

dyninstAPI 12/7/2009

Paradyn Parallel Performance Tools

Dyninst
Programmer’s Guide

Release 6.1
Nov 2009

Computer Science Department

University of Wisconsin-Madison

Madison, WI 53711

Computer Science Department

University of Maryland

College Park, MD 20742

Email: bugs@dyninst.org

Web: www.dyninst.org

 Page 2

dyninstAPI

1. Introduction... 4

2. Abstractions .. 5

3. Examples .. 7

3.1 INSTRUMENTING A FUNCTION ... 7
3.2 BINARY ANALYSIS ... 10
3.3 INSTRUMENTING MEMORY ACCESS ... 11

4. Interface .. 13

4.1 CLASS BPATCH .. 13
4.1.1 Callbacks .. 19

4.2 CLASS BPATCH_ADDRESSSPACE ... 22
4.3 CLASS BPATCH_PROCESS ... 27
4.4 CLASS BPATCH_THREAD .. 30
4.5 CLASS BPATCH_BINARYEDIT ... 33
4.6 CLASS BPATCH_SOURCEOBJ .. 34
4.7 CLASS BPATCH_FUNCTION ... 35
4.8 CLASS BPATCH_POINT ... 39
4.9 CLASS BPATCH_IMAGE .. 40
4.10 CLASS BPATCH_MODULE ... 44
4.11 CLASS BPATCH_SNIPPET .. 47
4.12 CLASS BPATCH_TYPE... 52
4.13 CLASS BPATCH_VARIABLEEXPR ... 53
4.14 CLASS BPATCH_FLOWGRAPH ... 54
4.15 CLASS BPATCH_EDGE .. 56
4.16 CLASS BPATCH_LOOPTREENODE ... 56
4.17 CLASS BPATCH_BASICBLOCK ... 58
4.18 CLASS BPATCH_BASICBLOCKLOOP... 60
4.19 CLASS BPATCH_INSTRUCTION .. 61
4.20 CLASS BPATCH_REGISTER .. 61
4.21 CLASS BPATCH_SOURCEBLOCK .. 61
4.22 CLASS BPATCH_CBLOCK .. 62
4.23 CLASS BPATCH_FRAME .. 62
4.24 CLASS BPATCH_DEPENDENCEGRAPHNODE ... 63
4.25 CLASS BPATCH_DEPENDENCEGRAPHEDGE ... 64
4.26 CONTAINER CLASSES ... 64

4.26.1 Class BPatch_Vector ... 64
4.26.2 Class BPatch_Set .. 64

4.27 MEMORY ACCESS CLASSES... 66
4.27.1 Class BPatch_memoryAccess .. 66
4.27.2 Class BPatch_addrSpec_NP .. 67
4.27.3 Class BPatch_countSpec_NP .. 67

4.28 TYPE SYSTEM .. 67

5. Using the API .. 69

5.1 OVERVIEW OF MAJOR STEPS ... 69
5.2 CREATING A MUTATOR PROGRAM .. 69
5.3 SETTING UP THE APPLICATION PROGRAM (MUTATEE) .. 70
5.4 RUNNING THE MUTATOR .. 71
5.5 ARCHITECTURAL ISSUES ... 71

5.5.1 Solaris ... 72

 Page 3

dyninstAPI

Appendix A - Complete Example (retee) .. 73

Appendix B - Running the Test Cases .. 79

Appendix C - Common pitfalls ... 81

Appendix D – Building Dyninst ... 83

Appendix E – Dyninst Performance.. 86

References .. 93

 Page 4

dyninstAPI

1. INTRODUCTION

The normal cycle of developing a program is to edit source code, compile it, and then execute the

resulting binary. However, sometimes this cycle can be too restrictive. We may wish to change the

program while it is executing or after it has been linked, and not have to re-compile, re-link, or

even re-execute the program to change the binary. At first thought, this may seem like a bizarre

goal, however there are several practical reasons we may wish to have such a system. For exam-

ple, if we are measuring the performance of a program and discover a performance problem, it

might be necessary to insert additional instrumentation into the program to understand the prob-

lem. Another application is performance steering; for large simulations, computational scientists

often find it advantageous to be able to make modifications to the code and data while the simula-

tion is executing.

This document describes an Application Program Interface (API) to permit the insertion of code

into an application that is either running or on disk. The API for inserting code into a running ap-

plication, called dynamic instrumentation, shares much of the same structure as the API for insert-

ing code into an executable file or library, known as static instrumentation. The API also permits

changing or removing subroutine calls from the application program. Binary code changes are

useful to support a variety of applications including debugging, performance monitoring, and to

support composing applications out of existing packages. The goal of this API is to provide a ma-

chine independent interface to permit the creation of tools and applications that use runtime and

static code patching. The API and a simple test application are described in [1]. This API is based

on the idea of Dynamic Instrumentation described in [3].

The key feature of this interface is that it allows the ability to:

 Insert and change instrumentation in a running program.

 Insert instrument into a binary on disk and write a new copy of that binary back to disk.

 Perform static and dynamic analysis on binaries and processes.

The goal of this API is to keep the interface small and easy to understand. At the same time it

needs to be sufficiently expressive to be useful for a variety of applications. The way we have

done this is by providing a simple set of abstractions and a simple way to specify the code to in-

sert into the application
1
.

1 To generate more complex code, extra (initially un-called) subroutines can be linked into the application program, and calls to

these subroutines can be inserted at runtime via this interface.

 Page 5

dyninstAPI

2. ABSTRACTIONS

The DyninstAPI library provides an interface for instrumenting and working with binaries and

processes. The user should write a mutator, which uses the DyninstAPI library to operate on an

application. The process that contains the mutator and DyninstAPI library is known as the muta-

tor process. The mutator process operates on other processes or on-disk binaries, which are

known as mutatees.

The API is based on abstractions of a program and, for dynamic instrumentation, its state while in

execution. The two primary abstractions are points and snippets. A point is a location in a pro-

gram where instrumentation can be inserted. A snippet is a representation of a bit of executable

code to be inserted into a program at a point. For example, if we wished to record the number of

times a procedure was invoked, the point would be the first instruction in the procedure, and the

snippets would be a statement to increment a counter. Snippets can include conditionals, function

calls, and loops.

Mutatees are represented using an address space abstraction that represents both processes, for

dynamic instrumentation, and disk executables, for static instrumentation. Dynamic instrumenta-

tion the address space represents a binary and the dynamic libraries it has loaded into a process.

For static instrumentation the address space represents an executable file on disk and the set of

dynamic library files that the executable depends on. The address space abstraction is extended

by process and binary abstractions for dynamic and static instrumentation. The process abstrac-

tion represents information about a running process such as threads or stack state. The binary

abstraction represents information about a binary found on disk.

The code and data represented by an address space is broken up into function and variable ab-

stractions. Functions contain points, which can be used for instrumentation. Functions also con-

tain a control flow graph abstraction, which contains information about basic blocks, edges,

loops, and instructions. If the mutatee contains debug information DyninstAPI will also provide

abstractions about variable and function types, local variables and function parameters, and

source code line information. The collection of functions and variables in a mutatee is

represented as an image.

The API includes a simple type system based on structural equivalence. If mutatee programs have

been compiled with debugging symbols and the symbols are in a format that Dyninst understands,

type checking is performed on code to be inserted into the mutatee. See Section 4.28 for a com-

plete description of the type system.

We include abstractions for a function in the binary. Due to language constructs or compiler op-

timizations, it may be possible for multiple functions to overlap (that is, share part of the same

function body) or for a single function to have multiple entry points. In practice, it is impossible to

determine the difference between multiple overlapping functions and a single function with mul-

tiple entry points. The DyninstAPI uses a model where each function (BPatch_function object)

 Page 6

dyninstAPI

has a single entry point, and multiple functions may overlap (share code). We guarantee that in-

strumentation inserted in a particular function is only executed in the context of that function,

even if instrumentation is inserted into a location that exists in multiple functions.

 Page 7

dyninstAPI

3. EXAMPLES

To illustrate the ideas of the API, we present several short examples that demonstrate how the

API can be used. The full details of the interface are presented in the next section. To prevent

confusion, we refer to the application process or binary we are modifying as the mutatee, and the

program that uses the API to modify the application as the mutator. A mutator is a separate

process from an application process.

The examples in this section are simple code snippets, not complete programs. Appendix A pro-

vides an example of a complete Dyninst program.

3.1 Instrumenting a function

A mutator program must create a single instance of the class BPatch. This object is used to

access functions and information that are global to the library. It must not be destroyed until the

mutator has completely finished using the library. For this example, we will assume that the muta-

tor program has declared a global variable called ―bpatch‖ of class BPatch.

All instrumentation will be done with a BPatch_addressSpace object, which allows us to write

code that will work for both static and dynamic instrumentation. During initialization we will use

either a BPatch_process to create or attach to a process, or a BPatch_binaryEdit to open a

file on disk. When instrumentation is completed we will either run the BPatch_process or write

the BPatch_binaryEdit back to disk.

The first thing a mutator needs to do is identify the application to be modified. If the process is

already in execution, this can be done by specifying the executable file name and process id of the

application as arguments to create an instance of a process object:

BPatch_process *appProc = bpatch.processAttach(name, proccesId);

This creates a new instance of the BPatch_process class that refers to the existing process. It

had no effect on the state of the process (i.e., running or stopped). If the process has not been

started, the mutator specifies the pathname and argument list of a program to execute:

BPatch_process *appProc = bpatch.processCreate(pathname, argv);

If the mutator is opening a file for static binary rewriting it would execute:

BPatch_binaryEdit *appBin = bpatch.openBinary.(pathname);

The above statements will create either a BPatch_process object or BPatch_binaryEdit object,

depending on whether Dyninst is doing static or dynamic instrumentation. The instrumentation

and analysis code can be made agnostic towards static or dynamic modes by using a

 Page 8

dyninstAPI

BPatch_AddressSpace object. Both BPatch_process and BPatch_binaryEdit inherit from

BPatch_AddressSpace, so we can use cast operations to move between the two:

BPatch_addressSpace *app = static_cast<BPatch_addressSpace *>(appProc)

-or-

BPatch_addressSpace *app = static_cast<BPatch_addressSpace *>(appBin)

Once the address space has been created, the mutator defines the snippet of code to be inserted

and identifies the points where they should be inserted.

If the mutator wanted to instrument the entry point of IntesrestingProcedure it should get a

BPatch_function from the applications BPatch_image, and get the entry BPatch_instPoint from

that function:

BPatch_Vector<BPatch_function *> functions;

BPatch_Vector<BPatch_point *> points;

BPatch_image *appImage = app->getImage();

appImage->findFunction(“InterestingProcedure”, functions);

points = functions[0]->findPoint(BPatch_entry);

The mutator also needs to contrast the instrumentation that it will insert at the above

BPatch_point. It can do that by allocating an integer in the application to store instrumentation

results, and then creating a BPatch_snippet that increments that integer:

BPatch_variableExpr *intCounter =

app->malloc(*appImage->findType("int"));

BPatch_arithExpr addOne(BPatch_assign, *intCounter,

 BPatch_arithExpr(BPatch_plus, *intCounter, BPatch_constExpr(1)));

The mutator can set the BPatch_snippet to be run at the BPatch_point by doing an in-

sertSnippet call:

app->insertSnippet(addOne, *points);

Finally, the mutator should either continue the process and wait for it to finish, or write the result-

ing binary to disk, depending on whether it is doing static or dynamic instrumentation:

appProc->continueExecution();

while (!appProc->isTerminated()) {

 bpatch.waitForStatusChange();

}

-or-

appBin->writeFile(newPath);

Put together this would resemble:

 Page 9

dyninstAPI

//Inputs to this code:

// enum { attach, create, rewrite } runMode;

// Depending on the runMode, this code will use:

// int attach_pid;

// const char *attach_binary;

// -or-

// const char *file;

// const char *argv[];

// -or-

// const char *file;

// const char *newFile

BPatch bpatch;

BPatch_addressSpace *app = NULL;

BPatch_process *appProc = NULL;

BPatch_binaryEdit *appBin = NULL;

//Create the BPatch_addressSpace and a BPatch_process or BPatch_binaryEdit

if (runMode == attach) {

 appProc = bpatch.processAttach(attach_binary, attach_pid);

 app = static_cast<BPatch_addressSpace *>(appProc);

} else if (runMode == create) {

 appProc = bpatch.processCreate(file, argv);

 app = static_cast<BPatch_addressSpace *>(appProc);

} else if (runMode == rewrite) {

 appBin = batch.openBinary(file);

 app = static_cast<BPatch_addressSpace *>(appBin);

}

// Find the point to instrument

BPatch_image *appImage;

BPatch_Vector<BPatch_point*> *points;

BPatch_Vector<BPatch_function *> functions;

appImage = app->getImage();

appImage->findFunction(“InterestingProcedure”, functions);

points = functions[0]->findPoint(BPatch_entry);

//Create the instrument snippet

BPatch_variableExpr *intCounter =

appProc->malloc(*appImage->findType("int"));

BPatch_arithExpr addOne(BPatch_assign, *intCounter,

 BPatch_arithExpr(BPatch_plus, *intCounter, BPatch_constExpr(1)));

//Insert the snippet at the point

appProc->insertSnippet(addOne, *points);

if (appProc != NULL) {

 // Continue the mutate and wait for it to complete

appProc->continueExecution();

while(!appProc->isTerminated())

 bpatch.waitForStatusChange();

}

else if (appBin != NULL) {

//Write a new instrumented executable

appBin->writeFile(newFile);

}

 Page 10

dyninstAPI

3.2 Binary Analysis

This example will illustrate how to use Dyninst iterate over a function‘s control flow graph and

inspect instructions. These are steps that would usually be part of a larger data flow or control

flow analysis. Specifically, this example will collect every basic block in a function, iterate over

them, and count the number of instructions that access memory.

Unlike the previous instrumentation example this example will use the binary rewriting as part of

the analysis, however the techniques described also apply when working with processes. This ex-

ample makes use of InstructionAPI, details of which can be found in the InstructionAPI Reference

Manual.

Similar to the above example, the mutator will start by creating a BPatch object and opening a file

to operate on:

BPatch bpatch;

BPatch_binaryEdit *binedit = bpatch.openFile(pathname);

The mutator needs to get a handle to a function to do analaysis on. This example will look up a

function by name, alternativly it could have iterated over every function in BPatch_image or

BPatch_module:

BPatch_image *image = binedit->getImage();

BPatch_Vector<BPatch_function *> funcs;

image->findFunction(“InterestingProcedure”, funcs);

A function‘s control flow graph is represented by the BPatch_flowGraph class. The

BPatch_flowGraph contains, among other things, a set of BPatch_basicBlock objects con-

nected by BPatch_edge objects. This example will simply collect a list of the basic blocks in

BPatch_flowGraph and iterate over each one:

BPatch_flowGraph *fg = funcs[0]->getCFG();

std::set<BPatch_basicBlock *> blocks;

fg->getAllBasicBlocks(blocks);

Each basic block has a list of Instructions. Each Instruction is represented by a

Dyninst::InstructionAPI::Instruction object.

std::set<BPatch_basicBlock *>::iterator block_iter;

for (block_iter = blocks.begin(); block_iter != blocks.end(); block_iter++)

{

 BPatch_basicBlock *block = *block_iter;

 std::vector<Dyninst::InstructionAPI::Instruction> insns;

 block->getInstructions(insns);

 ...

}

 Page 11

dyninstAPI

Given an Instruction object, which is described in the InstructionAPI Reference Manual, we can

query for properties of this instruction. InstructionAPI has numerous methods for inspecting the

memory, registers, or other properties of an instruction. This example will simply check if this

instruction accesses memory:

 std::vector<Dyninst::InstructionAPI::Instruction>::iterator insn_iter;

 for (insn_iter = insns.begin(); insn_iter != insns.end(); insn_iter++)

 {

Dyninst::InstructionAPI::Instruction insn = *insn_iter;

if (insn.readsMemory || insn.writesMemory) {

insns_access_memory++;

}

 }

When the above example is put together it would resemble:

//Inputs to this code:

// const char *file;

BPatch bpatch;

BPatch_binaryEdit *binedit = bpatch.openFile(pathname);

BPatch_image *image = binedit->getImage();

BPatch_Vector<BPatch_function *> funcs;

image->findFunction(“InterestingProcedure”, funcs);

BPatch_flowGraph *fg = funcs[0]->getCFG();

std::set<BPatch_basicBlock *> blocks;

fg->getAllBasicBlocks(blocks);

unsigned int insns_access_memory = 0;

std::set<BPatch_basicBlock *>::iterator block_iter;

for (block_iter = blocks.begin(); block_iter != blocks.end(); block_iter++)

{

 BPatch_basicBlock *block = *block_iter;

 std::vector<Dyninst::InstructionAPI::Instruction> insns;

 block->getInstructions(insns);

 std::vector<Dyninst::InstructionAPI::Instruction>::iterator insn_iter;

 for (insn_iter = insns.begin(); insn_iter != insns.end(); insn_iter++)

 {

Dyninst::InstructionAPI::Instruction insn = *insn_iter;

if (insn.readsMemory || insn.writesMemory) {

insns_access_memory++;

}

 }

}

3.3 Instrumenting Memory Access

There are two snippets useful for memory access instrumentation: BPatch_effectiveAddressExpr

and BPatch_bytesAccessedExpr. Both have nullary constructors; the result of the snippet depends

on the instrumentation point where the snippet is inserted. BPatch_effectiveAddressExpr has type

void*, while BPatch_bytesAccessedExpr has type int.

 Page 12

dyninstAPI

These snippets may be used to instrument a given instrumentation point if and only if the point has

memory access information attached to it. In this release the only way to create instrumentation

points that have memory access information attached to them is via

BPatch_function.findPoint(const BPatch_Set<BPatch_opCode>&). For example, to instrument

all the loads and stores in a function named foo with a call to another fuction bar that takes one

argument (the effective address) one may write:

// assuming that thr points to some interesting thread

BPatch_proc* proc = ...;

BPatch_image *img = proc->getImage();

// build the set that describes the type of accesses we’re looking for

BPatch_Set<BPatch_opCode> axs;

axs.insert(BPatch_opLoad);

axs.insert(BPatch_opStore);

// scan the function foo and create instrumentation points

BPatch_Vector<BPatch_function*> fooFunctions;

img->findFunction(“foo”, fooFunctions);

BPatch_Vector<BPatch_point*>* r = fooFunctions[0]->findPoint(axs);

// create the printf function call snippet

BPatch_Vector<BPatch_snippet*> printfArgs;

BPatch_constExpr fmt("Access at: %d.\n");

printfArgs.push_back(&fmt);

BPatch_effectiveAddressExpr eae;

printfArgs.push_back(&eae);

BPatch_Vector<BPatch_function *> funcs;

img->findFunction("printf", funcs);

BPatch_function *printfFunc = funcs[0];

BPatch_funcCallExpr printfCall(*printfFunc, printfArgs);

// insert the snippet at the instrumentation points

thr->insertSnippet(printfCall, *r);

 Page 13

dyninstAPI

4. INTERFACE

This section describes functions in the API. The API is organized as a collection of C++ classes.

The primary classes are BPatch, BPatch_process, BPatch_binaryEdit,

BPatch_thread, BPatch_image BPatch_point, and BPatch_snippet. The API

also uses a template class called BPatch_Vector. This class is based on the Standard Template

Library (STL) vector class.

4.1 Class BPatch

The BPatch class represents the entire Dyninst library. There can only be one instance of this

class at a time. This class is used to perform functions and obtain information not specific to a

particular thread or image.

BPatch_Vector<BPatch_process*> *getProcesses()

Returns the list of processes that are currently defined. This list includes threads that were

directly created by calling processCreate/processAttach, and indirectly by the UNIX fork

or Window‘s CreateProcess system call. It is up to the user to delete this vector when

they are done with it.

