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1 INTRODUCTION

The purpose of this document is to describe all the general issues related to the implementation of
the instrumentation of threaded programs using Paradyn. Here, we will explain what the model is,
what data structures are used, how the instrumentation actually works and what the current prob-
lems and limitations are.

Although most of the ideas described here are general, this design is based on the Solaris Mul-
tithreaded Architecture (Figure 1). In this model, threads are user level structures that are assign
to light weight processes (LWPs). The LWPs are kernel threads and these are assign to actual
CPUs. The LWPs are also known as virtual CPUs. For more information, please look at the docu-
mentation about Solaris threads.

e

Address Space 1 Address Space 2 Address Space 3
uSer[Hm TR
Kernel
Hardware [cPui| [cpuz] [cPus| [cpual

Figure 1: Solaris Multithreaded Architecture

2 PARADYN PROGRAM INSTRUMENTATION

In the single threaded version of Paradyn, we used to have instrumentation code and data
(counters or timers) on a per process basis. Whenever we created a new metric, we would insert
instrumentation for a particular process and create the corresponding counter/timer.

With multithreaded applications, the situation is quite different. Every time we modify the
program’s image, we know that all threads can execute this instrumentation so we need to make
sure that this instrumentation computes the right thing on a per thread basis. In order to do this, we
use a modified version of the instrumentation code that is very similar to the single threaded case
but that uses the current thread id of the executing thread to know what data to access. In this way
and having counter/timers per thread, we can compute metrics for any single thread without hav-
ing specific instrumentation for any special thread (see Figure 2)
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Process Vector of CT «————o— data

Thread 1
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g Instr. timer 1 counter 2
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g timer 3 timer 2
counter 4 timer 3
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Figure 2: Instrumenting multithreaded applications. Single instrumentation code and
multiple data per thread.

3 DESIGN ISSUES

Some of the most important design issues are:
[0 Every thread shares the same program instrumentation.

[0 There is a vector of counter/timers per thread (more memory usage but better speed and more
straight forward implementation).

[0 Two base application scenarios: few threads, few LWP (light weight processes); many threads
created and destroyed dynamically (e.g. servers).

4 CURRENT DESIGN

The current design to support multithreaded applications with Paradyn can be seen in Figure 3.

The main structure is th€hread Tablewhich can be viewed as a matrix. The columns of this
metric represent threads and the rows metrics. Each cell in the matrix is a point¥eéboa of
Counteror Timers These vectors contain a set of counter/timers (a fixed number actually) and
since they are stored inside these vectors we don’t need any other level of indirection to access the
data. To clarify how we access data using this data structure, let’s give an example. If we want to
access counter C4 for thread N, first we need to know the thread id of thread N. In this way we
will be able to access the column corresponding to thread N in the Thread Table. With this infor-
mation, we can then access the right vector of counters for thread N (base address of the vector).
Now, we need to know the offset or position on this vector (in this example, C4). The offset or
position in the vector is the same for every thread. This condition is very important because it
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ThreadTable Vector of Counters

<€— Base Address
Thrl Thr2 ThrN /—> c1

C2 Offset for C4

[ ~~— T1 c3

C4

T2

Cn

Tn Vector of Timers

Figure 3: Basic data structure for instrumenting threaded programs.

allow us to keep the same instrumentation code for every thread (i.e. all trelea@shis code).

In summary, to access a particular counter/timer we need three values: the thread id, the row num-
ber in the thread table (usually called level, which actually tell us what metric we are accessing
and whether it is a counter or timer) and finally the offset or position in the vector.

