
scan_file_i (ssm) Shore Storage Manager scan_file_i (ssm)

NAME
scan_file_i − Classes for Scanning Files in the Shore Storage Manager

SYNOPSIS
#include <sm_vas.h> // which includes scan.h

class scan_file_i {
public:

/∗ Logical-ID version ∗/
NORET scan_file_i(const lvid_t& lvid,

const serial_t& fid,
concurrency_t cc = t_cc_file,
bool prefetch = false);

/∗ Physical-ID version ∗/
NORET scan_file_i(const stid_t& stid,

concurrency_t cc = t_cc_file,
bool prefetch = false);

/∗ Logical-ID version ∗/
NORET scan_file_i(const lvid_t& lvid,

const serial_t& fid,
const serial_t& start_rid,
concurrency_t cc = t_cc_file,
bool prefetch = false);

/∗ Physical-ID version ∗/
NORET scan_file_i(const stid_t& stid,

const rid_t& start_rid,
concurrency_t cc = t_cc_file,
bool prefetch = false);

NORET ˜scan_file_i();

rc_t next(pin_i∗&pin_ptr,
smsize_t start_offset,
bool& eof);

rc_t next_page(pin_i∗& pin_ptr,
smsize_t start_offset,
bool& eof);

// logical serial # and volume ID of the file if created that way
const serial_t& lfid() const;
const lvid_t& lvid() const;

bool is_logical() const;
tid_t xid() const;

void finish();
bool eof();
rc_t error_code();

Release Jan 1999 1

scan_file_i (ssm) Shore Storage Manager scan_file_i (ssm)

};

class append_file_i : public scan_file_i {
public:

/∗ Logical-ID version ∗/
NORET append_file_i(const lvid_t& lvid,

const serial_t& fid;

/∗ Physical-ID version ∗/
NORET append_file_i(const stid_t& stid);

NORET ˜append_file_i();

/∗ Logical-ID version ∗/
rc_t create_rec(const vec_t& hdr,

smsize_t len_hint,
const vec_t& data,
lrid_t& lrid); // logical id

/∗ Physical-ID version ∗/
rc_t create_rec(const vec_t& hdr,

smsize_t len_hint,
const vec_t& data,
rid_t& rid); // physical id

};

DESCRIPTION
Class scan_file_i supports iterating over the records in a file. The scan is controlled by a scan_file_i object.
Multiple scans can be open at the same time.

Class append_file_i allows a VAS to appending of records to a file in rapid succession. The location of the
end of the file is maintained by the append_file_i object. The constructor of the append_file_i exclusively
locks the file. The effect of using more than one append_file_i on a single file within a single transaction is
undefined.

Each instance of scan_file_i and append_file_i keeps a record pinned (and therefore, a page fixed)
throughout its existence. You must carefully control the use of these classes to avoid fixing all the pages in
the buffer pool.

The order in which records are visited by a scan is called the scan order . There are two guarantees about
scan order.

The first guarantee is that if two scans are performed on a file, the scan orders will be identical as long as
none of the following operations occur between the two scans: creating a record in the file destroying a
record in the file changing the size of a record in the file.

The second guarantee is that if a file is created using the append_file_i class, and no updates are performed
on the file or any of its records, the scan order is identical to the order of record creation.

Release Jan 1999 2

scan_file_i (ssm) Shore Storage Manager scan_file_i (ssm)

Constructors and Destructors

scan_file_i(lvid, fid, cc)

scan_file_i(lvid, fid, start_rid, cc)

The scan_file_i constructors have a number of parameters in common. The first two parameters,
lvid and fid specify the logical ID of the file to be scanned. The cc parameter specifies the granu-
larity of locks acquired for concurrency control. See enum(ssm) for a description of the values.
Here are the effects of the values for file scan:

t_cc_none: The file is IS (intention shared) locked, but no locks are obtained on any pages or
records in the file.

t_cc_page: t_cc_record: Pages are SH locked; records are not locked. Files are IS locked.

t_cc_file: The file is SH locked, so no finer granularity locks are obtained.

The starting location (record) of the scan can be controlled using the optional start_rid parameter.

append_file_i(lvid, fid)

The arguments to append_file_i() are as described above, for the scan_file_i constructors.

˜scan_file_i() ˜append_file_i()

These destructors unpin the current record, if any, and destroy the object. To unpin the record
before destroying the object, you may explicitly call finish().

Scanning

next(pin_ptr, start_offset, eof)

The next method is used to retrieve records from the scan and (including the first). A handle to
the retrieved record made available through the pin_ptr parameter. See pin_i(ssm) for informa-
tion on using this handle. The start_offset parameter controls what part of the record to retrieve.
This parameter is passed directly to the pin_i constructor. The eof parameter will be set to true
only when no value can be retrieved. So, if a file contains two records and next has been called
twice, eof will return false on the second call, and true on the third.

next_page(pin_ptr, start_offset, eof)

The next_page method advances the scan to the next disk page in the file and returns a handle to
the first record in the page. Its parameters are identical to those of next.

CAVEAT

Do not unpin the record explicitly during a scan.

Other Member Functions

The lfid and lvid methods return the logical ID of the file being scanned.

The finish method unpins the current record and closes the scan.

The eof method returns true if the end of the file has been reached.

The error_code method returns any error code generated by the the scan member methods. See the
ERRORS section for more information.

Release Jan 1999 3

scan_file_i (ssm) Shore Storage Manager scan_file_i (ssm)

Updates While Scanning

A common question is what is the effect of changes to a file (or its records) made by a transaction that is
also scanning the file. In general, it is safest not to change anything in the file while scanning. Instead, a
list of changes should be made during the scan and only performed after the scan is complete.

However, there are a number of changes that can safely be made to a file while scanning. It is safe to:

Update any record in the file using update_rec or update_rec_hdr.

Destroy any record in the file using destroy_rec, including the current one (although the pin_i for
the current record will no longer be valid.

It is also safe to change the size of records using truncate_rec or append_rec and to create new records.
However, this may cause records to be moved and therefore revisited or never visited during the scan.

Appending to a file

Create_rec in class append_file_i appends a record to a file. It is used much the same way that the static
function ss_m::create_rec is used, but appending to a file with append_file_i::create_rec efficient way to
populate a file if many creations are to be performed without other intervening operations on the file, and it
guarantees that new records are placed at the end of the file.

ERRORS
A scan_file_i object remembers if an error has occured while constructing the scan or while scanning. An
error that occurs in constructing the scan (such as having a bad file ID), can be detected by calling
error_code. Alternatively, the error can be detected on the first call to next which will return the remem-
bered error code. Therefore, if an error occurs while constructing or scanning, repeated calls to next will
all return the first error code and no progress will be made on the scan.

EXAMPLES
To Do.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
pin_i(ssm), file(ssm), scan_index_i(ssm), intro(ssm),

Release Jan 1999 4