BPatch_process *processAttach(const char *path, int pid)

BPatch_process *processCreate(const char *path, char *argv[],

char *envp[] = NULL, int stdin_fd=0, int stdout_fd=1, int

stderr_fd=2)

Each of these functions returns a pointer to a new instance of the BPatch_process class.

The ―path‖ parameter needed by these functions should be the pathname of the executable

file containing the process‘s code. The processAttach function returns a

BPatch_process associated with an existing process. On Linux platforms the path pa-

rameter can be NULL since the executable image can be derived from the process pid. A

process attached to using one of these functions is put into the stopped state. The proces-

sCreate function creates a new process and returns a new BPatch_process associated

with it. The new process is put into a stopped state before executing any code.

The stdin_fd, stdout_fd, and stderr_fd parameters are used to set the stan-

dard input, output, and error of the child process. The default values of these parameters

leave the input, output, and error to be the same as the mutator process. To change these

values, an open UNIX file descriptor (see open(1)) can be passed.

 Page 14

dyninstAPI

BPatch_binaryEdit *openBinary(const char *path,

bool openDependencies = false)

This function opens the executable file or library file pointed to by path for binary rewrit-

ing. If openDependencies is true then Dyninst will also open all shared libraries that

path depends on. Upon success this function returns a new instance of a

BPatch_binaryEdit class that represents the opened file and any dependent shared libraries.

This function returns NULL if on error.

bool pollForStatusChange()

This is useful for a mutator that needs to periodically check on the status of its managed

threads and does not want to have to check each process individually. It returns true if

there has been a change in the status of one or more threads that has not yet been reported

by either isStopped or isTerminated.

void setDebugParsing (bool state)

Turn on or off the parsing of debugger information. By default, the debugger information

(produced by the –g compiler option) is parsed on those platforms that support it. How-

ever, for some applications this information can be quite large. To disable parsing this in-

formation, call this method with a value of false prior to creating a process.

bool parseDebugInfo()

Returns true if debugger information parsing is enabled, false otherwise.

void setTrampRecursive (bool state)

Turn on or off trampoline recursion. By default, any snippets invoked while another snip-

pet is active will not be executed. This is the safest behavior, since recursively-calling

snippets can cause a program to take up all available system resources and die. For exam-

ple, adding instrumentation code to the start of printf, and then calling printf from that

snippet will result in infinite recursion.

This protection operates at the granularity of an instrumentation point. When snippets are

first inserted at a point, code will be created with recursion protection or not, depending

on the current state of flag. Changing the flag is not retroactive, and inserting more snip-

pets will not change recursion protection at the point. The recursion protection increases

the overhead of instrumentation points, so if there is no way for the snippets to call them-

selves, then calling this method with the parameter true will result in a performance gain.

The default value of this flag is false.

 Page 15

dyninstAPI

bool isTrampRecursive ()

Returns whether trampoline recursion is enabled or disabled. True means that it is enabled

void setTypeChecking(bool state)

Turn on or off type-checking of snippets. By default type-checking is turned on, and an at-

tempt to create a snippet that contains type conflicts will fail. Any snippet expressions

created with type-checking off have the type of their left operand. Turning type-checking

off, creating a snippet, and then turning type-checking back on is similar to the type cast

operation in the C programming language.

bool isTypeChecked()

Returns true if type-checking of snippets is enabled, and false otherwise,

bool waitForStatusChange()

This function waits until there is a status change to some thread that has not yet been re-

ported by either isStopped or isTerminated, and then returns true. It is more effi-

cient to call this function than to call pollForStatusChange in a loop, because

waitForStatusChange blocks the mutator process while waiting.

void setDelayedParsing (bool)

Turn on or off delayed parsing. When on, Dyninst will initially parse only the symbol table

information in any new modules loaded by the program, and will postpone more thorough

analysis (instrumentation point analysis, variable analysis, and discovery of new functions

in stripped binaries). This analysis will automatically occur when the information is neces-

sary.

Users which require small run-time perturbation of a program should not delay parsing;

the overhead for analysis may occur at unexpected times if it is triggered by internal Dy-

ninst behavior. Users who desire instrumentation of a small number of functions will bene-

fit from delayed parsing.

bool delayedParsingOn()

Returns true if delayed parsing is enabled, and false otherwise.

void setInstrStackFrame(bool)

Turn on and off stack frames in instrumentation. When on, Dyninst will create stack

frames around instrumentation. A stack frame allows Dyninst or other tools to walk a call

stack through instrumentation, but introduces overhead to instrumentation. Default is to

not create stack frames.

 Page 16

dyninstAPI

bool getInstrStackFrames()

Returns true if instrumentation will create stack frames, false otherwise.

void setMergeTramp (bool)

Turn on or off inlined tramps. Setting this value to true will make each base trampoline

have all of its mini-trampolines be inlined within it. Using inlined mini-tramps may allow

instrumentation to execute faster, but inserting and removing instrumentation may take

more time. The default setting for this is true

bool isMergeTramp ()

This returns the current status of inlined trampolines. A value of true indicates that tram-

polines are inlined.

void setSaveFPR (bool)

Turn on or off floating point saves. Setting this value to false means that floating point

registers will never be saved, which can lead to large performance improvments. The de-

fault value is true. Setting this flag may cause incorrect program behavior if the instru-

mentation does clobber floating point registers, so it should only be used when the user is

positive this will never happen.

bool isSaveFPROn ()

This returns the current status of the floating point saves. True means we are saving float-

ing points based on the analysis for the given platform.

void setBaseTrampDeletion(bool)

If true, we delete the base tramp when the last corresponding minitramp is deleted. If

false, we leave the base tramp in. The default value is false.

bool baseTrampDeletion()

Returns true if base trampolines are set to be deleted, false otherwise.

void setLivenessAnalysis(bool)

If true, we perform register liveness analysis around an instPoint before inserting instru-

mentation, and we only save registers that are live at that point. This can lead to faster

run-time speeds, but at the expense of slower instrumentation time. The default value is

true.

bool livenessAnalysisOn()

Returns true if liveness analysis is currently enabled.

 Page 17

dyninstAPI

bool baseTrampDeletion()

void getBPatchVersion(int &major, int &minor, int &subminor)

Returns Dyninst‘s version number. The major version number will be stored in major,

the minor version number in minor, and the subminor version in subminor. For exam-

ple, under Dyninst 5.1.0, this function will return 5 in major, 1 in minor, and 0 in sub-

minor.

int getNotificationFD()

Returns a file descriptor that is suitable for inclusion in a call to select. Dyninst will write

data to this file descriptor when it to signal a state change in the process.

BPatch::pollForStatusChange should then be called so that Dyninst can handle

the state change. This is useful for applications where the user does not want to block in

Bpatch::waitForStatusChange. The file descriptor will reset when the user calls
BPatch::pollForStatusChange.

BPatch_type *createArray(const char *name, BPatch_type *ptr,

unsigned int low, unsigned int hi)

Create a new array type. The name of the type is name, and the type of each element is

ptr. The index of the first element of the array is low, and the last is high. The stan-

dard rules of type compatibility, described in Section 4.28 are used with arrays created us-

ing this function.

BPatch_type *createEnum(const char *name, BPatch_Vector<char *>

elementNames, BPatch_Vector<int> elementIds)

BPatch_type *createEnum(const char *name, BPatch_Vector<char *>

elementNames)

Create a new enumerated type. There are two variations of this function. The first one is

used to create an enumerated type where the user specifies the identifier (int) for each

element. In the second form, the system specifies the identifiers for each element. In both

cases, a vector of character arrays is passed to supply the names of the elements of the

enumerated type. In the first form of the function, the number of element in the ele-

mentNames and elementIds vectors must be the same, or the type will not be

created and this function will return NULL. The standard rules of type compatibility, de-

scribed in Section 4.28, are used with enums created using this function.

BPatch_type *createScalar(const char *name, int size)

Create a new scalar type. The name field is used to specify the name of the type, and the

size parameter is used to specify the size in bytes of each instance of the type. No addi-

tional information about this type is supplied. The type is compatible with other scalars

with the same name and size.

 Page 18

dyninstAPI

BPatch_type *createStruct(const char *name, BPatch_Vector<char *>

fieldNames, BPatch_Vector<BPatch_type *> fieldTypes)

Create a new structure type. The name of the structure is specified in the name parame-

ter. The fieldNames and fieldTypes vectors specify fields of the type. These two

vectors must have the same number of elements or the function will fail (and return

NULL). The standard rules of type compatibility, described in Section 4.28 are used with

structures created using this function. The size of the structure is the sum of the size of the

elements in the fieldTypes vector.

BPatch_type *createTypedef(const char *name, BPatch_type *ptr)

Create a new type called name and having the type ptr.

BPatch_type *createPointer(const char *name, BPatch_type *ptr)

BPatch_type *createPointer(const char *name, BPatch_type *ptr,

int size)

Create a new type, named name, which points to objects of type ptr. The first form

creates a pointer whose size is equal to sizeof(void*)on the target platform where

the mutatee is running. In the second form, the size of the pointer is the value passed in

the size parameter.

BPatch_type *createUnion(const char *name, BPatch_Vector<char *>

fieldNames, BPatch_Vector<BPatch_type *> fieldTypes)

Create a new union type. The name of the union is specified in the name parameter. The

fieldNames and fieldTypes vectors specify fields of the type. These two vectors

must have the same number of elements or the function will fail (and return NULL). The

The size of the union is the size of the largest element in the fieldTypes vector.

The following functions are deprecated as of Dyninst 5.0. Please consider using processCreate,

processAttach, and getProcesses instead.
D

E
P

R
E

C
A

T
E

D

BPatch_thread *attachProcess(const char *path, int pid)

BPatch_thread *createProcess(const char *path,

 char *argv[], char *envp[] = NULL, int stdin_fd=0, int

stdout_fd=1, int stderr_fd=2)

BPatch_Vector<BPatch_thread*> *getThreads()

 Page 19

dyninstAPI

4.1.1 Callbacks

The following functions are intended as a way for API users to be informed when an error or sig-

nificant event occurs. Each function allows a user to register a handler for an event. The return

code for all callback registration functions is the address of the handler that was previously regis-

tered (which may be NULL if no handler was previously registered). For backwards compatibility

reasons, some callbacks may pass a BPatch_thread object when a BPatch_process

may be more appropriate. A BPatch_thread may be converted into a BPatch_process

using BPatch_thread::getProcess().

enum BPatchErrorLevel { BPatchFatal, BPatchSerious, BPatchWarning, BPatchInfo };

typedef void (*BPatchErrorCallback)(BPatchErrorLevel severity,

int number, char **params)

This is the prototype for the error callback function. The severity field indicates how im-

portant the error is (from fatal to information/status). The number is a unique number that

identifies this error message. Params are the parameters that describe the detail about an

error, e.g., the process id where the error occurred. The number and meaning of params

depends on the error. However, for a given error number the number of parameters re-

turned will always be the same.

BPatchErrorCallback registerErrorCallback(BPatchErrorCallback

func)

This function registers the error callback function with the BPatch class. The return value

is the address of the previous error callback function. Dyninst users can change the error

callback during program execution (e.g., one error callback before a GUI is initialized, and

a different one after).

typedef void (*BPatchSignalHandlerCallback)(BPatch_point

*at_point, long signum, BPatch_Vector<Dyninst::Address>

*handlers)

This is the prototype for the signal handler callback function. The at_point parameter in-

dicates the point at which the signal/exception was raised, signum is the number of the

signal/exception that was raised, and the handlers vector contains any registered handler(s)

for the signal/exception. In Windows this corresponds to the stack of Structured Excep-

tion Handlers, while for Unix systems there will be at most one registered exception hand-

ler. As of April 15, 2008, this functionality is only fully implemented for the Windows

platform.

 Page 20

dyninstAPI

BPatchSignalHandlerCallback

registerSignalHandlerCallback(BPatchSignalHandlerCallback

func, BPatch_Set<long> *signal_numbers)

This function registers the signal handler callback function with the BPatch class. The re-

turn value indicates success or failure. The signal_numbers set contains those signal num-

bers for which which the callback will be invoked. As of April 15, 2008, this functionality

is only fully implemented for the Windows platform.

typedef void (*BPatchStopThreadCallback)(BPatch_point *at_point,

void *returnValue)

This is the prototype for the callback that is associated with the stopThreadExpr snippet

class (see Section 4.11). Unlike the other callbacks in this section, stopThreadExpr call-

backs are registered during the creation of the stopThreadExpr snippet type. Whenever a

stopThreadExpr snippet executes in a given thread, he snippet evaluates the calcula-

tion snippet that stopThreadExpr takes as a parameter, stops the thread‘s execution and

invokes this callback. The at_point parameter is the BPatch_point at which the stopTh-

readExpr snippet was inserted, and returnValue contains the computation made by the

calculation snippet.

typedef void (*BPatchAsyncThreadEventCallback)(

BPatch_process *proc, BPatch_thread *thread)

This is the prototype for most callback functions associated with events that occur in a

thread, such as thread creation and destruction events. The thread parameter is the

thread that triggered the event, and proc is the thread‘s containing process.

bool registerThreadEventCallback(BPatch_asyncEventType type,

BPatchAsyncThreadEventCallback cb)

This function registers a callback to occur whenever the process triggers a new thread

event. The type parameter can be either one of BPatch_threadCreateEvent or

BPatch_threadDestroyEvent. Different callbacks can be registered for different

values of type.

typedef void (*BPatchExecCallback)(BPatch_thread *thr)

This is the prototype for the exec callback. The thr parameter is a thread in the process

that called exec. You can use the BPatch_thread::getProcess function to get the

BPatch_process that performed the exec operation.

 Page 21

dyninstAPI

BPatchThreadEventCallback registerExecCallback(

BPatchExecCallback func) Not implemented on Windows.

Registers a function to be called when a thread executes an exec system call. When the

function is called, the thread performing the exec will be paused.

typedef void (*BPatchForkCallback)(BPatch_thread *parent,

BPatch_thread *child);

This is the prototype for the pre-fork and post-fork callbacks. The parent parameter is

the parent thread, and the child parameter is a BPatch_thread in the newly created

process. When invoked as a pre-fork callback, the child is NULL.

BPatchForkCallback registerPreForkCallback(

BPatchForkCallback func) not implemented on Windows

Registers a function to be called when a BPatch_thread forks a new process. This callback

is invoked just before the fork is performed. When the callback is invoked, the thread per-

forming the fork will be stopped.

BPatchPostForkCallback registerPostForkCallback(

BPatchPostForkCallback func) not implemented on Windows

Registers a function to be called just after the fork is performed. Both the thread perform-

ing the fork and the newly created thread will be paused when the callback is invoked. Un-

less a post fork callback is registered, the mutator will not be attached to any child

processes. Since there is overhead associated with each tracked process, not setting the

callback allows the Dyninst library to ignore any child processes. This is particularly use-

ful for instrumenting shell processes that create many (potentially) uninteresting children.

typedef enum BPatch_exitType { NoExit, ExitedNormally,

ExitedViaSignal };

typedef void (*BPatchExitCallback)(BPatch_thread *proc,

BPatch_exitType exit_type);

This is the prototype for the callback function called when a process exit occurs. The proc

parameter is the process which exited. The exit_type parameter indicates how the process

exited, either normally or because of a signal. The functions

BPatch_thread::getExitCode() and BPatch_thread::getExitSignal() can be used to get fur-

ther information about the process exit.

 Page 22

dyninstAPI

BPatchThreadEventCallback registerExitCallback(

BPatchExitCallback func)

Registers a function to be called when a process terminates. For a normal process exit, the

callback will actually be called just before the process exit, when the process is at the entry

to the exit() function (except for Windows). This allows final actions to be taken on the

process before it actually exits. The function BPatch_thread::isTerminated() will return

true in this context even though the process hasn‘t yet actually exited. In the case of an

exit due to a signal, the process will have already exited. On AIX/Solaris/OSF, the reason

why a process exited may not be available if the process was not a child of the Dyninst

mutator; the mutator will be notified of the process exiting.

typedef void (*BPatchDynLibraryCallback)(Bpatch_thread *thr,

Bpatch_module *mod, bool load);

This is the prototype for the dynamic linker callback function. The thr field contains the

thread that loaded or un-loaded a shared library. The mod field contains the module that

was loaded or unloaded. The load Boolean is true if the library was loaded and false if it

was unloaded.

BPatchThreadEventCallback registerDynLinkCallback(

BPatchThreadEventCallback func)

Registers a function to be called when an application has loaded or unloaded a dynamic li-

brary.

typedef void (*BPatchOneTimeCodeCallback)(Bpatch_thread *thr,

void *userData, void *returnValue);

This is the prototype for the oneTimeCode callback function. The thr field contains the

thread that executed the oneTimeCode (if thread-specific) or an undefined thread in the

process (if process-wide). The userData field contains the value passed to the oneTi-

meCode call. The returnValue field contains the return result of the oneTimeCode

snippet.

BPatchOneTimeCodeCallback registerOneTimeCodeCallback(

BPatchOneTimeCodeCallback func)

Registers a function to be called when an application has completed a oneTimeCode.

4.2 Class BPatch_addressSpace

The BPatch_addressSpace class is a super class of the BPatch_process and BPatch_binaryEdit

classes. It contains functionality that is common between the two sub classes.

 Page 23

dyninstAPI

const BPatch_image *getImage()

Return a handle to the executable file associated with this BPatch_process object.

bool getSourceLines(unsigned long addr, std::vector< std::pair<

const char *, unsigned int > > & lines)

This function returns the line information associated with the mutatee address, addr. The

vector lines contains pairs of filenames and line numbers that are associated with addr.

In many cases only one filename and line number is associated with an address, but certain

compiler optimizations may lead to multiple filenames and lines at an address. This in-

formation is only available if the mutatee was compiled with debug information.

This function returns true if it was able to find any line information at addr, and

false otherwise.

bool getAddressRanges(char * fileName, unsigned int lineNo,

std::vector< std::pair< unsigned long, unsigned long > > &

ranges)

Given a filename and line number, fileName and lineNo, this function this function

returns the ranges of mutatee addresses that implement the code range in the output para-

meter ranges. In many cases a source code line will only have one address range im-

plementing it, however compiler optimizations may turn this into multiple, disjoint address

ranges. This information is only available if the mutatee was compiled with debug infor-

mation.

This function returns true if it was able to find any line information, false otherwise.

BPatch_variableExpr *malloc(int n)

BPatch_variableExpr *malloc(const BPatch_type &type)

These two functions allocate memory. Memory allocation is from a heap. The heap is not

necessarily the same heap used by the application. The available space in the heap may be

limited depending on the implementation. The first function, malloc(int n), allo-

cates n bytes of memory from the heap. The second function, malloc(const

BPatch_type& t), allocates enough memory to hold an object of the specified type.

Using the second version is strongly encouraged because it provides additional informa-

tion to permit better type checking of the passed code. The returned memory is persistant

and will not be released until BPatch_process:free is called or the application ter-

minates.

 Page 24

dyninstAPI

BPatch_variableExpr *createVariable(Dyninst::Address addr,

 BPatch_type *type,

 std::string var_name = std::string(“”),

 BPatch_module *in_module = NULL)

This method creates a new variable at the given address, addr, in the module

in_module. If a name is specified Dyninst will assign var_name to the variable, oth-

erwise it will assign an internal name. The type parameter will become the type for the

new variable.

When operating in binary rewriting mode, it is an error for the in_module parameter to

be NULL. Dyninst will then write the variable back out in the file specified by

in_module.

void free(const BPatch_variableExpr &ptr)

Frees the memory in the passed ptr. The programmer is responsible to verify that all code

that could reference this memory will not execute again (either by removing all snippets

that refer to it, or by analysis of the program).

bool getRegisters(Bpatch_Vector<Bpatch_Register> ®s) implemented

for POWER and AMD64

This function returns a vector of BPatch_register objects that represents the registers used

by the mutatee.

Currently supports general purpose registers (GPRs) only. Only implemented on x86-64

and POWER.

