
Specification and Verification of Network Managers for Large Internets

David L. Cohrs
Barton P. Miller

Computer Sciences Department
University of Wisconsin - Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

ABSTRACT 1. INTRODUCTION

Large intemet environments are increasing the
difficulty of network management. Integrating increasing
numbers of autonomous subnetworks (each with an
increasing number of hosts) makes it more difficult to
determine if the network managers of the subnetworks
will interoperate correctly. We propose a high level, for-
mal specification language, NMSL, as an aid in solving
this problem. NMSL has two aspects of operation, a
descriptive aspect and a prescriptive aspect. In its descrip-
tive aspect, NMSL specifies abstractions of the network
components and their instantiations, and verifies the con-
sistency of such a specification. The abstractions include
the data objects and processes in a network management
system. These abstractions are instantiated on network
elements. Network elements are grouped together in the
specification of domains of administration. An extension
mechanism is provided to allow for the specification of
new management characteristics that the basic language
cannot express. In its prescriptive aspect, NMSL gen-
erates configuration information directly from a consistent
specification. This information is used to configure net-
work management processes to make their operation con-
sistent with their specifications. Standard management
protocols (such as the emerging IS0 or IETF standards)
can be used to incorporate the configuration information
into running management processes.

Research supported in part by an AT&T Ph.D Scholar-
ship, National Science Foundation grants CCR-8703373
and CCR-8815928, Office of Naval Research grant
NOOO14-89-J-1222, and a Digital Equipment Corporation
External Research Grant.

Computer networks are becoming more complex,
connecting an ever increasing number of computers. As
the size of computer networks grows, the need for network
management tools to aid human administrators also grows.
Current computer networks, while physically intercon-
nected, are not joined together into one, homogeneous
intemet. In many cases, the protocols used in modem net-
works interoperate, but the networks themselves are actu-
ally divided into numerous, autonomous, independently
administrated internets. We call these autonomous sub-
networks administrative domains. Because of these dif-
ferent administrative domains, changes in the network
may not be coordinated. There are no controls on the
administrators of these domains to prevent them from
causing global problems throughout the intemet by mak-
ing their own local management decisions. This auton-
omy of network administrative control is often necessary
for pursuing independent research and other networking
goals. Therefore, a computer network management sys-
tem must be able to deal with the problems caused by this
autonomy, and provide solutions that will not restrict
autonomy, but will help make these autonomous networks
coexist in a single, connected internet.

Our system, NMSL, addresses the problems caused
by the large size and autonomy of current and future inter-
nets. NMSL includes both a method for specifying the
relationships between different administrative domains
and a method for verifying that these specifications are
actually being adhered to in the network. We address both
of these goals through the use of a high level specification
language. This language can be used in two important
ways. The descriptive aspect of the language allows the
network administrators to describe the properties of the
interfaces and configuration of the network management
systems. These specifications can be formally verified for
consistency to determine if the network administrators
have configured their management software in a consistent
manner. A specification is considered consistent if, for

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

every data reference in the specification, there is a
corresponding permission. Resource and timing require-
ments are included in the specification of references and

0 1989 ACM 089791-332-9/89/0009/0033 $1.50 permissions.

33

There is also a prescriptive, executable, aspect to
the language. The specification can be translated into con-
trol commands that configure the various network
management systems to provide the access permissions
and frequencies necessary to achieve the global manage-
ment goals. These control commands can be based on the
emerging network management standards.

Our aim is to design and implement a tool that will
solve the problems intmduced by autonomy and multiple
administrative domains. The tool we provide should han-
dle the inherent distribution of control in the intemet and
must deal with the mutual distrust present in the internet.
It should be able to scale to handle very large networks, on
the order of 100,000 networks (and gateways), 100,000 to
a million hosts, and 10,000 administrative domains. The
autonomy of the domains of administration should be
preserved. The tool should present the administrators with
high level abstractions to specify the administrative rela-
tionships between the domains. It should also verify that
the various rules and requirements given by the adminis-
trator are being met. Finally, the tool should map its
abstractions onto the emerging standards, such as the OS1
organizational model[ll], or the IETF management
framework[5]. In this way, it extends the staudards’ func-
tionality by providing a high level, global management
tool, using the protocols defined in the standard to perform
the actual management of the network.

We are not directly addressing the important issues
of security, or authentication. We also do not attempt to
define the types of information the network management
data should include, or the management protocols them-
selves.

This paper proceeds as follows. Section 2 describes
related work in network management systems and stan-
dards, as well as work from the specification language
literature. Section 3 describes the requirements for our
specification language and gives an overview of the opera-
tion of the system. Section 4 discusses the descriptive
aspects of the language, its grammer and semantics, how it
is evaluated, and how we show the consistency of a
management description. Section 5 examines the
prescriptive aspects of the language, i.e. how a
specification can be changed into a format that can be used
to control the network. Section 6 describes NMSL com-
piler operation, including code generation, and the NMSL
language extension mechanism. Section 7 concludes with
the project status, future directions of this research and our
eventual goals.

2. RELATED WORK

Our research is based on ideas from work in the
areas of both network management and formal
specification languages. Network management has been
important in the telecommunication industry for decades,
while in the computer industry, networks have only
recently become complex enough that ad hoc methods are
no longer sufficient. Specification languages have been
used to specify many areas of computer development, for

specifying both hardware and software designs.

2.1. NETWORK MANAGEMENT

Most previous computer network management sys-
tems concentrate on low level management issues, such as
local area network management@, 193 and network
address assignment[I2], debugging local area communica-
tions software[33, and wide area network manage-
ment[6,15,18]. Higher level issues, such as coordinating
the interactions between network managers, and coordi-
nating access controls, have been left for later work.
Recently, researchers have begun to address the issue of
providing higher level access to the low level information
in the network management system, such as the work by
Warrier[l’l], which provides a network management pro-
tocol independent query language. We feel that high level
tools must be, as much as possible, independent of the low
level protocols used to implement the network manage-
ment.