This structure is representedgaradynd by the following classes:

e superTable . ThesuperTable class consists of an arraymakeTable elementsdquperVec-
tors ) and it represents thihread Tablen paradynd. TheuperTable class is the class that
has contact with the outside world. Rows on this table are represerdgebivigctors
Eachsupervector has one entry for each thread (although we could have more entries than
threads, in which case we call these entries "reserved"). In order to know what entry corre-
spond to what thread, we use a hash table (which has a counter part in the application). The
superTable has also different "levels". Each level is used to store a different kind of
dataRegNode (i.e. counters, wall timers and process timers). When we add a new counter, we
need to find first on which level or levels are we storing counters. Then we need to find an
empty position in théastinferiorHeap . Each entry of theupervector has &astinfe-
riorHeap associated with it. This structure has the mapping of data elements to locations in
the shared memory segment. This mapping is the same for every entryipetkiector
(i.e. for every thread), which means that when we add a new data element, we are adding it to
every thread. The reason for this is that having the same offset for counters of different threads
will make the instrumentation code a lot easier and faster.

* DbaseTable . ThebaseTable class consists of an arraysoperVectors . ThebaseTable
class is a template class. It has&IMap vector that keeps track of the levels (rows) that has
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been allocated (remember that we need not only an index but also a level in order to determine
the position of a counter or timer).
* superVector . ThesuperVector is an array of vectors of counters and timersasihfe-
riorHeap objects. Part of the functionality of thestinferiorHeap class has been moved to
this new class.

Figure Figure 4, provides a general view of all these classes and how they are related.

levels 0,3,4 super\Vector

thelntCounterSuperTable—» baseTable

4

levels 1,

theProcTimerSuperTable— baseTable

levels 2,7,8

theWallTimerSuperTable— baseTable

Y fastinferiorHeap
Ci

C2
C3

C4

Figure 4: superTable, baseTable, superVector and fastinferiorHeap classes.
4.1 Whole process vs. Threads

So far we have figured out how are we going to measure metrics for a particular thread, but how
are we going to handle metrics for the a particular process? We have several ways of doing this
and some could be more efficient than others. One option is to compute these metrics in the old
good way: having a single counter/timer for the whole process. In this way, we wouldn’t need to
aggregate values for all threads but we would have to put locks every time we update the
counter/timer since all threads are going to update the same variable. The other alternative, which
is the one we choose because we think is the cheapest and more “natural” one, is to always com-
pute counter/timers per thread and then aggregate all the values to get a per process metric. Using
this approach, we don’'t need locks but we do need to aggregate values all the time. If the number
of threads is large, this operation could be expensive plus we need to keep adding and deleting
threads to this metric every time a thread is actually created or deleted.
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4.2 Instrumentation Details

Some of the most important instrumentation issues are:

[0 Fixed size Thread Table indexed by thread-ids, points to vectors of counters or timers.
Thread Table size directly related to maximum number of active threads at any given time.
Separate sets of vectors of counters and timers per thread.

Creation of vectors of counters/timers on demand, never removed.

O O 0O d

Counter/timers allocated by blocks (2 level memory allocation).

4.3 Base Trampoline

Figure 5 shows an updated version of the base trampoline to instrument multithreaded appli-
cations. There are two new sections in the base trampoline. The first one is called “MT Preamble”
and its main function is to compute the position in the thread table for the thread that is currently
executing the code. Once we compute this value, we will store it in a special register (I7 more spe-
cifically). In this way, we will guarantee that this value is going to be different for different
threads since registers are kept per thread (and we don’t need any special thread local storage).
The second new section is located in the mini-trampolines and it computes the address of the
counter/timer based on the offset (we will discuss this in the following section).

Application Base
Program Trampoline
Save Regs
Update cost
Func foo: MT Preamble
—_— Pre instrument.
< Restore Regs o
Mini
Relocated Trampoline
Instruction(s)
Compute C/T Addr.
Save Regs (per thread)
Update cost Instrumentation
Primitive
MT Preamble (e.g. addCounter)
Post instrument. —

Restore Regs

— €

Figure 5: Modified base trampoline.
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An example of the assembly code for a MT Preamble in a base trampoline (Sparc Solaris

