body of the definition may optionally specify aforce value of 1 and/or a positivelimit

value. Visualizations with a force value of 1 will be created without menuing for metrics
resources first. The default behavior is that Paradyn initiates menuing before starting the v

void traceSend (int globalId, int type) {

struct _traceRecord record;
record.type = type;
/* assuming that _traceRecord has the type field. */
DYNINSTgenerateTraceRecord(globalId, TR_DATA,

sizeof(struct_traceRecord),
&record, 0, 0.0, 0.0);

}

Figure 8: traceSend routine.
This is added to the trace producer (the application’s code).

TO_VISI = ../../../../
CC = g++

IFLAGS = -I. -I$(TO_VISI)visi/h
LIBDIR = -L$(TO_VISI)../lib/$(PLATFORM)
CFLAGS = -O -g $(IFLAGS)

VisiLib and Paradyn Utility Library (add -lstdc++ if using gcc)
LIBS = $(LIBDIR) -lvisi -lpdutil
LIBS += -lXaw -lXext -lXmu -lXt -lX11 -lm

SRCS = ../src/xtext.C
OBJS = xtext.o

xtext: $(OBJS)
$(CC) -o xtext $(LFLAGS) $(OBJS) $(LIBS)

$(OBJS): $(SRCS)
$(CC) $(CFLAGS) -c $(SRCS)

Figure 9: Example Makefile for a Visi
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 19

hase
to dis-
to dis-

etrics
d
eld is

menu
en-
lization

r

nter-

ium’s

. X
ization process. An example of a visualization that would specify a force value of 1 is the p
table visualization (this visualization is discussed in Section 5.2). The phase table is used
play phase information for all the phases in the system. Since this visualization is not used
play performance data for metric/resource pairs, it does not make sense to do menuing for m
and resources before the phase table process is started. Thelimit option specifies an upper boun
on the number of metric/resource pairs that the visi can have enabled at one time. If this fi
not specified, or if it has a non-positive value, then there is no upper bound.

In the first example in Figure 10, a barChart visualization has been defined, such that its
label will beMyBarChart and such that the paradyn process will initiate metric and resource m
uing before starting the barChart process. The second example defines a phase table visua
that uses the tclVisi interface. In this example, theforce option set to 1 so menuing will not occu
before the visualization process is started.

5 EXAMPLES

This section contains two simple examples of visualization applications that use the VisiLib i
face. The first uses the VisiLib interface directly, and the second uses the tclVisi interface.

5.1 Example that uses the VisiLib interface

The example application described below is a simple X application taken from the XConsort

suite of example programs2. The application uses the X Toolkit and the Athena Widget set

Syntax for PCL FileVisi Entry:
visi <name> {

command <command string>;
[force <int>;]
[limit <int>;]

}

PCL File ExampleVisi Entries:
visi MyBarChart {

command “barChart”;
}

visi MyPhaseTable {
command “tclVisi -f phasetbl.tcl”;
force 1;

}

Figure 10: PCL Visi entry syntax and examples

2. “Athena Widget Set - C Language Interface, X Window System, X Version 11, Release 5”, Chris Peter-
son, MIT X Consortium.
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 20

in
odi-
some
gram
e

that
a set of
s Para-
cation

g
d.
Toolkit commands are prefixed byXt and the header files for the Athena Widget set are
“X11/Xaw” .We modified the application to use the VisiLib interface; Figure 11 shows this m
fied application. It consists of a set of command widgets, which when selected, invoke
action on the text widget that is used to display DataGrid bucket values. The original pro
consisted of just theClear, Print, andQuit command widgets that would invoke actions on th
text widget.

5.1.1 Steps to modify the example application

In order to use VisiLib, a visualization application must contain code that initializes VisiLib,
makes calls to Paradyn, and that handles Paradyn events. We describe this code below as
steps. By following these steps, a visualization writer can create a visualization that accesse
dyn performance data. In Section 5.1.2 we provide code fragments from the example appli
that illustrate these steps.

