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ABSTRACT 1. INTRODUCTION 

Large intemet environments are increasing the 
difficulty of network management. Integrating increasing 
numbers of autonomous subnetworks (each with an 
increasing number of hosts) makes it more difficult to 
determine if the network managers of the subnetworks 
will interoperate correctly. We propose a high level, for- 
mal specification language, NMSL, as an aid in solving 
this problem. NMSL has two aspects of operation, a 
descriptive aspect and a prescriptive aspect. In its descrip- 
tive aspect, NMSL specifies abstractions of the network 
components and their instantiations, and verifies the con- 
sistency of such a specification. The abstractions include 
the data objects and processes in a network management 
system. These abstractions are instantiated on network 
elements. Network elements are grouped together in the 
specification of domains of administration. An extension 
mechanism is provided to allow for the specification of 
new management characteristics that the basic language 
cannot express. In its prescriptive aspect, NMSL gen- 
erates configuration information directly from a consistent 
specification. This information is used to configure net- 
work management processes to make their operation con- 
sistent with their specifications. Standard management 
protocols (such as the emerging IS0 or IETF standards) 
can be used to incorporate the configuration information 
into running management processes. 

Research supported in part by an AT&T Ph.D Scholar- 
ship, National Science Foundation grants CCR-8703373 
and CCR-8815928, Office of Naval Research grant 
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Computer networks are becoming more complex, 
connecting an ever increasing number of computers. As 
the size of computer networks grows, the need for network 
management tools to aid human administrators also grows. 
Current computer networks, while physically intercon- 
nected, are not joined together into one, homogeneous 
intemet. In many cases, the protocols used in modem net- 
works interoperate, but the networks themselves are actu- 
ally divided into numerous, autonomous, independently 
administrated internets. We call these autonomous sub- 
networks administrative domains. Because of these dif- 
ferent administrative domains, changes in the network 
may not be coordinated. There are no controls on the 
administrators of these domains to prevent them from 
causing global problems throughout the intemet by mak- 
ing their own local management decisions. This auton- 
omy of network administrative control is often necessary 
for pursuing independent research and other networking 
goals. Therefore, a computer network management sys- 
tem must be able to deal with the problems caused by this 
autonomy, and provide solutions that will not restrict 
autonomy, but will help make these autonomous networks 
coexist in a single, connected internet. 

Our system, NMSL, addresses the problems caused 
by the large size and autonomy of current and future inter- 
nets. NMSL includes both a method for specifying the 
relationships between different administrative domains 
and a method for verifying that these specifications are 
actually being adhered to in the network. We address both 
of these goals through the use of a high level specification 
language. This language can be used in two important 
ways. The descriptive aspect of the language allows the 
network administrators to describe the properties of the 
interfaces and configuration of the network management 
systems. These specifications can be formally verified for 
consistency to determine if the network administrators 
have configured their management software in a consistent 
manner. A specification is considered consistent if, for 
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There is also a prescriptive, executable, aspect to 
the language. The specification can be translated into con- 
trol commands that configure the various network 
management systems to provide the access permissions 
and frequencies necessary to achieve the global manage- 
ment goals. These control commands can be based on the 
emerging network management standards. 

Our aim is to design and implement a tool that will 
solve the problems intmduced by autonomy and multiple 
administrative domains. The tool we provide should han- 
dle the inherent distribution of control in the intemet and 
must deal with the mutual distrust present in the internet. 
It should be able to scale to handle very large networks, on 
the order of 100,000 networks (and gateways), 100,000 to 
a million hosts, and 10,000 administrative domains. The 
autonomy of the domains of administration should be 
preserved. The tool should present the administrators with 
high level abstractions to specify the administrative rela- 
tionships between the domains. It should also verify that 
the various rules and requirements given by the adminis- 
trator are being met. Finally, the tool should map its 
abstractions onto the emerging standards, such as the OS1 
organizational model[ll], or the IETF management 
framework[5]. In this way, it extends the staudards’ func- 
tionality by providing a high level, global management 
tool, using the protocols defined in the standard to perform 
the actual management of the network. 

We are not directly addressing the important issues 
of security, or authentication. We also do not attempt to 
define the types of information the network management 
data should include, or the management protocols them- 
selves. 

This paper proceeds as follows. Section 2 describes 
related work in network management systems and stan- 
dards, as well as work from the specification language 
literature. Section 3 describes the requirements for our 
specification language and gives an overview of the opera- 
tion of the system. Section 4 discusses the descriptive 
aspects of the language, its grammer and semantics, how it 
is evaluated, and how we show the consistency of a 
management description. Section 5 examines the 
prescriptive aspects of the language, i.e. how a 
specification can be changed into a format that can be used 
to control the network. Section 6 describes NMSL com- 
piler operation, including code generation, and the NMSL 
language extension mechanism. Section 7 concludes with 
the project status, future directions of this research and our 
eventual goals. 

2. RELATED WORK 

Our research is based on ideas from work in the 
areas of both network management and formal 
specification languages. Network management has been 
important in the telecommunication industry for decades, 
while in the computer industry, networks have only 
recently become complex enough that ad hoc methods are 
no longer sufficient. Specification languages have been 
used to specify many areas of computer development, for 

specifying both hardware and software designs. 

2.1. NETWORK MANAGEMENT 

Most previous computer network management sys- 
tems concentrate on low level management issues, such as 
local area network management@, 193 and network 
address assignment[I2], debugging local area communica- 
tions software[33, and wide area network manage- 
ment[6,15,18]. Higher level issues, such as coordinating 
the interactions between network managers, and coordi- 
nating access controls, have been left for later work. 
Recently, researchers have begun to address the issue of 
providing higher level access to the low level information 
in the network management system, such as the work by 
Warrier[l’l], which provides a network management pro- 
tocol independent query language. We feel that high level 
tools must be, as much as possible, independent of the low 
level protocols used to implement the network manage- 
ment. 

