
ParaP

ynTM

Paradyn Paral le l Performance Tools

DyninstAPI Test Suite 6/9/00

Dyninst Project
Computer Sciences Department
University of Maryland
College Park, MD 20742
dyninst@cs.umd.edu

Release 2.1
June 2000

DyninstAPI Test Suite

Table Of Contents

.....4
.....5
......5
......5
..5
.5
..6
....6
...6
..6
..6
...7
..7
..7
..7
..8
.8
..8
..8
...9
.9
..9
....9
.10
..10
...10
..10
..11
..11
..11
..11
...11
...12
..12
..12
...12
.....13
...14
....14
...14
...14
...14
..15
....15
Introduction..4
1 Test1...4

1.1 Mutator structures and important data variables ..
1.2 Mutatee structures and important data variables ..
1.3 How to add a new test case ...
1.4 Language-independent test case descriptions ...

Test1.1 (zero-argument function call) ..
Test1.2 (multiple-argument function call) ...
Test1.3 (passing variables to functions) ...
Test1.4 (snippet execution sequence) ...
Test1.5 (construct if statement without else branches)
Test1.6 (arithmetic operators) ..
Test1.7 (relational operators) ..
Test1.8 (preserve registers upon expression insertions)
Test1.9 (preserve registers upon function insertions)
Test1.10 (insert snippet order) ...
Test1.11 (snippets at entry, exit and call points)
Test1.12 (insert/remove, and malloc/free) ..
Test1.13 (paramExpr, nullExpr and retExpr) ..
Test1.14 (replace/remove function call) ...
Test1.15 (setMutationActive) ...
Test1.16 (construct if-then-else statement) ...
Test1.17 (return values from function calls) ...
Test1.18 (read/write a variable in the mutatee)
Test1.19 (oneTimeCode) ...
Test1.20 (instrument arbitrary points) ..
Test1.21 (findFunction in module) ...
Test1.22 (replace functions) ..
Test1.23 (local variables) ...
Test1.24 (array variables) ..
Test1.25 (unary operators) ...
Test1.26 (field operators) ...
Test1.27 (type compatibility) ..
Test1.28 (user defined fields) ...
Test1.29 (BPatch_srcObj class) ..
Test1.30 (line information) ...
Test1.31 (non-recursive base tramp guard) ...
Test1.32 (recursive base tramp guard) ..

1.5 C++ language-specific tests ...
1.5.1 How to add a new C++ test ...
1.5.2 C++ Language-specific test case descriptions

Test1.33 (class member function argument passing)
Test1.34 (overloaded functions) ..
Test1.35 (overloaded operators) ...
Test1.36 (static member variables and functions)
Test1.37 (namespace) ...
DyninstAPI Test Suite June 9, 2000 Release 2.1

Table Of Contents

...15

...15
...15
....16
16
16
..16
....17

.....17
.....17
......18
......18
...18
.18
.18
..18
...18
19
19
..19
...19
...19
..19
..20
...20
....20

.....20
.....21
......21
......21
...21
...21
...22
...22

.....22
.....22
......23
..23
..23
...23
..23
.....24
Test1.38 (exceptions) ...
Test1.39 (templates) ..
Test1.40 (declaration scopes) ...
Test1.41 (derived classes) ..
Test1.42 (standard C++ libraries) ...
Test1.43 (replace functions in standard C++ libraries)
Test1.44 (C++ member functions) ...

1.5.3 Makefile Changes ...
2 Test2...17

2.1 Mutator structures and important data variables ..
2.2 Mutatee structures and important data variables ..
2.3 How to add a new test case ...
2.4 Test case descriptions ..

Test2.1 (run an executable that does not exist)
Test2.2 (try to execute a file that is not a valid program)
Test2.3 (attach to an invalid PID) ...
Test2.4 (attach to a protected PID) ..
Test2.5 (look up nonexistent functions) ...
Test2.6 (load a dynamically linked library from the mutatee)
Test2.7 (load a dynamically linked library from the mutator)
Test2.8 (BPatch_breakPointExpr) ..
Test2.9 (dump core but do not terminate the mutatee)
Test2.10 (dump image) ..
Test2.11 (getDisplacedInstructions) ..
Test2.12 (BPatch_point query functions) ...
Test2.13 (delete threads) ...
Test2.14 (process management) ...

3 Test3...20
3.1 Mutator structures and important data variables ..
3.2 Mutatee structures and important data variables ..
3.3 How to add a new test case ...
3.4 Test case descriptions ..

Test3.1 (simultaneous multiple-process management)
Test3.2 (instrument multiple processes) ..
Test3.3 (sequential multiple-process management - exit)
Test3.4 (sequential multiple-process management - abort)

4 Test4...22
4.1 Mutator structures and important data variables ..
4.2 Mutatee structures and important data variables ..
4.3 Test case descriptions ..

Test4.1 (exit callback functions) ...
Test4.2 (fork callback functions) ..
Test4.3 (exec callback functions) ..
Test4.4 (fork and exec callback functions) ...

Appendix A - Running the test cases..
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 4

s an
cuss

ectly.
ur test

hese
i-
of
s in the

used to
, it uses
e origi-
d insert
lly, the
system

e pro-

test the
uctures.
t cases
re dyn-
. The

atee.c.
C++

lled to

n

in
an
 INTRODUCTION

The dyninst library provides facilities to patch code into a running program. It implement
interface, the dyninstAPI, for users to call the functionality of the library. In this paper, we dis
the dyninstAPI test suite in detail.

The dyninstAPI test suite is used to verify that the dyninst library has been installed corr
It is also used by the developers of the dyninst library during regression testing. There are fo
programs and up to twenty mutatee programs.

The dyninstAPI introduces two primary abstractions of a running program and its state. T
abstractions areinstrumentation pointsand snippets. To support multiple processes, two add
tional abstractions,imagesandprocesses, are included in the dyninstAPI. The test programs
the test suite manipulate multiple application processes. They access instrumentation point
application images and formulate snippets for insertion into the processes.

The test suite encompasses most of the dyninstAPI methods. First, it covers the classes
manipulate code in execution. Related classes include BPatch and BPatch_thread. Second
a group of classes, BPatch_image, BPatch_module, and BPatch_function, for accessing th
nal program and its data structures. Third, the test suite covers the classes to construct an
new instrumentation code. These classes include BPatch_snippet and BPatch_point. Fina
BPatch_type class of the dyninstAPI provides a type system. The test suite uses this type
to access existing application variables and to allocate variables for use in code snippets.

In the following sections, we present the test programs and their corresponding mutate
grams.

1 TEST1

The test1 program examines the basic features of the dyninstAPI. Test cases 1 through 32
interfaces that the mutator program uses to access the mutatee program and its data str
They also cover the interfaces for constructing new code snippets and inserting them. Tes
33 through 44 again use these interfaces. However, the main goal of these tests is to explo
inst support for the C++ language features, such as inheritance and function overloading
mutator is implemented in test1.C. The corresponding mutatee is implemented in test1.mut
Utility functions are implemented in test_util.h and test_util.C. The file cpp_test.h defines
test case classes.

1.1 Mutator structures and important data variables

As the test1 mutator program begins executing, command line options are parsed in themainsub-
routine. Initialization proceeds with a call to themutatorMAIN function. A single instance of
BPatchbpatch is created, and the mutatee program is started. Test case functions are ca
insert code snippets.

Mutator test functions are calledmutatorTestXX. Local variables within a test case functio
are namedexprXX_YYand pointXX_YY, where XX denotes test case number, andYY is the
instance number within a test case.