STEP 1: Add a call tovisi_Init in the application’s main routine.
STEP 2: Write callback routines for Paradyn events, and register them by calling

visi_RegistrationCallback in the application’s main routine.
STEP 3a: Create a mechanism to make calls to Paradyn. Typically this is done by addin

some type of menuing widget that will make the call to Paradyn when selecte
STEP 3b: Register callback routines on the menuing widgets created in step 3a.
STEP 4: Add the PDSOCKET returned byvisi_Init as a source of input for the

application and add the VisiLib routinevisi_callback as a callback routine
for the file descriptor.

STEP 5: The final step is to enter the main loop of the application.

Figure 11: Example Visualization
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 21

e of
s have

r
this
tion

es

to

 by

e
iated

t.

r

et’s
ion’s
5.1.2 Source code from the example application

The code fragment shown in Figure 12 consists of the main loop of this application with som
the error handling code removed. Also, some of the uninteresting parameters to Xt function
been removed to make the code more readable.

To use VisiLib routines, the VisiLib header filevisualization.hmust be included. The other heade
files included in this code are Xlib, X-Toolkit, and Athena Widget set header files. Since
application uses the main loop provided by X-Toolkit, all widget creation and other initializa
must be done in themain routine before the application callsXtAppMainLoop . The following is a
description of how we applied the steps listed in Section 5.1.1 to this application:

STEP 1: The first section of code in the main routine initializes the visualization library
by calling thevisi_Init routine. This routine returns a PDSOCKET
through which the visualization can communicate with the paradyn process.

STEP 2: Callback routines were written for the following Paradyn events: FOLD,
ADDMETRICSRESOURCES, DATAVALUES, and PHASEDATA. These
routines are registered by making calls tovisi_RegistrationCallback with
arguments indicating the event and the handler. When, for example, data valu
arrive from the paradyn process, thedataHandler routine will be called by a
routine in the visualization library. (ThedataHandler routine is shown in
Figure 13)

STEP 3a: A mechanism for the visualization to make calls to Paradyn is added. In this
application we have added three command widgets (getMr, stopMr, phaseN)
do this. By adding calls toXtCreateManagedWidget we created command
widgets to get new metrics and resources, to stop data collection for a
metric/resource pair, and to start a new phase.

STEP 3b: We registered callback routines on the command widgets created in step 3a,
adding calls to the XToolkit functionXtAddCallback . Calls to this routine take
a command widget argument and an action routine that will be called when th
command widget is selected. Figure 14 lists the command action code assoc
with these widgets.

STEP 4: The visualization process must register this file descriptor as a source of inpu
In this application the file descriptor is added as a source of input by calling
theXtAppAddInput routine before entering the main loop. The VisiLib
routinevisi_callback , a parameter toXtAppAddInput , is the callback
routine for input on the file descriptor. The routine to register the file descripto
will vary from toolkit to toolkit.

STEP 5: Before entering the application’s main loop, we make a call toXtRealizeWidget

which is an XToolkit routine that binds action names to procedures, sets widg
attributes, and maps the application main window. We then enter the applicat
main loop by callingXtAppMainLoop .
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 22
// include files from original application
#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xaw/AsciiText.h>
#include <X11/Xaw/Command.h>
#include <X11/Xaw/Paned.h>
#include <X11/Xaw/Cardinals.h>

// VisiLib include file
#include “visi/h/visualization.h”

main(int argc, char **argv) {
// code to initialize the application
Widget toplevel = XtAppInitialize (&app_con, ...);

// Step 1: call visi_Init
PDSOCKET sock = visi_Init();
if (sock == PDSOCKET_ERROR)

exit(-1);

// Step 2: register callbacks for Paradyn events
// these routines are called when the associated Paradyn
// event occurs
int ok;
ok = visi_RegistrationCallback(ADDMETRICSRESOURCES,addMRHandler);
ok = visi_RegistrationCallback(DATAVALUES, dataHandler);
ok = visi_RegistrationCallback(FOLD, foldEventHandler);
ok = visi_RegistrationCallback(PHASEDATA, phaseEventHandler);

// create the original application’s widgets
Widget paned = XtCreateManagedWidget(“panned”, ...);
Widget clear = XtCreateManagedWidget(“Clear”, ...);
Widget print = XtCreateManagedWidget(“Print”, ...);
Widget quit = XtCreateManagedWidget(“Quit”, ...);