BPatchSnippetHandle *insertSnippet(const BPatch_snippet &expr,

BPatch_point &point,

BPatch_callWhen when=[BPatch_callBefore| BPatch_callAfter],

BPatch_snippetOrder order = BPatch_firstSnippet)

BPatchSnippetHandle *insertSnippet(const BPatch_snippet &expr,

const BPatch_Vector<BPatch_point *> &points,

BPatch_callWhen when=[BPatch_callBefore| BPatch_callAfter],

BPatch_snippetOrder order = BPatch_firstSnippet)

Inserts a snippet of code at the specified point. If a list of points is supplied, insert the

code snippet at each point in the list. The when argument specifies when the snippet is to

be called; a value of BPatch_callBefore indicates that the snippet should be inserted

just before the specified point or points in the code, and a value of

BPatch_callAfter indicates that it should be inserted just after. The order argu-

ment specifies where the snippet is to be inserted relative to any other snippets previously

inserted at the same point. The values BPatch_firstSnippet and

BPatch_lastSnippet indicate that the snippet should be inserted before or after all

snippets, respectively.

 Page 25

dyninstAPI

It is illegal to use BPatch_callAfter with a BPatch_entry point. Use

BPatch_callBefore when instrumenting entry points, which inserts instrumentation

before the first instruction in a subroutine. Likewise, it is illegal to use

BPatch_callBefore with a BPatch_exit point. Use BPatch_callAfter

with exit points, which inserts instrumentation at the last instruction in sub-routine. in-

sertSnippet will return NULL when used with an illegal pair of points.

bool deleteSnippet(BPatchSnippetHandle *handle)

Remove the snippet associated with the passed handle. If the handle is not defined for the

process, then deleteSnippet will return false.

bool beginInsertionSet()

Normally, a call to insertSnippet immediately injects instrumentation into the mutatee.

However, users may wish to insert a set of snippets as a single batch operation. This pro-

vides two benefits: First, instrumentation may be inserted in a more efficient manner by

Dyninst. Second, multiple snippets may be inserted at multiple points as a single operation,

with either all snippets being inserted successfully or none. This batch insertion mode is

begun with a call to beginInsertionSet; after this call, no snippets are actually in-

serted until a corresponding call to finalizeInsertionSet. All calls to in-

sertSnippet during batch mode are accumulated internally by Dyninst, and the re-

turned BPatchSnippetHandles are filled in when finalizeInsertionSet is

called.

Insertion sets are un-necessary when doing static binary instrumentation. Dyninst uses an

implicit insertion set around all instrumentation to a static binary.

bool finalizeInsertionSet(bool atomic)

Inserts all snippets accumulated since a call to beginInsertionSet. If the atomic pa-

rameter is true, then a failure to insert any snippet results in all snippets being removed; ef-

fectively, the insertion is all-or-nothing. If the atomic parameter is not set, then snippets

are inserted individually. This function also fills in the BPatchSnippetHandle struc-

tures returned by insertSnippet. It returns true on success and false if there was an

error inserting any snippets.

Insertion sets are un-necessary when doing static binary instrumentation. Dyninst uses an

implicit insertion set around all instrumentation to a static binary.

bool removeFunctionCall(BPatch_point &point)

Disables the user function call at the specified location. The point specified must be a va-

lid call point in the image of the requesting process. The purpose of this routine is to per-

mit tools to alter the semantics of a program by eliminating procedure calls. The mechan-

ism to achieve the removal is platform dependent, but might include branching over the

 Page 26

dyninstAPI

call, or replacing it with NOPs. This function only removes a function call; any parameters

to the function will still be evaluated.

bool replaceCode(BPatch_point *point, BPatch_snippet *snippet)

Replaces the instruction identified by point with the provided snippet. The provided

point may represent either a specific instruction (acquired via

BPatch_function::findPoint()), function entry, function exit, or a call site. If

the point corresponds to a function entry, the first instruction in the function will be re-

placed. If the point corresponds to a function exit, the return instruction at that exit will be

replaced. If the point corresponds to a call site, the call instruction will be replaced. If the

point corresponds to a control flow edge, replacement will fail and an error will be re-

turned.

This call returns true if the replacement succeeded, or false otherwise. The replacement

mechanism uses similar techniques as our instrumentation mechanism, and can fail in the

same circumstances.

WARNING: This function is dangerous. Unlike instrumentation, program state is not

saved and restored around the new code. The provided snippet may modify registers and

memory. This call may have unexpected effects on program execution, resulting in incor-

rect results or program crashes.

bool replaceFunction (BPatch_function &old, BPatch_function &new)

Replaces all calls to user function old with calls to new. This is done by inserting in-

strumentation (specifically a BPatch_funcJumpExpr) into the beginning of function old

such that a non-returning jump is made to function new. Returns true upon success, false

otherwise.

bool replaceFunctionCall(BPatch_point &point, BPatch_function &newFunc)

Changes the function call at the specified point to the function indicated by newFunc. The

purpose of this routine is to permit runtime steering tools to change the behavior of pro-

grams by replacing a call to one procedure by a call to another. Point must be a function

call point. If the change was successful, the return value is true, otherwise false will be re-

turned.

WARNING: Care must be used when replacing functions. In particular if the compiler

has performed inter-procedural register allocation between the original caller/callee

pair, the replacement may not be safe since the replaced function may clobber registers

 Page 27

dyninstAPI

the compiler thought the callee left untouched. Also the signatures of the both the func-

tion being replaced and the new function must be compatible.

bool loadLibrary(const char *libname, bool reload=false)

For dynamic rewriting this function loads a dynamically linked library into the process‘s

address space. For static rewriting this function adds a library as a library dependency in

the rewritten file. In both cases Dyninst creates a new BPatch_module to represent

this library.

The libname parameter identifies the file name of the library to be loaded, in the standard

way that dynamically linked libraries are specified on the operating system on which the

API is running. This function returns true if the library was loaded successfully, otherwise

it returns false.

The reload parameter is ignored and only remains for backwards compatibility.

void allowTraps(bool allowtraps)

This function is used to tell Dyninst whether it can fall back to use traps when doing in-

strumentation. Depending on certain architecture dependent charistics certain functions

may be difficult to instrument, and Dyninst must fall back to inserting a trap to do instru-

mentation. This can have a serious performance impact on the mutate.

If this function is called with allowtraps set to false, then Dyninst will not insert

any instrumentation that depends on a trap. If a piece of instrumentation would depend on

a trap, the insertSnippet will return an error instead of inserting it. If this function is

called with allowtraps set to true, then Dyninst will use trap-based instrumentation

if necessary.

The default value for allowTraps is true.

4.3 Class BPatch_process

The BPatch_process class represents a running process, which includes a one or more threads of

execution and an address space.

bool stopExecution()

bool continueExecution()

bool terminateExecution()

These three functions change the running state of the process. stopExecution puts the

process into a stopped state. Depending on the operating system, stopping one process

 Page 28

dyninstAPI

may stop all threads associated with a process. continueExecution continues execu-

tion of the process. terminateExecution terminates execution of the process and

will invoke the exit callback if one is registered. Each function returns true on success, or

false for failure. Stopping or continuing a termiated thread will fail and these functions

will return false.

bool isStopped()

int stopSignal()

bool isTerminated()

These three functions query the status of a process. isStopped returns true if the

process is currently stopped. If the process is stopped (as indicated by isStopped), then

stopSignal can be called to find out what signal caused the process to stop. isTer-

minated returns true if the process has exited. Any of these functions may be called

multiple times, and calling them will not affect the state of the process.

BPatch_variableExpr *getInheritedVariable(const

BPatch_variableExpr &parentVar)

Retrieves a new handle to an existing variable (such as one created by

BPatch_process:malloc) that was created in a parent process and now exists in a

forked child process. When a process forks all existing BPatch_variableExprs are

copied to the child process, but the Dyninst handles for these objects are not valid in the

child BPatch_process. This function is invoked on the child process‘

BPatch_process, parentVar is a variable from the parent process, and a handle to a varia-

ble in the child process is returned. If parentVar was not allocated in the parent

process, then NULL is returned.

BPatchSnippetHandle *getInheritedSnippet(BPatchSnippetHandle

&parentSnippet)

This function is similar to getInheritedVariable, but operates on BPatchSnip-

petHandles. Given a child process that was created via fork and a BpatchSnippe-

tHandle, parentSnippet, from the parent process, this function will return a handle

to parentSnippet that is valid in the child process. If it is determined that pa-

rentSnippet is not associated with the parent process, then NULL is returned.

void setMutationsActive(bool)

Enable or disable the execution of snippets for the process. This provides a way to tempo-

rally disable all of the dynamic code patches that have been inserted without having to de-

lete them one by one. All allocated memory will remain unchanged while the patches are

disabled. When the mutations are not active, the process control functions (i.e., sto-

pExecution and continueExecution) can still be used. Requests to insert snip-

pets (including oneTimeCode) cannot be made while mutations are disabled.

 Page 29

dyninstAPI

void detach(bool cont)

Detaches from the process. The process must be stopped to call this function. Instrumen-

tation and other changes to the process will remain active in the detached copy. The cont

parameter is used to indicate if the process should be continued as a result of detaching.

Linux does not support detaching from a process while leaving it stopped. All processes

are continued after detach on Linux.

int getPid()

Return the system id for the mutatee process. On UNIX based systems this is a PID. On

Windows this is HANDLE object for a process.

typedef enum BPatch_exitType { NoExit, ExitedNormally,

ExitedViaSignal };

BPatch_exitType terminationStatus()

If the process has exited, terminationStatus will indicate whether the process exited nor-

mally or because of a signal. If the process has not exited, NoExit will be returned. On

AIX/Solaris, the reason why a process exited will not be available if the process was not a

child of the Dyninst mutator; in this case, ExitedNormally will be returned in both normal

and signal exit cases.

int getExitCode()

If the process exited in a normal way, getExitCode will return the associated exit code. On

AIX/Solaris, this code will not be available if the process was not a child of the Dyninst

mutator.

int getExitSignal()

If the process exited because of a received signal, getExitSignal will return the associated

signal number. On AIX/Solaris, this code will not be available if the process was not a

child of the Dyninst mutator.

void oneTimeCode(const BPatch_snippet &expr)

Causes snippet to be executed by the mutatee immediately. If the process is multithreaded,

the snippet is run on a thread chosen by Dyninst. If the user requires the snippet to be run

on a particular thread, use the BPatch_thread version of this function instead. The

process must be stopped to call this function. The behavior is synchronous; oneTimeCode

will not return until after the snippet has been run in the application.

 Page 30

dyninstAPI

bool oneTimeCodeAsync(const BPatch_snippet &expr,

 void *userData = NULL)

This function sets up a snippet to be evaluated by the process at the next available oppor-

tunity. When the snippet finishes running Dyninst will callback any function registered

through BPatch::registerOneTimeCodeCallback, with userData passed as

a parameter. This function return true on success and false if it could not post the oneTi-

meCode.

If the process is multithreaded, the snippet is run on a thread chosen by Dyninst. If the us-

er requires the snippet to be run on a particular thread, use the BPatch_thread version

of this function instead. The behavior is asynchronous; oneTimeCodeAsync returns before

the snippet is executed.

If the process is running when oneTimeCodeAsync is called, expr will be run imme-

diately. If the process is stopped, then expr will be run when the process is continued.

4.4 Class BPatch_thread

The BPatch_thread class operates a thread of execution that is running in a process.

void getCallStack(BPatch_Vector<BPatch_frame>& stack)

This function fills the given vector with current information about the call stack of the

thread. Each stack frame is represented by a BPatch_frame (see section 4.23 for informa-

tion about this class).

long getTid()

This function returns a platform-specific identifier for this thread. This is the identifier that

is used by the threading library. For example, on pthread applications this function will re-

turn the thread‘s pthread_t value.

long getLWP()

This function returns a platform-specific identifier that the operating system uses to identi-

fy this thread. For example, on UNIX platforms this returns the LWP id. On Windows

this returns a HANDLE obect for the thread.

 Page 31

dyninstAPI

long getBPatchID()

This function returns a Dyninst-specific identifier for this thread. These ID‘s apply only to

running threads, the BPatch ID of an already terminated thread my be repeated in a new

thread.

BPatch_function *getInitialFunction()

Returns the function that was used by the application to start this thread. For example, on

pthread applications this will return the initial function that was passed to pthread_create.

unsigned long getStackTopAddr()

Returns the base address for this thread‘s stack.

bool isDeadOnArrival()

This function returns true if this thread terminated execution before Dyninst was able to

attach to it. Since Dyninst performs new thread detection asynchronously it is possible for

a thread to be created and destroyed before Dyninst can attach to it. When this happens, a

new BPatch_thread is created, but isDeadOnArrival always returns true for this thread. Is

is illegal to perform any thread-level operations on a DeadOnArrival thread.

BPatch_process *getProcess()

Returns the BPatch_process that contains this thread.

void oneTimeCode(const BPatch_snippet &expr)

Causes the snippet to be evaluated by the process immediately. This is similar to the

BPatch_process:oneTimeCode function, except that the snippet is guarenteed to run only

on this thread. The process must be stopped to call this function. The behavior is syn-

chronous; oneTimeCode will not return until after the snippet has been run in the applica-

tion.

bool oneTimeCodeAsync(const BPatch_snippet &expr,

 void *userData = NULL)

This function sets up a snippet to be evaluated by this thread at the next available oppor-

tunity. When the snippet finishes running Dyninst will callback any function registered

through BPatch::registerOneTimeCodeCallback, with userData passed as

a parameter. This function returns true if expr was posted and false otherwise.

 Page 32

dyninstAPI

This is similar to the BPatch_process:oneTimeCodeAsync function, except that the snip-

pet is guarenteed to run only on this thread. The process must be stopped to call this func-

tion. The behavior is asynchronous; oneTimeCodeAsync returns before the snippet is ex-

ecuted.

The following BPatch_thread functions are deprecated as of

Dyninst 5.0. Please consider using the equivalent functions in

the BPatch_process class.

D
E

P
R

E
C

A
T

E
D

bool getLineAndFile(unsigned long addr, unsigned short&

 lineNo, char* fileName, int length)

bool stopExecution()

bool continueExecution()

bool terminateExecution()

bool isStopped()

int stopSignal()

bool isTerminated()

D
E

P
R

E
C

A
T

E
D

int dumpCore(const char *file, const bool terminate)

int dumpImage(const char *file)

bool dumpPatchedImage(const char* file)

void enableDumpPatchedImage()

BPatch_variableExpr *malloc(int n)

BPatch_variableExpr *malloc(const BPatch_type &type)

void free(const BPatch_variableExpr &ptr)

D
E

P
R

E
C

A
T

E
D

BPatch_variableExpr *getInheritedVariable(

 const BPatch_variableExpr &parentVar)

BPatchSnippetHandle*getInheritedSnippet(

 BPatchSnippetHandle &parentSnippet)

bool getSourceLines(unsigned long addr, std::vector<

std::pair< const char *, unsigned int > > & lines)

 Page 33

dyninstAPI

 D
E

P
R

E
C

A
T

E
D

BPatchSnippetHandle *insertSnippet(const BPatch_snippet

&expr,

BPatch_point &point,

BPatch_callWhen when=[BPatch_callBefore|

BPatch_callAfter],

BPatch_snippetOrder order = BPatch_firstSnippet)

BPatchSnippetHandle *insertSnippet(const BPatch_snippet

&expr,

const BPatch_Vector<BPatch_point *> &points,

BPatch_callWhen when=[BPatch_callBefore|

BPatch_callAfter],

BPatch_snippetOrder order = BPatch_firstSnippet)

bool deleteSnippet(BPatchSnippetHandle *handle)

D
E

P
R

E
C

A
T

E
D

bool removeFunctionCall(BPatch_point &point)

bool replaceFunction (BPatch_function &old,

BPatch_function &new)

bool replaceFunctionCall(BPatch_point &point,

BPatch_function &newFunc)

void setInheritSnippets(bool inherit)

void setMutationsActive(bool)

D
E

P
R

E
C

A
T

E
D

BPatch_image *getImage()

void detach(bool cont)

int getPid()

BPatch_exitType terminationStatus()

int getExitCode()

int getExitSignal()

bool loadLibrary(const char *libname, bool reload=false)

~BPatch_thread()

4.5 Class BPatch_binaryEdit

The BPatch_binaryEdit class represents a set of executable files and library files for binary rewrit-

ing. BPatch_binaryEdit inherits from the BPatch_addressSpace class, where most functionality

for binary rewriting is found.

bool writeFile(const char *outFile)

Writes a rewritten BPatch_binaryEdit to disk. The original file opened with this

BPatch_binaryEdit is written to the current working directory with the name outFile. If any

dependent libraries were also opened, and have instrumentation or other modifications,

then those libraries will be written to disk in the current working directory under their

original names.

 Page 34

dyninstAPI

A rewritten dependency library should only be used with the original file that was opened

for rewriting. For example, if the file ‗a.out‘ and its dependent library libfoo.so were

opened for rewriting, and both had instrumentation inserted, then the rewritten libfoo.so

should not be used without the rewritten a.out. To build a rewritten libfoo.so that can

load into any process, libfoo.so should have been the original file opened by
BPatch::openBinary.

This function returns true if it successfully wrote a file, and false otherwise.

4.6 Class BPatch_sourceObj

The BPatch_sourceObj class is the C++ super class for the BPatch_function, BPatch_module, and

BPatch_image classes. It provides a set of common methods for all three classes. In addition, it

can be used to build a ―generic‖ source navigator using the getObjParent and getSourceObj me-

thods to get parents and children of a given level (i.e. the parent of a module is an image, and the

children will be the functions).

enum BPatchErrorLevel { BPatchFatal, BPatchSerious, BPatchWarning, BPatchInfo };

enum BPatch_sourceType {

BPatch_sourceUnknown,

BPatch_sourceProgram,

BPatch_sourceModule,

BPatch_sourceFunction,

BPatch_sourceOuterLoop,

BPatch_sourceLoop,

BPatch_sourceStatement }

BPatch_sourceType getSrcType()

Returns the type of the current source object.

void getSourceObj(BPatch_Vector<BPatch_sourceObj *> &objs)

Returns the children source objects of the current source object. For example, when

called on a BPatch_sourceProgram object this will return objects of type

BPatch_sourceFunction. When called on a BPatch_sourceFunction object it may return

BPatch_sourceOuterLoop and BPatch_sourceStatement objects.

BPatch_sourceObj *getObjParent()

Returns the parent source object of the current source object. The parent of a BPatch_-

image is NULL.

 Page 35

dyninstAPI

BPatch_language getLanguage()

Return the source language of the current BPatch_sourceObject. For programs that are

written in more than one language, BPatch_mixed will be returned. If there is insufficient

information to determine the language, BPatch_unknownLanguage will be returned.

4.7 Class BPatch_function

An object of this class represents a function in the application. A BPatch_image object (see de-

scription below) can be used to retrieve a BPatch_function object representing a given function.

char *getName(char *buffer, int len)

Places the name of the function in buffer, up to len characters. It returns the value of

the buffer parameter.

char *getMangledName(char *buffer, int len)

Places the mangled (internal symbol) name of the function in buffer, up to len charac-

ters. It returns the value of the buffer parameter.

char *getTypedName(char *buffer, int len)

Places the full function prototype (from debug information) of the function in buffer, up

to len characters. It returns the value of the buffer parameter.

bool getNames (BPatch_vector<const char *> &names)

Adds all known names of the function to the vector names, including names generated by

weak symbols. It returns true if one or more names were added, and false otherwise. The

names reside in memory managed by Dyninst.

bool getMangledNames (BPatch_vector<const char *> &names)

As above, but returns all known mangled (internal symbol) names.

bool getTypedNames (BPatch_vector<const char *> &names)

As above, but returns all known function prototypes.

BPatch_Vector<BPatch_localVar *> *getParams()

Returns a vector of BPatch_localVar snippets that refer the parameters of this func-

tion. The position in the vector corresponds to the position in the parameter list (starting

from zero). The returned local variables can be used to check the types of functions, and

be used in snippet expressions.