The constant integerMAX_TESTdenotes the total number of test cases implemented
test1.C. The boolean variablerunAllTestsdefaults to true for activating all test cases. The boole
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 5

C++
ding
lean

invok-

ey are

tion
or-
ariable

-

-

-

lue of

stant

et
variablerunCppswitches on the C++ test cases when the mutatee executable is built with
compilers. The boolean arrayrunTestindicates whether to execute a specific test case depen
on the command line optionrun specified when a user executes the test1 program. The boo
arraypassedTest records the passed test cases.

1.2 Mutatee structures and important data variables

As the test1 mutatee program begins executing, command line options are parsed inmainsubrou-
tine. Variables are initialized to control test case coverage. The mutatee performs a test by
ing the appropriate test case functionfuncXX_1.

The mutatee defines data variables for the mutator to access, verify and manipulate. Th
namedglobalVariableXX_YY, constVarXX, RETXX_YYand MAGICXX_YY. Test case functions
are namedfuncXX_YY. These are stub functions to which the mutator can attach instrumenta
snippets. Auxiliary functions are namedcallXX_YY. The mutatee uses these to determine the c
rectness of respective tests by checking their return values, parameter values, or global v
values.

1.3 How to add a new test case

Adding a new test case requires the following steps:

1. Increment theMAX_TEST counts in both test1.C and test1.mutatee.c.

2. On the mutator side, implement amutatorTestXXfunction for the new test case. Call this func
tion from the functionmutatorMAIN after calling the existing test case functions.

3. On the mutatee side, implementfuncXX_YYfunctions, declareglobalVariableXX_YYvari-
ables, and call this function from the functionmain (refer to Section 1.5.1 for details on add
ing new C++ test cases).

1.4 Language-independent test case descriptions

We first examine the language-independent test cases in test1.

Test1.1 (zero-argument function call)

Test1.1 verifies inserting calls to zero-argument functions into a mutatee. In themutatorTest1
function, the mutator finds the zero-argument functioncall1_1 in the mutatee module. The muta
tor then inserts a snippet that calls the function into the entry point of thefunc1_1function. The
mutatee determines the correctness of the above operations by examining the va
globalVariable1_1, which was set by the inserted snippet.

Test1.2 (multiple-argument function call)

Test1.2 verifies inserting calls to multiple-argument functions into a mutatee (passing con
arguments). These arguments are integers and character strings. In themutatorTest2function, the
mutator finds the multiple-argument functioncall2_1 in the mutatee module. It inserts a snipp
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 6

e
s were

riable

of
exam-

n the

ntry

ed in
con-
s
f the
e oper-
of
e

n this
ne, and
that calls this function at the entry point of thefunc2_1function. Then the mutatee determines th
correctness of the above operations by examining whether correct input parameter value
passed by the inserted snippet.

Test1.3 (passing variables to functions)

Test1.3 verifies inserting calls to multiple-argument functions into a mutatee (passing va
arguments). These arguments are integers. In themutatorTest3function, the mutator finds the
two-argument functioncall3_1. It inserts a snippet that calls the function at the entry point
func3_1function. Then the mutatee determines the correctness of the above operations by
ining if correct parameter values were passed by the inserted snippet.

Test1.4 (snippet execution sequence)

Test1.4 verifies that the execution order of the inserted code snippets is correct. I
mutatorTest4function, the mutator first findsglobleVariable4_1.Then it constructs snippets
which assignglobleVariable4_1the values of 42 and 43. These snippets are inserted at the e
point of the func4_1function. In functionfunc4_1, the final value of theglobleVariable4_1is
examined to determine if the snippets were executed in correct order.

Test1.5 (construct if statement without else branches)

Test1.5 constructs IF statements (without ELSE branches). In themutatorTest5function, the
mutator constructs a snippet of two IF statements, that assign values toglobalVariabl5_1and
globalVariable5_2. It then inserts the snippet at the entry point of thefunc5_2function. In func-
tion func5_2, the values of theglobalVariable5_1and theglobalVariable5_2are examined to
determine the correctness of the operations.

Note that test1.16 investigates IF-THEN-ELSE statements.

Test1.6 (arithmetic operators)

Test1.6 examines the arithmetic operators provided by the dyninstAPI. The operators verifi
this test are addition, subtraction, division, multiplication, and the comma operator, for both
stants and variables. In themutatorTest6 function, the mutator finds mutatee variable
globalVariable6’s. It then constructs snippets using the arithmetic operators. The operands o
operators are either constants or variables declared in the mutatee module. The results of th
ations are assigned to theglobalVariable6’s. The mutator inserts the snippets at the entry point
the func6_2 function. In function func6_2, the mutatee examines the values of th
globalVariable6’s to determine correctness.

Test1.7 (relational operators)

Test1.7 examines relational operators provided by the dyninstAPI. The operators verified i
test are BPatch_lt, BPatch_eq, BPatch_gt, BPatch_le, BPatch_and, BPatch_or, BPatch_
BPatch_ge. In themutatorTest7function, the mutator finds the variablesglobalVariable7’sand
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 7

assign
per-
the

rame-

of
pres-
er

tion
e

point.
to

ert one
fter it.

ce.

the

e

constVarsdeclared in the mutatee module. It then constructs snippets of IF statements, that
values to theglobalVariable7’susing the relational operators. The operands of the relational o
ators are either constants or the variableconstVars. These snippets are subsequently inserted at
entry point of thefunc7_2function. In functionfunc7_2, the values of theglobalVariable7’sare
examined to determine the correctness of the inserted snippets.

Test1.8 (preserve registers upon expression insertions)

Test1.8 verifies whether inserting complex AST expressions overwrites mutatee function pa
ter registers. Mutatee functionfunc8_1contains ten integer parameters. In themutatorTest8func-
tion, the mutator constructs the nested AST expressionglobalVariable8_1 =
((81+82)+(83+84))+((85+86)+(87+88)). This expression is then inserted at the entry point
func8_1. Func8_1contains a long list of parameters, and we have inserted a complex AST ex
sion at its entry point. We examine if thefunc8_1’sparameters maintain their original values aft
the expression insertion to determine correctness.

Test1.9 (preserve registers upon function insertions)

Test1.9 verifies whether inserting snippets that call functions will overwrite mutatee func
parameter registers. Mutatee functionfunc9_1 contains ten integer parameters. In th
mutatorTest9function, we construct a function call snippet that passes five parameters tocall9_1
function. This call snippet is then inserted at the entry point of thefunc9_1function. Func9_1
contains a long list of parameters, and we have inserted a function call snippet at its entry
We examine if thefunc9_1’s parameters maintain their values after the call snippet insertion
determine correctness.

Test1.10 (insert snippet order)

Test1.10 verifies whether snippets are inserted into mutatees in the requested order. We ins
snippet and then request two more to be inserted, one before the first snippet and the other a

In the mutatorTest10function, the mutator finds the zero-argument functionscall10_1,
call10_2andcall10_3defined in the mutatee module. These functions setglobalVariable10’sto
predetermined values. The mutator inserts a call tocall10_2at the entry point of thefunc10_1
function, and then inserts calls tocall10_1andcall10_3before and after thecall10_2snippet,
respectively. In functionfunc10_1of the mutatee module, the values of theglobalVariable10’sare
examined to determine whether the inserted snippets were executed in the correct sequen

Test1.11 (snippets at entry, exit and call points)

Test1.11 verifies inserting snippets at the entry, call-site and exit points of a function. In
mutatorTest11function, the mutator finds the functionscall11_1, call11_2, call11_3andcall11_4
defined in the mutatee module. It then inserts a call tocall11_1 snippet at the entry point of
func11_1, it also inserts calls tocall11_2andcall11_3before and after the call-site point of th
func11_1function, respectively. Last, the mutator inserts a call tocall11_4 snippet at the exit
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 8

r-

laims

the

cated
tor

12a by
.12a.

ns. In
at

rted at
rect,

ction

tatee

s
nd 15b.
point of thefunc11_1function. If any of the above operations fail, the mutator will exit. Othe
wise, the mutatee assumes success and does not conduct validation.