// Step 3a: create command widgets that will make calls to Paradyn
Widget getMR = XtCreateManagedWidget(“Get Metric Resource”, ...);
Widget stopMR = XtCreateManagedWidget(“Stop Metric Resource”,...);
Widget phaseN = XtCreateManagedWidget(“Name a Phase”, ...);

// create text widget (from original application)
Widget text = XtCreateManagedWidget(“text,...);

Figure 12: Main routine for example application
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 23
// add callbacks for original widgets (from original application)
XtAddCallback(clear, XtNcallback, ClearText, (XtPointer)text);
XtAddCallback(print, XtNcallback, PrintText, (XtPointer)text);
XtAddCallback(quit, XtNcallback,QuitProgram, (XtPointer)app_con);

// Step 3b: Add callbacks to widgets that make calls to Paradyn
// These are callback routines that are called when the
// associated command widget is selected
XtAddCallback(getMR, XtNcallback, GetMetsResUpcall, ...);
XtAddCallback(stopMR, XtNcallback, StopMestResUpcall, ...);
XtAddCallback(phaseN, XtNcallback, StartPhaseUpcall, ...);

// Step 4: register the VisiLib routine “visi_callback” on events
// associated with the file descriptor returned by visi_Init
XtAppAddInput(app_con, fd, XtInputReadMask, visi_callback, ...);

// Step 5: enter main loop
XtRealizeWidget(toplevel);
XtAppMainLoop(app_con);

}

int dataHandler (int bucketNum){
// display value of bucketNum for all valid DataGrid elements
int numMets = visi_NumMetrics();
int numRes = visi_NumResources();
for (int i = 0; i < numMets; i++){

for (int j = 0; j < numRes; j++){
if (visi_Valid(i,j))

DrawData(visi_DataValue(i,j,bucketNum));
}

}
}

Figure 13: Callback routine for DATAVALUES event

static void GetMetsResUpcall(Widget w, XtAppContext ac, XtPointer p) {
visi_GetMetsRes(0,0); // call VisiLib routine

}

static void StopMetsResUpcall(Widget w, XtAppContext ac, XtPointer p) {
visi_StopMetRes(0,0); // call VisiLib routine

}

static void StartPhaseUpcall(Widget w, XtAppContext ac, XtPointer p) {
visi_DefinePhase(0,0,0); // call VisiLib routine

}

Figure 14: Code to make calls to Paradyn

Figure 12: Main routine for example application
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 24

ce to
pro-

dyn

d calls

i, tcl

d.

iLib

e infor-
nd

e

s-
5.2 Example application using the tcl interface to VisiLib

The example shown in Figure 15 is a visualization application that uses the tcl interfa
VisiLib. It is used to display Paradyn’s phase information. For applications of this type, the
grammer writes a tcl application that makes calls to DataGrid (Dg) commands. The tcl interface
handles calling the VisiLib initialization routine and registering callback routines on Para
events. The tcl application writer needs only to implement theDg callback routines for which the
application is interested (the prototypes for these routines are listed in Figure 4), and to ad
to Dg commands that make calls to Paradyn (theseDg commands are listed in Figure 6).

Because most of the work required to write a visualization that uses VisiLib is done in tclVis
visualization writers need only implement the two steps listed below:

STEP 1: ImplementDg callback commands for any Paradyn event of which the
visualization wishes to be notified. The complete list ofDg commands for
Paradyn events are listed in Figure 4

STEP 2: Add calls toDg commands where needed. Typically this is done by adding
some type of menuing widget that will make the call to Paradyn when selecte
In the example application, this is done by creating a menu button labeled
StartPhase , with the -command option “Dg phase ”.