Current research efforts am investigating the 
management needs of today’s computer networks, and 
standards are emerging for the low level monitoring and 
control functions in the network. Some of these research 
projects also partially address the issue of administrative 
domains. Among these projects are network management 
systems for the TCP/IP Internet, the emerging OS1 net- 
works, and IBM’s SNA networking product. The Internet 
and OS1 network management systems are meant for use 
in large, distributed intemets, with no central administra- 
tion. IBM’s network management product primarily 
addresses the needs of a single customer organization, and 
does not include general support on the problems of 
administrative domains. It does include a mechanism for 
delegating control, and for allowing different administra- 
tors different amounts of control over the network. The 
administrative aspects of these systems are detailed below. 

The Simple Network Management Protocol 
(SNMP)[S], is a draft standard for managing TCP/lP based 
intemets and is being studied by members of the Internet 
Engineering Task Force (IETF). Implementations are 
currently being built and tested in the DARPA Internet. 
As the name states, the protocol is simple, defining only a 
small number of messages. It includes a protection 
mechanism that allows flexibility in determining the 
accesses a remote domain of administration can make on 
data from a network element’s database. 

The OS1 network management architecture[ll], 
while still under development, also includes support for 
administrative domains in its current definition. Their 
organizational model assumes that management of the net- 
work will be distributed across different domains of 
administration. Each management domain can communi- 
cate with other domains via ports. Management domains 
may be nested, and the internal features of domains may 
be hidden from the outside applications. Configuring net- 
work managers based on the OS1 model could be complex 
and error-prone, due to the model’s generality. Providing 
a formal specification of the correct configuration could 
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reduce these errors. 
NetView Cl], the SNA network management product 

from IBM, is a fully developed management product, 
NetView is a centralized management service for SNA 
networks, but also includes methods for integrating non- 
SNA components into the system. It provides a central 
operator with the ability to fully monitor and control a net- 
work and all of the devices attached to it. NetView also 
allows different operators to have different privileges, 
allowing, on an operator by operator basis, restrictions on 
which parts of the network the operator may monitor, and 
the types of control and change operations they may per- 
form. 

These systems give us a good idea of the current 
directions in network management. The problem of 
domains of administration is addressed in each of them, 
but none of these systems include a mechanism for coordi- 
nating the conliguration of the various network managers. 
Also not defined are high-level specifications of the 
required performance of the network and the network 
managers. These are the areas that NMSL specifically 
addresses. 

2.2. FORMAL SPECIFICATION LANGUAGES 

Formal specification languages are used in many 
environments, most notably for specifying programs and 
protocols. Our interest in specitication languages is in 
using them as part of a larger tool, rather than in the 
correct way in which a specification language should be 
designed. A few of the better known specification 
languages are Ina Jo[4], PAISLey[21], and Larch[;?O]. 
Various features of these languages are important to 
designing our network management specification 
language. Three other recent specilication languages, 
Gist[7], PLEASE[16], Anna[lS] and LOTOS[93 also have 
features in common with our work. 

The specillcation languages mentioned are used pri- 
marily for specifying programming languages. Ina Jo, 
PAISLey and LOTOS use a constructive specification 
method. A constructive specification is one in which an 
abstract version of the algorithm used in the program is 
specified. PAISLey and Ina Jo can specify the interactions 
between multi-process programs, and include the ability to 
specify timing characteristics. LOTOS is used to specify 
OS1 protocols, and also includes the ability to specify tim- 
ing characteristics. Characteristics such as timing and 
other resource requirements and limits are important to 
any protocol specification, including network manage- 
ment. 

Another specilication approach is the axiomatic 
specification method. An axiomatic specification 
describes the properties a correct implementation must 
exhibit, without giving an algorithm for achieving those 
properties. The axiomatic method is more appropriate to 
our problem, because in specifying the configuration of a 
network management system, we are not concerned with 
the implementation of the system, but the properties an 

implementation must exhibit. Gist and Larch are two 
examples of axiomatic specification languages. Gist is 
also used to specify the interactions and operation a sys- 
tem of interacting components. It provides a definition of 
the desired properties of the program in an axiomatic way, 
rather than directly describing the construction of a pro- 
gram to achieve the goal of the specification. This 
approach is appropriate for specifying network manage- 
ment systems, and we use it as well. Larch takes the 
approach of giving a description, and, in addition, pro- 
vides a two-level model for specifying programs. The 
lower level describes the underlying data abstractions, the 
upper, or interface, level describes how state changes 
occur. Larch also allows for specifying interactions 
between interacting, independent processes in its interface 
language specification, The two-level model gives Larch 
great generality, and separating the specification of 
abstractions from state or interaction specifications is use- 
ful, even in our specialized area. Neither of these 
language include the specification of properties such as 
physical resource requirements. 

PLEASE, Anna and LOTOS include mechanisms to 
use the specifications to prototype or test the programs that 
they are specifying. This kind of specification language is 
called an executable specification language. PLEASE 
allows the programmer to convert the specification into a 
prototype. The user can then verify the specification by 
testing its prototype against a battery of test data. Com- 
pilers exist for LOTOS which can generate a protocol 
engine directly from the formal, LOTOS specification. 
For our application of specifying network management 
configurations, we plan to generate a configuration 
directly from its formal specification, and then install it in 
the network management system. 

These formal specification languages give us an idea 
of the current technological level for specifying programs. 
While we are not using any of these languages directly, 
because specifying networks and network management is 
different from the ways one would specify an algebraic 
program, we are incorporating specific features into 
NMSL. Mechanisms for specifying process interaction 
are included some of the specification languages. The 
ability to specify timing constraints, as in PAISLey and 
LGTOS, is an important consideration. The axiomatic 
method, as well as separating the data abstractions from 
interactions, as in Larch, allows a cleaner, more easily 
understood specification. Executable specifications, as in 
PLEASE, can be used to generate code directly from a 
formal specification. These characteristics, in particular, 
are important to NMSL. 