Architecture) can be found in Figure 6. The instructions that comprise MT Preamble are in bold
0x23090: save %sp, -120, %sp
0x23094: nop
0x23098: nop
0x2309c: nop
0x230a0: std %g0, [ %fp + -8 ]
0x230a4: std %g2, [ %fp +-16 ]
0x230a8: std %g4, [ %fp +-24 ]
0x230ac: std %g6, [ %fp +-32 ]
0x230b0: sethi %hi(0xee40f800), %05
0x230b4: call %05 + 0x3e0 I Oxee40fbe0 <DYNINSTthreadPos>
0x230b8: nop
0x230bc: cmp %00, -2
0x230c0: mov 1, %I0
0x230c4: bne,a 0x230cc
0x230cS8: clr %I0
0x230cc: cmp %I0, 0
0x230d0: be 0x230e0
0x230d4: nop
0x230d8: b,a 0x23124
0x230dc: nop
0x230e0: sl %00, 2, %I0
0x230e4: sethi %hi(Oxeeb25800), %l1
0x230e8: or %lI1, 0x13c, %l1 I Oxeeb2593c <DYNINSTthreadTable>
0x230ec: add %I0, %l1, %I0
0x230f0: mov %lI0, %I7
0x230f4: nop
0x230f8: nop
0x230fc: nop
0x23100: nop
0x23104: nop
0x23108: nop
0x2310c: nop
0x23110: nop
0x23114: nop
0x23118: nop
0x2311c: b,a 0x23230
0x23120: nop
0x23124: Idd [ %fp + -8 1], %g0
0x23128: Idd [ %fp +-16 ], %92
0x2312c: Idd [ %fp + -24 ], %g4
0x23130: Idd [ %fp +-32 ], %g6
0x23134: sethi %hi(0xedc00000), %I0
0x23138: Id [ %I0 + Oxc ], %I1 ! OxedcO00Oc
0x2313c: add %Il1, Ox54, %Il1
0x23140: nop
0x23144: nop
0x23148: st %I1, [ %I0 + Oxc ]
0x2314c: restore

Figure 6: Example of Base Trampoline. MT Preamble, pre-instrumentation.

face. The call toDYNINSTthreadPos returns the column index of the calling thread in the
ThreadTable, andDYNINSTthreadPos returns -2 if the execution of the thread has already
passed the point where we have put instrumentation code to detect thread termination (i.e., thread
has terminated from the tool’s perspective).
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4.4 Mini-Trampolines

Mini-trampoline code is similar to the single threaded version, except that it needs to compute the
address of the counter/timer before executing the desired operation (e.g. increment a counter).
This computation of the address also involves the computation of the address for the vector of
counter/timers.

Figure 7 shows an example of mini-trampoline code that increments a counter. In Figure 7,
counter is at level 0, with an offset 0 in the corresponding the vector of counters (implemented as
a fastinferiorHeap). The instruction at line 0x23230 computes the base address of the fastinferi-
orHeap, and the instructions at line 0x23234-0x23248 checks whether the base of the fastinferi-
orHeap is NULL. The instruction at line 0x23250 computes the address of the counter by adding
the offset to the base of the fastinferiorHeap.

0x23230: ld [%I7 ], %I0

0x23234: cmp %I0, 0

0x23238: mov 1, %l1

0x2323c: be,a 0x23244

0x23240: clr %I1

0x23244: cmp %I1,0

0x23248: be 0x23260

0x2324c: nop

0x23250: add %l0, 0, %I0

0x23254: ld [%I0], %I1

0x23258: inc %l1

0x2325c: st %I1, [ %I0 ]

0x23260: b,a 0x23270
Figure 7: Mini-trampoline code. Counter. Loads vector address (in this case level is 0, but
there could be some computation first), check that the value is not NULL, uses the offset to

compute counter address, loads counter, increments counter, saves counter and returns.