5.2.1 Source code from the example application

TclVisi takes care of registering callbacks on Paradyn events by calling the Vis
visi_RegistrationCallback routine. Tcl visualization writers need only implement theDg call-
back commands. Since the phase table visualization is used solely to display Paradyn phas
mation, we only wroteDg callback commands for the STARTPHASE, ENDPHASE, a
PHASEDATA Paradyn events. For the phase table we implementedDgPhaseStartCallback ,
DgPhaseEndCallback , andDgPhaseDataCallback ; the tcl code for our implementation of thes
is shown in Figure 16. TheseDg callback implementations make calls toStartUpdate , NameUp-

date , andEndUpdate . The tcl code forStartUpdate is show in Figure 17. This code handles di
playing the start time of the phase associated withphaseId . The call “Dg phasestartT

Figure 15: Example visualization that uses the Tcl interface to VisiLib
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 25

tifier

visual-
ne tcl
mand

ample
d in
20.
$phaseId”, is a DataGrid command to get the start time for the phase with the phase iden
phaseId .

The segment of code in Figure 18 consists of most of the tcl code to create the Phase Table
ization. This code fragment contains tcl code for implementing step 2. Its code contains o
command that is used to make a call to Paradyn; this call is to start a new phase. This com
creates aStart Phase menu button with a command option “Dg phase” . When selected, this menu
button will call theDg phase command.

5.3 A complete example application

In this section we provide the complete source code for an example application. The ex
visualization is shown in Figure 19. It is a simpler version of the application describe
Section 5.1. We provide a complete listing of the source code for this application in Figure

#
tclVisi registers this routine as callback for PHASESTART event
#
proc DgPhaseStartCallback {phaseId} {

adds new phase’s name to the “Phase Name” column
NameUpdate $phaseId
adds new phase’s start time to the “Phase Start” column
StartUpdate $phaseId
return

}

#
tclVisi registers this as a callback for PHASEEND event
#
proc DgPhaseEndCallback {phaseId} {

adds current phase’s end time to the “Phase End” column
EndUpdate $phaseId
return

}

#
tclVisi registers this as a callback for PHASEDATA event
#
proc DgPhaseDataCallback {} {

make DataGrid call to get the max number of phases
set max [expr int ([Dg numphases])]
for {set phasecount 0} {$phasecount < $max} {incr phasecount} {

NameUpdate $phasecount
StartUpdate $phasecount
if {$phasecount < [expr $max - 1]} {

EndUpdate $phasecount
}

}
return

}

Figure 16: Dg callback routines for PhaseTable visualization
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 26
proc StartUpdate {phaseId} {
global W
global xOffset
global yOffset
global widthChange

set theCanvas $W.middle.dataCanvas
set yOffset [expr 5 + $phaseId * $widthChange]
set theText [expr int([Dg phasestartT $phaseId])]
$theCanvas create text $xOffset $yOffset -anchor nw \

-fill black -justify center \
-tag dataTag -text $theText

return
}

Figure 17: Tcl code for StartUpdate

#
Create the overall frame
#
set W .table
frame $W -class Visi -width 4i -height 2i

#
Create the title bar, menu bar, and logo at the top
#
frame $W.top
pack $W.top -side top -fill x
frame $W.top.left
pack $W.top.left -side left -fill both -expand 1

label $W.top.left.title -relief raised -text “Phase Table” \
-foreground white -background Green4
pack $W.top.left.title -side top -fill both -expand true

#
Create the menubar as a frame with many menu buttons
#
frame $W.top.left.menubar -class MyMenu -borderwidth 2 -relief raised
pack $W.top.left.menubar -side top -fill x

#
File menu
#
menubutton $W.top.left.menubar.file -text “File” /

-menu $W.top.left.menubar.file.m
menu $W.top.left.menubar.file.m
$W.top.left.menubar.file.m add command -label “Close” -command Shutdown

Figure 18: Tcl code for PhaseTable visualization
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 27
#
Step 2: Create the “Start Phase” menu button that will call
“Dg StartPhase” when selected
#
button $W.top.left.menubar.acts -text “Start Phase” \

-relief flat -borderwidth 0 -highlightbackground white \
-command “Dg phase 0 0 0”

#
Help menu
#
menubutton $W.top.left.menubar.help -text “Help” \

-menu $W.top.left.menubar.help.m
menu $W.top.left.menubar.help.m
$W.top.left.menubar.help.m add command -label “Context” \