3. NMSL REQUIREMENTS AND OPERATION 

NMSL is designed to meet the high level manage- 
ment needs of very large intemets with a high level of 
autonomy. The requirements of such a system are dis- 
cussed in this section. This is followed by an overview of 
NMSL’s operation and a description of how the parts of 
NMSL will meet these requimments. 
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3.1. LANGUAGE REQUIREMENTS 

NMSL’s main goal is to detect inconsistencies in the 
configuration of the network and the network managers. 
As such, NMSL specifications are formal and axiomatic, 
allowing the use of automated proof techniques to find 
inconsistencies. The use of a axiomatic specification (as 
opposed to constructive) allows us to specify the interac- 
tions (often called queries) between network managers 
and their operation, without forcing a particular imple- 
mentation. The axiomatic approach allows the 
specification of a generic management server or client 
application. The generic description need not depend on 
how the management function is implemented, as long as 
all implementations treat the management data in the same 
way and interact by making the same queries with the 
same frequencies. 

NMSL needs to be general and extensible. It must 
be able to represent the operation of a system of network 
managers, including the data objects (collectively referred 
to as the Management Information Base, or MIB), abstrac- 
tions and encapsulations present in the management 
models. It must represent the instant&ions of these data 
objects and types, and the interactions between the 
managers. Specifying interactions includes specifications 
of timing characteristics, the frequency of requests, 
bandwidth requirements, and the speed at which servers 
can process requests. NMSL should also be able to 
specify recursive queries (meaning that one server queries 
another server to process the query). Above all, NMSL 
must be easy to evaluate, to allow quick answers to ques- 
tions of consistency and to scale to support the large net- 
works of the future. 

Providing general support for network management 
systems also requires support for more complex queries 
than outlined above. Some network management sys- 
tems[ 11,141, allow the network manager for a given net- 
work element to exist on some other network element. 
This type of network management is called proxy network 
management. Eroxies are necessary because some net- 
work elements cannot respond to management queries 
directly. Such network elements include LAN bridges that 
do not support high level management protocols. Also 
included are protected (secure) systems that might not 
trust a foreign network manager. Specifying proxies 
requires NMSL to model the interactions between the 
proxy and the managed network element, as well as any 
data transformations made between the proxy protocol and 
the normal protocol. Once again, the specification of 
interactions must include the frequency of interaction and 
the use and availability of resources. 

Making NMSL extensible means that the syntax and 
semantics of the language must be able to change to allow 
specification of new management information or proto- 
cols. An extension mechanism must allow for the intro- 
duction of new data or interaction abstractions. It must 
also define how the extension is to be evaluated, and must 
include rules to relate the extended specification to the 
specification information present in the basic language. 

The ways in which the new information affects the con- 
sistency definition must also be given. Finally, the 
prescriptive output of the extension must be defined. 

Using a formal specification to prescribe the opera- 
tion of the network managers at runtime makes NMSL 
even more useful. To be used in this way, the prescriptive 
output of NMSL must be as general as possible, being able 
to generate configuration data for various network 
managers. The NMSL compiler must include descriptions 
of how the formal specification can generate configuration 
data. To support extensions, any extension must also 
include a description of how that extension affects the 
prescriptive output. 

In summary, NMSL is designed with two main 
aspects, a descriptive aspect, where it specifies network 
management configurations and checks the consistency of 
these configurations, and a prescriptive aspect, where it 
generates configuration information for the network 
managers. A formal, axiomatic language is required for 
the descriptive aspect, and must include specifications of 
the object types, and how these objects are instantiated. 
Extensions must be supported, via an extension language, 
to allow for the changing requirements of network 
managers. The prescriptive aspect requires NMSL to gen- 
erate many different output configurations, depending on 
the type of network manager to be configured. 

3.2. NMSL OPERATION OVERVIEW 

Figure 3.1 gives a box diagram relating the parts of 
the NMSL system. The two aspects of NMSL’s operation 
are divided roughly along a diagonal through the figure. 
The descriptive aspect includes the NMSL Compiler and 
the Consistency Checker. The prescriptive aspect includes 
the Configuration Generators. The boxes in the figure 
show the input and output of the NMSL system. 

‘Ibe Extension Language Specifications allow new 
specification types to be added to the basic NMSL reper- 
toire. The system manager writes new specification types, 
relates them to the basic specifications, and describes the 
different compiler output in the Extension Language. This 
meets our goal of extensibility. 

The compiler is central to the first aspect of NMSL 
operation. It takes as input the format of the basic and 
extended language specifications, along with the 
specilications for each part of the intemet. The output of 
the compiler varies depending on the desires of the system 
administrator. There are two basic types of output, con- 
sistency facts and rules, and configuration information. 

The consistency checker takes the facts and rules 
from the NMSL compiler, adds some overall consistency 
requirements, and determines if the specifications for the 
network managers are consistent. If they are not con- 
sistent, the immediate causes for inconsistency are listed 
for the system manager. Determining consistency is a 
complicated operation, and the details of this operation are 
not part of this paper, although the high level operation of 
the consistency checker is discussed in Section 4.2. 
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FIGURE 3.1. THE NMSL SYSTEM DESIGN 

The configuration generators take the configuration 
output from the NMSL compiler and produce 
configuration information for the network managers. The 
configuration information is the prescriptive output of the 
NlvISL system. This information can be shipped to the 
individual network managers, which can then be 
configured so as to meet the consistency requirements. 

4. DESCRIPTIVE ASPECTS 

This section explains the descriptive aspects of 
NMSL. The section is divided into two parts. The Iirst 
part describes the basic language, its syntax and seman- 
tics, the abstractions it provides, and motivation for these 
basic facilities. The second part describes the evaluation 
mechanism and how it is used to determine the con- 
sistency of a NMSL specification. 

4.1. THE BASIC LANGUAGE 

The purpose of a NMSL specification is to denote 
the expected interactions that take place in a system of 
network managers. These specifications are written in an 
axiomatic way, in which the properties of the interactions 
are specilled, not an algorithm used to perform the interac- 
tions. In our model, an interaction is initiated by a client 
sending a request to a server. The server processes the 
request and returns a response. A request could be a sim- 
ple lookup operation, it could modify some objects in the 
management database, or it could cause the execution of 
some remote operation on an object in the database. A 
process may act as a server in some interactions and as a 
client in others. To specify interactions of this form, we 

must specify the data that is transferred during the interac- 
tion, the parties involved and their expected behavior, 
where they are physically located in the intemet, and the 
administrative properties and groupings of the parties 
involved. 