 Page 36

dyninstAPI

BPatch_type *getReturnType()

Returns the type of the return value for this function.

BPatch_Vector<BPatch_localVar *> *getVars()

Returns a vector of BPatch_localVar that contain the local variables in this function.

These BPatch_localVars can be used as parts of snippets in instrumentation. This

function requires debug information to be present in the mutatee. If Dyninst was unable to

find any local variables this function will return an empty vector. It is up to the user to

free the vector returned by this function.

bool isInstrumentable()

Returns true if the function can be instrumented, and false if it cannot. Various conditions

can cause a function to be uninstrumentable. For example, on some platforms functions

smaller than some specific number of bytes cannot be instrumented.

bool isSharedLib()

This function returns true if the function is defined in a shared library.

const char *libraryName()

Returns the name of the library that contains this function. If the function is not defined in

a library, a NULL will be returned.

Bpatch_module *getModule()

Returns the module that contains this function. Depending on whether the program was

compiled for debugging or the symbol table stripped, this information may not be availa-

ble. This function returns NULL if module information was not found.

char *getModuleName(char *name, int maxLen)

Copies the name of the module that contains this function into the buffer pointed to by

name. Copies at most maxLen characters and returns a pointer to name.

enum BPatch_procedureLocation { BPatch_entry, BPatch_exit,

 BPatch_subroutine, BPatch_allLocations }

const BPatch_Vector<BPatch_point *> *findPoint(const

BPatch_procedureLocation loc)

Returns the BPatch_point or list of BPatch_points associated with the procedure. It is

used to select which type of points associated with the procedure will be returned.

BPatch_entry and BPatch_exit request respectively the entry and exit points of the sub-

routine. BPatch_subroutine returns the list of points where the procedure calls other pro-

cedures. If the lookup fails to locate any points of the requested type, NULL is returned.

 Page 37

dyninstAPI

enum BPatch_opCode { BPatch_opLoad, BPatch_opStore,

BPatch_opPrefetch }

BPatch_Vector<BPatch_point *> *findPoint(const

BPatch_Set<BPatch_opCode>& ops)

Returns the vector of BPatch_points corresponding to the set of machine instruction types

described by the argument. This version is used primarily for memory access instrumenta-

tion. The BPatch_opCode is an enumeration of instruction types that may be requested:

BPatch_opLoad, BPatch_opStore, and BPatch_opPrefetch. Any combination of these

may be requested by passing an appropriate argument set containing the desired types.

The instrumentation points created by this function have additional memory access infor-

mation attached to them. This allows such points to be used for memory access specific

snippets (e.g. effective address). The memory access information attached is described un-

der Memory Access classes in section 4.27.1.

BPatch_localVar *findLocalVar(const char *name)

Searches the function‘s local variable collection for a given name. This returns a pointer

to the local variable if a match is found. This function returns NULL if it fails to find any

variables.

BPatch_Vector<BPatch_variableExpr *> *findVariable(const char *

name)

Returns a set of variables matching name at the scope of this function. If no variables

match in the local scope, then the global scope will be searched for matches. This function

returns NULL if it fails to find any variables.

BPatch_localVar *findLocalParam(const char *name)

Searches the function‘s parameters for a given name. A BPatch_localVar * pointer is re-

turned if a match is found, and NULL is returned otherwise.

void *getBaseAddr()

Returns the starting address of the function in the mutatee‘s address space.

BPatch_flowGraph *getCFG()

Returns the control flow graph for the function, or NULL if this information is not availa-

ble. The BPatch_flowGraph is described in section 4.14.

bool findOverlapping(BPatch_Vector<BPatch_function *> &funcs)

Determines which other functions overlap with the current function (see Section 2). Re-

turns true if other functions overlap the current function; the overlapping functions are

added to the funcs vector. Returns false if no other functions overlap the current function.

 Page 38

dyninstAPI

BPatch_dependenceGraphNode* getDataDependenceGraph

(BPatch_instruction* inst) implemented on SPARC and x86

Returns a handle to the BPatch_dependenceGraphNode object used to navigate

through the partial data dependence graph that includes the instruction inst and its prede-

cessors, or NULL if this information is not available. A data dependence graph reflects the

data dependence relations between instructions. Currently, data dependence graph does

not take aliases into consideration.

BPatch_dependenceGraphNode* getControlDependenceGraph

(BPatch_instruction* inst) implemented on SPARC and x86

Returns a handle to the BPatch_dependenceGraphNode object used to navigate

through the partial control dependence graph that includes the instruction inst and its pre-

decessors, or NULL if this information is not available. A control dependence graph re-

flects the control dependence relations between instructions.

BPatch_dependenceGraphNode* getProgramDependenceGraph

(BPatch_instruction* inst) implemented on SPARC and x86

Returns a handle to the BPatch_dependenceGraphNode object used to navigate

through the partial program dependence graph that includes the instruction inst and its

predecessors, or NULL if this information is not available. A program dependence graph

is merely a union of data and control dependence graphs. Currently, program dependence

graph does not take aliases into consideration.

BPatch_dependenceGraphNode* getSlice(BPatch_instruction* inst)

implemented on SPARC and x86

Returns a handle to the BPatch_dependenceGraphNode object used to navigate

through the intraprocedural slice of the function backwards from instruction inst. Returns

NULL if this information is not available. Currently, slice of a function does not take alias-

es into consideration.

D
E

P
R

E
C

A
T

E
D

These functions are deprecated, and may not be present in future versions of Dyninst.

Consider using BPatch_process::getSourceLines and

BPatch_process::getAddressRanges instead

bool getLineAndFile(int &start, int &end, char *filename,

int &max)

bool getLineToAddr(unsigned short lineNo,

BPatch_Vector<unsigned long>& buffer, bool exactMatch =

true)

 Page 39

dyninstAPI

4.8 Class BPatch_point

An object of this class represents a location in an application‘s code at which the library can insert

instrumentation. A BPatch_image object (see section 0) is used to retrieve a

BPatch_point representing a desired point in the application.

enum BPatch_procedureLocation { BPatch_entry, BPatch_exit,

 BPatch_subroutine, BPatch_address }

BPatch_procedureLocation getPointType()

Returns the type of the point.

BPatch_function *getCalledFunction()

Returns a BPatch_function representing the function that is called at the point. If the

point is not a function call site or the target of the call cannot be determined, then this

function returns NULL.

std::string getCalledFunctionName()

Returns the name of the function called at this point. This method is similar to getCal-

ledFunction()->getName(), except in cases where DyninstAPI is running in bi-

nary rewrit-ing mode and the called function resides in a library or object file that Dynins-

tAPI has not opened. In these cases, Dyninst is able to determine the name of the called

function, but is unable to construct a BPatch_function object.

BPatch_function *getFunction()

Returns a BPatch_function representing the function in which this point is contained.

BPatch_basicBlockLoop *getLoop()

Returns the containing BPatch_basicBlockLoop if this point is part of loop instru-

mentation. Returns NULL otherwise.

void *getAddress()

Returns the address of the first instruction at this point.

bool usesTrap_NP()

Returns true if inserting instrumentation at this point requires using a trap. On the x86 ar-

chitecture, because instructions are of variable size, the instruction at a point may be too

small for the API library to replace it with the normal code sequence used to call instru-

mentation. Also, when instrumentation is placed at points other than subroutine entry, ex-

it, or call points, traps may be used to ensure the instrumentation fits. In this case, the API

replaces the instruction with a single-byte instruction that generates a trap. A trap handler

 Page 40

dyninstAPI

then calls the appropriate instrumentation code. Since this technique is used only on some

platforms, on other platforms this function always returns false.

const BPatch_memoryAccess* getMemoryAccess()

Returns the memory access object associated with this point. MemoryAccess points are

described in section 4.27.1.

const BPatch_Vector<BPatchSnippetHandle *> getCurrentSnippets()

const BPatch_Vector<BPatchSnippetHandle *>

 getCurrentSnippets(BPatch_callWhen when)

Returns the BPatchSnippetHandles for the BPatch_snippets that are associated with the

point. If argument when is BPatch_callBefore, then BPatchSnippetHandles for

snippets installed immediately before this point will be returned. Alternatively, if when is

BPatch_callAfter, then BPatchSnippetHandles for snippets installed immediately af-

ter this point will be returned.

bool getLiveRegisters(BPatch_Vector<BPatch_Register> ®s)

implemented for POWER and AMD64

Fills regs in with the registers that are live before this point (e.g.,

BPatch_callBefore). Currently returns only general purpose registers (GPRs).

bool isDynamic()

This call returns true if this is a dynamic call site (e.g. a call site where the function call is

made via a function pointer).

Instruction::Ptr getInstructionAtPoint() implemented for IA32 and AMD64

On implemented platforms, returns a shared pointer to an InstructionAPI Instruction ob-

ject representing the first machine instruction at this point‘s address. On unimplemented

platforms, returns a NULL shared pointer.

4.9 Class BPatch_image

This class defines a program image (the executable associated with a process). The only way to

get a handle to a BPatch_image is via the BPatch_process member function getImage().

const BPatch_point *createInstPointAtAddr (caddr_t address)

Returns an instrumentation point at the specified address. This function is designed to

permit users who wish to insert instrumentation at an arbitrary place in the code segment.

Instruction addresses can be found using the BPatch_instruction object (see section 4.19).

On x86 platforms, users should take care to ensure that the requested point is not in the

middle of a multi-byte instruction.

 Page 41

dyninstAPI

BPatch_Vector<BPatch_variableExpr *> *getGlobalVariables()

Returns a vector of global variables that are defined in this image.

BPatch_process *getProcess()

Returns the BPatch_process associated with this image.

char *getProgramFileName(char *name, unsigned int len)

Fills provided buffer name with the program‘s file name up to len characters. The file-

name may include path information.

bool getSourceObj(BPatch_Vector<BPatch_sourceObj *> &sources)

Fills the parameter vector, sources, with the source objects (see section 4.5) that be-

long to this image. If there are no source objects, the function returns false. Otherwise, it

returns true.

const BPatch_Vector<BPatch_function *> *getProcedures(

bool incUninstrumentable = false)

Returns a table of the functions in the image.

If the incUninstrumentable flag is set, the returned table of procedures will include

uninstrumentable functions. The default behavior is to omit these functions.

const BPatch_Vector<BPatch_module *> *getModules()

Returns a vector of the modules in the image.

bool getVariables(BPatch_Vector<BPatch_variableExpr *> &vars)

Fills the parameter vector, vars, with the global variables defined in this image. If there

are no variable, the function returns false. Otherwise, it returns true.

BPatch_Vector<BPatch_function*> *findFunction(

const char *name,

BPatch_Vector<BPatch_function*> &funcs,

bool showError = true,

bool regex_case_sensitive = true,

bool incUninstrumentable = false,

bool dont_use_regex = false)

Returns a vector of BPatch_function‘s for the function name defined, or NULL if

the function does not exist. If name contains a POSIX-extended regular expression, and

dont_use_regex is false, a regex search will be performed on function names and

matching Bpatch_functions returned. If showError is true, then dyninst will report and

error via the BPatch::registerErrorCallback if no function is found.

 Page 42

dyninstAPI

If the incUninstrumentable flag is set, the returned table of procedures will include

uninstrumentable functions. The default behavior is to omit these functions.

[NOTE: if name is not found to match any demangled function names in the module, the

search is repeated as if name is a mangled function name. If this second search succeeds,

functions with mangled names matching name are returned instead]

BPatch_Vector<BPatch_function*> *findFunction(

BPatch_Vector<BPatch_function*> &funcs,

BPatchFunctionNameSieve bpsieve,

void *sieve_data = NULL,

int showError = 0,

bool incUninstrumentable = false)

Return a vector of BPatch_functions according to the generalized user-specified fil-

ter function bpsieve. This permits users to easily build sets of functions according to

their own specific criteria. Internally, for each BPatch_function f in the image, this

method makes a call to bpsieve(f.getName(), sieve_data). The user-

specified function bpsieve is responsible for taking the name argument and determining

if it belongs in the output vector, possibly by using extra user-provided information stored

in sieve_data. If the name argument matches the desired criteria, bpsieve should

return true. If it does not, bpsieve should return false.

The function bpsieve should be defined in accordance with the typedef:

 bool (*BPatchFunctionNameSieve) (const char *name, void* sieve_data);

If the incUninstrumentable flag is set, the returned table of procedures will include

uninstrumentable functions. The default behavior is to omit these functions.

bool findFunction(Dyninst::Address addr,

BPatch_Vector<BPatch_function *> &funcs)

Find all functions that have code at the given address, addr. Dyninst supports functions

that share code, so this method may return more than one BPatch_function. Func-

tions are returned via the funcs output parameter. This function returns true if it finds

any functions, false otherwise.

const BPatch_variableExpr *findVariable(const char *name)

const BPatch_variableExpr *findVariable(const BPatch_point

&scope,

const char *name) second form of this method is not implemented on NT.

Performs a lookup and returns a handle to the named variable. The first form of the func-

tion looks up only variables of global scope, and the second form uses the passed

 Page 43

dyninstAPI

BPatch_point as the scope of the variable. The returned BPatch_variableExpr can be used

to create references (uses) of the variable in subsequent snippets. The scoping rules used

will be those of the source language. If the image was not compiled with debugging sym-

bols, this function will fail even if the variable is defined in the passed scope.

const BPatch_type *findType(const char *name)

Performs a lookup and returns a handle to the named type. The handle can be used as an

argument to malloc to create new variables of the corresponding type.

BPatch_module *findModule(const char *name,

bool substring_match = false)

Returns a module matching name if present in the image. If the match fails, NULL is re-

turned. If substring_match is set, the first moduled that has name as a substring of

its name is returned (e.g. to find ―libpthread.so.1‖, search for ―libpthread‖ with sub-

string_match set to true).

const char *getUniqueString() not yet implemented

Performs a lookup and returns a unique string for this image. Returns a string the can be

compared (via strcmp) to indicate if two images refer to the same underlying object file

(i.e., executable or library). The contents of the string is implementation specific and de-

fined to have no semantic meaning.

bool getSourceLines(unsigned long addr,

 std::vector<std::pair<const char *, unsigned int> > & lines)

Given an address, addr, this function returns a vector of pairs of filenames and line num-

bers at that address. This function is an alias for

BPatch_process::getSourceLines (see section 4.3).

bool getAddressRanges(char * fileName, unsigned int lineNo,

std::vector< std::pair< unsigned long, unsigned long > > &

ranges)

Given a file name and line number, fileName and lineNo, this function returns a list

of address ranges that this source line was compiled into. This function is an alias for

BPatch_process::getAddressRanges (see section 4.3).

bool parseNewFunctions(BPatch_Vector<BPatch_module*> &newModules,

const BPatch_Vector<Dyninst::Address> &funcEntryAddrs)

This function takes as input a list of function entry points indicated by the funcEn-

tryAddrs vector, which are used to seed parsing in whatever modules they are found. All

affected modules are placed in the newModules vector, which includes any existing mod-

ules in which new functions are found, as well as modules corresponding to new regions

of the binary, for which new BPatch_modules are created. The return value is true in the

event that at least one previously unknown function was identified, and false otherwise.

 Page 44

dyninstAPI

D
E

P
R

E
C

A
T

E
D

bool getLineToAddr (const char* fileName,unsigned short

lineNo, BPatch_Vector<unsigned long>& buffer, bool

exactMatch = true)

This function is deprecated. Consider using getAddressRanges() instead.

4.10 Class BPatch_module

An object of this class represents a program module, which is part of a program‘s executable im-

age. A BPatch_module represents a source file in an executable or a shared library. Dyninst au-

tomatically creates a module called DEFAULT_MODULE in each exectuable to hold any objects

that it cannot match to a source file. BPatch_module objects are obtained by calling the

BPatch_image member function getModules().

BPatch_Vector<BPatch_function*> *findFunction(

const char *name,

BPatch_Vector<BPatch_function*> &funcs,

bool notify_on_failure = true,

bool regex_case_sensitive = true,

bool incUninstrumentable = false)

Returns a vector of BPatch_function‘s for the function name defined, or NULL if

the function does not exist. If name contains a POSIX-extended regular expression, a re-

gex search will be performed on function names, and matching BPatch_functions returned.

[NOTE: the BPatch_Vector argument funcs must be declared fully by the user before

calling this function – passing in an uninitialized reference will result in undefined beha-

vior.]

If the incUninstrumentable flag is set, the returned table of procedures will include

uninstrumentable functions. The default behavior is to omit these functions.

[NOTE: if name is not found to match any demangled function names in the module, the

search is repeated as if name is a mangled function name. If this second search succeeds,

functions with mangled names matching name are returned instead.]

BPatch_function *findFunctionByMangled (

const char *mangled_name,

bool incUninstrumentable = false)

Return a BPatch_function for the C++-mangled function name defined in the mod-

ule corresponding to the invoking BPatch_module, or NULL if it does not define the func-

tion.

 Page 45

dyninstAPI

If the incUninstrumentable flag is set, the returned table of procedures will include

uninstrumentable functions. The default behavior is to omit these functions.

size_t getAddressWidth()

Returns the size (in bytes) of a pointer in this module. On 32-bit systems this function will

return 4, and on 64-bit systems this function will return 8.

bool getSourceLines(unsigned long addr, std::vector< std::pair<

const char *, unsigned int > > & lines)

This function returns the line information associated with the mutatee address, addr. The

vector lines contains pairs of filenames and line numbers that are associated with addr.

In many cases only one filename and line number is associated with an address, but certain

compiler optimizations may lead to multiple filenames and lines at an address. This in-

formation is only available if the mutatee was compiled with debug information.

This function may be more efficient than the BPatch_process version of this function.

Calling BPatch_process::getSourceLines will cause Dyninst to parse line in-

formation for all modules in a process. If BPatch_module::getSourceLines is

called then only the debug information in this module will be parsed.

This function returns true if it was able to find any line information at addr, and

false otherwise.

bool getAddressRanges(char * fileName, unsigned int lineNo,

std::vector< std::pair< unsigned long, unsigned long > > &

ranges)

Given a filename and line number, fileName and lineNo, this function this function

returns the ranges of mutatee addresses that implement the code range in the output para-

meter ranges. In many cases a source code line will only have one address range im-

plementing it, however compiler optimizations may turn this into multiple, disjoint address

ranges. This information is only available if the mutatee was compiled with debug infor-

mation.

This function may be more efficient than the BPatch_process version of this function.

Calling BPatch_process::getAddressRange will cause Dyninst to parse line in-

formation for all modules in a process. If BPatch_module::getAddressRange is

called then only the debug information in this module will be parsed.

This function returns true if it was able to find any line information, false otherwise.

const BPatch_Vector<BPatch_function *> *getProcedures()

Returns a vector of the functions in the module.

 Page 46

dyninstAPI

char *getName(char *buffer, int len)

This function copies the name of the module into a buffer, up to len characters. It returns

the value of the buffer parameter.

char *getFullName(char *buffer, int length)

Fills buffer with the full path name of a module, up to length characters when this in-

formation is available.

unsigned long getSize()

Returns the size of the module. The size is defined as the end of the last function minus

the start of the first function.

bool getVariables(BPatch_Vector<BPatch_variableExpr *> &vars)

Fills the vector, vars, with the global variables that are specified in this module. Returns

false if no results are found and true, otherwise.

void *wgetBaseAddr()

Returns the base address of the module. This address is defined as the start of the first

function in the module.

bool isSharedLib()

This function returns true if the module is part of a shared library.

BpatchSnippetHandle* insertInitCallback(Bpatch_snippet& callback)

This function inserts the snippet callback at the entry point of this module‘s init

function (creating a new init function/section if necessary).