Figure 8 shows an example of mini-trampoline that starts a Thread timer. The mini-trampoline
first checks if the thread has already terminated (from the perspective of Paradyn), and it then
loads the base address of the vector of timers (see the instructions at lines 0x23288-0x23294, and
in this case the timer is stored in a vector at level 2).

Paradyn allocates the vector of timers (implemented as fastinferiorHeaps) for a new thread
asynchronously when it is notified the thread has been created. It is possible that before Paradyn
have the chance to allocate the fastinferiorHeaps for the new thread, the application could have
already entered an instrumentation code. To deal with this, the mini-trampoline spins until the
base address of the corresponding fastinferiorHeap becomes non-NULL.

4.5 InferiorRPC

Paradyn uses an inferiorRPC to execute code that would have not been executed otherwise (e.g.
starting a timer for the whole prograafter the program has already started). The problem of
doing this operation on a multithreaded program, is that we would need to execute this code for a
particular thread (i.e. the thread that requires to start a timer, for example). One alternative to this
is that the main thread (or any other thread) executes the @modehalfof the particular thread

that needs to run the inferiorRPC. We achieve this by forcing the use of a particular thread id in

Instrumenting Multithreaded Applications March 14, 2001
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0x23270: sethi %hi(0Oxee40fc00), %05
0x23274: call %05 + 0x9c I Oxee40fc9c <DYNINST _not_deleted>
0x23278: nop

0x2327c: cmp %00, 0

0x23280: be 0x232f0

0x23284: nop

0x23288: sethi %hi(0x1000), %I2
0x2328c: mov %l2, %I2 ! 0x1000
0x23290: add %l7, %I2, %l1

0x23294: Id [%I1], %I0

0x23298: cmp %I0, 0

0x2329c: mov 1, %l1

0x232a0: bne,a 0x232a8

0x232a4: clr %l1

0x232a8: cmp %I1, 0

0x232ac: be 0x232dc

0x232b0: nop

0x232b4: sethi %hi(Oxee40fc00), %05
0x232b8: call %05 + 0x8c I Oxee40fc8c <DYNINSTIloop>
0x232hc: nop

0x232c0: cmp %00, 0

0x232c4: be 0x232d4

0x232c8: nop

0x232cc: b,a 0x232f0

0x232d0: nop

0x232d4: b,a 0x23288

0x232d8: nop

0x232dc: add %lI0, 0, %I0

0x232e0: mov %I0, %00

0x232e4: sethi %hi(0xee40a400), %05
0x232e8: call %05 + 0x368 I Oxeed40a768 <DYNINSTstartThreadTimer>
0x232ec: nop

0x232f0: b,a 0x23120

Figure 8: Mini-trampoline code. Timer. Loads vector address (in this case, the level is
different than 0, so we need to add some offset to the base address of the Thread Table),
check that the value is not NULL, uses the offset to compute timer address, calls
DYNINSTstopProcessTimer(timer_address) and returns.

the base-trampoline (the place where we compute what thread is currently executing the code).
The following paragraph describes some of the details of the assembly code for an inferiorRPC.

This is an example of the assembly code for the inferiorRPC (Figure 9). Remember that in this
case, we need to execute this code on behalf of another thread.

A brief explanation of Figure 9 goes as follows:

The first instruction creates a new frame for the inferiorRPC. The cB8IMNINSTthread-
PosTID takes the thread id, and the position of the thread in the ThreadTable and tests to see if
the thread has already terminated (from the perspective of Paradyn). It then executes essentially
the same instructions as that would have been in a mini-trampoline, except that all calls takes an
extra parameter, and it tests if a thread has terminated before every major operations, since the
thread that carries out the inferiorRPC may be different from the threads which the inferiorRPC is
intended for. The complications of this code mainly result from the goal for generality.
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0xefd9b180: save %sp, -112, %sp
0xefd9b184:  sethi %hi(0), %I0
0xefd9b188: or %I0, 5, %I0 ! 0x5
Oxefd9b18c: sethi %hi(0), %l1
0xefd9b190: or %l1, 5, %I1 ! Ox5
Oxefd9b194: mov %I0, %00