We first need to specify the types of objects in the 
network management database. The values of these 
objects will be transferred back and forth in a query. A 
data type specification must include the abstractions 
present in the database: how the data is grouped into com- 
plex data types, and the various representations that a data 
object can have. We call these 0~ specifications. 

We also need to specify the clients and servers in 
the system, the parties involved in queries. We call these 
process speci’cations. A process specification defines the 
queries that a process initiates, the relative order in which 
the queries are made, the frequency of queries, the param- 
eters to the process and its queries. If the process is a 
server, the specification includes configuration infonna- 
tion: which clients are allowed to query this server, how 
often, and for what data. A process specification may also 
include statements defining how instances of a data type 
specilications are transformed between their representa- 
tions. A process, in our sense, is an abstraction similar to 
a type specification that must be instantiated at some place 
in the network. 

The physical parts of the network are specilied in 
network element specifications. A network element is any 
piece of hardware that can be connected to a network. A 
network element specification defines which processes are 
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instantiated on that network element, It also specifies 
which parts of the management information base are sup- 
ported (instantiated) on that network element. 

Finally, the administrative relationships between 
groups of network elements and the processes that are 
instantiated on them are given in the domain 
specijications. A domain specification groups processes 
and network elements along administrative boundaries. 
Domains can overlap and nest. A domain specification 
defines which network elements belong to a domain, 
which processes on those network elements can receive 
queries from outside the domain, and which processes are 
allowed to initiate queries to other domains. 

The redundancy between the various specifications 
is deliberate. Every network administrator has their own 
idea of how their network elements, domains, and 
processes interact with other parts of the management sys- 
tem. To verify that all parts of the system are configured 
in a consistent way, we need to specify how each part 
interacts, which causes the redundancy. 

The separation of the specifications into abstmctions 
(the data and process specifications) and instantiations (the 
network element and domain specifications) is also deli- 
berate. This allows the management information to be 
specified independent of its use. It also allows types of 
processes to be specified, and allows these process types 
to be instantiated in various locations. These separate 
specifications, as pointed out in Larch[201, make them 
more generally useful. In the case of network manage- 
ment, the separation also mirrors the real world, where 
many network elements will store the same types of 
management data, and run network management software 
derived from the same source. 

4.1.1. NMSL SYNTAX 

The syntax of the NMSL specifications is designed 
to by easy to write, understand and parse. Tokens are 
separated by white space or special character sequences 
l&e “: :=” or “;“. NMSL keywords are alphabetic. 
Various other token types are supported by NMSL, and 
their format is described when they are introduced. The 
syntax of the statements is presented as BNF-style gram- 
mar rules. In the examples, SNMP and the IETF MIB are 
used exclusively. This is only for simplicity; NMSL 
works equally well with the OS1 management framework. 

4.1.2. TYPE SPECIFICATIONS 

The syntax of NMSL type specifications is based on 
the IS0 Abstract Syntax Notation One (ASN.l)[lO]. 
ASN.l has the advantages that it is general, machine 
architecture independent, and well known. It is used to 
specify the variables of both the IETF MIB and the OS1 
MIB (and the data formats used by other OS1 protocols 
and standards), two of the management databases we 
might use with NMSL. ASN.1 macro descriptions are not 
supported, since the NMSL extension mechanism fulfills 
this role. 

TypeSpec ::= "type" TypeName "::=" 
Asnl-body *l:lt 
AccessSpec 
"end" "type" TypeName "." 

TypeName ::= String 

AccessSpec ::= "access" AType w';rr 1 EMPTY 

AType ::= "Any" 1 "ReadOnly" 1 
"WriteOnly" 1 "None" 

FIGURE 4.1. FORMAT OF TYPE SPECIFICATIONS 

A NMSL type specification is formed by the key- 
word type followed by a standard ASN.1 type descrip- 
tion followed by a trailer, as shown in Figure 4.1. The 
keyword, type , starts a type specification. The 
TypeName token is any valid ASN.l type identifier, and 
must be the same in both positions in the type 
specification. The ASN.l specification given in Asnl- 
body provides the data grouping and representation 
speeiftcations. Its format is described in the ASN.l stan- 
dard. AccessSpec allows simple access checks to be 
made when a request in a process specification is made to 
access data. This clause can be modified via the extension 
language to handle more complex access requirements. If 
no AccessSpec is present, the access characteristics 
are inherited from a containing type, as is shown in the 
example, below. 

As an example of the use of a type specification, 
consider the specification of the IP Address Table that 
defines the IP Addresses for a given entity. The example 
in Figure 4.2 is derived from the TCP/IP MIB [ 141. The 
IpAddress and INTEGER tokens are ASN.l type 
names. ipAdEntAddr, et al, are members of the 
IpAddrEntry !quence. Complex types of this form 
are common in network management data. 

This simple specifmation shows how the ASN.l 
type specification fits into a NMSL specification. It also 
shows how the access mode of a type is inherited, the 
access mode of IpAddrEntry was not specified, but 
this was used in the definition of an ipAddrTable, so 

type ipAddrTable ::= 
SEQUENCE of IpAddrEntry; 
access ReadOnly; 

end type ipAddrTable. 

type IpAddrEntry ::= 
SEQUENCE ( 

ipAdEntAddr IpAddress, 
ipAdEntIfIndex INTEGER, 
ipAdEntNetMask IpAddress, 
ipA&ntBcastAddr INTEGER 

1 ; 
end type IpAddrEntry. 

flGURE 4.2. EXAMPLE TYPE SPECIFICATION 
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all IpAddrEntry elements inan ipAddrTable are 
read-only. The integration of the type specifications with 
the other specifications is given in the following sections. 