Current research efforts am investigating the
management needs of today’s computer networks, and
standards are emerging for the low level monitoring and
control functions in the network. Some of these research
projects also partially address the issue of administrative
domains. Among these projects are network management
systems for the TCP/IP Internet, the emerging OS1 net-
works, and IBM’s SNA networking product. The Internet
and OS1 network management systems are meant for use
in large, distributed intemets, with no central administra-
tion. IBM’s network management product primarily
addresses the needs of a single customer organization, and
does not include general support on the problems of
administrative domains. It does include a mechanism for
delegating control, and for allowing different administra-
tors different amounts of control over the network. The
administrative aspects of these systems are detailed below.

The Simple Network Management Protocol
(SNMP)[S], is a draft standard for managing TCP/lP based
intemets and is being studied by members of the Internet
Engineering Task Force (IETF). Implementations are
currently being built and tested in the DARPA Internet.
As the name states, the protocol is simple, defining only a
small number of messages. It includes a protection
mechanism that allows flexibility in determining the
accesses a remote domain of administration can make on
data from a network element’s database.

The OS1 network management architecture[ll],
while still under development, also includes support for
administrative domains in its current definition. Their
organizational model assumes that management of the net-
work will be distributed across different domains of
administration. Each management domain can communi-
cate with other domains via ports. Management domains
may be nested, and the internal features of domains may
be hidden from the outside applications. Configuring net-
work managers based on the OS1 model could be complex
and error-prone, due to the model’s generality. Providing
a formal specification of the correct configuration could

34

reduce these errors.
NetView Cl], the SNA network management product

from IBM, is a fully developed management product,
NetView is a centralized management service for SNA
networks, but also includes methods for integrating non-
SNA components into the system. It provides a central
operator with the ability to fully monitor and control a net-
work and all of the devices attached to it. NetView also
allows different operators to have different privileges,
allowing, on an operator by operator basis, restrictions on
which parts of the network the operator may monitor, and
the types of control and change operations they may per-
form.

These systems give us a good idea of the current
directions in network management. The problem of
domains of administration is addressed in each of them,
but none of these systems include a mechanism for coordi-
nating the conliguration of the various network managers.
Also not defined are high-level specifications of the
required performance of the network and the network
managers. These are the areas that NMSL specifically
addresses.

2.2. FORMAL SPECIFICATION LANGUAGES

Formal specification languages are used in many
environments, most notably for specifying programs and
protocols. Our interest in specitication languages is in
using them as part of a larger tool, rather than in the
correct way in which a specification language should be
designed. A few of the better known specification
languages are Ina Jo[4], PAISLey[21], and Larch[;?O].
Various features of these languages are important to
designing our network management specification
language. Three other recent specilication languages,
Gist[7], PLEASE[16], Anna[lS] and LOTOS[93 also have
features in common with our work.

The specillcation languages mentioned are used pri-
marily for specifying programming languages. Ina Jo,
PAISLey and LOTOS use a constructive specification
method. A constructive specification is one in which an
abstract version of the algorithm used in the program is
specified. PAISLey and Ina Jo can specify the interactions
between multi-process programs, and include the ability to
specify timing characteristics. LOTOS is used to specify
OS1 protocols, and also includes the ability to specify tim-
ing characteristics. Characteristics such as timing and
other resource requirements and limits are important to
any protocol specification, including network manage-
ment.

Another specilication approach is the axiomatic
specification method. An axiomatic specification
describes the properties a correct implementation must
exhibit, without giving an algorithm for achieving those
properties. The axiomatic method is more appropriate to
our problem, because in specifying the configuration of a
network management system, we are not concerned with
the implementation of the system, but the properties an

implementation must exhibit. Gist and Larch are two
examples of axiomatic specification languages. Gist is
also used to specify the interactions and operation a sys-
tem of interacting components. It provides a definition of
the desired properties of the program in an axiomatic way,
rather than directly describing the construction of a pro-
gram to achieve the goal of the specification. This
approach is appropriate for specifying network manage-
ment systems, and we use it as well. Larch takes the
approach of giving a description, and, in addition, pro-
vides a two-level model for specifying programs. The
lower level describes the underlying data abstractions, the
upper, or interface, level describes how state changes
occur. Larch also allows for specifying interactions
between interacting, independent processes in its interface
language specification, The two-level model gives Larch
great generality, and separating the specification of
abstractions from state or interaction specifications is use-
ful, even in our specialized area. Neither of these
language include the specification of properties such as
physical resource requirements.

PLEASE, Anna and LOTOS include mechanisms to
use the specifications to prototype or test the programs that
they are specifying. This kind of specification language is
called an executable specification language. PLEASE
allows the programmer to convert the specification into a
prototype. The user can then verify the specification by
testing its prototype against a battery of test data. Com-
pilers exist for LOTOS which can generate a protocol
engine directly from the formal, LOTOS specification.
For our application of specifying network management
configurations, we plan to generate a configuration
directly from its formal specification, and then install it in
the network management system.

These formal specification languages give us an idea
of the current technological level for specifying programs.
While we are not using any of these languages directly,
because specifying networks and network management is
different from the ways one would specify an algebraic
program, we are incorporating specific features into
NMSL. Mechanisms for specifying process interaction
are included some of the specification languages. The
ability to specify timing constraints, as in PAISLey and
LGTOS, is an important consideration. The axiomatic
method, as well as separating the data abstractions from
interactions, as in Larch, allows a cleaner, more easily
understood specification. Executable specifications, as in
PLEASE, can be used to generate code directly from a
formal specification. These characteristics, in particular,
are important to NMSL.

3. NMSL REQUIREMENTS AND OPERATION

NMSL is designed to meet the high level manage-
ment needs of very large intemets with a high level of
autonomy. The requirements of such a system are dis-
cussed in this section. This is followed by an overview of
NMSL’s operation and a description of how the parts of
NMSL will meet these requimments.

35

3.1. LANGUAGE REQUIREMENTS

NMSL’s main goal is to detect inconsistencies in the
configuration of the network and the network managers.
As such, NMSL specifications are formal and axiomatic,
allowing the use of automated proof techniques to find
inconsistencies. The use of a axiomatic specification (as
opposed to constructive) allows us to specify the interac-
tions (often called queries) between network managers
and their operation, without forcing a particular imple-
mentation. The axiomatic approach allows the
specification of a generic management server or client
application. The generic description need not depend on
how the management function is implemented, as long as
all implementations treat the management data in the same
way and interact by making the same queries with the
same frequencies.