-command HelpContext

#
Build the menu bar and add to display
#
pack $W.top.left.menubar.file $W.top.left.menubar.acts -side left
pack $W.top.left.menubar.help -side right

#
Build the logo
#
label $W.top.logo -relief raised -bitmap @logo.xbm -foreground HotPink4
pack $W.top.logo -side right

#
Left portion of middle: phase name, name canvas
#
frame $W.left
pack $W.left -side left -fill both -expand true
label $W.left.phaseName -text “Phase Name” -foreground Blue
pack $W.left.phaseName -side top -expand false
canvas $W.left.dataCanvas -relief groove -width 1.3i
pack $W.left.dataCanvas -side left -fill both -expand true

Figure 18: Tcl code for PhaseTable visualization
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 28
#
Middle portion of middle: phase start time, data canvas
#
frame $W.middle
packpack $W.middle -side left -fill both -expand true
label $W.middle.phaseStart -text “Start Time” -foreground Blue
pack $W.middle.phaseStart -side top -expand false
canvas $W.middle.dataCanvas -relief groove -width 1.3i
pack $W.middle.dataCanvas -side left -fill both -expand true

#
Right portion of middle: phase end time, data canvas
#
frame $W.right
pack $W.right -side left -fill both -expand true
label $W.right.phaseEnd -text “End Time” -foreground Blue
pack $W.right.phaseEnd -side top -expand false
canvas $W.right.dataCanvas -relief groove -width 1.3i
pack $W.right.dataCanvas -side left -fill both -expand true

#
display everything
#
pack append . $W {fill expand frame center}
wm minsize . 250 100
wm title . “Phase Table”

Figure 19: Complete example application

Figure 18: Tcl code for PhaseTable visualization
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 29
/*
* $XConsortium: xtext.c,v 1.16 91/05/16 14:56:23 swick Exp $
*
* Copyright 1989 Massachusetts Institute of Technology
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of M.I.T. not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. M.I.T. makes no representations about the
* suitability of this software for any purpose. It is provided “as is”
* without express or implied warranty.
*
* M.I.T. DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL M.I.T.
* BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

// include files
#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xaw/AsciiText.h>
#include <X11/Xaw/Command.h>
#include <X11/Xaw/Paned.h>
#include <X11/Xaw/Cardinals.h>
#include “visi/h/visualization.h”

// global variables
XtAppContext app_con;
Widget toplevel, paned, clear, quit, text, getMR;

String fallback_resources[] = {
“*background: Grey”,
“*foreground: Black”,
“*font: *-Helvetica-*-r-*-12-*”,
“*input: True”,
“*showGrip: off”,
“?.?.text.preferredPaneSize: 200”,
“?.?.text.width: 200”,
“?.?.text.textSource.editType: edit”,
“?.?.text.scrollVertical: whenNeeded”,
“?.?.text.scrollHorizontal: whenNeeded”,
“?.?.text.autoFill: on”,
“*clear*label: Clear”,
“*quit*label: Quit”,
NULL

};

Figure 20: Complete source code for example application
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 30
// callback routine for DATAVALUES
int dataValuesCallback(int dummy){

Arg args[1];
XawTextPosition pos;
XawTextBlock tb;
char buf[100];

XtSetArg(args[0], XtNinsertPosition, &pos);
XtGetValues(text, args, ONE);

int noMetrics = visi_NumMetrics();
int noResources = visi_NumResources();

for(int i=0; i < noMetrics; i++){
for(int j=0; j < noResources; j++){

if(visi_Valid(i,j)){
if (!(isnan(visi_DataValue(i,j,dummy)))){

sprintf(&buf[0],”%s%d%s%d%s%d%s%f\n”,
“dataGrid[“,i,”][“,j,”][“,dummy,”] = “,
visi_DataValue(i,j,dummy));

} else {
sprintf(&buf[0],”%s%d%s%d%s%d%s\n”,

“dataGrid[“,i,”][“,j,”][“,dummy,”] = NaN“);
}

int size = strlen(buf);
tb.firstPos = 0; tb.length = size;
tb.ptr = buf; tb.format = FMT*BIT;
XawTextReplace(text,pos,pos+size-1, &tb);
pos += size;
XtSetXtSetValues(text,args,ONE);