Test1.12 (insert/remove, and malloc/free)

This test case contains two parts, 12a and 12b.

Test1.12a:Verifies inferior memory allocation and deallocation. The functionmutatorTest12a
continuously allocates segments of memory until it exhausts the heap, at which point it rec
all of the memory. Then a small amount of memory is allocated once again. ThemutatorTest12a
function also inserts a call snippet tocall12_1at the entry point of thefunc12_2function. Since
the inserted snippet incrementsglobalVariable12_1, the mutatee determines the correctness of
above operations by inspectingglobalVariable12_1.

Test1.12b:Verifies the removal of inserted snippets. It also deallocates the heap memory allo
earlier in the test1.12a. First, thefunc12_1function stops the mutatee’s execution. The muta
waits for the mutatee process status change, then begins to delete the call snippet to thecall12_1
function inserted earlier in 12a. It also deallocates the heap memory allocated in the test1.
freeingvarExpr12_1,defined in the mutator module. This sub-test case is dependent on test1

Test1.13 (paramExpr, nullExpr and retExpr)

Test1.13 examines BPatch_paramExpr, BPatch_nullExpr, and BPatch_retExpr expressio
mutatorTest13, the mutator finds thecall13_1function in the mutatee. It constructs a snippet th
calls call13_1. A five-element BPatch_paramExpr is passed tocall13_1 as its argument. The
mutator then inserts the snippet and a BPatch_nullExpr at the entry point offunc13_1. To test
BPatch_retExpr, the mutator constructs a snippet that callscall13_2. A one-element
BPatch_retExpr is passed to the call13_2 function as its argument. This snippet is then inse
the exit point offunc13_2. To determine whether execution of these inserted snippets is cor
the mutatee inspects the parameter values ofcall13_1 andcall13_2 and decides correctness.

Test1.14 (replace/remove function call)

Test1.14 verifies function replacement and removal in mutatees. Initially mutatee fun
func14_1contains calls tofunc14_2and func14_3. In the mutatorTest14function, the mutator
replaces thefunc14_2call with a call tocall14_1. It also removes thefunc14_3call from the
func14_1function. To determine the correctness of the replacement and removal, the mu
examines the values ofglobalVariable14_1andglobalVariable14_2to determine if the replaced
code was executed and the removed code omitted.

Test1.15 (setMutationActive)

Test1.15 verifies the correct operation ofsetMutationsActivemethod, which enables or disable
the execution of all snippets for the mutatee thread. This test case contains two parts, 15a a
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 9

rted
,
pen-

IF-

t-

ite the
to

e’s
write

w

be
g.
de, and
or pro-
eCode

value to
ess.
Test1.15a:Initially, the mutatee functionfunc15_4 contains a call to func15_3. In the
mutatorTest15afunction, the mutator replaces thefunc15_3call with a call tocall15_3. It also
inserts a call tocall15_1 at the entry point offunc15_2.

Test1.15b:In themutatorTest15bfunction, the mutator disables and then enables all the inse
snippets via thesetMutationsActivefunction call. In thefunc15_1function of the mutatee module
the values ofglobalVariable15’sare examined to determine correctness. Sub-test 15b is de
dent on 15a.

Test1.16 (construct if-then-else statement)

Test1.16 verifies the construction of IF-THEN-ELSE clauses. In themutatorTest16function, the
mutator findsglobalVariable16’s,defined in the mutatee module. It then constructs a few
THEN-ELSE code snippets in which values are assigned to theglobalVariable16’s. These IF-
THEN-ELSE snippets are subsequently inserted at the entry points offunc16_2, func16_3,and
func16_4. In func16_1, the values of theglobalVariable16’sare examined to determine correc
ness.

Note that test1.5 investigates IF statements without an ELSE branch.

Test1.17 (return values from function calls)

Test1.17 verifies that instrumentation inserted at a subroutine's exit point does not overwr
subroutine's return values. In themutatorTest17function, the mutator instruments the mutatee
call call17_1with one constant parameter at the exit point offunc17_1. Similarly the exit point of
func17_2is instrumented to callcall17_2with one constant parameter. Infunc17_1,the mutatee
compares the return values offunc17_1 andfunc17_2 to determine correctness.

Test1.18 (read/write a variable in the mutatee)

Test1.18 verifies the reads and writes of global variables in a mutatee. In themutatorTest18func-
tion, the mutator findsglobalVariable18_1declared in the mutatee module. It reads the variabl
original value, and assigns a new value to it. To determine the correctness of the read and
operations, we examineglobalVariable18_1’soriginal value in the mutator and examine its ne
value in the mutatee.

Test1.19 (oneTimeCode)

Test1.19 verifies the correct operation ofoneTimeCode, which causes a snippet expression to
evaluated in the mutatee. On the mutatee side,func19_1stops the mutatee process from runnin
The mutator waits for this mutatee process status change, constructs a piece of oneTimeCo
resumes the mutatee’s execution. This piece of oneTimeCode is then executed. The mutat
ceeds to construct a second piece of oneTimeCode. However, the second piece of oneTim
never gets a chance to execute. The first piece of oneTimeCode assigns a predetermined
globalVariable19_1. The mutatee examines the variable’s final value to determine its correctn
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 10

d

ple-

o
ta-

st1.21 is
amic

ctions,

n that

ared

cond

tatee

and

ide
utatee
Test1.20 (instrument arbitrary points)

Test1.20 verifies instrumentation at arbitrary points in a function. In themutatorTest20function,
the mutator finds all instruction points in thefunc20_2function. It then inserts calls tocall20_1at
each of these instruction points. Mutatee functionfunc20_1subsequently calls the instrumente
func20_2function. Since the inserted snippets assignglobalVariable20’swith new values, the
func20_1examines their final values to determine correctness. Test1.20 is currently only im
mented on AIX and ALPHA platforms.

Test1.21 (findFunction in module)

Test1.21 verifies the correct operation of thefindfunctionmethod. In themutatorTest21function,
the mutator loads the shared librarieslibtestAandlibtestBinto the mutatee's image. It then tries t
locate functioncall21_1within the shared libraries. If any of the above operations fail, the mu
tor exits. Otherwise, the mutatee assumes success and does not conduct any validation. Te
not currently implemented on Windows NT. It is also not implemented on AIX because dyn
linking to shared libraries is not supported on that platform.

Test1.22 (replace functions)

Test1.22 verifies function replacements in mutatee modules. In themutatorTest22function, the
mutator loads specific modules into the mutatee's image. After locating the necessary fun
the mutator proceeds with the following four replacement tests:

• It replaces a function defined in the mutatee executable with another function defined i
executable.

• It replaces a function defined in the executable with another function defined in a sh
library.

• It replaces a function defined in a shared library with another function defined in a se
shared library,

• It replaces a function defined in a shared library with another function defined in the mu
executable.
Test1.22 requires shared library loading and is only implemented on SPARC_SOLARIS

ALPHA platforms at this point.