4.13. PROCESS SPECIFICATIONS 

A process specification defines the characteristics of 
a network management process. A process is given a list 
of input parameters and performs some interactions with 
other processes based on the values of those parameters. 
A process specification defines a new abstraction in the 
same way a data type specification defines a new abstrac- 
tion. Processes can be instantiated in a network element 
or domain specification. 

A portion of the grammar for the process 
specifications is shown in Figure 4.3. A network manage- 
ment process can perform many functions, but we are only 
interested in its interactions with other processes and the 
network management data to which it has access. The 
interactions are specified using the QrySpecs clause. 
Figure 4.3 only shows queries that retrieve data; the full 
language supports queries that modify data and those that 
cause remote execution as well. A QrySpec specifies 
the parameters to the query (the using clause), the 
expected response (the requests clause) and the tim- 
ing characteristics of the query (the frequency clause). 

ProcessSpec::= 

ParamSpec ::= 

ParamList ::= 

PSpecs ::= 

Param : := 

ViewSpec ::= 

ExSpecs ::= 

ExSpec ::= 

QrySpecs ::= 

QrySpec ::= 

VList . .= . . 

Freq . .= . . 
I 

BoundSpec ::= 

TimeSpec ::= 

"process" ProcName 
ParamSpec "::=" 
PSpecs 
"end" llprocess*l ProcName "." 

"(" ParamList ")" 1 EMPTY 

ParamList *','I Param 1 Param 

ViewSpec 1 ExSpecs 1 QrySpecs 

NMSLVariable ":" TypeName 

"supports" VList ";" I EMPTY 

ExSpecs ExSpec 1 EMPTY 

"exports" VList 
"tort DomainName 
"access" AccessType 
"frequency" Freq ":" 

QrySpecs QrySpec I EMPTY 

"queries" ProcName 
"requests" VList 
"using" AsgnVList 
"frequency" Freq ";" 

VList *', *' VarID I VarID 

BoundSpec Float TimeSpec 
"infrequent" 

W<W 1 !!<=It 1 W,M 1 W>,tt 1 EMPTY 

"hours" I "minutes" I 
"seconds" 

FIGURE 4.3. FORMAT OF PROCESS SPECIFICATIONS 

Some processes store, have direct control over, and 
can answer queries for management data. We say that 
such processes support a part of the MIB. The process 
specification includes clauses to specify this supported 
management data as well. The supported MIB variables 
are listed in a Viewspec. The access permissions other 
processes have with respect to this supported data are 
specified with an ExportSpec. The ExportSpec 
makes use of the administrative groupings specified in a 
domain specification. 

Figure 4.4 shows a simple example of a SNMP 
agent and an application process.’ The agent process, 
snmpdReadOnly, is a simple SNMP agent that exports 
all of its variables read-only to the “public" domain. 
Because of the way the IETF MIB is defined, by support- 
ing “mgmt. mib", the agent supports the full IETF MIB. 
It expects to be queried no more than once every 5 
minutes. 

The application process, snmpaddr, retrieves 
information about a single network interface connected to 
a network element. The application has two parameters, 
SysAddr and Dest, which are assigned values when 
the application is instantiated (executed). Snmpaddr 
sends a query to an agent, identified by the SysAddr 
variable. The query requests the contents of the entire 
IpAddrEntry sequence with the selection criterion that 
the sequencereturnedhave ipAdEntAddr equaltothe 
vahe of Dest (specified in the using chuse). This 
application is expected to make queries infrequently. 
Other important information needed during the query, 
such as the domain in which the process executes, is 
specified in a network element or domain specilication 
when the process is instantiated. 

process snmpdReadOnly ::- 
supports mgmt .mib; -- entire MIB subtree 

exports mgmt .mib to "public" 
access ReadOnly 
frequency >= 5 minutes; 

end process SnmpdReadOnly. 

process snmpaddr( 
SysAddr: Process; Dest: IpAddress) ::= 

queries SysAddr 
requests 

mgmt.mib.ip.ipAddrTable.IpAddrEntry 
using 

mgmt.mib.ip.ipAddrTable. 
IpAddrEntry.ipAdEntAddr := Dest 

frequency infrequent; 
end process snmpaddr. 

FIGURE 4.4. EXAMPLE PROCESS SPEClFlCATlONS 

'An agent pmcess stores management data and responds to re- 
quests whileanapplicati~processisonethatinitiatesrequestsbutdoes 
nd storemanagement data itself. 
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4.1.4. NETWORK ELEMENT SPECIFICATIONS 

Network element specifications describe the physi- 
cal properties of the network. Each specification shows 
the details for a single computer (or terminal, printer, 
router or other device that could be connected to a net- 
work) and its connections to the intemet. It also lists the 
portion of the MIB that is supported by the network 
element’s hardware and operating system. Finally, a list 
of the network management processes that are expected to 
execute on this network element is given. 

A portion of the grammar for a network element 
specification is shown in Figure 4.5. The SystemSpec 
groups the subspecifications into a network element 
specification. The properties of the hardware are given in 
the HardConf,including thecputype and a listofnet- 
work interfaces. Each of Spec lists one network inter- 
face, an identifier, the physical network to which the inter- 
face connects, the type of interface, and its nominal speed. 
The speed is important for determining if the processes on 
this network element will be able to respond to queries in 
a timely manner, or if this network element will be 
swamped with management requests. The Sof tconf 
gives a description of the operating system for this net- 
work element. The View ~pec lists the portion of the 
MIB that this network element supports. Each network 
management process is that is instantiated on this network 
element is listed in the ProcSpecs. 

A simple example of a network element 
specification is shown in Figure 4.6. This network ele- 
ment, called romano.cs.wisc.edu, has single inter- 
face, connecting it to a 1OMbps ethernet named wisc- 

SystemSpec ::- 

HardConf : := 

IfSpecs : := 

IfSpec : := 

SoftConf : := 

Pro&pees : := 

ProcSpec : := 

ProcInvoke ::= 

ProcParams ::= 

PrPList ::= 

PrParam : := 

"system" SystemID "::=,I 
HardConf SoftConf ViewSpec 
ProcSpecs 
"end" "system" SystemID "." 