0xefd9b198: mov %l1, %01

Oxefd9b19c: sethi %hi(Oxee408c00), %05
Oxefd9bla0: call %05 + 0x310 ' 0xee408f10 <DYNINSTthreadPosTID>
Oxefd9bla4d: nop

Oxefd9bla8: cmp %00, -2

Oxefd9blac: mov 1, %I0

0Oxefd9b1b0: bne,a Oxefd9blb8
Oxefd9blb4: clr %I0

0xefd9b1b8: cmp %Il0, O

Oxefd9blbc: be Oxefd9blcc

Oxefd9b1cO: nop

Oxefd9blc4: b,a Oxefd9b288
Oxefd9b1c8: nop

Oxefd9blcc: sl %00, 2, %I0

0xefd9b1d0: sethi %hi(Oxeeb25800), %l1
Oxefd9bld4: or %l1, 0x13c, %l1 ! Oxeeb2593c <DYNINSTthreadTable>
Oxefd9b1d8: add %I0, %1, %I0
Oxefd9bldc: mov_ %l0, %I7

Oxefd9ble0: sethi %hi(0), %I0
Oxefd9ble4: or %Il0O, 5, %I0 ! 0x5
Oxefd9ble8: sethi %hi(0), %I1
Oxefd9blec: or %l1, 5, %I1 ! Ox5
0xefd9b1f0: mov %I0, %00

Oxefd9blf4: mov %l1, %01

0xefd9b1f8:  sethi %hi(Oxee408800), %05
Oxefd9blfc: call %05 + 0x3b8 1'0xee408bb8 <DYNINST_not_deletedTID>
0xefd9b200: nop

0xefd9b204: cmp %00, 0

0xefd9b208: be Oxefd9b288

0xefd9b20c: nop ]

0xefd9b210:  sethi %hi(0x1000), %l4
Oxefd9b214: mov %l4, %l4 ! 0x1000
0xefd9b218: add %I7, %l4, %I3
Oxefd9b21c: Id [ %I3], %I2

0xefd9b220: cmp %l2, 0

Oxefd9b224: mov 1, %I3

0xefd9b228: bne,a 0xefd9b230
Oxefd9b22c: cIr %I3

0xefd9b230: cmp %I3, 0

0xefd9b234: be Oxefd9b26c
0xefd9b238: nop

Oxefd9b23c: mov %l0, %00

0xefd9b240: mov_ %l1, %01

0xefd9b244: sethi %hi(0xee408c00), %05
0xefd9b248: call %05 + 0x3b0 "0xee408fb0 <DYNINSTIloopTID>
Oxefd9b24c: nop

0xefd9b250: cmp %00, 0

0xefd9b254: be Oxefd9b264

0xefd9b258:  nop

Oxefd9b25c: b,a 0Oxefd9b280
0xefd9b260: nop

0Oxefd9b264: b,a 0xefd9b210
0xefd9b268:

nop
Oxefd9b26c: add %l2, 0x30, %I2

0xefd9b270: mov %l2, %00

0xefd9b274: mov %I0, %ol

0xefd9b278: mov. %l1, %02

Oxefd9b27c:  sethi %hi(Oxee40ac00), %05 ) o
0xefd9b280: call %05 + 0x170 I'<DYNINSTSstartThreadTimer_inferiorRPC>
0xefd9b284: nop

Oxefd9b288: ta 1

Oxefd9b28c: ret

0xefd9b290: restore

Figure 9: Assembly code for inferiorRPC (special trampoline code).
4.5.1 Problems with inferiorRPC

Executing inferiorRPC for threads could case a scenario we call self-deadlock when the thread
that performs the inferiorRPC is the thread we intended for (this may seem to be counter intuitive
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to some people). This happens when the thread has already acquired a lock, and then the inferior-
RPC requests the same lock. This causes a deadlock because that these all happens in a single
thread of control. To solve this problem we have created an additional thread whose sole existence
is to carry out inferiorRPC on behalf of other threads. (Please note that for the current metrics
Paradyn supports, and the fact that we only launch an inferiorRPC if the corresponding instru-
mentation has not been installed, self-deadlock may not occur. The separate RPC thread was
introduced for generality.)