NMSL needs to be general and extensible. It must
be able to represent the operation of a system of network
managers, including the data objects (collectively referred
to as the Management Information Base, or MIB), abstrac-
tions and encapsulations present in the management
models. It must represent the instant&ions of these data
objects and types, and the interactions between the
managers. Specifying interactions includes specifications
of timing characteristics, the frequency of requests,
bandwidth requirements, and the speed at which servers
can process requests. NMSL should also be able to
specify recursive queries (meaning that one server queries
another server to process the query). Above all, NMSL
must be easy to evaluate, to allow quick answers to ques-
tions of consistency and to scale to support the large net-
works of the future.

Providing general support for network management
systems also requires support for more complex queries
than outlined above. Some network management sys-
tems[11,141, allow the network manager for a given net-
work element to exist on some other network element.
This type of network management is called proxy network
management. Eroxies are necessary because some net-
work elements cannot respond to management queries
directly. Such network elements include LAN bridges that
do not support high level management protocols. Also
included are protected (secure) systems that might not
trust a foreign network manager. Specifying proxies
requires NMSL to model the interactions between the
proxy and the managed network element, as well as any
data transformations made between the proxy protocol and
the normal protocol. Once again, the specification of
interactions must include the frequency of interaction and
the use and availability of resources.

Making NMSL extensible means that the syntax and
semantics of the language must be able to change to allow
specification of new management information or proto-
cols. An extension mechanism must allow for the intro-
duction of new data or interaction abstractions. It must
also define how the extension is to be evaluated, and must
include rules to relate the extended specification to the
specification information present in the basic language.

The ways in which the new information affects the con-
sistency definition must also be given. Finally, the
prescriptive output of the extension must be defined.

Using a formal specification to prescribe the opera-
tion of the network managers at runtime makes NMSL
even more useful. To be used in this way, the prescriptive
output of NMSL must be as general as possible, being able
to generate configuration data for various network
managers. The NMSL compiler must include descriptions
of how the formal specification can generate configuration
data. To support extensions, any extension must also
include a description of how that extension affects the
prescriptive output.

In summary, NMSL is designed with two main
aspects, a descriptive aspect, where it specifies network
management configurations and checks the consistency of
these configurations, and a prescriptive aspect, where it
generates configuration information for the network
managers. A formal, axiomatic language is required for
the descriptive aspect, and must include specifications of
the object types, and how these objects are instantiated.
Extensions must be supported, via an extension language,
to allow for the changing requirements of network
managers. The prescriptive aspect requires NMSL to gen-
erate many different output configurations, depending on
the type of network manager to be configured.

3.2. NMSL OPERATION OVERVIEW

Figure 3.1 gives a box diagram relating the parts of
the NMSL system. The two aspects of NMSL’s operation
are divided roughly along a diagonal through the figure.
The descriptive aspect includes the NMSL Compiler and
the Consistency Checker. The prescriptive aspect includes
the Configuration Generators. The boxes in the figure
show the input and output of the NMSL system.

‘Ibe Extension Language Specifications allow new
specification types to be added to the basic NMSL reper-
toire. The system manager writes new specification types,
relates them to the basic specifications, and describes the
different compiler output in the Extension Language. This
meets our goal of extensibility.

The compiler is central to the first aspect of NMSL
operation. It takes as input the format of the basic and
extended language specifications, along with the
specilications for each part of the intemet. The output of
the compiler varies depending on the desires of the system
administrator. There are two basic types of output, con-
sistency facts and rules, and configuration information.

The consistency checker takes the facts and rules
from the NMSL compiler, adds some overall consistency
requirements, and determines if the specifications for the
network managers are consistent. If they are not con-
sistent, the immediate causes for inconsistency are listed
for the system manager. Determining consistency is a
complicated operation, and the details of this operation are
not part of this paper, although the high level operation of
the consistency checker is discussed in Section 4.2.

36

4iil Specifications

Basic
Lwww

Specification
t

Extension
Lawwe

Specifications
WSL/EXT) r-

NMSL/SPEC

Compiler Configuration

FIGURE 3.1. THE NMSL SYSTEM DESIGN

The configuration generators take the configuration
output from the NMSL compiler and produce
configuration information for the network managers. The
configuration information is the prescriptive output of the
NlvISL system. This information can be shipped to the
individual network managers, which can then be
configured so as to meet the consistency requirements.

4. DESCRIPTIVE ASPECTS

This section explains the descriptive aspects of
NMSL. The section is divided into two parts. The Iirst
part describes the basic language, its syntax and seman-
tics, the abstractions it provides, and motivation for these
basic facilities. The second part describes the evaluation
mechanism and how it is used to determine the con-
sistency of a NMSL specification.

4.1. THE BASIC LANGUAGE

The purpose of a NMSL specification is to denote
the expected interactions that take place in a system of
network managers. These specifications are written in an
axiomatic way, in which the properties of the interactions
are specilled, not an algorithm used to perform the interac-
tions. In our model, an interaction is initiated by a client
sending a request to a server. The server processes the
request and returns a response. A request could be a sim-
ple lookup operation, it could modify some objects in the
management database, or it could cause the execution of
some remote operation on an object in the database. A
process may act as a server in some interactions and as a
client in others. To specify interactions of this form, we

must specify the data that is transferred during the interac-
tion, the parties involved and their expected behavior,
where they are physically located in the intemet, and the
administrative properties and groupings of the parties
involved.

We first need to specify the types of objects in the
network management database. The values of these
objects will be transferred back and forth in a query. A
data type specification must include the abstractions
present in the database: how the data is grouped into com-
plex data types, and the various representations that a data
object can have. We call these 0~ specifications.

We also need to specify the clients and servers in
the system, the parties involved in queries. We call these
process speci’cations. A process specification defines the
queries that a process initiates, the relative order in which
the queries are made, the frequency of queries, the param-
eters to the process and its queries. If the process is a
server, the specification includes configuration infonna-
tion: which clients are allowed to query this server, how
often, and for what data. A process specification may also
include statements defining how instances of a data type
specilications are transformed between their representa-
tions. A process, in our sense, is an abstraction similar to
a type specification that must be instantiated at some place
in the network.