"CPU" String I';'* IfSpecs 

IfSpecs IfSpec ] EMPTY 

"interface" String 
"net" String 
"protocols" PrPList 
?ypeV* String 
"speed" Integer "bps" '*;I' 

"opsys" String 
Version" String ":" 

ProcSpecs ProcSpec 1 EMPTY 

"process 'I ProcInvoke ";" 

ProcName ProcParams 

"(*' PrPList ")" 1 EMPTY 

PrPList "," PrParam 1 PrParam 

String 1 Integer 1 Float 

FIGURE 4.5. FORMAT OF NETWORK ELEMENT 
SPEClFlCATlONS 

research. It runs the SunOg 4.0.1 operating system. It 
supports most of the IETF MIB, but does not support the 
EGP variables. Romano.cs.wisc.edu runs the 
readonly SNMP agent process used in Figure 4.4. 

4.15. DOMAIN SPECIFICATIONS 

Domain specifications describe the administrative 
groupings found in networks. Domains may contain other 
domains (sub-domains), network elements and processes. 
Processes can be specified in the domain specification (as 
opposed to the network element specification) to allow 
them to be instantiated in the domain without specifying 
which network element is being used. A domain 
specification also lists how its members relate administra- 
tively to other domains. 

A portion of the grammar for a domain specification 
is shown in Figure 4.7. The members of a domain are 
given in the Me&Specs prOduCtiOn. gUbdOn'UinS,like 
other members, are specified separately and are only refer- 
enced in the domain specification. The ExSpecs pro- 
duction specifies which parts of the MIB that are available 
in this domain can be accessed by processes in other 
domains. The ExSpecs production is redundant; is also 
given in an process specification. It is given here as part 
of the consistency mechanism. It can also further restrict 
how other domains may access the members of this one. 

system "romano.cs.wisc.edu" ::= 
cpu spare; 
interface ie0 net wise-research 

type ethernet-csmacd 
speed 10000000 bps; 

opsys SunOS version 4.0.1; 
supports 

mgmt.mib.system, mgmt.mib.at, 
mgmt.mib.interfaces, 
mgmt.mib.ip, mgmt.mib.icmp, 
mgmt.mib.tcp, mgmt.mib.udp; 

process SnmpdReadOnly; 
end system *'romano.cs.wisc.edu". 

FIGURE 4.6. EXAMPLE NETWORK ELEMENT 
SPEClFlCATlON 

DomainSpec ::- "domain" DomainName 'I::==" 
MembSpecs 
ExSpecs 
**end" V1domainVq DomainName "." 

Men&Specs ::= MembSpecs MembSpec I EMPTY 

MembSpec ::= "process" ProcInvoke I';" 
I "domain" DomainName I*;" 
I q'system" SystemID ";" 

FIGURE 4.7. FORMAT OF DOMAIN SPECIFICATIONS 

40 



domain wise-cs ::= 
system romano.cs.wisc.edu; 
system cs.wisc.edu; 
process snmpaddr(*, *); 
exports mgmt.mib to V'public'l 

access ReadOnly 
frequency >= 5 minutes: 

end domain wise-cs. 

FlGURE 4.8. EXAMPLE DOMAIN SPEClFlCATlON 

A simple example of a domain specification is given 
in Figure 4.8. In this example, the domain, wise-cs, 
contains two network elements. It also contains an 
instance of the SNMP application process, snmpaddr, 
specified in Figure 4.4. In this example, the value of the 
parameters to the snmpaddr process are not known at 
the time the specification is written. We use the special 
token, “*“, to denote that the values will be set at the 
time that the process is run. The wise-cs domain 
exports the full IETF MIB to the public domain, but 
onfy for reading, and requests from public can arrive 
no more frequently than once every 5 minutes. 

4.2. EVALUATION 
Given a network specification, the NMSL system 

must tell the system administrator if the specification is 
consistent. If it is not, the causes for inconsistency should 
be displayed. This is the task of the NMSL Consistency 
Checker. The Consistency Checker takes as input the con- 
sistency output from the NMSL Compiler. The con- 
sistency output is in the form of statements of a logic pro- 
gramming language. The Consistency Checker adds rules 
to these logic statements that describe the meaning of con- 
sistency. It then passes the rules to the logic interpreter, 
along with a logical statement requesting the interpreter to 
find inconsistencies in the specification. 

The NMSL Consistency Checker is a front end for 
the Prolog dialect, CLP(R)[2]. CLP(R) was chosen 
because of its speed in performing logical deduction, and 
its ability to check numeric constraints over the real 
numbers. Numeric constraints are important for specify- 
ing timing and other resource limitations of interactions. 
The closed-world model used by CLP(R) is appropriate 
for a NMSL specification, because we are interested in 
determining if the parts of the specification are consistent 
with each other, not with all possible specifications. 

The NMSL compiler converts the NMSL 
specification into CLP(R) statements. The output from the 
compiler is a collection of logical facts and rules. The 
Consistency Checker adds statements describing the con- 
sistency of any NMSL specification to this output and exe- 
cutes the CLP(R) interpreter. The interpreter performs the 
consistency check. 

Consistency of a NMSL specilication is defined in 
terms of the relationships between the types, processes, 
network elements and domains in the specification. There 

are six relationships in our consistency model: contain- 
ment, instantiation, two reference relations and two per- 
mission relations. These relationships are shown, along 
with their definitions, in Figure 4.9. In the course of a 
proof, these are reduced to just ref eq and perm-eq 
relationships. A NMSL specificationis said to be con- 
sistent if, for every reference relationship, there is a 
corresponding permission. 

Part of a reference or a permission relationship are 
resource limitations, such as time, frequency, size or 
bandwidth. The type of access is also specified. In their 
current form, references and permissions only include fre- 
quency and access type. Other resource requirements 
would appear as additional parameters to the relationships. 