BpatchSnippetHandle* insertFiniCallback(Bpatch_snippet& callback)

This function inserts the snippet callback at the exit point of this module‘s fini func-

tion (creating a new fini function/section if necessary).

const char *getUniqueString()

Performs a lookup and returns a unique string for this image. Returns a string the can be

compared (via strcmp) to indicate if two images refer to the same underlying object file

(i.e., executable or library). The contents of the string is implementation specific and de-

fined to have no semantic meaning.

These functions are deprecated. Consider using getSourceLines instead.

 Page 47

dyninstAPI

D
E

P
R

E
C

A
T

E
D

bool getLineToAddr (const char* fileName,unsigned short

lineNo, BPatch_Vector<unsigned long>& buffer, bool

exactMatch = true)

bool getLineToAddr (unsigned short lineNo,

BPatch_Vector<unsigned long>& buffer, bool exactMatch

= true)

4.11 Class BPatch_snippet

A snippet is an abstract representation of code to insert into a program. Snippets are defined by

creating a new instance of the correct subclass of a snippet. For example, to create a snippet to

call a function, create a new instance of the class BPatch_funcCallExpr. Creating a snippet

does not result in code being inserted into an application. Code is generated when a request is

made to insert a snippet at a specific point in a program. Sub-snippets may be shared by different

snippets (i.e, a handle to a snippet may be passed as an argument to create two different snippets),

but whether the generated code is shared (or replicated) between two snippets is implementation

dependent.

const BPatch_type *getType()

Returns the type of the snippet. The BPatch_type system is described in section 4.12.

float getCost()

Returns an estimate of the number of seconds it would take to execute the snippet. The

problems with accurately estimating the cost of executing code are numerous and out of

the scope of this document[2]. It is important to realize that the returned cost value is, at

best, an estimate.

The rest of the classes are derived classes of the class BPatch_snippet.

BPatch_actualAddressExpr()

This snippet results in an expression that evaluates to the actual address of the instrumen-

tation. To access the original address where instrumentation was inserted, use

BPatch_originalAddressExpr(). Note that this actual address is highly dependent on a

number of internal variables and has no relation to the original address.

BPatch_arithExpr(BPatch_binOp op, const BPatch_snippet &lOperand,

const BPatch_snippet &rOperand)

 Performs the required binary operation. The available binary operators are:

 Page 48

dyninstAPI

Operator Description

BPatch_assign assign the value of rOperand to lOperand

BPatch_plus add lOperand and rOperand

BPatch_minus subtract rOperand from lOperand

BPatch_divide divide rOperand by lOperand

BPatch_times multiply rOperand by lOperand

BPatch_ref Array reference of the form lOperand[rOperand]

BPatch_seq Define a sequence of two expressions (similar to comma in C)

BPatch_arithExpr(BPatch_unOp, const BPatch_snippet &operand)

Defines a snippet consisting of a unary operator. The unary operators are:

Operator Description

BPatch_negate Returns the negation of an integer

BPatch_addr Returns a pointer to a BPatch_variableExpr

BPatch_deref Dereferences a pointer

BPatch_boolExpr(BPatch_relOp op, const BPatch_snippet &lOperand,

const BPatch_snippet &rOperand)

Defines a relational snippet. The available operators are:

Operator Function

BPatch_lt Return lOperand < rOperand

BPatch_eq Return lOperand == rOperand

BPatch_gt Return lOperand > rOperand

BPatch_le Return lOperand <= rOperand

BPatch_ne Return lOperand != rOperand

BPatch_ge Return lOperand >= rOperand

BPatch_and Return lOperand && rOperand (Boolean and)

BPatch_or Return lOperand || rOperand (Boolean or)

The type of the returned snippet is boolean, and the operands are type checked.

BPatch_breakPointExpr()

Defines a snippet that stops a process when executed by it. The stop can be detected us-

ing the isStopped member function of BPatch_process, and the program‘s execution

can be resumed by calling the continueExecution member function of

BPatch_process.

BPatch_bytesAccessedExpr ()

This expression returns the number of bytes accessed by a memory operation. For most

load/store architecture machines it is a constant expression returning the number of bytes

for the particular style of load or store. This snippet is only valid at a memory operation

instrumentation point.

 Page 49

dyninstAPI

BPatch_constExpr(int value)

BPatch_constExpr(long value)

BPatch_constExpr(const char *value)

BPatch_constExpr(const void *value)

Defines a constant snippet of the appropriate type. The char * form of the constructor

creates a constant string; the null-terminated string beginning at the location pointed to by

the parameter is copied into the application‘s address space, and the BPatch_constExpr

that is created refers to the location to which the string was copied.

BPatch_dynamicTargetExpr()

This snippet calculates the target of a control flow instruction with a dynamically deter-

mined target. It can handle dynamic calls, jumps, and return statements.

BPatch_effectiveAddressesExpr ()

Defines an expression that contains the effective address of a memory operation. For a

multi-word memory operation (i.e. more than the ―natural‖ operation size of the machine),

the effective address is the base address of the operation.

BPatch_funcCallExpr(const BPatch_function& func,

const BPatch_Vector<BPatch_snippet*> &args)

Defines a call to a function, the passed function must be valid for the current code region.

Args is a list of arguments to pass to the function; the maximum number of arguments va-

ries by platform and is summarized below. If type checking is enabled, the types of the

passed arguments are checked against the function to be called (Availability of type check-

ing depends on the source language of the application and program being compiled for de-

bugging).

Platform Maximum number of arguments

Alpha 5 arguments

AMD64/EMT-

64

6 arguments

IA-32 No limit

IA-64 No limit

POWER 8 arguments

SPARC 5 arguments

BPatch_funcJumpExpr (const BPatch_function &func)

Defines a snippet that represents a non-returning jump to function func. Func must

take the same number and type of arguments as the function in which this snippet is in-

serted; these arguments will be passed to func. Func must also have the same return

 Page 50

dyninstAPI

type. This snippet can be used to change the implementation of a function, or conditionally

change it if the snippet is part of an if-statement.

When func returns, control flows as a return from the function in which this snippet is in-

serted.

class BPatch_ifExpr(const BPatch_boolExpr &conditional,

const BPatch_snippet &tClause,

const BPatch_snippet &fClause)

class BPatch_ifExpr(const BPatch_boolExpr &conditional,

const BPatch_snippet &tClause)

This constructor creates an if statement. The first argument, conditional, should be a

Boolean expression that will be evaluated to decide which clause should be executed. The

second argument, tClause, is the snippet to execute if the conditional evaluates to true.

The third argument, fClause, is the snippet to execute if the conditional evaluates to

false. This third argument is optional. Else-if statements, can be constructed by making the

fClause of an if statement another if statement.

BPatch_insnExpr(BPatch_instruction *insn) implemented on x86-64

This constructor creates a snippet that allows the user to mimic the effect of an existing in-

struction. In effect, the snippet ―wraps‖ the instruction and provides a handle to particular

components of instruction behavior. This is currently implemented for memory operations,

and provides two override methods: overrideLoadAddress and overrideStoreAddress.

Both methods take a BPatch_snippet as an argument. Unlike other snippets, this snippet

should be installed via a call to BPatch_process:replaceCode (to replace the original in-

struction). For example:

// Assume that access is of type BPatch_memoryAccess, as

// provided by a call to BPatch_point->getMemoryAccess. A

// BPatch_memoryAccess is a child of BPatch_instruction, and

// is a valid source of a BPatch_insnExpr.

BPatch_insnExpr insn(access);

// This example will modify a store by increasing the target

// address by 16.

BPatch_arithExpr newStoreAddr(BPatch_plus,

 BPatch_effectiveAddressExpr(),

 BPatch_constExpr(16));

// And now override the original store address

insn.overrideStoreAddress(newStoreAddr)

// We now replace the original instruction with the new one.

// Point is a BPatch_point corresponding to the desired location, and

// process is a BPatch_process.

process.replaceCode(point, insn);

 Page 51

dyninstAPI

BPatch_originalAddressExpr()

This snippet results in an expression that evaluates to the original address of the point

where the snippet was inserted. To access the actual address where instrumentation is ex-

ecuted, use BPatch_actualAddressExpr().

BPatch_paramExpr(int paramNum)

This constructor creates an expression whose value is a parameter being passed to a func-

tion. ParamNum specifies the number of the parameter to return, starting at 0. Since

the contents of parameters may change during subroutine execution, this snippet type is

only valid at points that are entries to subroutines, or when inserted at a call point with the

when parameter set to BPatch_callBefore.

BPatch_registerExpr(BPatch_register reg)

This snippet results in an expression whose value is the value in the register at the point of

instrumentation.

BPatch_retExpr()

This snippet results in an expression that evaluates to the return value of a subroutine.

This snippet type is only valid at BPatch_exit points, or at a call point with the when

parameter set to BPatch_callAfter.

BPatch_sequence(const BPatch_Vector<BPatch_snippet*> &items)

Defines a sequence of snippets. The passed snippets will be executed in the order in which

they appear in the list.

BPatch_stopThreadExpr(const BPatchStopThreadCallback &callback,

const BPatch_snippet &calculation)

This snippet evaluates the calculation snippet and stops the thread that executes it. The re-

sult of the calculation snippet is passed up to the mutator, which triggers the callback in

the user program. This constructor registers the callback to the stopThreadExpr instance.

The same callback may be used for different stopThreadExpr instances. See the definition

of BPatchStopThreadCallback in Section 4.1.1.

BPatch_threadIndex()

This snippet returns an integer expression that contains the thread index of the thread that

is executing this snippet. The thread index is the same value that is returned on the muta-

tor side by BPatch_thread::getBPatchID.

 Page 52

dyninstAPI

BPatch_tidExpr(const BPatch_process *proc)

This snippet results in an integer expression that contains the tid of the thread that is ex-

ecuting this snippet. This can be used to record the threadId, or to filter instrumentation

so that it only executes for a specific thread.

BPatch_nullExpr()

Defines a null snippet. This snippet contains no executable statements; however it is a use-

ful place holder for the destination of a goto. For example, using goto and a nullExpr, a

while loop can be constructed. For example, to construct the while loop:

while (i < 3) {

 i++;

}

The following snippets should be created:

BPatch_nullExpr loopDone;

// if (i > 3) goto loopDone

// First definition is the boolean expression.

// The second, generates the goto and the if statement

BPatch_boolExpr testFlag(BPatch_gt, *intI, BPatch_constExpr(3));

BPatch_ifExpr test(testFlag, BPatch_gotoExpr(loopDone));

// i++

BPatch_arithExpr addOne(BPatch_assign, *intI,

 BPatch_arithExpr(BPatch_plus, *intI, BPatch_constExpr(1)));

BPatch_Vector<BPatch_snippet *> statements;

statements.push_back(&test);

statements.push_back(&addOne);

statements.push_back(&loopDone);

BPatch_sequence whileLoop(statements);

4.12 Class BPatch_type

The class BPatch_type is used to describe the types of variables, parameters, return values, and

functions. Instances of the class can represent language predefined types (e.g. int, float), mutatee

defined types (e.g., structures compiled into the mutatee application), or mutator defined types

(created using the create* methods of the BPatch class).

BPatch_Vector<BPatch_field *> *getComponents()

Returns a vector of the types of the fields in a BPatch_struct or BPatch_union. If this me-

thod is invoked on a type whose BPatch_dataClass is not BPatch_struct or

BPatch_union, NULL is returned.

BPatch_Vector<BPatch_cblock *> *getCblocks()

Returns the common block classes for the type. The methods of the BPatch_cblock can

be used to access information about the member of a common block. Since the same

 Page 53

dyninstAPI

named (or anonymous) common block can be defined with different members in different

functions, a given common block may have multiple definitions. The vector returned by

this function contains one instance of BPatch_cblock for each unique definition of the

common block. If this method is invoked on a type whose BPatch_dataClass is not

BPatch_common, a NULL will be returned.

BPatch_type *getConstituentType()

Returns the type of the base type. For a BPatch_array this is the type of each ele-

ment, for a BPatch_pointer this is the type of the object the pointer points to. For

BPatch_typedef types, this is the original type. For all other types, NULL is re-

turned.

enum BPatch_dataClass {

 BPatch_dataScalar, BPatch_dataEnumerated,

 BPatch_dataTypeClass, BPatch_dataStructure,

 BPatch_dataUnion, BPatch_dataArray,

 BPatch_dataPointer, BPatch_dataReference,

 BPatch_dataFunction, BPatch_dataTypeAttrib,

 BPatch_dataUnknownType, BPatch_dataMethod,

 BPatch_dataCommon, BPatch_dataPrimitive,

 BPatch_dataTypeNumber, BPatch_dataTypeDefine,

 BPatch_dataNullType }

BPatch_dataClass getDataClass()

Returns one of the above data classes for this type.

const char *getLow()

const char *getHigh()

Returns the string representation of the upper and lower bound of an array. Calling these

two methods on a non-array types produces an undefined result.

const char *getName()

Return the name of the type.

bool isCompatible(const BPatch_type &otype)

Returns true if the passed type is type compatible with this type. The rules for type com-

patibility are given in Section 4.26.2. If the two types are not type compatible, the error

reporting callback function will be invoked one or more times with additional information

about why the types are not compatible.

4.13 Class BPatch_variableExpr

The BPatch_variableExpr class is another class derived from BPatch_snippet. It

represents a variable or area of memory in a process‘s address space. A

 Page 54

dyninstAPI

BPatch_variableExpr can be obtained from a BPatch_process using the malloc

member function, or from a BPatch_image using the findVariable member function.

Some BPatch_variableExpr have an associated BPatch_type, which can be accessed by

functions inherited from BPatch_snippet. BPatch_variableExpr objects will have an

associated BPatch_type if they originate from binaries with sufficient debug information that

describes types, or if they were provided with a BPatch_type when created by Dyninst.

BPatch_variableExpr provides several member functions not provided by other types of snippets:

bool readValue(void *dst)

void readValue(void *dst, int size)

Reads the value of the variable in an application‘s address space that is represented by this

BPatch_variableExpr. The dst parameter is assumed to point to a buffer large enough to

hold a value of the variable‘s type. If the size parameter is supplied, then the number of

bytes it specifies will be read. For the first version of this method, if the size of the variable

is unknown (i.e., no type information), no data is copied and the method returns false.

bool writeValue(void *src)

void writeValue(void *src, int size)

Changes the value of the variable in an application‘s address space that is represented by

this BPatch_variableExpr. The src parameter should point to a value of the vari-

able‘s type. If the size parameter is supplied, then the number of bytes it specifies will be

written. For the first version of this method, if the size of the variable is unknown (i.e., no

type information), no data is copied and the method returns false.

void *getBaseAddr()

Returns the base address of the variable. This is designed to let users who wish to access

elements of arrays or fields in structures do so. It can also be used to obtain the address of

a variable to pass a point to that variable as a parameter to a procedure call. It is similar

to the ampersand (&) operator in C.

BPatch_Vector<BPatch_variableExpr *> getComponents()

Returns a vector of the components of a struct, or union. Each element of the vector is

one field of the composite type, and contains a variable expression for accessing it.

4.14 Class BPatch_flowGraph

The BPatch_flowGraph class represents the control flow graph of a function. It provides me-

thods for discovering the basic blocks and loops within the function (using which a caller can na-

vigate the graph). A BPatch_flowGraph object can be obtained by calling the getCFG me-

thod of a BPatch_function object.

 Page 55

dyninstAPI

bool containsDynamicCallsites()

Returns true if the control flow graph contains any dynamic callsites (e.g, calls through a

function pointer).

void getAllBasicBlocks(BPatch_Set<BPatch_basicBlock*>&)

Fills the given set with pointers to all basic blocks in the control flow graph.

BPatch_basicBlock is described in section 4.17.

void getEntryBasicBlock(BPatch_Vector<BPatch_basicBlock*>&)

Fills the given vector with pointers to all basic blocks that are entry points to the function.

BPatch_basicBlock is described in section 4.17.

void getExitBasicBlock(BPatch_Vector<BPatch_basicBlock*>&)

Fills the given vector with pointers to all basic blocks that are exit points of the function.

BPatch_basicBlock is described in section 4.17.

void getLoops(BPatch_Vector<BPatch_basicBlockLoop*>&)

Fills the given vector with a list of all natural(single entry) loops in the control flow graph.

void getOuterLoops(BPatch_Vector<BPatch_basicBlockLoop*>&)

Fills the given vector with a list of all natural(single entry) outer loops in the control flow

graph.

BPatch_loopTreeNode *getLoopTree()

Returns the root node of the tree of loops in this flow graph.

enum BPatch_procedureLocation { BPatch_locLoopEntry,

BPatch_locLoopExit, BPatch_locLoopStartIter,

BPatch_locLoopEndIter }

BPatch_Vector<BPatch_point*> *findLoopInstPoints(const

BPatch_procedureLocation loc, BPatch_basicBlockLoop *loop);

Finds instrumentation points for the given loop that correspond to the given location: loop

entry, loop exit, the start of a loop iteration and the end of a loop iteration.

BPatch_locLoopEntry and BPatch_locLoopExit instrumentation points re-

spectively execute once before the first iteration of a loop and after the last iteration.

BPatch_locLoopStartIter and BPatch_locLoopEndIter respectively ex-

ecute at the beginning and end of each loop iteration.

 [NOTE: Dyninst is not always able to generate a correct flowgraph in the presence of indirect

jumps. If a function has a case statement or indirect jump instructions, the targets of the jumps

 Page 56

dyninstAPI

are found by searching instruction patterns (peep-hole). The instruction patterns generated are

compiler specific and the control flow graph analysis include only the ones we have seen. During

the control flow graph generation, if a pattern that is not handled is used for case statement or

multi-jump instructions in the function address space, the generated control flow graph may not

be complete.]

4.15 Class BPatch_edge

The BPatch_edge class represents a control flow edge in a BPatch_flowGraph.

BPatch_point *getPoint()

Returns an instrumentation point for this edge. This point can be passed to

BPatch_process::insertSnippet to instrument the edge.

enum BPatch_edgeType { CondJumpTaken, CondJumpNottaken,

 UncondJump, NonJump }

BPatch_edgeType getType()

Returns a type describing this edge. A CondJumpTaken edge is found after a conditional

branch, along the edge that is taken when the condition is true. A CondJumpNottaken

edge follows the path when the condition is not taken. UncondJump is used along an

edge that flows out of an uncondition branch that is always taken. NonJump is an edge

that flows out of a basic block that does not end in a jump, but falls through into the next

basic block.

BPatch_basicBlock *getSource()

 Returns the source BPatch_basicBlock that this edge flows from.

BPatch_basicBlock *getTarget()

 Returns the target BPatch_basicBlock that this edge flows to.

4.16 Class BPatch_loopTreeNode

The BPatch_loopTreeNode class provides a tree interface to a collection of instances of class

BPatch_basicBlockLoop contained in a BPatch_flowGraph. The structure of

the tree follows the nesting relationship of the loops in a function‘s flow graph. Each

BPatch_loopTreeNode contains a pointer to a loop (represented by

BPatch_basicBlockLoop), and a set of sub-loops (represented by other

 Page 57

dyninstAPI

BPatch_loopTreeNode objects). The root BPatch_loopTreeNode instance has a null

loop member since a function may contain multiple outer loops, the outer loops are contained in

the root instance‘s vector of children.

Each instance of BPatch_loopTreeNode is given a name which indicates its position in the

hierarchy of loops. The name of each root loop takes the form of ―loop_x‖, where x is an in-

teger from 1 to n, where n is the number of outer loops in the function. Each sub-loop has the

name of its parent, prepended by a ―_y‖, where y is 1 to m, where m is the number of sub-loops

under the outer loop. For example, consider the following C function:

 void foo() {

 int x, y, z, i;

 for (x=0; x<10; x++) {

 for (y = 0; y<10; y++)

 ...

 for (z = 0; z<10; z++)

 ...

 }

 for (i = 0; i<10; i++) {

 ...