The physical parts of the network are specilied in
network element specifications. A network element is any
piece of hardware that can be connected to a network. A
network element specification defines which processes are

37

instantiated on that network element, It also specifies
which parts of the management information base are sup-
ported (instantiated) on that network element.

Finally, the administrative relationships between
groups of network elements and the processes that are
instantiated on them are given in the domain
specijications. A domain specification groups processes
and network elements along administrative boundaries.
Domains can overlap and nest. A domain specification
defines which network elements belong to a domain,
which processes on those network elements can receive
queries from outside the domain, and which processes are
allowed to initiate queries to other domains.

The redundancy between the various specifications
is deliberate. Every network administrator has their own
idea of how their network elements, domains, and
processes interact with other parts of the management sys-
tem. To verify that all parts of the system are configured
in a consistent way, we need to specify how each part
interacts, which causes the redundancy.

The separation of the specifications into abstmctions
(the data and process specifications) and instantiations (the
network element and domain specifications) is also deli-
berate. This allows the management information to be
specified independent of its use. It also allows types of
processes to be specified, and allows these process types
to be instantiated in various locations. These separate
specifications, as pointed out in Larch[201, make them
more generally useful. In the case of network manage-
ment, the separation also mirrors the real world, where
many network elements will store the same types of
management data, and run network management software
derived from the same source.

4.1.1. NMSL SYNTAX

The syntax of the NMSL specifications is designed
to by easy to write, understand and parse. Tokens are
separated by white space or special character sequences
l&e “: :=” or “;“. NMSL keywords are alphabetic.
Various other token types are supported by NMSL, and
their format is described when they are introduced. The
syntax of the statements is presented as BNF-style gram-
mar rules. In the examples, SNMP and the IETF MIB are
used exclusively. This is only for simplicity; NMSL
works equally well with the OS1 management framework.

4.1.2. TYPE SPECIFICATIONS

The syntax of NMSL type specifications is based on
the IS0 Abstract Syntax Notation One (ASN.l)[lO].
ASN.l has the advantages that it is general, machine
architecture independent, and well known. It is used to
specify the variables of both the IETF MIB and the OS1
MIB (and the data formats used by other OS1 protocols
and standards), two of the management databases we
might use with NMSL. ASN.1 macro descriptions are not
supported, since the NMSL extension mechanism fulfills
this role.

TypeSpec ::= "type" TypeName "::="
Asnl-body *l:lt
AccessSpec
"end" "type" TypeName "."

TypeName ::= String

AccessSpec ::= "access" AType w';rr 1 EMPTY

AType ::= "Any" 1 "ReadOnly" 1
"WriteOnly" 1 "None"

FIGURE 4.1. FORMAT OF TYPE SPECIFICATIONS

A NMSL type specification is formed by the key-
word type followed by a standard ASN.1 type descrip-
tion followed by a trailer, as shown in Figure 4.1. The
keyword, type , starts a type specification. The
TypeName token is any valid ASN.l type identifier, and
must be the same in both positions in the type
specification. The ASN.l specification given in Asnl-
body provides the data grouping and representation
speeiftcations. Its format is described in the ASN.l stan-
dard. AccessSpec allows simple access checks to be
made when a request in a process specification is made to
access data. This clause can be modified via the extension
language to handle more complex access requirements. If
no AccessSpec is present, the access characteristics
are inherited from a containing type, as is shown in the
example, below.

As an example of the use of a type specification,
consider the specification of the IP Address Table that
defines the IP Addresses for a given entity. The example
in Figure 4.2 is derived from the TCP/IP MIB [141. The
IpAddress and INTEGER tokens are ASN.l type
names. ipAdEntAddr, et al, are members of the
IpAddrEntry !quence. Complex types of this form
are common in network management data.

This simple specifmation shows how the ASN.l
type specification fits into a NMSL specification. It also
shows how the access mode of a type is inherited, the
access mode of IpAddrEntry was not specified, but
this was used in the definition of an ipAddrTable, so

type ipAddrTable ::=
SEQUENCE of IpAddrEntry;
access ReadOnly;

end type ipAddrTable.

type IpAddrEntry ::=
SEQUENCE (

ipAdEntAddr IpAddress,
ipAdEntIfIndex INTEGER,
ipAdEntNetMask IpAddress,
ipA&ntBcastAddr INTEGER

1 ;
end type IpAddrEntry.

flGURE 4.2. EXAMPLE TYPE SPECIFICATION

3%

all IpAddrEntry elements inan ipAddrTable are
read-only. The integration of the type specifications with
the other specifications is given in the following sections.

4.13. PROCESS SPECIFICATIONS

A process specification defines the characteristics of
a network management process. A process is given a list
of input parameters and performs some interactions with
other processes based on the values of those parameters.
A process specification defines a new abstraction in the
same way a data type specification defines a new abstrac-
tion. Processes can be instantiated in a network element
or domain specification.

A portion of the grammar for the process
specifications is shown in Figure 4.3. A network manage-
ment process can perform many functions, but we are only
interested in its interactions with other processes and the
network management data to which it has access. The
interactions are specified using the QrySpecs clause.
Figure 4.3 only shows queries that retrieve data; the full
language supports queries that modify data and those that
cause remote execution as well. A QrySpec specifies
the parameters to the query (the using clause), the
expected response (the requests clause) and the tim-
ing characteristics of the query (the frequency clause).

ProcessSpec::=

ParamSpec ::=

ParamList ::=

PSpecs ::=

Param : :=

ViewSpec ::=

ExSpecs ::=

ExSpec ::=

QrySpecs ::=

QrySpec ::=

VList . .= . .

Freq . .= . .
I

BoundSpec ::=

TimeSpec ::=

"process" ProcName
ParamSpec "::="
PSpecs
"end" llprocess*l ProcName "."