4.6 Key Operations

0 Add Thread:
Update corresponding Thread Table entry.
Create same number of vectors of counters and timers as for reminder threads.
Enable only those counter/timers that apply to the new thread.

0 Delete Thread:
De-allocate all counter/timers + all vectors for this thread.
Update corresponding Thread Table entry.

[0 Add counter/timer:
Common caseéhere is space in a vector of counter/timers and we just add this newadintry (
threads).
Special casef there is no space available, then create new vector (for all threads) and add
new counter/timer entry.

[0 Delete counter/timer:
Just tag counter/timer asvalid. It does not de-allocate memory.

Some of the advantages and disadvantages of this approach are:

Advantages:
» It allocates less memory than a similar option using an extra level of indirection.
» Execution of mini-tramp code should be fast since counter/timers are accessed directly.

Disadvantages:

* New 2-level memory allocation procedure. Might create memory fragmentation.

* Could be wasting space if computing counter/timer for just one thread but need to add new
vector to every thread.

* Only de-allocate memory for counters, timers and vectors when a thread is deleted.

4.7 Timer Issues

Another challenge is to minimize instrumentation cost when measuring time-based metrics on a
per-thread basis. Threads are executed by LWPs. To measure the CPU (virtual) time of an individ-
ual thread, we must use the per-LWP timer kernel calls and instrument thread context switches to
account for thread context switching and migration. To reduce the number of calls to expensive
timer routines, we introduced per-thread virtual timers, one for each thread, and implement our
performance timers using the virtual timers.
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The initial LWP ID of a newly created thread is recorded in a virtual timer and updated at
every thread context switch to account for any possible thread migration. We turn a virtual timer
off when a thread is de-scheduled (this stops all performance timers for this thread) and turn it
back on when a thread resumes execution. Implementing per-thread virtual timers reduces the
number of calls to expensive timer routines, and reduces the chance that a timer structure gets
accessed by interleaved instrumentation.

4.8 Thread Context Switch

We need to instrument thread context switch in order to properly compute timing metrics. For
this, we need to identify the appropriate functions in the thread package. For the Solaris thread
package, these functions aressume (stop timer, thread context switch) an@sume_ret  (Start
timer, thread is about to resume execution).

This is a little messy because it requires internal knowledge of the thread package (we actually
had to look at the code in order to find what functions to instrument). However, this is only done
once per thread package.

4.9 Race conditions

1. Thread creationln order to detect thread creation, If we instrument the routine
_thrp_create  at the exit point (because this is the place when the thread id has been defined).
However, at this point the new thread might be already running! (unless is created with the
THR_SUSPENDEfbag on). If this happens, this thread could try to execute instrumentation that
is not ready to be executed for this particular thread (the thread table needs to be updated to
point to the vector of counter/timers). If this is the case, the roD¥NeNSTthreadPos  will
return -2 and we will keep looping untiVNINSTthreadPos returns a valid position in the
thread table. (We also instrument the routitie_start which is called before it call the
start function of a thread to detect thread creation.)

2. Thread deletionin order to detect when a thread is destroyed, we instrument the routine
_thr_exit_common  at the entry point (it cannot be at the exit point because the current thread
is not valid anymore at that point!). The problem with this is that it is possible that since we
are saying that a thread has been deleted at the beginnirig @kit_common , it could still
be the case that we try to execute instrumentation for that thread. Of course, the thread still
exists for the application, but not for Paradyn. In this particular ageINSTthreadPos  will
return -2 and we will just skip the instrumentation (we can’t execute the instrumentation for a
thread that has been already deleted). There are cases, however, where we are not computing
neither counters nor timers. In these cases, we can execute the instrumentation without prob-
lems (e.g. calls tOYNINSTthreadCreate ~ Or DYNINSTthreadDelete ).