 }

 }

The foo function will have a root BPatch_loopTreeNode, containing a NULL loop entry

and two BPatch_loopTreeNode children representing the functions outer loops. These

children would have names loop_1 and loop_2, respecively representing the x and i loops.

loop_2 has no children. Loop_1 has two child BPatch_loopTreeNode objects, named

loop_1_1 and loop_1_2, respectively representing the y and z loops.

BPatch_basicBlockLoop *loop

A node in the tree that represents a single BPatch_basicBlockLoop instance.

BPatch_Vector<BPatch_loopTreeNode *> children

The tree nodes for the loops nested under this loop.

const char *name()

Return a name for this loop that indicates its position in the hierarchy of loops.

bool getCallees(BPatch_Vector<BPatch_function *> &v,

BPatch_process *p)

This function fills the vector v with the list of functions that are called by this loop.

const char *getCalleeName(unsigned int i)

This function return the name of the i
th
 function called in the loop‘s body.

 Page 58

dyninstAPI

unsigned int numCallees()

Returns the number of callees contained in this loop‘s body.

BPatch_basicBlockLoop *findLoop(const char *name)

Finds the loop object for the given canonical loop name.

4.17 Class BPatch_basicBlock

The BPatch_basicBlock class represents a basic block in the application being instrumented. Ob-

jects of this class representing the blocks within a function can be obtained using the

BPatch_flowGraph object for the function. BPatch_basicBlock includes methods for

navigating through the control flow graph of the containing function.

void getSources(BPatch_Vector<BPatch_basicBlock*>&)

Fills the given vector with the list of predecessors for this basic block (i.e, basic blocks

that have an outgoing edge in the control flow graph leading to this block).

void getTargets(BPatch_Vector<BPatch_basicBlock*>&)

Fills the given vector with the list of successors for this basic block (i.e, basic blocks that

are the destinations of outgoing edges from this block in the control flow graph).

bool dominates(BPatch_basicBlock*)

This function returns true if the argument is pre-dominated in the control flow graph by

this block, and false if it is not.

BPatch_basicBlock* getImmediateDominator()

Returns the basic block that immediately pre-dominates this block in the control flow

graph.

void getImmediateDominates(BPatch_Vector<BPatch_basicBlock*>&)

Fills the given vector with a list of pointers to the basic blocks that are immediately domi-

nated by this basic block in the control flow graph.

void getAllDominates(BPatch_Set<BPatch_basicBlock*>&)

Fills the given set with a list of pointers to all basic blocks that are dominated by this basic

block in the control flow graph.

void getSourceBlocks(BPatch_Vector<BPatch_sourceBlock*>&)

Fills the given vector with a list of source blocks contributing to this basic block‘s instruc-

tion sequence.

 Page 59

dyninstAPI

int getBlockNumber()

Returns the ID number of this basic block. The ID numbers are consecutive from 0 to n-1,

where n is the number of basic blocks in the flow graph to which this basic block belongs.

BPatch_Vector<BPatch_instruction *> getInstructions()

Returns a vector of the instructions that are contained within this basic block.

bool getInstructions(std::vector<Instruction>&) implemented for IA32 and

AMD64

Fills the given vector with InstructionAPI Instruction objects representing the instructions

in this basic block, and returns true if successful. See the InstructionAPI Programmer‘s

Guide for details.

void getIncomingEdges(BPatch_Vector<BPatch_edge *> &inc)

Fills the list inc with all of the control flow edges that point to this basic block.

BPatch_Vector<BPatch_point *> findPoint(const

BPatch_Set<BPatch_opCode> &ops)

Finds all points in the basic block that match the given operation.

void getOutgoingEdges(BPatch_Vector<BPatch_edge *> &out)

Fills the list out with all of the control flow edges that leave this basic block.

unsigned long getStartAddress()

This function returns the starting address of the basic block. The address returned is an

absolute address.

unsigned long getEndAddress()

This function returns the end address of the basic block. The address returned is an abso-

lute address.

unsigned long getLastInsnAddress()

Returns the address of the last instruction in a basic block.

bool isEntryBlock()

This function returns true if this basic block is an entry block into a function.

bool isExitBlock()

This function returns true if this basic block is an exit block of a function.

unsigned size()

Returns the size of a basic block. The size is defined as the difference between the end

address and the start address of the basic block.

 Page 60

dyninstAPI

4.18 Class BPatch_basicBlockLoop

An object of this class represents a loop in the code of the application being instrumented.

bool containsAddress(unsigned long addr)

Returns true if addr is contained within any of the basic blocks that compose this loop,

excluding the block of any of its sub-loops.

bool containsAddressInclusive(unsigned long addr)

Returns true if addr is contained within any of the basic blocks that compose this loop,

or in the blocks of any of its sub-loops.

BPatch_edge *getBackEdge()

Returns a pointer to the back edge that defines this natural loop.

void getContainedLoops(BPatch_Vector<BPatch_basicBlockLoop*>&)

Fills the given vector with a list of the loops nested within this loop.

BPatch_flowGraph *getFlowGraph()

Returns a pointer to the control flow graph that contains this loop.

BPatch_basicBlock *getLoopHead()

Returns a pointer to the basic block that is at the head of this loop.

void getOuterLoops(BPatch_Vector<BPatch_basicBlockLoop*>&)

Fills the given vector with a list of the outer loops nested within this loop.

void getLoopBasicBlocks(BPatch_Vector<BPatch_basicBlock*>&)

Fills the given vector with a list of all basic blocks that are part of this loop.

void getLoopBasicBlocksExclusive(

BPatch_Vector<BPatch_basicBlock*>&)

Fills the given vector with a list of all basic blocks that are part of this loop but not its sub-

loops.

BPatch_basicBlock* getLoopHead()

Returns the basic block at the head of this loop.

 Page 61

dyninstAPI

bool hasAncestor(BPatch_basicBlockLoop*)

Returns true if this loop is nested within the given loop (the given loop is one of its ances-

tors in the tree of loops).

bool hasBlock(BPatch_basicBlock *b)

Returns true if this loop or any of its sub-loops contain the basic block b, false otherwise.

bool hasBlockExclusive(BPatch_basicBlock *b)

Returns true if this loop, excluding its sub-loops, contain the basic block b, false other-

wise.

4.19 Class BPatch_instruction

A BPatch_instruction represents a single machine instruction in the BPatch_flowGraph.

BPatch_instructions can be retrieved with the

BPatch_basicBlock::getInstructions call.

void *getAddress()

 This function returns the starting address of this instruction. This function returns an

 address in the mutatee, not in the mutator.

BPatch_point *getInstPoint()

 This function returns an BPatch_point at this instruction. This point can be passed to

 BPatch_process::insertSnippet to instrument this instruction.

4.20 Class BPatch_register

A BPatch_register represents a single register of the mutatee. The list of

BPatch_registers can be retrieved with the BPatch_process::getRegisters call.

std::string *name()

 This function returns the canonical name of the register.

4.21 Class BPatch_sourceBlock

An object of this class represents a source code level block. Each source block objects consists of

a source file and a set of source lines in that source file. This class is used to fill source line infor-

mation for each basic block in the control flow graph. For each basic block in the control flow

graph there is one or more source block object(s) that correspond to the source files and their

lines contributing to the instruction sequence of the basic block.

 Page 62

dyninstAPI

const char* getSourceFile()

Returns a pointer to the name of the source file in which this source block occurs.

void getSourceLines(BPatch_Vector<unsigned short>&)

Fills the given vector with a list of the lines contained within this source block.

4.22 Class BPatch_cblock

This class is used to access information about a common block.

BPatch_Vector<BPatch_field *> *getComponents()

Returns a vector containing the individual variables of the common block.

BPatch_Vector<BPatch_function *> *getFunctions()

Returns a vector of the functions that can see this common block with the set of fields de-

scribed in getComponents. However, other functions that define this common block

with a different set of variables (or sizes of any variable) will not be returned.

4.23 Class BPatch_frame

A BPatch_frame object represents a stack frame. The BPatch_thread::getCallStack

member function of BPatch_thread returns a vector of BPatch_frame objects representing the

frames currently on the stack.

BPatch_frameType getFrameType()

Returns the type of the stack frame. Possible types are:

Frame Type Meaning

BPatch_frameNormal A normal stack frame.

BPatch_frameSignal A frame that represents a signal invocation.

BPatch_frameTrampoline A frame the represents a call into instrumentation code.

void *getFP()

Returns the frame pointer for the stack frame.

void *getPC()

Returns the program counter associated with the stack frame.

 Page 63

dyninstAPI

BPatch_function *findFunction()

Returns the function associated with the stack frame.

4.24 Class BPatch_dependenceGraphNode

A BPatch_dependenceGraphNode object represents a node in any of data, control or program

dependence graphs as well as the graph that represents the slice of a function. One can navigate

through these graphs by getOutgoingEdges and getIncomingEdges methods which will

return a list of other BPatch_dependenceGrapNode objects. Currently, successor list of a

node may not be exhaustive.

BPatch_dependenceGraphNode(BPatch_instruction* bpinst)

Constructor. It takes a pointer to a BPatch_instruction object which represents the

instruction this node holds.

BPatch_dependenceGraphNode (BPatch_instruction* bpinst,

BPatch_Vector<BPatch_dependenceGraphNode*>* predecessorList,

BPatch_Vector<BPatch_dependenceGraphNode*>* successorList)

Constructor. It takes a BPatch_instruction parameter which represents the instruc-

tion this node holds, a list of pointers to other BPatch_dependenceGraphNode ob-

jects which are immediate predecessors of this node, and a list of pointers to other

BPatch_dependenceGraphNode objects which are immediate successors of this

node.

BPatch_instruction* getBPInstruction()

Returns a pointer to the BPatch_instruction that this node represents.

void getOutgoingEdges(BPatch_Vector <BPatch_ dependenceGraphEdge

*>& out)

Fills the given vector with the outgoing edges (successors).

void getIncomingEdges(BPatch_Vector <BPatch_ dependenceGraphEdge

*>& inc)

Fills the given vector with the incoming edges (predecessors).

bool isImmSuccessor(BPatch_dependenceGraphNode* other_node)

Returns true if other_node is an immediate successor of this instruction (if there exists an

edge between this node and other_node among outgoing edges).

bool isImmPredecessor(BPatch_dependenceGraphNode* other_node)

Returns true if other_node is an immediate predecessor of this instruction (if there exists

an edge between this node and other_node among incoming edges).

 Page 64

dyninstAPI

4.25 Class BPatch_dependenceGraphEdge

A BPatch_dependenceGraphEdge represents an edge between two

BPatch_dependenceGraphNode objects.

BPatch_dependenceGraphEdge(BPatch_dependenceGraphNode* source,

BPatch_dependenceGraphNode* target)

Constructor. source is the source of this edge while target is the target.

BPatch_dependenceGraphNode* getSource()

Returns the dependence graph node which is the source of this edge.

BPatch_dependenceGraphNode* getTarget()

Returns the dependence graph node which is the target of this edge.

4.26 Container Classes

4.26.1 Class BPatch_Vector

The BPatch_Vector class is a container used to hold other objects used by the API. As of Dy-

ninst 5.0 BPatch_Vector is an alias for the C++ STL std::vector.

4.26.2 Class BPatch_Set

BPatch_Set is another container class, similar to the set class in the Standard Template Library

(STL). It maintains a collection of objects and provides fast lookup. Elements are ordered by a

comparison function, which can be user-supplied. This allows for efficiently returning a sorted list

of elements, or returning the value of the minimum or maximum element.

BPatch_Set()

A constructor that creates an empty set with the default comparison function.

BPatch_Set(const BPatch_Set<T,Compare>& newBPatch_Set)

Copy constructor.

int size()

Returns the number of elements in the set.

bool empty()

Returns true if the set is empty, or false if it is not.

 Page 65

dyninstAPI

void insert(const T&)

Inserts the given element into the set.

void remove(const T&)

Removes the given element from the set.

bool contains(const T&)

Returns true if the argument is a member of the set, otherwise returns false.

T* elements(T*)

Fills an array with a list of the elements in the set that are sorted in ascending order ac-

cording to the comparison function. The input argument should point to an array large

enough to hold the elements. This function returns its input argument, unless the set is

empty, in which case it returns NULL.

T minimum()

Returns the minimum element in the set, as determined by the comparison function. For an

empty set, the result is undefined.

T maximum()

Returns the maximum element in the set, as determined by the comparison function. For

an empty set, the result is undefined.

BPatch_Set<T,Compare>& operator= (const BPatch_Set<T,Compare>&)

The assignment operator.

bool operator== (const BPatch_Set<T,Compare>&)

The equality operator. Returns true if both sets consist entirely of elements that are each

equal to an element in the other set, or if both sets are empty.

bool operator!= (const BPatch_Set<T,Compare>&)

The inequality operator. Returns true if either set contains an element not in the other set.

BPatch_Set<T,Compare>& operator+= (const T&)

Adds the given object to the set.

BPatch_Set<T,Compare>& operator|= (const BPatch_Set<T,Compare>&)

Set union operator. Assigns the result of the union to the set on the left hand side.

BPatch_Set<T,Compare>& operator&= (const BPatch_Set<T,Compare>&)

Set intersection operator. Assigns the result of the intersection to the set on the left hand

side.

 Page 66

dyninstAPI

BPatch_Set<T,Compare>& operator-= (const BPatch_Set<T,Compare>&)

Set difference operator. Assigns the difference of the sets to the set on the left hand side.

BPatch_Set<T,Compare> operator| (const BPatch_Set<T,Compare>&)

Set union operator.

BPatch_Set<T,Compare> operator& (const BPatch_Set<T,Compare>&)

Set intersection operator.

BPatch_Set<T,Compare> operator- (const BPatch_Set<T,Compare>&)

Set difference operator.

4.27 Memory Access Classes

Instrumentation points created through findPoint(const BPatch_Set<BPatch_opCode>& ops) get

memory access information attached to them. This information is used by the memory access

snippets, but is also available to the API user. The classes that encapsulate memory access infor-

mation are contained in the BPatch_memoryAccess_NP.h header.

4.27.1 Class BPatch_memoryAccess

This class encapsulates a memory access abstraction. It contains information that describes the

memory access type: read, write, read/write, or prefetch. It also contains information that allows

the effective address and the number of bytes transferred to be determined.

bool isALoad_NP()

Returns true if the memory access is a load (memory is read into a register).

bool isAStore_NP()

Returns true if the memory access is write. Some machine instructions may both load and

store (e.g, CAS (compare and swap) on SPARC).

bool isAPrefetch_NP()

Returns true if memory access is a prefetch (i.e, it has no observable effect on user regis-

ters). It this returns true, the instruction is considered neither load nor store. Prefetches are

detected only on SPARC.

short prefetchType_NP()

If the memory access is a prefetch, this method returns a platform specific prefetch type.
On SPARC this returns the prefetch type as encoded in the instruction. See the SPARC Architecture Ma-

nual (version 9) for details.

 Page 67

dyninstAPI

BPatch_addrSpec_NP getStartAddr_NP()

Returns an address specification that allows the effective address of a memory reference to

be computed. For example, on the x86 platform a memory access instruction operand

may contain a base register, an index register, a scaling value, and a constant base. The

BPatch_addrSpec_NP describes each of these values.

BPatch_countSpec_NP getByteCount_NP()

Returns a specification that describes the number of bytes transferred by the memory

access.

4.27.2 Class BPatch_addrSpec_NP

This class encapsulates the information required to determine an effective address at runtime. The

general representation for an address is a sum of two registers and a constant; this may change in

future releases. Some architectures use only certain bits of a register (e.g. bits 25:31 of XER reg-

ister on the Power chip family); these are represented as pseudo-registers. The numbering scheme

for registers and pseudo-registers is implementation dependent and should not be relied upon; it

may change in future releases.

int getImm()

Returns the constant offset. This may be positive or negative.

int getReg(unsigned i)

Return the register number for the i-th register in the sum, where 0 <= i <= 2. Register

numbers are positive; a value of -1 means no register.

int getScale()

 Returns any scaling factor used in the memory address computation.

4.27.3 Class BPatch_countSpec_NP

This class encapsulates the information required to determine the number of bytes transferred by a

memory access. In this release it is an alias for BPatch_addrSpec_NP. Do not rely on this

implementation; it may change in future releases.

4.28 Type System

The Dyninst type system is based on the notion of structural equivalence. Structural equivalence

was selected to allow the system the greatest flexibility in allowing users to write mutators that

work with applications compiled both with and without debugging symbols enabled. Using the

create* methods of the BPatch class, a mutator can construct type definitions for existing mutatee

 Page 68

dyninstAPI

structures. This information allows a mutator to read and write complex types even if the applica-

tion program has been compiled without debugging information. However, if the application has

been compiled with debugging information, Dyninst will verify the type compatibility of the op-

erations performed by the mutator.

The rules for type computability are that two types must be of the same storage class (i.e. arrays

are only compatible with other arrays) to be type compatible. For each storage class, the follow-

ing additional requirements must be met for two types to be compatbible:

Bpatch_dataScalar

Scalars are compatible if their names are the same (as defined by strcmp) and their sizes

are the same.

BPatch_dataPointer

Pointers are compatible if the types they point to are compatible.

BPatch_dataFunc

Functions are compatible if their return types are compatible, they have same number of

parameters, and position by position each element of the parameter list is type compatible.

BPatch_dataArray

Arrays are compatible if they have the same number of elements (regardless of their lower

and upper bounds) and the base element types are type compatible.

BPatch_dataEnumerated

Enumerated types are compatible if they have the same number of elements and the iden-

tifiers of the elements are the same.

BPatch_dataStructure

BPatch_dataUnion

Structures and unions are compatible if they have the same number of constituent parts

(fields) and item by item each field is type compatible with the corresponds field of the

other type.

In addition, if either of the types is the type BPatch_unkownType, then the two types are compat-

ible. Variables in mutatee programs that have not been compiled with debugging symbols (or in

the symbols are in a format that the Dyninst library does not recognize) will be of type

BPatch_unkownType.

 Page 69

dyninstAPI

5. USING THE API

In this section, we describe the steps needed to compile your mutator and mutatee programs and

to run them. First we give you an overview of the major steps and then we explain each one in

detail.

5.1 Overview of Major Steps

To use Dyninst, you have to:

(1) Create a mutator program (Section 5.1): You need to create a program that will modify some

other program. For an example, see the mutator shown in Section Error! Reference source

not found..

(2) Set up the mutatee (Section 5.3): On some platforms, you need to link your application with

Dyninst‘s run time instrumentation library. [NOTE: this step is only needed in the current re-

lease of the API. Future releases will eliminate this restriction.]

(3) Run the mutator (Section 5.4): The mutator will either create a new process or attach to an

existing one (depending on the whether createProcess or attachProcess is used).

Sections 5.2 through 5.4 explain these steps in more detail. In addition, Section 5.5 describes is-

sues related to specific hardware and operating systems. In this section, we assume that you have

already installed the API distribution and setup the PLATFORM and DYNINST_ROOT environ-

ment variables. The installation of the API is described in the README file in the distribution tar

file.

5.2 Creating a Mutator Program

The first step in using Dyninst is to create a mutator program. The mutator program specifies the

mutatee (either by naming an executable to start or by supplying a process ID for an existing

process). In addition, your mutator will include the calls to the API library to modify the mutatee.

For the rest of this section, we assume that the mutatee is the sample program given in Section

Error! Reference source not found.. The following fragment of a Makefile shows how to link

your mutator program with the Dyninst library on most platforms:

retee.o: retee.c

$(CC) -c $(CFLAGS) -I$(DYNINST_ROOT)/dyninst/dyinstAPI/h \

retee.c

retee: retee.o

 $(CC) retee.o -L$(DYNINST_ROOT)/lib/$(PLATFORM) \

 -ldyninstAPI -liberty -o retee

 Page 70

dyninstAPI

On Solaris and Linux, the option ―-lelf‖ must also be added to the link step. On Linux, the option

―-ldwarf‖ must also be added to the link step. On Solaris, the option ―-lstdc++‖ must be added to

the link step. On Compaq Tru64 UNIX, the option ―-lmld‖ must also be supplied. On AIX, the

option –lbsd must also be added to the link step. You will also need to make sure that the

LD_LIBRARY_PATH or LIBPATH (AIX) environment variable includes the directory that con-

tains the Dyninst shared library. This is typically $DYNINST_ROOT/lib/$PLATFORM.