"(" ParamList ")" 1 EMPTY

ParamList *','I Param 1 Param

ViewSpec 1 ExSpecs 1 QrySpecs

NMSLVariable ":" TypeName

"supports" VList ";" I EMPTY

ExSpecs ExSpec 1 EMPTY

"exports" VList
"tort DomainName
"access" AccessType
"frequency" Freq ":"

QrySpecs QrySpec I EMPTY

"queries" ProcName
"requests" VList
"using" AsgnVList
"frequency" Freq ";"

VList *', *' VarID I VarID

BoundSpec Float TimeSpec
"infrequent"

W<W 1 !!<=It 1 W,M 1 W>,tt 1 EMPTY

"hours" I "minutes" I
"seconds"

FIGURE 4.3. FORMAT OF PROCESS SPECIFICATIONS

Some processes store, have direct control over, and
can answer queries for management data. We say that
such processes support a part of the MIB. The process
specification includes clauses to specify this supported
management data as well. The supported MIB variables
are listed in a Viewspec. The access permissions other
processes have with respect to this supported data are
specified with an ExportSpec. The ExportSpec
makes use of the administrative groupings specified in a
domain specification.

Figure 4.4 shows a simple example of a SNMP
agent and an application process.’ The agent process,
snmpdReadOnly, is a simple SNMP agent that exports
all of its variables read-only to the “public" domain.
Because of the way the IETF MIB is defined, by support-
ing “mgmt. mib", the agent supports the full IETF MIB.
It expects to be queried no more than once every 5
minutes.

The application process, snmpaddr, retrieves
information about a single network interface connected to
a network element. The application has two parameters,
SysAddr and Dest, which are assigned values when
the application is instantiated (executed). Snmpaddr
sends a query to an agent, identified by the SysAddr
variable. The query requests the contents of the entire
IpAddrEntry sequence with the selection criterion that
the sequencereturnedhave ipAdEntAddr equaltothe
vahe of Dest (specified in the using chuse). This
application is expected to make queries infrequently.
Other important information needed during the query,
such as the domain in which the process executes, is
specified in a network element or domain specilication
when the process is instantiated.

process snmpdReadOnly ::-
supports mgmt .mib; -- entire MIB subtree

exports mgmt .mib to "public"
access ReadOnly
frequency >= 5 minutes;

end process SnmpdReadOnly.

process snmpaddr(
SysAddr: Process; Dest: IpAddress) ::=

queries SysAddr
requests

mgmt.mib.ip.ipAddrTable.IpAddrEntry
using

mgmt.mib.ip.ipAddrTable.
IpAddrEntry.ipAdEntAddr := Dest

frequency infrequent;
end process snmpaddr.

FIGURE 4.4. EXAMPLE PROCESS SPEClFlCATlONS

'An agent pmcess stores management data and responds to re-
quests whileanapplicati~processisonethatinitiatesrequestsbutdoes
nd storemanagement data itself.

39

4.1.4. NETWORK ELEMENT SPECIFICATIONS

Network element specifications describe the physi-
cal properties of the network. Each specification shows
the details for a single computer (or terminal, printer,
router or other device that could be connected to a net-
work) and its connections to the intemet. It also lists the
portion of the MIB that is supported by the network
element’s hardware and operating system. Finally, a list
of the network management processes that are expected to
execute on this network element is given.

A portion of the grammar for a network element
specification is shown in Figure 4.5. The SystemSpec
groups the subspecifications into a network element
specification. The properties of the hardware are given in
the HardConf,including thecputype and a listofnet-
work interfaces. Each of Spec lists one network inter-
face, an identifier, the physical network to which the inter-
face connects, the type of interface, and its nominal speed.
The speed is important for determining if the processes on
this network element will be able to respond to queries in
a timely manner, or if this network element will be
swamped with management requests. The Sof tconf
gives a description of the operating system for this net-
work element. The View ~pec lists the portion of the
MIB that this network element supports. Each network
management process is that is instantiated on this network
element is listed in the ProcSpecs.

A simple example of a network element
specification is shown in Figure 4.6. This network ele-
ment, called romano.cs.wisc.edu, has single inter-
face, connecting it to a 1OMbps ethernet named wisc-

SystemSpec ::-

HardConf : :=

IfSpecs : :=

IfSpec : :=

SoftConf : :=

Pro&pees : :=

ProcSpec : :=

ProcInvoke ::=

ProcParams ::=

PrPList ::=

PrParam : :=

"system" SystemID "::=,I
HardConf SoftConf ViewSpec
ProcSpecs
"end" "system" SystemID "."

"CPU" String I';'* IfSpecs

IfSpecs IfSpec] EMPTY

"interface" String
"net" String
"protocols" PrPList
?ypeV* String
"speed" Integer "bps" '*;I'

"opsys" String
Version" String ":"

ProcSpecs ProcSpec 1 EMPTY

"process 'I ProcInvoke ";"

ProcName ProcParams

"(*' PrPList ")" 1 EMPTY

PrPList "," PrParam 1 PrParam

String 1 Integer 1 Float

FIGURE 4.5. FORMAT OF NETWORK ELEMENT
SPEClFlCATlONS

research. It runs the SunOg 4.0.1 operating system. It
supports most of the IETF MIB, but does not support the
EGP variables. Romano.cs.wisc.edu runs the
readonly SNMP agent process used in Figure 4.4.

4.15. DOMAIN SPECIFICATIONS

Domain specifications describe the administrative
groupings found in networks. Domains may contain other
domains (sub-domains), network elements and processes.
Processes can be specified in the domain specification (as
opposed to the network element specification) to allow
them to be instantiated in the domain without specifying
which network element is being used. A domain
specification also lists how its members relate administra-
tively to other domains.

A portion of the grammar for a domain specification
is shown in Figure 4.7. The members of a domain are
given in the Me&Specs prOduCtiOn. gUbdOn'UinS,like
other members, are specified separately and are only refer-
enced in the domain specification. The ExSpecs pro-
duction specifies which parts of the MIB that are available
in this domain can be accessed by processes in other
domains. The ExSpecs production is redundant; is also
given in an process specification. It is given here as part
of the consistency mechanism. It can also further restrict
how other domains may access the members of this one.

system "romano.cs.wisc.edu" ::=
cpu spare;
interface ie0 net wise-research

type ethernet-csmacd
speed 10000000 bps;

opsys SunOS version 4.0.1;
supports

mgmt.mib.system, mgmt.mib.at,
mgmt.mib.interfaces,
mgmt.mib.ip, mgmt.mib.icmp,
mgmt.mib.tcp, mgmt.mib.udp;

process SnmpdReadOnly;
end system *'romano.cs.wisc.edu".