}
} }
return 1;

}

// callback routine for PARADYNEXITED event
int exitedCallback(int dummy){ }

// makes call to Paradyn
static void GetMetsResCallback(Widget w, XtAppContext app_con,

XtPointer call_data)
{

visi_GetMetsRes(0,0);
}

// clears text out of the text widget
static void ClearText(Widget w, XtPointer text_ptr, XtPointer call_data)
{

Widget text = (Widget) text_ptr;
Arg args[1];
XtSetArg(args[0], XtNstring, ““);
XtSetValues(text, args, ONE);

}

Figure 20: Complete source code for example application
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 31
// exits the program
static void QuitProgram(Widget w, XtAppContext app_con,

XtPointer call_data)
{

XtDestroyApplicationContext(app_con);
exit(0);

}

main(int argc, char **argv) {
Arg args[1];

// code to initialize the application
Widget toplevel = XtAppInitialize (&app_con, “Xtext”,NULL,ZERO,

&argc, argv, fallback_resources, NULL, ZERO);

if (argc != 1) exit(1);

// call visi_Init
int fd = visi_Init();
if (fd < 0)

exit(-1);

// register callbacks for Paradyn events
int ok = visi_RegistrationCallback(DATAVALUES,

dataValuesCallback);
ok = visi_RegistrationCallback(PARADYNEXITED, exitedCallback);

// create the original application’s widgets
Widget paned = XtCreateManagedWidget(“panned”,panedWidgetClass,

toplevel, NULL, ZERO);
Widget clear = XtCreateManagedWidget(“Clear”,commandWidgetClass

paned, NULL, ZERO);
Widget quit = XtCreateManagedWidget(“Quit”,commandWidgetClass,

paned, NULL, ZERO);

// command widget that will make calls to Paradyn
Widget getMR = XtCreateManagedWidget(“Get Metric Resource”,

commandWidgetClass, paned, NULL,ZERO);

// create text widget
Widget text = XtCreateManagedWidget(“text,asciiTextWidgetClass,

paned, NULL, ZERO);

// add callbacks for original widgets
XtAddCallback(clear, XtNcallback, ClearText, (XtPointer)text);
XtAddCallback(quit,XtNcallback,

 QuitProgram,(XtPointer)app_con);

// Add callbacks to widgets that make calls to Paradyn
XtAddCallback(getMR, XtNcallback, GetMetsResUpcall,

 (XtPointer) app_con);

Figure 20: Complete source code for example application
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 32

ES

i.
re 21
calls.
n for a
Para-

ed to
lica-
n be

ntain

the
that
rding
5.4 An example application using the trace data interface in VisiLib

For a visi to receive trace data, it must register a callback routine on the TRACEDATAVALU
event.; a call tovisi_RegistrationCallback with the TRACEDATAVALUES flag and the call-
back routine as parameters must be added to the visi code. For example:

visi_RegistrationCallback(TRACEDATAVALUES, Dg2NewTraceDataCallback);

In this example,Dg2NewTraceDataCallback is called for every trace record arriving at the vis
The function needs to be written appropriately to compute a trace metric on the visi. Figu
shows a sample callback function which counts the number of pvm_send and pvm_recv
Trace data can be sent from application processes to a trace visi by enabling data collectio
trace metric. A trace metric must be added to a Paradyn configuration file prior to running
dyn. This is described in Section 2.4.

5.5 Other examples

The VisiLib sources contain a test directory with sample visualizations that have been modifi
use VisiLib. Each of the application’s source files contain comments on how the original app
tion was modified to use VisiLib. Also, in this directory is a psuedo-paradyn process that ca
used to test visualization applications that use either VisiLib or tclVisi. These directories co
README files that explain how to run these applications.

6 COMMENTS AND QUESTIONS

The source distribution of VisLib and tclVisi contain README files describing how to use
interface; the VisiLib sources contain a test suite with example visualization applications
have been modified to use the visualization interface. All questions and comments rega
VisiLib and tclVisi should be directed toparadyn@cs.wisc.edu.