Some of these libraries, such as libdwarf and libelf, may not be standard on various platforms.

Check the README file in dyninst/dyninstAPI for more information on where to find these li-

braries.

Under Windows NT, the mutator also needs to be linked with the dbghelp library, which is in-

cluded in the Microsoft Platform SDK. Below is a fragment from a Makefile for Windows NT:

CC = cl

retee.obj: retee.c

 $(CC) -c $(CFLAGS) -

I$(DYNINST_ROOT)/dyninst/dyninstAPI/h

retee.exe: retee.obj

 link -out:retee.exe retee.obj \

 $(DYNINST_ROOT)\lib\$(PLATFORM)\libdyninstAPI.lib \

 dbghelp.lib

5.3 Setting Up the Application Program (mutatee)

On most platforms, you can instrument unmodified binary (a.out) files. However, there is a base

shared library that needs to be available to be loaded into your application (by the mutator), and

you may wish to create library of pre-compiled instrumentation routines that you mutator will in-

sert calls to.

On most platforms, any additional code that your mutator might need to call in the mutatee (for

example files containing instrumentation functions that were too complex to write directly using

the API) must be linked with your application. Simply add these files to the line <insert any ad-

ditional modules here> in Figure 1. On SPARC Solaris, AIX, Linux, and Compaq Tru64

UNIX, you may put such code into a dynamically loaded shared library, which your mutator pro-

gram can load into the mutatee at runtime using the loadLibrary member function of

BPatch_process.

Additionally, on most platforms we need to use the flags -g (to generate debugging) when com-

piling. The command line switches used to specify these options are different for Visual C++ on

Windows NT; see section Error! Reference source not found. for information about compiling

on Windows NT.

 Page 71

dyninstAPI

To locate the runtime library that Dyninst needs to load into your program, an additional envi-

ronment variable must be set. The variable DYNINSTAPI_RT_LIB should be set to the full

pathname of the run time instrumentation library, which should be:

$DYNINST_ROOT/$PLATFORM/lib/libdyninstAPI_RT.so.1 (UNIX)

%DYNINST_ROOT%/i386-unknown-nt4.0/lib/libdyninstAPI_RT.dll (Windows)

Figure 1 is an example of how you would modify the link command in your Makefile (on one of

the UNIX-based platforms) to handle the extra link step required by the current version of the

API. If your Makefile contained the link step shown in Figure 1:

(a) You would change it to the version shown in Figure 1.

(b) Note that the additions in Figure 1 are shown in bold.

OBJECTS = main.o this.o that.o

LIBDIR = $DYNINST_ROOT/lib/$PLATFORM

bubba.pd: ${OBJECTS}

 ${CC) ${OBJECTS} \

 <insert any additional modules here> \

 -lm -lcurses -ltermcap -o bubba.pd

(b) The Link Command Modified to Run Application. Items in Bold

face show the changes (additions)

Figure 1: Changing Your Makefile to Link an Application as a Dyninst

mutatee. Note: some platforms require a few additional options; see Sec-

tion 5.5.

5.4 Running the Mutator

At this point, you should be ready to run your application program with your mutator. For exam-

ple, to start the sample program shown in Section Error! Reference source not found.:

% retee foo <pid>

5.5 Architectural Issues

Certain platforms require slight modifications to the procedures discussed above. In this subsec-

tion, we describe each of them in turn.

 Page 72

dyninstAPI

5.5.1 Solaris

When using the Sun C or Fortran compilers, specify the -xs option together with -g. The -g op-

tion alone will direct the compiler to place debugging information in the object files (.o files), but

it will not place the debugging information on the executable (a.out) file. Use the -xs option so

that the compiler will add the debugging information to the a.out file. The -xs option is not

needed when using gcc. The following is an example of linking on Solaris.

OBJECTS = main.o this.o that.o

LIBDIR = $DYNINST_ROOT/lib/$PLATFORM

bubba.pd: ${OBJECTS}

 cc -g -xs \

 ${OBJECTS} \

 -lm –lcurses -ltermcap \

 -o bubba

Linking an application to run with Dyninst.

Items in Bold face show the changes for Solaris.

Figure 2: Sample Makefile for Solaris

 Page 73

dyninstAPI

APPENDIX A - COMPLETE EXAMPLE (RETEE)

In this section we show a complete program to demonstrate the use of the API. The example is a

program called ―re-tee.‖ It takes three arguments: the pathname of an executable program, the

process id of a running instance of the same program, and a file name. It adds code to the running

program that copies to the named file all output that the program writes to its standard output file

descriptor. In this way it works like ―tee,‖ which passes output along to its own standard out

while also saving it in a file. The motivation for the example program is that you run a program,

and it starts to print copious lines of output to your screen, and you wish to save that output in a

file without having to re-run the program.

Using the API to directly create programs is possible, but somewhat tedious. We anticipate that

most users of the API will be tool builders who will create higher level languages for specifying

instrumentation (e.g. the MDL language[4]).

#include <stdio.h>

#include <fcntl.h>

#include "BPatch.h"

#include "BPatch_process.h"

#include "BPatch_function.h"

#include "BPatch_Vector.h"

#include "BPatch_thread.h"

/*

 * retee.C

 *

 * This program (mutator) provides an example of several facets of

 * Dyninst's behavior, and is a good basis for many Dyninst

 * mutators. We want to intercept all output from a target application

 * (the mutatee), duplicating output to a file as well as the

 * original destination (e.g., stdout).

 *

 * This mutator operates in several phases. In brief:

 * 1) Attach to the running process and get a handle (BPatch_process

 * object)

 * 2) Get a handle for the parsed image of the mutatee for function

 * lookup (BPatch_image object)

 * 3) Open a file for output

 * 3a) Look up the "open" function

 * 3b) Build a code snippet to call open with the file name.

 * 3c) Run that code snippet via a oneTimeCode, saving the returned

 * file descriptor

 * 4) Write the returned file descriptor into a memory variable for

 * mutatee-side use

 * 5) Build a snippet that copies output to the file

 * 5a) Locate the "write" library call

 * 5b) Access its parameters

 * 5c) Build a snippet calling write(fd, parameters)

 * 5d) Insert the snippet at write

 * 6) Add a hook to exit to ensure that we close the file (using

 * a callback at exit and another oneTimeCode)

 */

 Page 74

dyninstAPI

void usage() {

 fprintf(stderr, "Usage: retee <process pid> <filename>\n");

 fprintf(stderr, " note: <filename> is relative to the application

process.\n");

}

// We need to use a callback, and so the things that callback requires

// are made global - this includes the file descriptor snippet (see below)

BPatch_variableExpr *fdVar = NULL;

// Before we add instrumentation, we need to open the file for

// writing. We can do this with a oneTimeCode - a piece of code run at

// a particular time, rather than at a particular location.

int openFileForWrite(BPatch_process *app, BPatch_image *appImage, char

*fileName) {

 // The code to be generated is:

 // fd = open(argv[2], O_WRONLY|O_CREAT, 0666);

 // (1) Find the open function

 BPatch_Vector<BPatch_function *>openFuncs;

 appImage->findFunction("open", openFuncs);

 if (openFuncs.size() == 0) {

 fprintf(stderr, "ERROR: Unable to find function for open()\n");

 return -1;

 }

 // (2) Allocate a vector of snippets for the parameters to open

 BPatch_Vector<BPatch_snippet *> openArgs;

 // (3) Create a string constant expression from argv[3]

 BPatch_constExpr fileNameExpr(fileName);

 // (4) Create two more constant expressions _WRONLY|O_CREAT and 0666

 BPatch_constExpr fileFlagsExpr(O_WRONLY|O_CREAT);

 BPatch_constExpr fileModeExpr(0666);

 // (5) Push 3 & 4 onto the list from step 2, push first to last parameter.

 openArgs.push_back(&fileNameExpr);

 openArgs.push_back(&fileFlagsExpr);

 openArgs.push_back(&fileModeExpr);

 // (6) create a procedure call using function found at 1 and

 // parameters from step 5.

 BPatch_funcCallExpr openCall(*openFuncs[0], openArgs);

 // (7) The oneTimeCode returns whatever the return result from

 // the BPatch_snippet is. In this case, the return result of

 // open -> the file descriptor.

 void *openFD = app->oneTimeCode(openCall);

 return (int) openFD;

}

// We have used a oneTimeCode to open the file descriptor. However,

// this returns the file descriptor to the mutator - the mutatee has

// no idea what the descriptor is. We need to allocate a variable in

// the mutatee to hold this value for future use and copy the

// (mutator-side) value into the mutatee variable.

 Page 75

dyninstAPI

// Note: there are alternatives to this technique. We could have

// allocated the variable before the oneTimeCode and augmented the

// snippet to do the assignment. We could also write the file

// descriptor as a constant into any inserted instrumentation.

BPatch_variableExpr *writeFileDescIntoMutatee(BPatch_process *app,

 BPatch_image *appImage,

 int fileDescriptor) {

 // (1) Allocate a variable in the mutatee of size (and type) int

 BPatch_variableExpr *fdVar = app->malloc(*appImage->findType("int"));

 if (fdVar == NULL) return NULL;

 // (2) Write the value into the variable

 // Like memcpy, writeValue takes a pointer

 // The third parameter is for functionality called "saveTheWorld",

 // which we don't worry about here (and so is false)

 bool ret = fdVar->writeValue((void *) &fileDescriptor, sizeof(int),

 false);

 if (ret == false) return NULL;

 return fdVar;

}

// We now have an open file descriptor in the mutatee. We want to

// instrument write to intercept and copy the output. That happens

// here.

bool interceptAndCloneWrite(BPatch_process *app,

 BPatch_image *appImage,

 BPatch_variableExpr *fdVar) {

 // (1) Locate the write call

 BPatch_Vector<BPatch_function *> writeFuncs;

 appImage->findFunction("write",

 writeFuncs);

 if(writeFuncs.size() == 0) {

 fprintf(stderr, "ERROR: Unable to find function for write()\n");

 return false;

 }

 // (2) Build the call to (our) write. Arguments are:

 // ours: fdVar (file descriptor)

 // parameter: buffer

 // parameter: buffer size

 // Declare a vector to hold these.

 BPatch_Vector<BPatch_snippet *> writeArgs;

 // Push on the file descriptor

 writeArgs.push_back(fdVar);

 // Well, we need the buffer... but that's a parameter to the

 // function we're implementing. That's not a problem - we can grab

 // it out with a BPatch_paramExpr.

 BPatch_paramExpr buffer(1); // Second (0, 1, 2) argument

 BPatch_paramExpr bufferSize(2);

 writeArgs.push_back(&buffer);

 writeArgs.push_back(&bufferSize);

 // And build the write call

 BPatch_funcCallExpr writeCall(*writeFuncs[0], writeArgs);

 Page 76

dyninstAPI

 // (3) Identify the BPatch_point for the entry of write. We're

 // instrumenting the function with itself; normally the findPoint

 // call would operate off a different function than the snippet.

 BPatch_Vector<BPatch_point *> *points;

 points = writeFuncs[0]->findPoint(BPatch_entry);

 if ((*points).size() == 0) {

 return false;

 }

 // (4) Insert the snippet at the start of write

 return app->insertSnippet(writeCall, *points);

 // Note: we have just instrumented write() with a call to

 // write(). This would ordinarily be a _bad thing_, as there is

 // nothing to stop infinite recursion - write -> instrumentation

 // -> write -> instrumentation....

 // However, Dyninst uses a feature called a "tramp guard" to

 // prevent this, and it's on by default.

}

// This function is called as an exit callback (that is, called

// immediately before the process exits when we can still affect it)

// and thus must match the exit callback signature:

//

// typedef void (*BPatchExitCallback) (BPatch_thread *, BPatch_exitType)

//

// Note that the callback gives us a thread, and we want a process - but

// each thread has an up pointer.

void closeFile(BPatch_thread *thread, BPatch_exitType) {

 fprintf(stderr, "Exit callback called for process...\n");

 // (1) Get the BPatch_process and BPatch_images

 BPatch_process *app = thread->getProcess();

 BPatch_image *appImage = app->getImage();

 // The code to be generated is:

 // close(fd);

 // (2) Find close

 BPatch_Vector<BPatch_function *> closeFuncs;

 appImage->findFunction("close", closeFuncs);

 if (closeFuncs.size() == 0) {

 fprintf(stderr, "ERROR: Unable to find function for close()\n");

 return;

 }

 // (3) Allocate a vector of snippets for the parameters to open

 BPatch_Vector<BPatch_snippet *> closeArgs;

 // (4) Add the fd snippet - fdVar is global since we can't

 // get it via the callback

 closeArgs.push_back(fdVar);

 // (5) create a procedure call using function found at 1 and

 // parameters from step 3.

 BPatch_funcCallExpr closeCall(*closeFuncs[0], closeArgs);

 Page 77

dyninstAPI

 // (6) Use a oneTimeCode to close the file

 app->oneTimeCode(closeCall);

 // (7) Tell the app to continue to finish it off.

 app->continueExecution();

 return;

}

BPatch bpatch;

// In main we perform the following operations.

// 1) Attach to the process and get BPatch_process and BPatch_image

// handles

// 2) Open a file descriptor

// 3) Instrument write

// 4) Continue the process and wait for it to terminate

int main(int argc, char *argv[]) {

 int pid;

 if (argc != 3) {

 usage();

 exit(1);

 }

 pid = atoi(argv[1]);

 // Attach to the program - we can attach with just a pid; the

 // program name is no longer necessary

 fprintf(stderr, "Attaching to process %d...\n", pid);

 BPatch_process *app = bpatch.processAttach(NULL, pid);

 if (!app) return -1;

 // Read the program's image and get an associated image object

 BPatch_image *appImage = app->getImage();

 BPatch_Vector<BPatch_function*> writeFuncs;

 fprintf(stderr, "Opening file %s for write...\n", argv[2]);

 int fileDescriptor = openFileForWrite(app, appImage, argv[2]);

 if (fileDescriptor == -1) {

 fprintf(stderr, "ERROR: opening file %s for write failed\n",

 argv[2]);

 exit(1);

 }

 fprintf(stderr, "Writing returned file descriptor %d into"

 "mutatee...\n", fileDescriptor);

 // This was defined globally as the exit callback needs it.

 fdVar = writeFileDescIntoMutatee(app, appImage, fileDescriptor);

 if (fdVar == NULL) {

 fprintf(stderr, "ERROR: failed to write mutatee-side variable\n");

 exit(1);

 }

 fprintf(stderr, "Instrumenting write...\n");

 bool ret = interceptAndCloneWrite(app, appImage, fdVar);

 if (!ret) {

 fprintf(stderr, "ERROR: failed to instrument mutatee\n");

 Page 78

dyninstAPI

 exit(1);

 }

 fprintf(stderr, "Adding exit callback...\n");

 bpatch.registerExitCallback(closeFile);

 // Continue the execution...

 fprintf(stderr, "Continuing execution and waiting for termination\n");

 app->continueExecution();

 while (!app->isTerminated())

 bpatch.waitForStatusChange();

 printf("Done.\n");

 return 0;

}

 Page 79

dyninstAPI

APPENDIX B - RUNNING THE TEST CASES

This section describes how to run the Dyninst test cases. The primary purpose of the test cases is

to verify that the API has been installed correctly (and for use in regression testing by the devel-

opers of the Dyninst library). The code may also be of use to others since it provides a fairly

complete example of how to call most of the API methods. The test suite consists of mutator

programs and their associated mutatee programs.

To compile the testsuite, type make in the appropriate platform specific directory under dy-

ninst/testsuite. To run, execute the runTests. Each test will be executed and the result

(PASSED/FAILED/CRASHED) printed.

Test mutators are run by the test_driver executable (test_driver.exe on Windows).

The test_driver loads a mutator test from a shared object and runs it on a test mutatee. A single

run of the test_driver may execute multiple tests (depending on parameters passed), and each test

may execute multiple times with different parameters and on different mutatees.

Dyninst‘s test space can be very large. Each mutatee can be run under different tests, compiled by

different compilers, and run with different parameters. For example, one point in this space would

be the test1 mutatee being run under under test1_13, when compiled with the g++ compiler, and

in attach mode. When run without any options, the test_driver will run all test combina-

tions that are valid on the current platform. Many of the options that are passed to

test_driver can be used to limit the test space that it runs in.

In order to prevent a crashing test from stopping the test_driver from running subsequent

tests, test_driver can be run under a wrapper application, runTests. The runTests

wrapper invokes the test_driver with the any arguments that were passed to runTests. It

will watch the test_driver process, and if test_driver exits with a fault it will print an

appropriate error message and restart the test_driver on the next test.

It is generally recommended that runTests be used when running a large sequence of tests, and

test_driver be used when debugging issues with a single test.

The test_driver and runTests applications can be invoked with the following list of ar-

guments. Most arguments are used to limit the space of tests that the testsuite will run. For ex-

ample, to run the above test1_13 example, you could use the following command line:

 test_driver –run test1_13 –mutatee test1.mutatee_g++ -attach

 Page 80

dyninstAPI

-attach

Only run tests that attach to the mutates.

-create

Only run tests that create mutates.

-mutatee <mutatee_name>

 Only run tests that use the specified mutate name. Only certain mutatees can be run with

certain tests. The primary test number specifies which mutatees it can be run with. For

example, all of the test1_* tests can be run with the test1.mutatee_* mutatees, and all of

the test2_* tests can be run with the test2.mutatee_* mutatees.

-run <subtest> <subtest> …

Only runs the specific sub-tests listed. For example, to run sub-test case 4 of test2 you

would enter test_driver –run test2_4.

-log

Print more detailed output, including messages generated by the tests. Without this option

the testsuite will capture and hide any messages printed by the test, only showing a sum-

mary of whether the test passed or failed. By default output is sent to stdout.

-logfile <filename>

Send output from the –log option to the given filename rather than to stdout.

-verbose

Enables testsuite debugging output. This is useful when trying to track down issues in the

testsuite or tests.

 Page 81

dyninstAPI

APPENDIX C - COMMON PITFALLS

This appendix is designed to point out some common pitfalls that users have reported when using

the Dyninst system. Many of these are either due to limitations in the current implementations, or

reflect design decisions that may not produce the expected behavior from the system.

Attach followed by detach

If a mutator attaches to a mutatee, and immediately exists, the current behavior is that the

mutatee is left suspended. To make sure the application continues, call detach with the

appropriate flags.

Attaching to a program that has already been modified by Dyninst

If a mutator attaches to a program that has already been modified by a previous mutator, a

warning message will be issued. We are working to fix this problem, but the correct se-

mantics are still being specified. Currently, a message is printed to indicate that this has

been attempted, and the attach will fail.

Dyninst is event-driven

Dyninst must sometimes handle events that take place in the mutatee, for instance when a

new shared library is loaded, or when the mutatee executes a fork or exec. Dyninst handles

events when it checks the status of the mutatee, so to allow this the mutator should pe-

riodically call one of the functions BPatch::pollForStatusChange,

BPatch::waitForStatusChange, BPatch_thread::isStopped, or

BPatch_thread::isTerminated.

64-bit binaries (Solaris & AIX)

Dyninst does not support 64-bit binaries on Solaris or AIX.

Missing or out-of-date DbgHelp DLL (Windows)

 Dyninst requires an up-to-date DbgHelp library on Windows. See the section on Win-

dows-specific architectural issues for details.

Portland Compiler Group – missing debug symbols

 The Portland Group compiler (pgcc) on Linux produces debug symbols that are not read

correctly by Dyninst. The binaries produced by the compiler do not contain the source file

information necessary for Dyninst to assign the debug symbols to the correct module.