FIGURE 4.6. EXAMPLE NETWORK ELEMENT
SPEClFlCATlON

DomainSpec ::- "domain" DomainName 'I::=="
MembSpecs
ExSpecs
**end" V1domainVq DomainName "."

Men&Specs ::= MembSpecs MembSpec I EMPTY

MembSpec ::= "process" ProcInvoke I';"
I "domain" DomainName I*;"
I q'system" SystemID ";"

FIGURE 4.7. FORMAT OF DOMAIN SPECIFICATIONS

40

domain wise-cs ::=
system romano.cs.wisc.edu;
system cs.wisc.edu;
process snmpaddr(*, *);
exports mgmt.mib to V'public'l

access ReadOnly
frequency >= 5 minutes:

end domain wise-cs.

FlGURE 4.8. EXAMPLE DOMAIN SPEClFlCATlON

A simple example of a domain specification is given
in Figure 4.8. In this example, the domain, wise-cs,
contains two network elements. It also contains an
instance of the SNMP application process, snmpaddr,
specified in Figure 4.4. In this example, the value of the
parameters to the snmpaddr process are not known at
the time the specification is written. We use the special
token, “*“, to denote that the values will be set at the
time that the process is run. The wise-cs domain
exports the full IETF MIB to the public domain, but
onfy for reading, and requests from public can arrive
no more frequently than once every 5 minutes.

4.2. EVALUATION
Given a network specification, the NMSL system

must tell the system administrator if the specification is
consistent. If it is not, the causes for inconsistency should
be displayed. This is the task of the NMSL Consistency
Checker. The Consistency Checker takes as input the con-
sistency output from the NMSL Compiler. The con-
sistency output is in the form of statements of a logic pro-
gramming language. The Consistency Checker adds rules
to these logic statements that describe the meaning of con-
sistency. It then passes the rules to the logic interpreter,
along with a logical statement requesting the interpreter to
find inconsistencies in the specification.

The NMSL Consistency Checker is a front end for
the Prolog dialect, CLP(R)[2]. CLP(R) was chosen
because of its speed in performing logical deduction, and
its ability to check numeric constraints over the real
numbers. Numeric constraints are important for specify-
ing timing and other resource limitations of interactions.
The closed-world model used by CLP(R) is appropriate
for a NMSL specification, because we are interested in
determining if the parts of the specification are consistent
with each other, not with all possible specifications.

The NMSL compiler converts the NMSL
specification into CLP(R) statements. The output from the
compiler is a collection of logical facts and rules. The
Consistency Checker adds statements describing the con-
sistency of any NMSL specification to this output and exe-
cutes the CLP(R) interpreter. The interpreter performs the
consistency check.

Consistency of a NMSL specilication is defined in
terms of the relationships between the types, processes,
network elements and domains in the specification. There

are six relationships in our consistency model: contain-
ment, instantiation, two reference relations and two per-
mission relations. These relationships are shown, along
with their definitions, in Figure 4.9. In the course of a
proof, these are reduced to just ref eq and perm-eq
relationships. A NMSL specificationis said to be con-
sistent if, for every reference relationship, there is a
corresponding permission.

Part of a reference or a permission relationship are
resource limitations, such as time, frequency, size or
bandwidth. The type of access is also specified. In their
current form, references and permissions only include fre-
quency and access type. Other resource requirements
would appear as additional parameters to the relationships.

Three types of rules are employed during a con-
sistency proof: transitivity, distribution, and reduction
rules. The containment relationship is transitive. The dis-
tributive rules are used to distribute containment and
instantiation over each other, and over reference and per-
mission. The reduction rules relate reference and permis-
sion relationships.

The proof performed by the Consistency Checker is
really a proof of inconsistency. When an inconsistency is
proved, it is reported to the system administrator. At this
point, the offending parts of the specification must be
corrected. If no inconsistencies are found, the
specification is consistent. This method of proving con-
sistency is viable because of our closed-world assumption.
At this time, we are formally defining the relationship
between containment, reference and permission (that is,
how references by the members of a domain are affected
by a permission given to their containing domain). Once
this is completed, we will show the completeness of our
model for the class of network management systems
represented by current standards. These results will be
presented in future paper.

The NMSL Consistency Checker can also be used
in a speculative role. Consider the scenario where a net-
work administrator is about to connect a new organization
to the intemet. The load this organization will place on
the intemet is basically unknown. However, the adminis-
trator can make a specification of the new organization’s
expected interactions with the existing parts of the inter-
net. If summary data is available for the existing intemet,
approximate values can be used to determine the amount

contains(X,Y) XcontainsY
instan(X,Y,Z) XinstantiatesYwith unique ID2
ref-eq (X,Y,A, T) It is possible thatX references Y

foraccess Aevery T seconds
ref-gt (X,Y,A,T) . ..atmostevery Tseconds
pem-eq W, Y, A, T) X has permission to reference Y

for access A every T seconds
perm-gt (X, Y, A, T) . . . at most every T seconds

FIGURE 4.9. NMSL LOGICAL RELATlONSHlPS

41

of traftic generated, for example. This specification can
be tested with the existing intemet specifications by the
NMSL Consistency Checker. It will be able to tell the
administrator if there are inconsistencies in the new
specification.

Another speculative use of the Consistency Checker
utilizes CLP(R)‘s ability to run the consistency check in
reverse. Once again, this is used to check a new
specification against an existing, consistent specitication.
In this case, we would make the consistency of the com-
bined specification a premise of the proof, and ask
CLP(R) to solve for the parameters to the references and
permissions of the new specification that satisfy this prem-
ise. Using the Consistency Checker in a speculative role
could help to ease the pain of a growing intemet.

5. PRESCRIPTIVE ASPECTS

Once a specilication is determined to be consistent,
the specification can be executed to configure the network
management processes. As in the case of consistency
checking, a NMSL Configuration Generator takes output
from the NMSL Compiler and uses it to configure a net-
work manager. The compiler cannot configure a network
manager directly, because this requires knowledge of dam
formats, protocols and authentication issues that the com-
piler should not have to know about. The NMSL
Configuration Generator is, therefore, a separate module
that interprets the configuration output of the compiler and
performs the implementation-specific actions necessary to
install the configuration in a network management pro-
cess.