■

// register the VisiLib routine “visi_callback” on fd
XtAppAddInput(app_con, fd, XtInputReadMask,

 (XtInputCallbackProc)visi_callback, text);

// enter main loop
XtRealizeWidget(toplevel);
XtAppMainLoop(app_con);

}

Figure 20: Complete source code for example application
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

Page 33
#include “visi/src/visiTypesP.h”

struct _typeExtract {
int type; // 1 for pvm_send and 2 for pvm_recv

};

typedef struct _typeExtract typeExtract;
static int pvmSendNum = 0;
static int pvmRecvNum = 0;

int Dg2NewTraceDataCallback(int) {
int metricIndex = visi_TraceDataValues()->metricIndex;
char *namePtr = visi_MetricName(metricIndex);
cout << “The metric name :” << namePtr << endl;
char *sp = visi_TraceDataValues()->dataRecord->getArray();
typeExtract *b = (typeExtract *)sp;
if (b->type == 1) {

pvmSendNum++;
cout << “@@@ “ << pvmSendNum << “th pvm_send call” << endl;

} else if (b->type == 2) {
pvmRecvNum++;
cout << “@@@ “ << pvmRecvNum << “th pvm_recv call” << endl;

} else {
cout << “@@@ type unknown” << endl;

}

return TCL_OK;
}

Figure 21: Example sample callback function for trace data.
This counts the number of pvm_send and pvm_recv calls.
VisiLib Programmer’s Guide January 10, 2002 Release 3.3

	VisiLib Programmer’s Guide
	1 Preliminaries
	1.1 Document revision history
	1.2 Overview
	Figure�1: Visualization interface

	2 Visi Interface
	2.1 Types
	2.1.1 Metrics and Resources
	2.1.2 Histogram
	2.1.3 Data Grid
	2.1.4 Phases
	2.1.5 visi_timeType
	2.1.6 visi_sampleType
	2.1.7 visi_TraceData

	2.2 VisiLib interface functions
	2.2.1 Initialization
	2.2.2 Paradyn events
	Figure�2: Paradyn event types

	2.2.3 Getting data from the data grid
	2.2.3.1 Accessing metric data
	2.2.3.2 Accessing resource data
	2.2.3.3 Accessing performance data values
	2.2.3.4 Accessing information about DataGrid elements
	2.2.3.5 DataGrid user data
	2.2.3.6 Accessing phase data
	2.2.3.7 Accessing trace data values

	2.2.4 Calls to Paradyn

	2.3 Tcl Interface to VisiLib
	Figure�3: TclVisi
	2.3.1 Initialization
	2.3.2 Paradyn events
	Figure�4: Dg commands for Paradyn event callbacks

	2.3.3 Getting data from the data grid
	Figure�5: tclVisi Dg service commands

	2.3.4 Calls to Paradyn

	2.4 Using trace data with VisiLib
	Figure�6: tclVisi commands that call the Paradyn process
	Figure�7: Example Trace Data Metric Definition
	Figure�8: traceSend routine.
	This is added to the trace producer (the application’s code).

	3 Compiling and Linking a Visi Application
	Figure�9: Example Makefile for a Visi

	4 Adding a Visi description to a PCL file
	Figure�10: PCL Visi entry syntax and examples

	5 Examples
	5.1 Example that uses the VisiLib interface
	Figure�11: Example Visualization
	5.1.1 Steps to modify the example application
	5.1.2 Source code from the example application
	Figure�12: Main routine for example application
	Figure�13: Callback routine for DATAVALUES event
	Figure�14: Code to make calls to Paradyn

	5.2 Example application using the tcl interface to VisiLib
	Figure�15: Example visualization that uses the Tcl interface to VisiLib
	5.2.1 Source code from the example application
	Figure�16: Dg callback routines for PhaseTable visualization
	Figure�17: Tcl code for StartUpdate
	Figure�18: Tcl code for PhaseTable visualization

	5.3 A complete example application
	Figure�19: Complete example application
	Figure�20: Complete source code for example application

	5.4 An example application using the trace data interface in VisiLib
	Figure�21: Example sample callback function for trace data.
	This counts the number of pvm_send and pvm_recv calls.

	5.5 Other examples

	6 Comments and Questions