4.10 New resource: Threads

We add threads under the process hierarchy. In this way in the where axis we would see, for exam-
ple, that procesgva_g{5143_grilled} has 13 threads labeled in terms of thread id and start

function of the thread. However, since resources in the where axis cannot be deleted (at least for
now), threads don’t disappear from the where axis even if they have been deleted. This might
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bring some confusion, specially if the user tries to enable a particular metric for a thread that
doesn't exist anymore. An example of the new whereAxis can be seen in Figure 10.
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Figure 10: Resource Hierarchy
Showing resource hierarchies for code, process and synchronization objects.

4.11 Cost of instrumentation

This section describes the cost of instrumenting threaded code through a few simple benchmarks
and compares them with non-threaded Paradyn. Table 1 presents the cost of basic instrumentation
primitives, including the cost to execute the base-trampoline, increment a counter, and start and
stop a CPU timer. These costs are presented for the threaded and non-threaded Paradyn instru-
mentations on two different systems: an UltraSPARC Il with one 250 MHz processor, and an
Enterprise 5000s with twelve 167-MHz processors.

Base Trampoline Counter Start Timer Stop Timer
Machine N \ \ \
on- on- on- on-

threaded Threaded threaded Threaded threaded Threaded threaded Threaded
UltraSPARC Il 552ns 41ns 1.53us 1.47s
Uniprocessor | 122" | (+34206) | 28" | (+a6%) | 1OMS | (ra000) | 11HS | (+28%)
. 815ns 65ns 2.151s 2.03us
Enterprise 5000s | 186ns (+338%) 42ns (+55%) 1.53us (+41%) 1.55us (+31%)

Table 1: Micro Benchmarks

As shown in Table 1, the cost of base-trampoline for threaded Paradyn is about 5 times of that
of the non-threaded version. The extra costs are from code added to check for inferior RPCs, to
detect already running threads, and to calculate the column address in the Thread Table. Counter
primitives for the new version are 50% more expensive than the non-threaded Paradyn, and timer
code is about 30%-40% more expensive, mainly because the new version has to go through a level
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Base Trampoline

Machine i .
C_:hec_klng Detecting
Total inferior Threads

RPC

UltraSPARC Il 552ns 119ns 69ns

Uniprocessor (22%) (12%)

Enterprise 186ns 102ns

5000s 815ns (23%) (13%)

Table 2: Breakdown of Base-trampoline Cost

of indirection. To get an idea of the costs of various components of a base-trampoline, Table 2
lists the cost to check for pending inferior RPCs and cost to detect existing threads.

To get a feeling for the overall cost of the new instrumentation, we instrumented a simple mul-
tithreaded application (matrix multiply with 150 lines of C code) and compared it with the cost of
instrumenting a sequential version of the same algorithm by the non-threaded Paradyn. Table 1
shows elapsed times of the two versions repeatedly multiplying two 500x500 matrices of floating
point numbers. In Table 1, we measure CPU time (inclusive) for the whole program, procedure
call frequency and CPU time (inclusive) for the functiomerp . The procedure call frequency
of innerp is about 3,500 calls/second on the uniprocessor, and about 10,000 calls/second for the
multithreaded version on the multiprocessor. Note that the overhead for the threaded instrumenta-
tion is about 2 to 8 times of that for the non-threaded instrumentation. Instrumentation cost is pro-
portional to event frequency. In this example, we instrumented the most frequently called
procedure as a stress test.