The operation of the prescriptive aspect is simple.
The NMSL Compiler is rerun with a parameter requesting
configuration output of a specific type. It parses the
specification just as it would to generate consistency
checking output. The output it generates, however, is
configuration output instead of Prolog rules. The way in
which these different types of output are specified is
described in Section 6. A NMSL Configuration Generator
takes the configuration output and transmits it to each
appropriate network element or process. Ideally, this
would be achieved by initiating a connection to a network
management process on each affected network element,
authenticating the Configuration Generator as a trusted
process, and sending, via the normal network management
protocol, the configuration information. In other cases, the
data might be copied, in the form of a file, to the affected
network element, or even sent via electronic mail to the
administrator of that network element.

In practice, it may be too time consuming to gen-
erate the configuration output from one central location.
This depends on the frequency of changes to the manage-
ment specification, and the number of network managers
that need configuration. It may be possible to perform the
configuration phase in a distributed manner. If a process’s
configuration depends only on its own specification, the
configuration information for that process can be gen-
erated from its specification alone, and can be generated

on the network element on which the process executes. In
this way, the benefit of using the executable specification
is still achieved, but the work of generating the
configuration information does not swamp a single com-
puter, At this point in our research, we do have not deter-
mined how we would distribute NMSL’s prescriptive
OperatiOIl.

6. THE NMSL COMPILER OPERATION AND THE
EXTENSION MECHANISM

The grammar recognized by the NMSL Compiler is
less specific than the previous sections indicate, The
examples in Section 4 show that each type of specification
has the same structure. Each specification has the same
format (a header, a body and a trailer); each clause of a
specification is made up of subclauses that begin with a
keyword and are followed by a list of parameters. The
NMSL Compiler actually recognizes this less specific
grammar. Parsing the specifications in this form has the
advantage that it simplities the generation of multiple
types of output and simplifies the mechanism that adds
extensions to the basic grammar.

6.1. SYNTACTIC AND SEMANTIC CHECKING

The NMSL Compiler operates in two passes. In the
lirst pass, it parses the input specifications according to the
generalized grammar shown in Figure 6.1. In the process
of parsing the input, the compiler builds a parse tree for
the specifications, but it does not attempt any semantic
analysis of the specifications. This means that any group
of tokens will be accepted by the parsing pass, provided
that the group of tokens matches the basic format of the
NMSL grammar. The task of differentiating between the
specifications and clauses is left for the second pass.

decls

decl

declparams

clauses

clause

subclauses

subclause

list

listelement

token

::- decls decl 1 EMPTY

::= decltype declname
declparams "::="
clauses
"end" decltype declname I'.'*

: := 'I ('I list 'I) I1 1 EMPTY

::= clauses clause 1 EMPTY

::== subclauses ";"

::= subclauses subclause
I subclause

::= string list
I asnl-id asnl-subclause

::= list 11," listelement
I listelement

::= token special token 1 token

::- string 1 number I special

FIGURE 6.1. GENERALIZED NMSL GRAMFdAR

42

Associated with each production shown in Figure
6.1 is a list of actions. These actions are executed in the
second pass of the compiler. When they are executed,
they are passed the context in which the production was
used and the parameters corresponding to a list of the
tokens generated by the current production. The actions
have two tasks. Their first task is to determine if the
specifications parsed by the first pass are valid. The type
of the declaration (decltype in Figure 6.1) must be
valid, as must the name of the declaration, the parameters,
and each of the clauses. The names of each type of
declaration and clause can be checked by a simple table
lookup. Determining if the contents of a clause is correct
requires executing a clause-specific semantic check.

The actions that detect semantic errors are common
to all runs of the compiler, and do not change depending
on the type of output generated, We call them generic
actions. The generic actions statements are tagged with
the identifier, generic, in the compiler’s tables. Gen-
eric actions can also perform bookkeeping operations,
such as accessing the symbol table. Output (code genera-
tion) is performed by a collection of ourpw speci’c
actions.

6.2. CODE GENERATION

The output specific actions allow the second pass to
perform its other task, generating output. In the
compiler’s tables, each output specific action is tagged
with an identifier for the type of output that it generates.
When the compiler is run, one of its parameters specifies
the type of output desired. For example, requesting con-
sistency output causes the actions tagged consistency
to be executed, and Prolog rules to be generated. Other
actions, such as an action tagged BartsSnmpd would be
executed only if configuration output for Bat-t’s SNMB
daemon were being generated. Each run of the compiler
executes the generic actions and one type of output
specific action.

4.3. THE NMSL EXTENSION MECHANISM

The basic NMSL language allows the specification
of a wide variety of different network management
configurations. However, we cannot anticipate all possi-
ble configurations or forms of specification. It is also time
consuming to enter groups of similar specifications; a
macro facility would be helpful. The NMSL extension
language addresses these two issues.

The extension input to the NMSL Compiler (see
Figure 3.1) is a simple list of typed keywords and actions.
This format was chosen because the format of basic gram-
mar identifies declarations and clauses. Further semantic
processing is based on the keyword identifying the
declaration or clause. The compiler creates an internal,
extended keyword table and an extended action table from
the extension language input when it begins execution.
The extended tables are used by the compiler in its second
pass. When it performs an action for a production, the

compiler consults the extended keyword table before it
consults the basic list. If an entry in the extension
matches, the compiler performs the action statement asso-
ciated with the extended keyword (if one exists). This
process corresponds to the way basic declarations and
clauses are processed. If the keyword for an extension is
different from all existing keywords, then the extension
extends the language; if the keyword is the same as an
existing keyword, it overrides the basic language. How-
ever, only the actions specified in the extension override
the basic actions. For example, an extension that specifies
the keyword queries (queries is a keyword in the
basic language) and a single action tagged DavesSnmpd
will not override the basic generic action for the
queries clause, but it will override an existing action
tagged DavesSnmpd. This allows new types of output
for a production to be specified in an extension without
changing that production’s generic processing.

The simplified grammar can increase the complexity
of the action statements. An action statement for a clause
must determine if the clause is valid in the context in
which it is used. Additionally, if an action overrides an
action of a basic clause, it must include code to handle all
contexts in which the clause can appear. Usually, the
semantics of a clause are the same in each context, so the
action statements do not become much more complex.