Three types of rules are employed during a con- 
sistency proof: transitivity, distribution, and reduction 
rules. The containment relationship is transitive. The dis- 
tributive rules are used to distribute containment and 
instantiation over each other, and over reference and per- 
mission. The reduction rules relate reference and permis- 
sion relationships. 

The proof performed by the Consistency Checker is 
really a proof of inconsistency. When an inconsistency is 
proved, it is reported to the system administrator. At this 
point, the offending parts of the specification must be 
corrected. If no inconsistencies are found, the 
specification is consistent. This method of proving con- 
sistency is viable because of our closed-world assumption. 
At this time, we are formally defining the relationship 
between containment, reference and permission (that is, 
how references by the members of a domain are affected 
by a permission given to their containing domain). Once 
this is completed, we will show the completeness of our 
model for the class of network management systems 
represented by current standards. These results will be 
presented in future paper. 

The NMSL Consistency Checker can also be used 
in a speculative role. Consider the scenario where a net- 
work administrator is about to connect a new organization 
to the intemet. The load this organization will place on 
the intemet is basically unknown. However, the adminis- 
trator can make a specification of the new organization’s 
expected interactions with the existing parts of the inter- 
net. If summary data is available for the existing intemet, 
approximate values can be used to determine the amount 

contains(X,Y) XcontainsY 
instan(X,Y,Z) XinstantiatesYwith unique ID2 
ref-eq (X,Y,A, T) It is possible thatX references Y 

foraccess Aevery T seconds 
ref-gt (X,Y,A,T) . ..atmostevery Tseconds 
pem-eq W, Y, A, T) X has permission to reference Y 

for access A every T seconds 
perm-gt (X, Y, A, T) . . . at most every T seconds 

FIGURE 4.9. NMSL LOGICAL RELATlONSHlPS 
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of traftic generated, for example. This specification can 
be tested with the existing intemet specifications by the 
NMSL Consistency Checker. It will be able to tell the 
administrator if there are inconsistencies in the new 
specification. 

Another speculative use of the Consistency Checker 
utilizes CLP(R)‘s ability to run the consistency check in 
reverse. Once again, this is used to check a new 
specification against an existing, consistent specitication. 
In this case, we would make the consistency of the com- 
bined specification a premise of the proof, and ask 
CLP(R) to solve for the parameters to the references and 
permissions of the new specification that satisfy this prem- 
ise. Using the Consistency Checker in a speculative role 
could help to ease the pain of a growing intemet. 

5. PRESCRIPTIVE ASPECTS 

Once a specilication is determined to be consistent, 
the specification can be executed to configure the network 
management processes. As in the case of consistency 
checking, a NMSL Configuration Generator takes output 
from the NMSL Compiler and uses it to configure a net- 
work manager. The compiler cannot configure a network 
manager directly, because this requires knowledge of dam 
formats, protocols and authentication issues that the com- 
piler should not have to know about. The NMSL 
Configuration Generator is, therefore, a separate module 
that interprets the configuration output of the compiler and 
performs the implementation-specific actions necessary to 
install the configuration in a network management pro- 
cess. 

The operation of the prescriptive aspect is simple. 
The NMSL Compiler is rerun with a parameter requesting 
configuration output of a specific type. It parses the 
specification just as it would to generate consistency 
checking output. The output it generates, however, is 
configuration output instead of Prolog rules. The way in 
which these different types of output are specified is 
described in Section 6. A NMSL Configuration Generator 
takes the configuration output and transmits it to each 
appropriate network element or process. Ideally, this 
would be achieved by initiating a connection to a network 
management process on each affected network element, 
authenticating the Configuration Generator as a trusted 
process, and sending, via the normal network management 
protocol, the configuration information. In other cases, the 
data might be copied, in the form of a file, to the affected 
network element, or even sent via electronic mail to the 
administrator of that network element. 

In practice, it may be too time consuming to gen- 
erate the configuration output from one central location. 
This depends on the frequency of changes to the manage- 
ment specification, and the number of network managers 
that need configuration. It may be possible to perform the 
configuration phase in a distributed manner. If a process’s 
configuration depends only on its own specification, the 
configuration information for that process can be gen- 
erated from its specification alone, and can be generated 

on the network element on which the process executes. In 
this way, the benefit of using the executable specification 
is still achieved, but the work of generating the 
configuration information does not swamp a single com- 
puter, At this point in our research, we do have not deter- 
mined how we would distribute NMSL’s prescriptive 
OperatiOIl. 

6. THE NMSL COMPILER OPERATION AND THE 
EXTENSION MECHANISM 

The grammar recognized by the NMSL Compiler is 
less specific than the previous sections indicate, The 
examples in Section 4 show that each type of specification 
has the same structure. Each specification has the same 
format (a header, a body and a trailer); each clause of a 
specification is made up of subclauses that begin with a 
keyword and are followed by a list of parameters. The 
NMSL Compiler actually recognizes this less specific 
grammar. Parsing the specifications in this form has the 
advantage that it simplities the generation of multiple 
types of output and simplifies the mechanism that adds 
extensions to the basic grammar. 

6.1. SYNTACTIC AND SEMANTIC CHECKING 

The NMSL Compiler operates in two passes. In the 
lirst pass, it parses the input specifications according to the 
generalized grammar shown in Figure 6.1. In the process 
of parsing the input, the compiler builds a parse tree for 
the specifications, but it does not attempt any semantic 
analysis of the specifications. This means that any group 
of tokens will be accepted by the parsing pass, provided 
that the group of tokens matches the basic format of the 
NMSL grammar. The task of differentiating between the 
specifications and clauses is left for the second pass. 

decls 

decl 

declparams 

clauses 

clause 

subclauses 

subclause 

list 

listelement 

token 

::- decls decl 1 EMPTY 

::= decltype declname 
declparams "::=" 
clauses 
"end" decltype declname I'.'* 

: := 'I ('I list 'I) I1 1 EMPTY 

::= clauses clause 1 EMPTY 

::== subclauses ";" 

::= subclauses subclause 
I subclause 

::= string list 
I asnl-id asnl-subclause 

::= list 11," listelement 
I listelement 

::= token special token 1 token 

::- string 1 number I special 

FIGURE 6.1. GENERALIZED NMSL GRAMFdAR 
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Associated with each production shown in Figure 
6.1 is a list of actions. These actions are executed in the 
second pass of the compiler. When they are executed, 
they are passed the context in which the production was 
used and the parameters corresponding to a list of the 
tokens generated by the current production. The actions 
have two tasks. Their first task is to determine if the 
specifications parsed by the first pass are valid. The type 
of the declaration (decltype in Figure 6.1) must be 
valid, as must the name of the declaration, the parameters, 
and each of the clauses. The names of each type of 
declaration and clause can be checked by a simple table 
lookup. Determining if the contents of a clause is correct 
requires executing a clause-specific semantic check. 