Test1.23 (local variables)

Test1.23 verifies finding and manipulating local variables. In themutatorTest23function, the
mutator findsglobalVariable23’sdefined in the mutatee. It also finds local variables defined ins
a mutatee function scope. The mutator then assigns values to each of these variables. In m
function call23_1, we examine the values of theglobalVariable23’sand the local variables to
determine correctness. Test1.23 is not implemented on NT or IRIX platforms.
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 11

en-
nip-
n
to

e

_addr,

vari-

. In the

n the

n NT or

lares
e
the
d,

se
ed val-
riables
Test1.24 (array variables)

Test1.24 verifies finding and manipulating array variables. In themutatorTest24, the mutator finds
the one-dimensional array globalVariable24_1 and the two-dimensional array
globalVariable24_8.Both of the arrays are defined in the mutatee. It also finds the one-dim
sional arraylocalVariable24_1,defined in a mutatee function. The mutator then constructs s
pets and inserts them at the call-site points of thecall24_1function. The inserted snippets assig
values to the arrays’ elements. Infunc24_1, the values of these array elements are examined
determine correctness.

Note that the two-dimensional arrayglobalVariable24_8is not square so that we may test th
array element address computation. Test1.24 is not implemented on NT or IRIX platforms.

Test1.25 (unary operators)

Test1.25 verifies the unary operators provided by the dyninstAPI. The operators are BPatch
BPatch_deref and BPatch_negate. In themutatorTest25 function, the mutator finds
globalVariable25’sdefined in the mutatee. It then constructs snippets to assign values to the
ables using the unary operators. Infunc25_1, the values of theglobalVariable25’sare examined to
determine correctness. This test case is not implemented on IRIX platform.

Test1.26 (field operators)

Test1.26 verifies accessing component fields in a structure. The mutatee defines a structure
mutatorTest26 function, the mutator finds mutatee variablesglobalVariable26_1 and
localVariable26_1, which are of the defined structure type. The mutator proceeds to assig
values of their component fields to other mutatee defined variables. Infunc26_1, the values of
these variables are examined to determine correctness. This test case is not implemented o
IRIX platforms.

Test1.27 (type compatibility)

Test1.27 verifies type-compatibility. The mutatee defines some types. It also dec
globalVariable27’sof the same types. In themutatorTest27function, the mutator examines th
type-compatibility of the mutatee defined types. It then looks up the types of
globalVariable27’sand verifies their type-compatibility. If all type-compatibility checks succee
the mutator sets an indicator,globalVariable27_1so that thefunc27_1function can determine the
correctness of the operations. This test case is not implemented on NT or IRIX platforms.

Test1.28 (user defined fields)

Test1.28 verifies the creation of user-defined types. In themutatorTest28function, the mutator
creates new structure types by calling thecreateStructmethod. It also creates variables of the
types. The component fields of these variables are subsequently assigned with predetermin
ues. The mutator then assigns the values of these component fields to the mutatee va
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 12

the
po-

icator,
e

(mod-

nc-
red in
s.

e

ted. In
ing if

insert
ip-
globalVariable28’s. In func28_1, the mutatee inspects the values of theglobalVariable28’sto
determine correctness.

Test1.29 (BPatch_srcObj class)

Test1.29 verifies theBPatch_srcObjectclass, which represents a mutatee image. In
mutatorTest29function, the mutator iteratively traverses through the mutatee image to its com
nent modules and functions. If the traversal succeeds, the mutator sets an ind
globalVariable29_1so that the mutateefunc29_1function may determine the correctness of th
operations.

Note that the traversal of the mutatee image does not search for particular components
ules or functions of a specific name).

Test1.30 (line information)

Test1.30 verifies the correct operation ofgetLineToAddrmethods. In themutatorTest30function,
the mutator retrieves the line number of the mutatee functioncall30_1. Once the mutator has the
line number, it tries to obtain the function’s address viagetLineToAddrmethod calls. In particular,
the mutator checksgetLineToAddrmethods for the mutatee image, the mutatee module, the fu
tion call30_1, and the mutatee thread objects. The obtained function addresses are sto
globalVariable30’s. In func30_1, the mutatee examines these values to determine correctnes

Test1.31 (non-recursive base tramp guard)

Test1.31 verifies non-recursive base trampoline guards. In themutatorTest31function, the muta-
tor sets the base trampoline guards to false by callingsetTrampRecursive. It also inserts a call to
mutatee functionfunc31_3at the entry point offunc31_2. This snippet is then executed by th
mutatee. The mutator proceeds to insert two additional calls tofunc31_4in func31_3. Since
func31_3has already been instrumented, neither of the new call snippets should be execu
func31_1, the mutatee determines the effectiveness of the trampoline guards by examin
globalVariable31_4’s value is reset by the insertedfunc31_4 call snippets.

Test1.32 (recursive base tramp guard)

Test1.32 verifies recursive base trampoline guards. In themutatorTest32function, the mutator sets
the base trampoline guards to true, and inserts a call to mutatee functionfunc32_3at the entry
point of func32_2. This snippet is then executed by the mutatee. The mutator proceeds to
two additional calls tofunc32_4in func32_3. The mutatee should still execute the two new sn
pets even though the functionfunc32_3has already been instrumented. Infunc32_1, the mutatee
determines the effectiveness of the trampoline guards by examining ifglobalVariable32_4’s value
is reset by the insertedfunc32_4 call snippets.
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 13

in this
over-

rchy is

fined
e

eatures
n
st

ts.
s to

th a
roces-
.

1.5 C++ language-specific tests

In this section, we explore the dyninst support for C++ language features. Mutatee tests
section are written in the C++ language. We cover C++ features, including templates and
loaded functions. The test cases are numbered from 33 to 44. The C++ test case hiera
shown below in Figure 1.

The classcpp_testserves as a base class in which virtual and pure virtual functions are de
for later tests. The derived classcpp_test_utilprovides common utilities for the derived test cas
classes. It also defines common class member variables and functions. The specific C++ f
are examined in the derived classes. For example, thearg_testclass tests class member functio
argument passing, and theoverload_func_testclass tests function overloading. In each of the te
case classes, mutatee functionfunc_cppis used to determine the validity of respective tes
Mutatee functioncall_cppis a stub function; the mutator may attach instrumentation snippet
it.

The mutatee program is compiled with either C or C++ compilers. When compiling wi
C++ compiler, we need to include the C++ test cases. As shown below, we check if the prep
sor symbol__cplusplus has been defined to determine whether to include the C++ test cases

#ifdef __cplusplus
/* C++ test cases */
void arg_test::func_cpp() {...}
...
#endif

Figure 1: C++ test case class hierarchy

class cpp_test
cpp_test(){};
virtual void func_cpp()=0;
virtual void func2_cpp(){};

class arg_test: cpp_test_util
arg_test();
void func_cpp();
void call_cpp();

class overload_func_test: cpp_test_util
overload_func_test();
void func_cpp();
void call_cpp();

class cpp_test_util: cpp_test
cpp_test_util();
void call_cpp(int);
int CPP_TEST_UTIL_VAR;

...
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 14

ided
es are

d from

ctions

In the
ence
nction,

opera-

aded

func-
param-
nction,

opera-

oaded

n call
correct-
The C++ compilers we use are the GNU g++ compiler and the native C++ compilers prov
on the various platforms to build mutatee executables. The resulting mutatee executabl
marked with corresponding extensions, such as test1.mutatee_CC and test1.mutatee_g++.