When Building Dyninst from Source

Commonly, required external libraries and headers (such as libdwarf or libelf) are not

found correctly by the compiler. Often, such packages are installed, but outside of the

compiler‘s default search path.

Because of this, we have provided the following extention to our make system. If the file

make.config.local exists inside the $DYNINST_ROOT/dyninst directory, it will automati-

cally be included during the build process.

 Page 82

dyninstAPI

You can then set the makefile variables FIRST_INCLUDE and FIRST_LIBDIR inside

make.config.local. These variables represent the compiler flags used during the compila-

tion and linking phase, respectively. These paths will be searched before any others, insur-

ing that the correct package is used. For example:

 FIRST_INCLUDE=-I/usr/local/packages/libelf-0.8.5/include

 FIRST_LIBDIR =-L/usr/local/packages/libelf-0.8.5/lib

 Page 83

dyninstAPI

APPENDIX D – BUILDING DYNINST

This appendix describes how to build Dyninst from source code, which can be downloaded from

http://www.paradyn.org or http://www.dyninst.org.

BUILDING ON UNIX

Building Dyninst on UNIX platforms is a four step process that involves: unpacking the Dyninst

source, installing any Dyninst dependencies, configuring paths in make.config.local, and running

the build.

Dyninst‘s source code is packaged in a tar.gz format. If your Dyninst source tarball is called

srcDist_v5.0.tar.gz, then you could extract it with the command gunzip srcD-

ist_v5.0.tar.gz ; tar –xvf srcDist_v5.0.tar. This will create two directo-

ries: dyninst and scripts.

Dyninst has several dependencies, depending on what platform you are using, which must be in-

stalled before Dyninst can be built. Note that for most of these packages Dyninst needs to be able

to access the package‘s include files, which means that development versions are required. If a

version number is listed for a packaged, then there are known bugs that may affect Dyninst with

earlier versions of the package.

Linux/x86 libdwarf-20060327

libelf

Linux/IA-64 libdwarf-20060327

libunwind-0.98.5

libelf

Linux/x86-64 libdwarf-20060327

libelf

Solaris/Sparc No external dependencies

AIX/Power No external dependencies

At the time of this writing the Linux packages could be found at:

 libdwarf - http://reality.sgiweb.org/davea/dwarf.html

 libelf - http://www.mr511.de/software/english.html

 libunwind - http://www.hpl.hp.com/research/linux/libunwind/download.php4

Once the dependencies for Dyninst have been installed, Dyninst must be configured to know

where to find these packages. This is done through Dyninst‘s dy-

ninst/make.config.local file. This file must be written in GNU Makefile syntax and

must specify directory locations for each dependency. Specifically, LIBDWARFDIR,

LIBELFDIR and TCLTK_DIR variables must be set. LIBDWARFDIR should be set to the abso-

http://www.paradyn.org/
http://www.dyninst.org/
http://reality.sgiweb.org/davea/dwarf.html
http://www.mr511.de/software/english.html
http://www.hpl.hp.com/research/linux/libunwind/download.php4

 Page 84

dyninstAPI

lute path of libdwarf library where dwarf.h and libdwarf.h files reside. LIBELFDIR should

be set to the absolute path where libelf.a and libelf.so files are located. Finally,

TCLTK_DIR variable should be set to the base directory where Tcl is installed.

The next thing is to set DYNINST_ROOT, PLATFORM, and LD_LIBRARY_PATH environ-

ment variables. DYNINST_ROOT should be set to path of the directory that contains dyninst

and scripts subdirectories.

PLATFORM should be set to one of the following values depending upon what operating system

you are running on:

i386-unknown-linux2.4 Linux 2.4/2.6 on an Intel x86 processor

ia64-unknown-linux2.4 Linux 2.4/2.6 on an IA-64 processor

rs6000-ibm-aix5.1 AIX Version 5.1

sparc-sun-solaris2.9 Solaris 2.9 on a SPARC processor

x86_64-unknown-linux2.4 Linux 2.4/2.6 on an AMD-64 processor

ppc64_linux Linux 2.6 on a 64-bit PPC processor

ppc32_linux Linux 2.6 on a 32-bit PPC processor

LD_LIBRARY_PATH variable should be set in a way that it includes libdwarf home directory/lib

and ${DYNINST_ROOT}/${PLATFORM}/lib directories.

Once make.config.local is set you are ready to build Dyninst. Change to the dyninst

directory and execute the command make DyninstAPI. This will build Dyninst‘s mutator

library, the Dyninst runtime library, and Dyninst‘s test suite. Successfully built binaries will be

stored in a directory named after your platform at the same level as the dyninst directory.

BUILDING ON WINDOWS

Dyninst for Windows is built with Microsoft Visual Studio 2003 project and solution files.

Building Dyninst for Windows is similar to UNIX in that it is a four step process: Unpack the

DyninstAPI source code, install Dyninst‘s package dependencies, configure Visual Studio to use

the dependencies, and run the build system.

Dyninst source code is distributed as part of a tar.gz package. Most popular unzipping programs

are capable of handling this format. Extracting the Dyninst tarball results in two directories: dy-

ninst and scripts.

Dyninst for Windows depends on Microsoft‘s Debugging Tools for Windows, which could be

found at http://www.microsoft.com/whdc/devtools/debugging/default.mspx at the time of this

writing. Download these tools and install them at an appropriate location. Make sure to do a

custom install and install the SDK, which is not always installed by default. For the rest of this

section, we will assume that the Debugging Tools are installed at c:\program

files\Debugging Tools for Windows. If this is not the case, then adjust the follow-

ing instruction appropriately.

Once the Debugging Tools are installed, Visual Studio must be configured to use them. We need

to add the Debugging Tools include and library directories to Visual Studios search paths. In

http://www.microsoft.com/whdc/devtools/debugging/default.mspx

 Page 85

dyninstAPI

Visual Studio 2003 select Options… from the tools menu. Next select Projects and

VC++ Directories from the pane on the left. You should see a list of directories that are

sorted into categories such as ‗Executable files‘, ‗Include files‘, etc. The current category can be

changed with a drop down box in the upper right hand side of the Dialog.

First, change to the ‗Library files‘ category, and add an entry that points to C:\Program

Files\Debugging Tools for Windows\sdk\lib\i386. Make sure that this entry

is above Visual Studio‘s default search paths.

Next, Change to the ‗Include files‘ category and make a new entry in the list that points to

C:\Program Files\Debugging Tools for Windows\sdk\inc. Also make

sure that this entry is above Visual Studio‘s default search paths. Some users have had a problem

where Visual Studio cannot find the cvconst.h file. You may need to add the directory containing

this file to the include search path. We have seen it installed at $(VCInstall-

Dir)/../Visual Studio SDKs/DIA SDK/include, although you may need to search

for it.

Once you have installed and configured the Debugging Tools for Windows you are ready to build

Dyninst. First, you need to create the directories where Dyninst will install its completed build.

From the dyninst directory you need to create the directories ../i386-unknown-

nt4.0/bin and ../i386-unknown-nt4.0/lib. Next open the solution file dy-

ninst/DyninstAPI.sln with Visual Studio. You can then build Dyninst by select ‗Build

Solution‘ from the build menu. This will build the Dyninst mutator library, the runtime library,

and the test suite.

 Page 86

dyninstAPI

APPENDIX E – DYNINST PERFORMANCE

This appendix describes how to tune Dyninst for optimium performance. During the course of a

run, Dyninst will perform several types of analysis on the binary, make safety assumptions about

instrumentation that is inserted, and rewrite the binary (perhaps several times). Given some guid-

ance from the user, Dyninst can make assumptions about what work it needs to do and can deliver

significant performance improvements.

There are two areas of Dyninst performance users typically care about. First, the time it takes

Dyninst to parse and instrument a program. This is typically the time it takes Dyninst to startup

and analyze a program, and the time it takes to modify the program when putting in instrumenta-

tion. Second, many users care about the time instrumentation takes in the modified mutatee. This

time is highly dependent on both the amount and type of instrumentation put it, but it is still poss-

ible to eliminate some of the Dyninst overhead around the insturmentation.

The following subsections describe techniques for improving the performance of these two areas.

APPENDIX E.1 – Optimizing mutator performance

Time in the Dyninst mutator is usually taken up by either parsing or instrumenting binaries. When

a new binary is loaded Dyninst will analyze the code, looking for instrumentation points, global

variables, and attempting to identify functions in areas of code that may not have symbols. Upon

user request, Dyninst will also parse debug information from the binary, which includes local vari-

able, line, and type information.

All of these items are parsed lazily, that is Dyninst won‘t try to generate this information until it is

asked for. Information is parsed on a per-library basis, so a request for information about a spe-

cific libary function will cause Dyninst to parse information about all functions in that library.

Much of the Dyninst parsing performance problems can be removed, or mitigated, by structuring

the mutator application so that it only requests information from Dyninst if and when it needs it.

Not all operations require Dyninst to trigger parsing. Some common operations that lead to pars-

ing are:

 Requesting a BPatch_instPoint object

 Any operation on a BPatch_function other than getting its name

Debugging information is lazily parsed separately from the rest of the binary parsing. Accessing

line, type, or local variable information will cause Dyninst to parse the debug information for all

three of these.

Another common source of mutator time is spent re-writing the mutatee to add instrumentation.

When instrumentation is inserted into a function, Dyninst may need to rewrite some or all of the

 Page 87

dyninstAPI

function to fit the instrumentation in. If multiple pieces of instrumentation are being inserted into

a function, Dyninst may need to re-write that function multiple times.

If the user knows that they will be inserting multiple pieces of instrumentation into one function,

they can batch the instrumentation into one bundle, so that the function will only be re-written

once, using the BPatch_process::beginInsertionSet and

BPatch_process::endInsertionSet functions (see section 4.3). Using these functions

can result in a significant performance win when inserting instrumentation in many locations.

To use the insertion set functions, add a call to beginInsertionSet before inserting instru-

mentation. Dyninst will start buffering up all instrumentation insertions. After the last piece of

instrumentation is inserted, call endInsertionSet, and all instrumentation will be atomically

inserted into the mutate, with each function being rewritten at most once.

APPENDIX E.2 – Optimizing Mutatee Performance

As instrumentation is inserted into a mutate it will start to run slower. The slowdown is heavily

influcenced by three factors: the number of points being instrumentated, the instrumentation itself,

and the Dyninst overhead around each piece of instrumentation. The Dyninst overhead comes

from pieces of protection code (described in more detail below) that do things such as sav-

ing/restoring registers around instrumentation, checking for instrumentation recursion, or per-

forming thread safety checks.

The factor by which Dyninst overhead influences mutatee run-time is dependant on the type of

instrumentation being inserted. When inserting instrumentation that runs a memory cache simula-

tor, the Dyninst overhead may be negligible. On the other-hand, when inserting instrumentation

that increments a counter the Dyninst overhead will dominate the time spent in instrumentation.

Remember, optimizing the instrumentation being inserted may sometimes be more important than

optimizing the Dyninst overhead. Many users have had success writing tools that make use of

Dyninst‘s ability to dynamically remove instrumentation as a performance improvement.

The instrumentation overhead results from safety and correctness checks inserted by Dyninst

around instrumentation. Dyninst will automatically attempt to remove as much of this overhead

as possible, however it sometimes must make a conservative decision to leave the overhead in.

Given additional, user-provided information Dyninst can make better choices about what safety

checks to leave in. An unoptimized post-Dyninst 5.0 instrumentation snippet looks like the fol-

lowing:

Save General Purpose Registers
In order to ensure that instrumentation doesn‘t

corrupt the program, Dyninst saves all general

purpose registers.

Save Floating Point Registers
Dyninst may decide to seperatly save any float-

ing point registers that may be corrupted by

instrumentation.

Generate A Stack Frame Dyninst builds a stack frame for instrumentation

 Page 88

dyninstAPI

to run under, this provides the illusion to in-

strumentation that it is running as its own func-

tion.

Calculate Thread Index
Calculate an index value that identifies the cur-

rent thread. This is primarly used as input to

the Trampoline Guard.

Test and Set Trampoline Guard
Test to see if we are already recursively execut-

ing under instrumentation, and skip the user

instrumentation if we are.

Execute User Instrumentation Execute any BPatch_snippet code.

Unset Trampoline Guard
Marks the this thread as no longer being in in-

strumentation

Clean Stack Frame
Clean the stack frame that was generated for

instrumentation.

Restore Floating Point Registers
Restore the floating point registers to their

original state.

Restore General Purpose Registers
Restore the general purpose registers to their

original state.

Dyninst will attempt to eliminate as much of its overhead as is possible. The Dyninst user can as-

sist Dyninst by doing the following:

 Write BPatch_snippet code that avoids making function calls. Dyninst will at-

tempt to perform analysis on the user written instrumentation to determine which gen-

eral purpose and floating point registers can be saved. It is difficult to analyze function

calls that may be nested arbitrarly deep. Dyninst will not analyze any deeper than two

levels of function calls before assuming that the instrumentation clobbers all registers

and it needs to save everything.

In addition, not making function calls from instrumentation allows Dyninst to elimante

its tramp guard and thread index calculation. Instrumentation that does not make a

function call cannot recursively execute more instrumentation.

 Call BPatch::setTrampRecursive(true) if instrumentation cannot ex-

ecute recursively. If instrumentation must make a function call, but will not execute

recursively, then enable trampoline recursion. This will cause Dyninst to stop generat-

ing a trampoline guard and thread index calculation on all future pieces of instrumenta-

tion. An example of instrumentation recursion would be instrumenting a call to

write with instrumentation that calls printf—write will start calling printf

printf will re-call write.

 Call BPatch::setSaveFPR(false) if instrumentation will not clobber float-

ing point registers. This will cause Dyninst to stop saving floating point registers,

which can be a significant win on some platforms.

 Use simple BPatch_snippet objects when possible. Dyninst will attempt to

recognize, and peep-hole optimize, simple, frequently used code snippets when it finds

them. For example, on x86 based platforms Dyninst will recognize snippets that do

 Page 89

dyninstAPI

operations like ‗var = constant‘ or ‗var++‘ and turn these into optimized assembly in-

structions that take advantage of CISC machine instructions.

 Page 90

dyninstAPI

~

~BPatch_thread · 33

A

attachProcess · 13, 18

B

BPatch_addrSpec_NP · 67

BPatch_arithExpr · 48

BPatch_basicBlockLoop · 60

BPatch_boolExpr · 48

BPatch_breakPointExpr · 48

BPatch_bytesAccessedExpr · 11, 49

BPatch_cblock · 62

BPatch_constExpr · 49

BPatch_countSpec_NP · 68

BPatch_effectiveAddressesExpr · 49

BPatch_flowGraph · 55

BPatch_funcCallExpr · 49

BPatch_function · 35

BPatch_ifExpr · 50

BPatch_image · 40

BPatch_memoryAccess · 66

BPatch_module · 44

Bpatch_nullExpr · 52

BPatch_opCode · 37

Bpatch_paramExpr · 50, 51

BPatch_point · 39

BPatch_retExpr · 47, 49, 51

BPatch_sequence · 51

BPatch_Set · 64

BPatch_snippet · 47

BPatch_sourceBlock · 62

BPatch_sourceObj · 34

BPatch_tidExpr · 52

BPatch_type · 52

BPatch_variableExpr · 54

BPatch_Vector · 64

BPatchErrorCallback · 19, 20, 22

BPatchErrorLevel · 19, 22, 29, 34

BPatchPostForkCallback · 21

BPatchThreadEventCallback · 20, 22

C

Class BPatch_basicBlock · 57, 58

continueExecution · 28, 32

createArray · 17

createEnum · 17

createInstPointAtAddr · 40

createPointer · 18

createProcess · 13, 18

createScalar · 17

createStruct · 18

createTypedef · 18

createUnion · 18

D

deleteSnippet · 25, 33

detach · 27, 29, 33

dominates · 58

dumpCore · 32, 33

dumpImage · 32

dumpPatchedImage · 32

E

enableDumpPatchedImage · 32

F

findFunction · 41, 42, 44, 45, 63

findPoint · 36, 37

findType · 43

findVariable · 42

free · 24, 32

funcJumpExpr · 50

G

getAddress · 39

getAllBasicBlocks · 55

getAllDominates · 59

getBaseAddr · 37, 54

getBlockNumber · 59

getByteCount_NP · 67

getCalledFunction · 39

getCallStack · 30, 31

getCblocks · 53

getCFG · 37

getComponents · 52, 54, 62

getConstituentType · 53

getContainedLoops · 60

getCost · 47

getCurrentSnippets · 40

getDataClass · 53

getEntryBasicBlock · 55

 Page 91

dyninstAPI

getExitBasicBlock · 55

getFP · 63

getFrameType · 62

getFunctions · 62

getHigh · 53

getImage · 23, 32, 33, 43, 45

getImm · 67

getImmediateDominates · 58

getImmediateDominator · 58

getInheritedVariable · 28, 32

getLanguage · 35

getLineAndFile · 32, 38

getLineToAddr · 38, 44, 47

getLoopBasicBlocks · 60, 61

getLoopHead · 61

getLoops · 55

getLow · 53

getMangledName · 35

getMemoryAccess · 40, 59

getModule · 36

getModuleName · 36

getModules · 41

getName · 35, 46, 53

getObjParent · 34

getParams · 35

getPC · 63

getPointType · 39

getProcedures · 41, 46

getReg · 67

getReturnType · 36

getSourceBlock · 59

getSourceFile · 62

getSourceLines · 62

getSourceObj · 34

getSources · 56, 57, 58

getSrcType · 34

getStartAddr_NP · 67

getTargets · 58

getThreads · 13, 18

getType · 47

getUniqueString · 43, 46

I

insertSnippet · 24, 33

isALoad_NP · 66

isAPrefetch_NP · 67

isAStore_NP · 67

isCompatible · 53

isInstrumentable · 36

isSharedLib · 36, 46

isStopped · 28, 32

isTerminated · 28, 32

L

libraryName · 36

M

malloc · 23, 32

Memory Access Classes · 66

Memory Access Snippets · 11

O

oneTimeCode · 28, 29, 30, 31, 32

P

pollForStatusChange · 14, 15

prefetchType_NP · 67

R

readValue · 54

registerDynamicLinkCallback · 22, 23

registerErrorCallback · 19, 20

registerExecCallback · 21

registerExitCallback · 22

registerPostForkCallback · 21

registerPreForkCallback · 21

removeFunctionCall · 26, 33

replaceFunction · 26, 33

replaceFunctionCall · 26, 33

S

setDebugParsing · 14

setInheritSnippets · 26, 33

setMutationsActive · 28, 33

setTrampRecursive · 14

setTypeChecking · 15

stopExecution · 28, 32

stopSignal · 28, 32

T

terminateExecution · 28, 32

Type Checking · 68

U

usesTrap_NP · 39

W

writeValue · 54

dyninstAPI

 Page 93

dyninstAPI

REFERENCES

1. B. Buck and J. K. Hollingsworth, "An API for Runtime Code Patching," Journal of Supercomputing Ap-

plications (to appear), 2000.

2. J. K. Hollingsworth and B. P. Miller, "Using Cost to Control Instrumentation Overhead," Theoretical

Computer Science, 196(1-2), 1998, pp. 241-258.

3. J. K. Hollingsworth, B. P. Miller, and J. Cargille, "Dynamic Program Instrumentation for Scalable Per-

formance Tools," 1994 Scalable High-Performance Computing Conf., Knoxville, Tenn., pp. 841-850.

4. J. K. Hollingsworth, B. P. Miller, M. J. R. Goncalves, O. Naim, Z. Xu, and L. Zheng, "MDL: A Language

and Compiler for Dynamic Program Instrumentation," International Conference on Parallel Architec-

tures and Compilation Techniques (PACT). Nov. 1997, San Francisco, pp. 201-212.

5. J. R. Larus and E. Schnarr, "EEL: Machine-Independent Executable Editing," PLDI. June 18-21, 1995,

La Jolla, CA, ACM, pp. 291-300.