The actions that detect semantic errors are common 
to all runs of the compiler, and do not change depending 
on the type of output generated, We call them generic 
actions. The generic actions statements are tagged with 
the identifier, generic, in the compiler’s tables. Gen- 
eric actions can also perform bookkeeping operations, 
such as accessing the symbol table. Output (code genera- 
tion) is performed by a collection of ourpw speci’c 
actions. 

6.2. CODE GENERATION 

The output specific actions allow the second pass to 
perform its other task, generating output. In the 
compiler’s tables, each output specific action is tagged 
with an identifier for the type of output that it generates. 
When the compiler is run, one of its parameters specifies 
the type of output desired. For example, requesting con- 
sistency output causes the actions tagged consistency 
to be executed, and Prolog rules to be generated. Other 
actions, such as an action tagged BartsSnmpd would be 
executed only if configuration output for Bat-t’s SNMB 
daemon were being generated. Each run of the compiler 
executes the generic actions and one type of output 
specific action. 

4.3. THE NMSL EXTENSION MECHANISM 

The basic NMSL language allows the specification 
of a wide variety of different network management 
configurations. However, we cannot anticipate all possi- 
ble configurations or forms of specification. It is also time 
consuming to enter groups of similar specifications; a 
macro facility would be helpful. The NMSL extension 
language addresses these two issues. 

The extension input to the NMSL Compiler (see 
Figure 3.1) is a simple list of typed keywords and actions. 
This format was chosen because the format of basic gram- 
mar identifies declarations and clauses. Further semantic 
processing is based on the keyword identifying the 
declaration or clause. The compiler creates an internal, 
extended keyword table and an extended action table from 
the extension language input when it begins execution. 
The extended tables are used by the compiler in its second 
pass. When it performs an action for a production, the 

compiler consults the extended keyword table before it 
consults the basic list. If an entry in the extension 
matches, the compiler performs the action statement asso- 
ciated with the extended keyword (if one exists). This 
process corresponds to the way basic declarations and 
clauses are processed. If the keyword for an extension is 
different from all existing keywords, then the extension 
extends the language; if the keyword is the same as an 
existing keyword, it overrides the basic language. How- 
ever, only the actions specified in the extension override 
the basic actions. For example, an extension that specifies 
the keyword queries (queries is a keyword in the 
basic language) and a single action tagged DavesSnmpd 
will not override the basic generic action for the 
queries clause, but it will override an existing action 
tagged DavesSnmpd. This allows new types of output 
for a production to be specified in an extension without 
changing that production’s generic processing. 

The simplified grammar can increase the complexity 
of the action statements. An action statement for a clause 
must determine if the clause is valid in the context in 
which it is used. Additionally, if an action overrides an 
action of a basic clause, it must include code to handle all 
contexts in which the clause can appear. Usually, the 
semantics of a clause are the same in each context, so the 
action statements do not become much more complex. 

The NMSL extension language extends the declara- 
tions and clauses recognized by the NMSL Compiler. 
This is done by prepending the extension keyword and 
action tables to the basic tables. Prepending allows exten- 
sions to override the basic actions. Because the semantics 
and output actions, not grammar, are specified in the 
extension, we preserve the look and feel of the NMSL 
language. We feel this gives us the growth potential we 
need from the extension language, without allowing more 
flexibility in an extension than necessary. 

7. CONCLUSIONS AND FUTURE WORK 

NMSL attacks the problem of managing large inter- 
nets by providing a high level, formal specification 
language. We have shown the two aspects of NMSL, the 
descriptive aspect, and the prescriptive aspect. In its 
descriptive aspect, we have shown that the formal, 
axiomatic language allows the specification of manage- 
ment abstractions and their instantiations in the intemet. 
The abstractions include data objects and network 
management processes. NMSL supports the specification 
of network elements and administrative domains, and the 
instantiation of processes in these spectications. Most 
importantly, we showed how these specilications are 
checked for consistency with the NMSL Consistency 
Checker. 

To address changing network environments and 
standards, NMSL includes an extension mechanism. We 
discussed the way this mechanism allows the specification 
of abstractions and objects that have not been anticipated 
in the basic language. Extensions can override clauses 
and declarations in the basic language in a controlled way. 
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We also showed how the look and feel of the basic 
language is preserved in an extension through the use of a 
general parser that parses a specification without consider- 
ing its semantic content. 

In NMSL’s prescriptive aspect, a NMSL 
Con&ration Generator generates configuration informa- 
tion directly from a consistent specification. We described 
the support for multiple types of action statements for each 
production in the NMSL grammar. These actions generate 
different types of output for a single specification, includ- 
ing many types of configuration information. Finally, we 
outlined the way this information can be sent directly to 
network management processes, increasing the probability 
that these processes will inter-operate in the desired way. 

Research into the NMSL system is still at its early 
stages. Our immediate task complete our format definition 
of the meaning of a consistent NMSL specification. Vari- 
ous details of the clauses in the basic language must also 
be worked out. We plan to implement the system as it is 
described here, including the Compiler, the Consistency 
Checker, and at least one Configuration Generator. The 
implementation is planned for use with SNMP in a TCP/IP 
environment. 
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