1.5.1 How to add a new C++ test

Adding a new test case involves the following steps:

1. Increment theMAX_TEST counts in both test1.C and test1.mutatee.c.
2. On the mutator side, implement amutatorTestXX function for the new test case and call this

function from themutatorMAIN function after all existing test case functions.
3. On the mutatee side, declare a test case class in cpp_test.h (the class should be derive

the classcpp_test_util). Implement the member functionsfunc_cpp andcall_cpp. Instantiate
an object of the new class and call its member functionfunc_cpp from the functionmain.

1.5.2 C++ Language-specific test case descriptions

We now discuss the C++ language-specific test cases.

Test1.33 (class member function argument passing)

Test1.33 verifies class instrumenting member function argument passing. Class member fun
may contain constant, reference, and default arguments. The mutatee functionarg_test::func_cpp
calls a class member function that contains constant, reference, and default arguments.
mutatorTest33function, the mutator finds this class member function and verifies the exist
and the type of its arguments. The mutator then inserts a call to another class member fu
passing predetermined arguments. The mutatee determines the correctness of the above
tions by examining the values of the passed arguments.

Test1.34 (overloaded functions)

Test1.34 verifies the dyninst support for instrumenting C++ overloaded functions. The overlo
mutatee functionscall_cpp are defined in the mutatee classoverload_func_test. In the
mutatorTest34function, the mutator verifies the existence of the overloaded class member
tions. It then examines the parameter numbers of these functions (note that the types of the
eters have been checked in test1.33). Finally, the mutator inserts a call to a class member fu
passing predetermined arguments. The mutatee determines the correctness of the above
tions by checking the values of the passed arguments.

Test1.35 (overloaded operators)

Test1.35 verifies the dyninst support for instrumenting C++ overloaded operators. The overl
operatoroperator++ is defined in the mutatee classoverload_op_test. In themutatorTest35func-
tion, the mutator verifies the existence of the overloaded operator. It then inserts a functio
snippet into the mutatee, passing predetermined arguments. The mutatee determines the
ness of the above operations by checking the values of the passed arguments.
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 15

r vari-
class

firm
ariable
ble’s
mutator

ferent
2) local

ctive
nippet

nd its

nction
t-
s and
utator
d snip-

in the
.

se ele-
the

differ-
and 3)

ations
Test1.36 (static member variables and functions)

Test1.36 verifies instrumenting C++ static member variables and functions. A static membe
able and a static function, which manipulates the static variable, are defined in the mutatee
static_test. There are multiple calls to the static member function in thestatic_test::func_cpp
function. InmutatorTest36, the mutator verifies the existence of the static members. To con
that there is only one instance of the static member variable, the mutator locates the static v
through the different invocation instances of the static function and verifies if the static varia
base address remains unchanged. If all the above operations proceed successfully, the
inserts a function call snippet to inform the mutatee of the success of the operations.

Test1.37 (namespace)

Test1.37 verifies that dyninst understands the C++ scoping in the mutatee. Variables of dif
scopes are declared in the mutatee. The scopes of the variables are 1) local to a function,
to a file, 3) local to a class (not inherited from its parent class), and 4) global. In themutatorTest37
function, the mutator verifies the existence of the variables by locating them in their respe
scopes. If all the above operations proceed successfully, the mutator inserts a function call s
to inform the mutatee of the success of the operations.

Test1.38 (exceptions)

Test1.38 verifies that dyninst can instrument C++ exceptions. A sample exception class a
exception handler function are defined in the mutatee module. In theexception_test::func_cpp
function, the mutatee throws an exception in a try clause and catches it with the handler fu
in a subsequent catch clause. In themutatorTest38function, the mutator verifies the instrumen
ability of the try-catch clauses by locating the BPacth_points and finding the called function
locally defined variables in the clauses. If all the above steps proceed successfully, the m
instruments the exception handler function of the sample exception class so that the inserte
pet informs the mutatee of the validity of the operations.

Test1.39 (templates)

Test1.39 verifies that dyninst can instrument C++ templates. A template class is defined
mutatee. In the member functiontemplate_test::func_cpp, multiple template objects are declared
Each of the objects has a different base element type. In themutatorTest30function, the mutator
finds the base elements of the template objects and verifies their respective types. If the ba
ment type verification is successful, the mutator inserts a function call snippet to inform
mutatee of the success of the operations.

Test1.40 (declaration scopes)

Test1.40 verifies that dyninst understands C++ declaration scopes. Variables and objects of
ent scopes are declared in the mutatee. The scopes include: 1) global, 2) local to a function,
local to a class (inherited from its parent class). In themutatorTest40function, the mutator verifies
the existence of the variables by finding them in their respective scopes. If all the above oper
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 16

e suc-

class
n the
ited

ns in
+

ctions
wing

the

the

in the

, vir-
ule. In
ing
func-
proceed successfully, the mutator inserts a function call snippet to inform the mutatee of th
cessful operations.

Test1.41 (derived classes)

Test1.41 verifies that dyninst can instrument a C++ derived class. The test case
derivation_testinherits member functions and variables from its parent class in the mutatee. I
mutatorTest41function, the mutator verifies the derivation hierarchy by locating the inher
class member function in thederivation_test class scope.

Test1.42 (standard C++ libraries)

Test1.42 verifies instrumentation of standard C++ libraries. This test attempts to find functio
standard C++ libraries. In themutatorTest42function, the mutator locates the standard C+
library libstdc++ in the mutatee's image. It then tries to locate the operatoroperator<< in the
standard C++ library. This test case is not implemented on NT or AIX platforms

Test1.43 (replace functions in standard C++ libraries)

Test1.43 verifies instrumentation of standard C++ libraries. This test attempts to replace fun
in standard C++ libraries. After locating target functions, the mutator proceeds with the follo
function replacement tests.

• It replaces a function defined in a standard C++ library with another function defined in
same standard library.

• It replaces a function defined in the standard C++ library with another function defined in
mutatee executable.

• It replaces a function defined in the mutatee executable with another function defined
standard C++ library.
This test case is only implemented on SPARC_SOLARIS and ALPHA platforms.

Test1.44 (C++ member functions)

Test1.44 verifies that dyninst can instrument C++ member functions, including pure virtual
tual, constant, and inline functions. Functions of these types are defined in the mutatee mod
themutatorTest44function, the mutator verifies the instrumentability of the functions by locat
their BPatch_points. For the inline function, the mutator discerns the inlined instance of the
tion inside its caller from the template instance in the defined class.
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 17

rs on

low.

stanti-
low

es the

ld fail, at

-

in
an
d line
tees
utator.
1.5.3 Makefile Changes

We build mutatees using C++ compilers that include GNU g++ and the native C++ compile
their respective platforms. The mutatees have names such astest1_mutatee_g++ and
test1_mutatee_CC . In the platform-specific Makefiles, we define

GNU_CXX = g++

NATIVE_CXX = CC

Certain platforms require slight changes to compile the C++ test code, we discuss them be

The test1.30 verifies C++ templates. Template objects of different base element types are in
ated. When compiling with the native CC compiler on SOLARIS, we add the following to al
template instantiations to be placed into the current object file and give them static linkage

ifeq ($(MUTATEE_CC), $(NATIVE_CXX))
CXXFLAGS += -instances=static
endif

2 TEST2

Test2 covers most classes of the dyninstAPI. It is complementary to test1 in that it examin
error reporting features of the library. The mutator is implemented intest2.C , and the associ-
ated mutatee is implemented intest2.mutatee.c .

2.1 Mutator structures and important data variables

As the test2 mutator program begins executing, command line options are parsed in themainsub-
routine. Initialization is then carried out, and a single instance of the BPatchbpatchis created.
The first four mutator test case functions (test1, test2, test3and test4) attempt to create mutatee
processes under erroneous conditions. These attempts to create mutatee processes shou
which point, a real mutatee process is created via a call to themutatorMAINfunction. The mutator
then proceeds with subsequent test cases on this mutatee process.