4.12 Defining metrics for multithreaded programs

Measuring CPU time for the whole program:

Resource list definition (Figure 11). This figure describes the functions that we need to instru-
resourcelist stopThread is procedure {

items {"_resume", " _thr_exit_common"},
flavor { unix };
library true;

}

resourcelist resumeThread is procedure {
items {"_resume_ret"};

flavor { unix };

library true;

}
Figure 11: Example of MDL for CPU metric. Resource list definition.

ment in order to catch thread context switches. Whenexgume or _thr_exit common  are
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called, we need to stop the virtual CPU timer for that particular thread. Whenesgeinhe_ret is
called, we need to start that virtual timer for that particular thread again.

5 USING THE THREAD-AWARE PARADYN

The thread-aware Paradyn needs the thread-aware Paradyn dparadgndMT the thread-
aware Paradyn runtime librarlpbdyninstRT_MT.so0.1 , and the Paradyn resource file
paradynMT.rc must be included in the local Paradyn resourcéR®ME/.paradynrc

To choose the thread-aware Paradyn runtime library:
setenv PARADYN_LIB /p/paradyn/lib/sparc-sun-solaris2.6/libdyninstRT_MT.so.1

The following gives an example of the Paradyn PCL file to measuring a threaded application:
tunable_constant {
"costLimit" 20.0;
"PC_SyncThreshold" 0.0;
"PC_CPUThreshold" 0.01;
"PC_IOThreshold" 1.0;
}
exclude "/Code/libintl.so.1";
exclude "/Code/libm.so.1";
exclude "/Code/libw.s0.1";
exclude "/Code/libmp.so.1";
process myproc {
dir "/p/paradyn/applications/Test_dist/threads/matrix";
command "matrix output";
daemon mtd;
}
daemon mtd {
command "/p/paradyn/bin/sparc-sun-solaris2.6/paradyndMT";
flavor unix;

}
6 CURRENT LIMITATIONS AND PROBLEMS

This is a list of the current limitations and problems with the implementation of the instrumenta-
tion of threaded applications:
6.1 Infrastructure-level issues

* New flavor for threadsyncWait metrics.

» LocalAlteration (sparc-solaris). The LocalAlteration code for SPARC-solaris can not relocate
some functions correctly, two such examples are libthnedd and_exit
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Atomicity of instrumentation and instrumentability. For large applications, the instrumenta-
tion could use up local heap. What is the appropriate action when this happens. The following
functionality is desirable:

The ability to query the instrumentability of a function.

The ability to specifically ask for space within single word jump, or don't care.

The ability to instrumentation without doing relocation (when instrumenting a instPoint that
can be done without relocation).

Delayed instrumentation. Cannot be done the same way as we are doing now for non-threaded
applications.

InferiorRPC: At what level should we provide ways to handle inferiorRPC, e.g., using a LWP
or Thread as provided a thread package. How to trigger an inferiorRPC. The current method
will always needed to do the initial inferiorRPC.

Size of Thread Table is now fixed, can we make it extensible?
Abstraction to deal with different thread packages.
exec_time metric [what is the right semantics of this metric for threads]

DYNINSTstartThreadTimer  /DYNINSTstopThreadTimer . How to deal with atom-
icity of the calls in the presence of thread context switch.

6.2 Problems under investigation

Daemon never receive TRAP due to RPC
Instrument all thread synchronizations correctly
paradyndMT asserts osparc-sun-solaris2.7
Spikes of CPU metric/ has to do with inferiorRPC?

6.3 Things that need to be more general

How to deal with the recycling of thread id. Can our current implementation handle that?

In the thread-aware Paradyn runtime library, in several places we limit the number of events
we can handle, such as number of active threads, number of removed threads, and number of
sync objects we can report.

Eliminate the difference between the thread-aware and thread-unaware daemons.

7 NOTES

1.

Applications There are a couple of multithreaded applications for testing in
Ip/paradyn/applications/threads . They are very easy to use and very good for testing
(they can create and destroy many threads).

. Web sitesThese are some interesting web sites worth looking at:

http://wwwwseast2.usec.sun.com/workshop/threads/
http://wwwwseast2.usec.sun.com/workshop/threads/usenix.html
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