The NMSL extension language extends the declara-
tions and clauses recognized by the NMSL Compiler.
This is done by prepending the extension keyword and
action tables to the basic tables. Prepending allows exten-
sions to override the basic actions. Because the semantics
and output actions, not grammar, are specified in the
extension, we preserve the look and feel of the NMSL
language. We feel this gives us the growth potential we
need from the extension language, without allowing more
flexibility in an extension than necessary.

7. CONCLUSIONS AND FUTURE WORK

NMSL attacks the problem of managing large inter-
nets by providing a high level, formal specification
language. We have shown the two aspects of NMSL, the
descriptive aspect, and the prescriptive aspect. In its
descriptive aspect, we have shown that the formal,
axiomatic language allows the specification of manage-
ment abstractions and their instantiations in the intemet.
The abstractions include data objects and network
management processes. NMSL supports the specification
of network elements and administrative domains, and the
instantiation of processes in these spectications. Most
importantly, we showed how these specilications are
checked for consistency with the NMSL Consistency
Checker.

To address changing network environments and
standards, NMSL includes an extension mechanism. We
discussed the way this mechanism allows the specification
of abstractions and objects that have not been anticipated
in the basic language. Extensions can override clauses
and declarations in the basic language in a controlled way.

43

We also showed how the look and feel of the basic
language is preserved in an extension through the use of a
general parser that parses a specification without consider-
ing its semantic content.

In NMSL’s prescriptive aspect, a NMSL
Con&ration Generator generates configuration informa-
tion directly from a consistent specification. We described
the support for multiple types of action statements for each
production in the NMSL grammar. These actions generate
different types of output for a single specification, includ-
ing many types of configuration information. Finally, we
outlined the way this information can be sent directly to
network management processes, increasing the probability
that these processes will inter-operate in the desired way.

Research into the NMSL system is still at its early
stages. Our immediate task complete our format definition
of the meaning of a consistent NMSL specification. Vari-
ous details of the clauses in the basic language must also
be worked out. We plan to implement the system as it is
described here, including the Compiler, the Consistency
Checker, and at least one Configuration Generator. The
implementation is planned for use with SNMP in a TCP/IP
environment.

REFERENCES

111 “Network Management,” IBM Systems Journal 27(1) pp.
1-85 (1988).

[2] N. Heintze, et al, The UP(R) Programmer ‘s Maw&
Dept. of Computer Science, Monash University, Clayton,
Victoria, Australia (1987).

[3] J.A. Barchanski. “Expert Systems for Local Computer
Network Software Debugging,” Proceedings of the 1987
IEEE 12th Conference on Local Computer Networks, pp.
154-159 Minneapolis, MN, (October 1987).

[41 D. B. Berry. “Towards a Formal Basis for the Formal
Development Method and the Ina Jo Specification
Language,” IEEE Tranwctions on Sofiare engineering
SE-13(2) pp. 184-201 (February 1987).

[5] J. Case, M. Fedor. M. Schoffstall. and J. Davin, “A Sim-
ple Network Management Protocol,” RFC 1067, IETF
Network Working Group (August 1988).

WI L. J. Cole, “Network Management as Described in Sys-
tems Network Architecture,” IEEE In@com 86, pp. 364-
376 Miami, FL, (April 1986).

[7] M. S. Feather, “Language Support for the Specification
and Development of Composite Systems,” ACM Tratwac-
tions on Programming Languages and Systems 9(2) pp.
198-243 (April 1987).

P31 F. Fluckiger and C. Pmey, “Principles of Control in a
Distributed Network,” Networks 80, Online, pp. 159-171
London, England, (June 1980).

[9] Information Processing Systems - Gpen Systems Inter-
connection, “LGTOS (Formal description technique
based on the temporal ordering of obervational
behavior).” IS0 8807. International Organization for

DOI

Cl13

WI

1131

El41

1151

P61

1171

WI

D91

PO1

WI

Standardization (August 1987).

Information Processing Systems - Gpen Systems Inter-
comlt?ction, “Specification of Abstract Syntax Notation
One (ASN.1); IS0 8824, International Organization for
Standardization (December 1987).

S. M. Klercr, “The OS1 Management Architecture: an
Overview.” IEEE Network 2(2) pp. 20-29 (March 1988).

WM. Louks, WI. Kwak, andZ.G. Vranesic, *‘Implemen-
tation of a Dynamic Address Assignment Protocol in a
Local Area Network,” Computer Networks and ISDN
Systems ll(3) pp. 133-146 (July 1986).

D. C. Luckham and F. W. Hex&e, “An Overview of
Anna, a Specification Language for Ada,” IEEE Software
2(2) pp. 99-22 (March 1985).

K. McCloghrie and M. Rose, “Management Information
Base for Network Management of TCP/IP-based Inter-
nets.” RFC 1066. IETF Network Working Group
(August 1988).

R. E. Moore, ‘Problem Detection, Isolation, and
Notification in Systems Network Architecture,” IEEE
It&mm 86. pp. 377-381 Miami, FL, (April 1986).

R. B. Terwilliger and R. H. Campbell, “PLEASE: Predi-
cate Logic based ExecutAble SpEcifications,” Proceed-
ings of the 1986 ACM Computer Science Co$erence. pp.
349-358 Cincinnati, OH, (February 1986).

U. S. Warrier, P. A. Relan, 0. Berry, and J. Bannister, “A
Network Management Language for OS1 Networks,”
ACM SIGCOMM 88. Stanford, CA, (August 1988).

J. Westcott, J. Buress, and V. Begg, “Automated Network
Management,” IEEE In&corn ‘85. pp. 43-50 Washing-
ton, DC, (March 1985).

S. Wilber, “Local area network management for diitri-
buted applications,” Computer Communications 9(2) pp.
100-104 (April 1986).

J. M. Wing, “Writing Larch Interface Language
Specifications,” ACM Transactions on Programming
Lunguages and Systems 9(1) pp. l-24 (January 1987).

P. Zave, “An Operational Approach to Requirements
Specification for Embedded Systems,” IEEE Transac-
tions on Software Engineering 8(3)pp. 250-269 (May
1982).

44