Mutator test functions are namedtestXX. The functionmutatorMAINis an auxiliary function
which creates a mutatee process according to an executable pathname.XX denotes test case num
ber.

The constant integerMAX_TESTdenotes the total number of test cases implemented
test2.C. The boolean variablerunAllTestsdefaults to true for activating all test cases. The boole
array runTestindicates whether to execute a specific test case depending on the comman
option run . The boolean arraypassedTestrecords the passed test cases. Note that the muta
are not designed to execute on their own. Instead, they must run under the control of the m

2.2 Mutatee structures and important data variables

As the test2 mutatee program begins executing, command line options are parsed in themainsub-
routine. The mutatee proceeds by invoking the appropriate test case functionfuncXX_1.
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 18

e

mutatee
rate on

le. The
e

Test case functions are namedfuncXX_1. These functions are stub functions to which th
mutator can attach instrumentation code.

2.3 How to add a new test case

Adding a new test case requires the following steps:

1. Increment theMAX_TEST counts in both test2.C and test2.mutatee.c.
2. On the mutator side, implement atestXXfunction for the new test case and call it from the

subroutinemain.
3. On the mutatee side, implement afuncXX_1 function and call it from the subroutinemain.

2.4 Test case descriptions

We now examine the test cases in test2. Note that test2.1 through test2.4 attempt to create
processes and test for the failure of these attempts. However, test2.5 through test2.14 ope
the same mutatee process created in themain subroutine.

Test2.1 (run an executable that does not exist)

In test2.1, the mutator attempts to create a mutatee process from a nonexistent executab
mutator then examines the return value ofcreateProcess. Note that this test case is skipped for th
command line optionattach .

Test2.2 (try to execute a file that is not a valid program)

In test2.2, the mutator attempts to create a mutatee process from an invalid file, such as/dev/null
(not an executable). The mutator then examines the return value ofcreateProcess. Note that this
test case is skipped for the command line optionattach .

Test2.3 (attach to an invalid PID)

In test2.3, the mutator attempts to attach to an invalidPID number (PID 65539). It then inspects
theattachProcess return value.

Test2.4 (attach to a protected PID)

In test2.4, the mutator attempts to attach to aprotected PIDnumber (PID 1 - an OS kernel process
that the user process can not read or write). It then inspects theattachProcess return value.

Test2.5 (look up nonexistent functions)

In test2.5, the mutator attempts to locate a nonexistent function,NoSuchFunction,in the mutatee
image. It then inspects thefindFunction return value.
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 19

utatee

e by

f the
es. For

ed. It

ut
n of a
test

ss, by
ries
arches
of
Test2.6 (load a dynamically linked library from the mutatee)

In test2.6, the mutator loads a dynamically linked library from the mutatee’s image. Infunc6_1,
the mutatee usesdlopento load the shared libraryTEST_DYNAMIC_LIB(defined in test2.h). The
mutator then determines if the loading occurred by searching new symbols in the current m
image. This test case is not implemented on AIX or NT platforms.

Test2.7 (load a dynamically linked library from the mutator)

In test2.7, the mutator forces the load of a dynamically linked library into the mutatee’s imag
calling theloadLibrary method. It then checks if a new symbol,TEST_DYNAMIC_LIB2(defined
in test2.h), is found in the current mutatee’s image via a call to thegetModulesmethod. This test
case is not implemented on AIX, ALPHA or NT platforms.

Test2.8 (BPatch_breakPointExpr)

There are two parts to the mutator side of this test, test2.8a and test2.8b.

Test2.8a:In test2.8a, the mutator inserts a BPatch_breakPointExpr at the entry point o
mutatee function func8_1. This test needs to be run before the mutatee process continu
example, it can run just after process creation or attach.

Test2.8b:Following test2.8a, the mutator waits for the instrumented breakpoint to be reach
then determines if the mutatee process correctly stops.

Test2.9 (dump core but do not terminate the mutatee)

In test2.9, the mutator callsdumpCoremethod to dump a core file from the mutatee witho
requiring the mutatee process to terminate its execution. The mutator looks for the creatio
core file,mycore, in the current directory to determine the correctness of the operations. This
case is implemented only on SPARC_SOLARIS, and IRIX platforms.

Test2.10 (dump image)

In test2.10, the mutator dumps a modified program executable file from the mutatee proce
calling dumpImagemethod. Note that only the modified executable is written. Shared libra
that have been instrumented and the current dyninst library are not written. The mutator se
for the creation of the image file,myimage, in the current directory to determine the correctness
the operations. This test case is not implemented on NT platforms.

Test2.11 (getDisplacedInstructions)

Test2.11 verifies the correct operation of thegetDisplacedInstructionsmethod, which retrieves
instructions at an instrumentation point of a specified size. In thetest11function, the mutator finds
instructions at the entry point of the mutatee functionfunc11_1. It inspects the contents of the
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 20

s only

ion

he cur-
ith the

e
.

ee

g code
case in
their
nted in

s.
d on the
letion.
s.

r

in
an
retrieved instruction buffer to determine the correctness of the operations. This test case i
implemented on AIX platforms.

Test2.12 (BPatch_point query functions)

Test2.12 verifies the correct operation of the BPatch_point query functions,getAddressand
usesTrap_NP. In the test12 function, the mutator uses these functions to retrieve informat
about thefunc12_1 function’s entry point.

Test2.13 (delete threads)

Test2.13 verifies the deletion of a mutatee process from the currently defined processes. T
rently defined processes include those created using the dyninst library and those created w
UNIX fork or Windows NT spawn system calls. In thetest13function, the mutator searches th
thread list of all currently defined processes and removes the mutatee thread as requested

Test2.14 (process management)

Test2.14 verifies the correct operation of the dyninst process management methods,createThread,
continueThread,andterminateThread. In the test14function, the mutator creates a new mutat
process by callingcreateProcess. It then puts the mutatee into the running state by calling thecon-
tinueExecutionmethod. Finally, the mutator stops the mutatee execution by callingterminateExe-
cution. Termination status is then examined.

3 TEST3

The test3 program verifies the correct operation of the dyninst classes used for manipulatin
during execution. This group of classes includes BPatch and BPatch_thread. For each test
test3, the mutator createsmultiple mutatee processes. It instruments them and examines
behaviors. The mutator is implemented in test3.C, and the associated mutatee is impleme
test3.mutatee.c.

3.1 Mutator structures and important data variables

As the test3 program begins execution, command line options are parsed in themainsubroutine.
Initialization is then carried out, and a single instance of BPatchbpatchis created. The subroutine
main proceeds by calling the test case functionmutatorTestXs and passing along command
Inside each of the test case functions, the mutator creates multiple mutatee processes base
commands given. These mutatee processes run, with or without instrumentation, until comp
The mutator inspects their termination conditions to determine the correctness of operation

Mutator test case functions are namedmutatorTestX, whereX denotes the test case numbe
andY is the instance number within a test case.

The constant integerMAX_TESTdenotes the total number of test cases implemented
test3.C. The boolean variablerunAllTestsdefaults to true to activate all test cases. The boole
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 21

ng on

e
ion, the
utator

d

t

execu-
to run

n. The

e pro-
e global
,
s. The
is
arrayrunTestin themainsubroutine indicates whether to execute a specific test case dependi
the command line optionrun . The boolean arraypassedTest records the passed test cases.

3.2 Mutatee structures and important data variables

Based on the commands passed from the subroutinemain, the mutator creates multiple mutate
processes and executes test code in the respective test case functions. During execut
mutatee processes change their states by setting variable values or writing to files. The m
observes the state changes. The mutatee processes terminate with eitherexit or abortcalls.

The mutatee module defines a data variable,test2ret, for the mutator to access, verify, an
manipulate. Test case functions are namedtestX, and auxiliary functions are namedfuncX_Y.

3.3 How to add a new test case

Adding a new test case requires the following steps:

1. Increment theMAX_TEST count in test3.C.
2. On the mutator side, implement amutatorTestX function for the new test case. Call this

function frommain, passing the commands associated with a corresponding mutatee tes
case.

3. On the mutatee side, implement atestXfunction and call it from aswitchstatement inside the
subroutinemain.

3.4 Test case descriptions

We now examine the test cases in test3.

Test3.1 (simultaneous multiple-process management)

Test3.1 verifies the management of multiple mutatee processes, including process creation,
tion, and state-monitoring. The mutator creates two mutatee processes and allows them
simultaneously. No instrumentation is added. The mutatee processes run until terminatio
mutator monitors and processes the events from each mutatee.

Test3.2 (instrument multiple processes)

Test3.2 verifies the instrumenting of multiple processes. The mutator creates two mutate
cesses and inserts different code into each mutatee. The inserted code assigns a value to th
variabletest2ret. Each mutatee then writes thetest2ret’svalue to a file. After both mutatees exit
the mutator reads the files to verify that the correct code executed in each mutatee proces
first mutatee process should write a 1 to thefile, and the second should write a 2. If no code
patched into the mutatees, the original value is 0xdeadbeef.
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 22

n, and
muta-

in that

n, and
hen it

om the

ilities
ple-
te that

on the

nt
bool-

ay
f

verify
Test3.3 (sequential multiple-process management - exit)

Test3.3 verifies the management of multiple processes, including process creation, executio
state-monitoring. The mutator creates one mutatee process and waits for it to exit. Then the
tor creates a second process and waits for it to exit. This test case differs from the test3.1
the two mutatee processes run one after the other.

Test3.4 (sequential multiple-process management - abort)

Test3.4 verifies the management of multiple processes, including process creation, executio
state-monitoring. The mutator creates one mutatee process and waits for its termination. T
creates the second mutatee process and waits for its termination. This test case differs fr
test3.3 in that the mutatee processes terminate with anabort call rather than anexitcall.

4 TEST4

The test4 program examines the callback facilities provided by the dyninstAPI. These fac
include callback function registration and callback function invocation. The mutator is im
mented in test4.C, and the associated mutatee is implemented in test4a.mutatee.c. No
test4.3 and test4.4 check theexeccallback. The mutatee process makesexecsystem calls and
overlays its own image with a new mutatee image. The new image is constructed based
implementation in test4b.mutatee.c.

4.1 Mutator structures and important data variables

As the test4 mutator program begins executing. command line options are parsed in themainsub-
routine. Initialization proceeds with a call to the functionmutatorMAIN. A single instance of
BPatchbpatch is created, and callback functions are registered viaregisterCallbackcalls. Test
case functions are then called to conduct their respective tests.

Mutator test functions are namedmutatorTestX,whereX is test case number. The consta
integerMAX_TESTdenotes the number of test cases implemented in the test4 program. The
ean variablerunAllTestsdefaults to true to activate all test cases. The boolean arrayrunTestindi-
cates whether to execute a specific test case depending on the command line optionrun specified
when the user executes the test4 program. ArraypassedTestrecords the passed test cases, arr
failedTestrecords the failed test cases, and integerthreadCountrecords the current number o
mutatee threads.

4.2 Mutatee structures and important data variables

As the test4 mutatee program begins executing, command line options are parsed in themainsub-
routine. The mutatee performs a test by calling the appropriate test case functionfuncX_1.

The mutatee defines data variables and auxiliary functions for the mutator to access,
and manipulate. The variables are namedglobalVariableXX_YY. The auxiliary functions are
namedfuncX_Y(Y is greater equal 1). The values ofglobalVariableXX_YYsare set in the auxiliary
functions.
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 23

ame and

t call-

ame and
spawn-
nc-

ild
.

ame and
e with
tion.
call to

unc-
d on
the pro-

exec

s. It

t
s test
4.3 Test case descriptions

We now examine the test cases in test4.

Test4.1 (exit callback functions)

Test4.1 verifies the exit callback function registration and invocation. In themutatorTest1
function, the mutator creates a mutatee process based on the passed executable pathn
command line options. The mutatee process begins execution and setsglobalVariable1_1’s value
before terminating. This mutatee termination event triggers the execution of the installed exi
back function. The mutator verifiesglobalVariable1_1’s value in the exit callback function. This
test case is not implemented on LINUX, IRIX, AIX, APLHA or NT platforms.

Test4.2 (fork callback functions)

Test4.2 verifies the fork callback function registration and invocation. In themutatorTest2
function, the mutator creates a mutatee process based on the passed executable pathn
command line options. Once execution has began, the mutatee forks a child process. This
ing event triggers the execution of the installed fork callback function. In the fork callback fu
tion, the mutator setsglobalVariable2_1’svalue different between the parent and the ch
processes. This test case is not implemented on LINUX, IRIX, AIX, APLHA or NT platforms

Test4.3 (exec callback functions)

Test4.3 verifies the exec callback function registration and invocation. In themutatorTest3
function, the mutator creates a mutatee process based on the passed executable pathn
command line options. Once the mutatee process begins execution, it overlays its own imag
anexecvpof test4b. This exec event triggers the execution of the installed exec callback func
In the exec callback function, the mutator instruments the mutatee process by inserting a
func3_2at the exit point offunc3_1. Note that bothfunc3_1and func3_2are defined intest4b.
This test case is not implemented on LINUX, IRIX, AIX, ALPHA or NT platforms.

Test4.4 (fork and exec callback functions)

Test4.4 verifies that multiple mutatee events trigger the execution of multiple callback f
tions in the mutator. In themutatorTest4function, the mutator creates a mutatee process base
the passed executable pathname and command line options. Once execution has began,
cess forks a child mutatee process. The child process then overlays it own image with anexecvpof
test4b. The two mutatee events (fork and exec) trigger the execution of the installed fork and
callback functions.

The fork callback function operates on the parent mutatee process. It inserts a call tofunc4_3
at the exit point offunc4_2. The exec callback function operates on the child mutatee proces
inserts a call tofunc4_4at the exit point of a differentfunc4_2function. Note that the functions,
which the exec callback function manipulates, are defined intest4b. The inserted call snippets se
globalVariable4_1’s value different between the parent and the child mutatee processes. Thi
case is not implemented on LINUX, IRIX, AIX, ALPHA or NT platforms.
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 24

grams
s

r
ers

native

U

s
o
piled

ould

ld

 is

hat
 APPENDIX A - RUNNING THE TEST CASES

This section describes how to run the dyninstAPI test programs. There are four mutator pro
(test{1,2,3,4}) and currently some twenty or so mutatee program
(test{1,2,3,4a,4b}.mutatee_{gcc,cc,g++,CC}) in this test suite.

To compile the tests suite, typemake in the appropriate platform-specific directory unde
core/dyninstAPI/tests . This should produce, depending on the platform and compil
available, sixteen to twenty programs and several shared libraries.

The test programs take the following command line options:

-attach
Run the mutatee process and have the mutator attach to it rather than using thecreateProcess
method. The-attach option is not available for test3.

-mutatee <mutatee name>
Run the mutatee named<mutatee name> rather than the default mutatee for this test.
This is useful to run test cases with versions of the mutatee compiled with the systems
C, C++ or the GNU C++ compilers in addition to the GNU C compiler. If currently
supported, the mutatee for the native C compiler is named testN.mutatee_cc (currently
supported on Sparc/Solaris and AIX), the mutatee for the native C++ compiler is named
testN.mutatee_CC (or testN.mutatee_xlC on AIX platforms), and the mutatee for the GN
C++ compiler is called testN.mutatee_g++.

-n32
Run the 32-bit version of the mutatee test. This flags is only valid on SGI platforms. Thi
command line flag changes the shared libraries that are loaded to libtest?_n32.so, it als
changes the mutatee to test?.mutatee_gcc_n32. If you want to test 32-bit mutatees com
with the native compiler, use-n32 and-mutatee test?.mutatee_cc_n32 . The
order of-n32 and-mutatee is important.

-run <subtest #> <subtest #> ...
Only run the specific sub-tests listed. For example, to run sub-test case 4 of test2 you w
entertest2 -run 4 .

-skip <subtest #> <subtest #> ...
Skip the specific sub-tests listed. For example, to skip sub-test case 4 of test2 you wou
entertest2 -skip 4 . All other tests are run.

-V
Print out the name of the dyninst runtime library which will be used to run this test. This
useful to check that your environment is correctly setup to run mutator programs.

-verbose
Enable detailed debugging output. This is useful when trying to track down the reason t
one (or more) of the test cases failed.

-v+
Enable the printing of warning level error messages (BpatchWarning) to standard output.
This is useful for debugging the test cases.

-v++
DyninstAPI Test Suite June 9, 2000 Release 2.1

Page 25

g fea-

ce a
er

error
Enable the printing of information and warning level messages via the error reporting
callback function (BpatchWarning andBpatchInfo). These options are useful for
debugging the test cases.

Some test cases are not implemented on all the platforms (due to OS restrictions or missin
tures). If a test is not run on a specific platform, the message“Skipped test #XX” will be
displayed. If any of the tests produces a line of the form“**Failed test #XX” there is
something wrong with the version of the API or its installation. Each test should still produ
message of the form“Passed test #XXX” , and a message at the end indicating that eith
all tests were passed, or all requested tests were passed (if the-run option is used).

Note: test2 produces a few lines that look like error messages since it is testing the
reporting features of the API (e.g., file not found). Check for the“All tests passed” mes-
sage at the end to confirm correct execution.
DyninstAPI Test Suite June 9, 2000 Release 2.1

	DyninstAPI Test Suite
	Introduction
	1 Test1
	1.1 Mutator structures and important data variables
	1.2 Mutatee structures and important data variables
	1.3 How to add a new test case
	1. Increment the MAX_TEST counts in both test1.C and test1.mutatee.c.
	2. On the mutator side, implement a mutatorTestXX function for the new test case. Call this funct...
	3. On the mutatee side, implement funcXX_YY functions, declare globalVariableXX_YY variables, and...

	1.4 Language-independent test case descriptions
	Test1.1 (zero-argument function call)
	Test1.2 (multiple-argument function call)
	Test1.3 (passing variables to functions)
	Test1.4 (snippet execution sequence)
	Test1.5 (construct if statement without else branches)
	Test1.6 (arithmetic operators)
	Test1.7 (relational operators)
	Test1.8 (preserve registers upon expression insertions)
	Test1.9 (preserve registers upon function insertions)
	Test1.10 (insert snippet order)
	Test1.11 (snippets at entry, exit and call points)
	Test1.12 (insert/remove, and malloc/free)
	Test1.12a
	Test1.12b

	Test1.13 (paramExpr, nullExpr and retExpr)
	Test1.14 (replace/remove function call)
	Test1.15 (setMutationActive)
	Test1.15a
	Test1.15b

	Test1.16 (construct if-then-else statement)
	Test1.17 (return values from function calls)
	Test1.18 (read/write a variable in the mutatee)
	Test1.19 (oneTimeCode)
	Test1.20 (instrument arbitrary points)
	Test1.21 (findFunction in module)
	Test1.22 (replace functions)
	Test1.23 (local variables)
	Test1.24 (array variables)
	Test1.25 (unary operators)
	Test1.26 (field operators)
	Test1.27 (type compatibility)
	Test1.28 (user defined fields)
	Test1.29 (BPatch_srcObj class)
	Test1.30 (line information)
	Test1.31 (non-recursive base tramp guard)
	Test1.32 (recursive base tramp guard)
	1.5 C++ language-specific tests
	Figure�1: C++ test case class hierarchy
	1.5.1 How to add a new C++ test
	1. Increment the MAX_TEST counts in both test1.C and test1.mutatee.c.
	2. On the mutator side, implement a mutatorTestXX function for the new test case and call this fu...
	3. On the mutatee side, declare a test case class in cpp_test.h (the class should be derived from...

	1.5.2 C++ Language-specific test case descriptions

	Test1.33 (class member function argument passing)
	Test1.34 (overloaded functions)
	Test1.35 (overloaded operators)
	Test1.36 (static member variables and functions)
	Test1.37 (namespace)
	Test1.38 (exceptions)
	Test1.39 (templates)
	Test1.40 (declaration scopes)
	Test1.41 (derived classes)
	Test1.42 (standard C++ libraries)
	Test1.43 (replace functions in standard C++ libraries)
	Test1.44 (C++ member functions)
	1.5.3 Makefile Changes

	2 Test2
	2.1 Mutator structures and important data variables
	2.2 Mutatee structures and important data variables
	2.3 How to add a new test case
	1. Increment the MAX_TEST counts in both test2.C and test2.mutatee.c.
	2. On the mutator side, implement a testXX function for the new test case and call it from the su...
	3. On the mutatee side, implement a funcXX_1 function and call it from the subroutine main.

	2.4 Test case descriptions
	Test2.1 (run an executable that does not exist)
	Test2.2 (try to execute a file that is not a valid program)
	Test2.3 (attach to an invalid PID)
	Test2.4 (attach to a protected PID)
	Test2.5 (look up nonexistent functions)
	Test2.6 (load a dynamically linked library from the mutatee)
	Test2.7 (load a dynamically linked library from the mutator)
	Test2.8 (BPatch_breakPointExpr)
	Test2.8a
	Test2.8b

	Test2.9 (dump core but do not terminate the mutatee)
	Test2.10 (dump image)
	Test2.11 (getDisplacedInstructions)
	Test2.12 (BPatch_point query functions)
	Test2.13 (delete threads)
	Test2.14 (process management)

	3 Test3
	3.1 Mutator structures and important data variables
	3.2 Mutatee structures and important data variables
	3.3 How to add a new test case
	1. Increment the MAX_TEST count in test3.C.
	2. On the mutator side, implement a mutatorTestX function for the new test case. Call this functi...
	3. On the mutatee side, implement a testX function and call it from a switch statement inside the...

	3.4 Test case descriptions
	Test3.1 (simultaneous multiple-process management)
	Test3.2 (instrument multiple processes)
	Test3.3 (sequential multiple-process management - exit)
	Test3.4 (sequential multiple-process management - abort)

	4 Test4
	4.1 Mutator structures and important data variables
	4.2 Mutatee structures and important data variables
	4.3 Test case descriptions
	Test4.1 (exit callback functions)
	Test4.2 (fork callback functions)
	Test4.3 (exec callback functions)
	Test4.4 (fork and exec callback functions)
	Appendix A - Running the test cases

