
ss_m::file/record ( ssm ) Shore Storage Manager ss_m::file/record ( ssm )

NAME
append_rec, create_file, create_id, create_rec, create_rec_id, destroy_file, destroy_rec, lfid_of_lrid,
truncate_rec, update_rec, update_rec_hdr − Class ss_m Methods for File/Record Operations

SYNOPSIS
#include <sm_vas.h> // which includes sm.h

/∗ Logical-ID version ∗/
static rc_t create_file(const lvid_t& lvid,

serial_t& lfid,
store_property_t property);

/∗ Physical-ID version ∗/
static rc_t create_file( vid_t vid,

stid_t& fid,
store_property_t property,
const serial_t& logical_id = serial_t::null,
shpid_t cluster_hint = 0); // not used

/∗ Logical-ID version ∗/
static rc_t destroy_file(const lvid_t& lvid,

const serial_t& lfid);

/∗ Physical-ID version ∗/
static rc_t destroy_file(const stid_t& fid);

/∗ Logical-ID version ∗/
static rc_t create_rec(const lvid_t& lvid,

const serial_t& lfid,
const vec_t& hdr,
smsize_t len_hint,
const vec_t& data,
serial_t& lrid);

/∗ Logical-ID version ∗/
static rc_t create_id(const lvid_t& lvid,

int id_count,
serial_t& id_start);

/∗ Logical-ID version ∗/
static rc_t create_rec_id(const lvid_t& lvid,

const serial_t& lfid,
const vec_t& hdr,
smsize_t len_hint,
const vec_t& data,
const serial_t& lrid);

/∗ Physical-ID version ∗/
static rc_t create_rec(const stid_t& fid,

const vec_t& hdr,

Release Jan 1999 1



ss_m::file/record ( ssm ) Shore Storage Manager ss_m::file/record ( ssm )

smsize_t len_hint,
const vec_t& data,
rid_t& new_rid,
const serial_t& serial = serial_t::null );

/∗ Logical-ID version ∗/
static rc_t destroy_rec(const lvid_t& lvid,

const serial_t& lrid);

/∗ Physical-ID version ∗/
static rc_t destroy_rec(const rid_t& rid);

/∗ Logical-ID version ∗/
static rc_t update_rec(const lvid_t& lvid,

const serial_t& lrid,
smsize_t start,
const vec_t& data);

/∗ Physical-ID version ∗/
static rc_t update_rec(const rid_t& rid,

smsize_t start,
const vec_t& data);

/∗ Logical-ID version ∗/
static rc_t update_rec_hdr(const lvid_t& lvid,

const serial_t& lrid,
smsize_t start,
const vec_t& hdr);

/∗ Physical-ID version ∗/
static rc_t update_rec_hdr(const rid_t& rid,

smsize_t start,
const vec_t& hdr);
// see also pin_i::update_rec∗()

/∗ Logical-ID version ∗/
static rc_t append_rec(const lvid_t& lvid,

const serial_t& lrid,
const vec_t& data);

/∗ Physical-ID version ∗/
static rc_t append_rec(const rid_t& rid,

const vec_t& data,
bool allow_forward);

/∗ Logical-ID version ∗/
static rc_t truncate_rec(const lvid_t& lvid,

const serial_t& lrid,

Release Jan 1999 2



ss_m::file/record ( ssm ) Shore Storage Manager ss_m::file/record ( ssm )

smsize_t amount);

/∗ Physical-ID version ∗/
static rc_t truncate_rec(const rid_t& rid,

smsize_t amount);

// lfid_of_lrid converts a logical record ID into a logical file ID
/∗ Logical-ID version ∗/

static rc_t lfid_of_lrid(const lvid_t& lvid,
const serial_t& lrid,
serial_t& lfid);

DESCRIPTION
The above class ss_m methods all deal with manipulating files and records. The logical-ID and physical-
ID APIs have direct analogues, except when it comes to creating records. When using logical IDs, it is
possible to pre-allocate logical IDs to apply to records upon creation of the records. For this, there is no
counterpart in the physical-ID API.

Common Parameters

There are a number of common parameters for these methods:

lvid Logical volume ID of volume containing a file/record.

lfid Logical file ID, the serial number of a file.

lrid Logical record ID, the serial number of a record.

data A vector pointing to data used to fill/overwrite the body of a record.

hdr A vector pointing to data used to fill/overwrite the header of a record.

create_file(lvid, lfid, property)

The create_file method creates a new file on the volume lvid, and returns its serial number in lfid.
The property parameter specifies whether the file is temporary or not. See enum(ssm) for more
information on file properties.

See the "ROOT INDEX METHODS" section of volume(ssm) for information on how to keep
track of the files on a volume.

destroy_file(lvid, lfid)

The destroy_file method destroys all records in the file and deallocates space used by a file. The
space used by the file is not available for reuse until the transaction destroying the file commits.

create_rec(lvid, lfid, hdr, len_hint, data, lrid)

The create_rec method creates a record in a file. The ID of the new record is returned in the lrid
parameter. The len_hint parameter is a "hint" about the final length of the record. If the creation
will be followed by appends, len_hint should ideally be set to the final length of the record. This
will allow the SM to place the record in a location with sufficient contiguous space for the record.
A value of 0 should be used if the final length is unknown. No order is defined on the records in a
file: when a new record is created, the I/O subsystem may place the record anywhere in the file.

Release Jan 1999 3



ss_m::file/record ( ssm ) Shore Storage Manager ss_m::file/record ( ssm )

create_id(lvid, id_count, id_start)

The create_id method generates id_count new IDs that can be used later by create_rec_id to
associate a records with the IDs. The first ID is returned in id_start. The other IDs should be
obtained by calling id_start::increment(1) id_count -1 times.

create_rec_id(lvid, lfid, hdr, len_hint, data, lrid)

The create_rec_id method is identical to create_rec except that the record ID is specified by the
caller with the lrid parameter rather than being generated and returned in lrid as is done in
create_rec.

destroy_rec(lvid, lrid)

The destroy_rec method destroys the specified record.

update_rec(lvid, lrid, start, data)

The update_rec method updates a range of bytes in the body of the record specified by lvid, lrid .
The byte offset, from the beginning of the record body, for the beginning of the range is specified
by the start parameter. The length of the range is the length of the data vector. The range is
replaced by the bytes pointed to by the data parameter. Note that update_rec cannot be used to
change the size of the record. It is an error to specify a starting location and vector length that
imply updating beyond the end of the record.

update_rec_hdr(lvid, lrid, start, hdr)

The update_rec_hdr method updates a range of bytes in the header of the record specified by
lvid, lrid . The byte offset, from the beginning of the header, for the beginning of the range is
specified by the start parameter. The length of the range is the length of the hdr vector. The
range is replaced by the bytes pointed to by the hdr parameter.

Note: There are no methods for appending to a record header or truncating a record header (as
there are for a record body). If these methods would be useful for you, please contact the Shore
developers.

append_rec(lvid, lrid, data)

The append_rec method appends the bytes pointed to by data to the end of the record body.

truncate_rec(lvid, lrid, amount)

The truncate_rec method removes amount bytes from the end of a record body.

lfid_of_lrid(lvid, lrid, lfid)

The lfid_of_lrid method returns, in lfid, the ID of file containing the record, lrid.

UNINITIALIZED DATA
The functions create_rec, append_rec, and update_rec can be used to write blocks of data that are all
zeroes, with minimal logging. This is useful, for example, when a value-added server creates a record of a
known size but with uninitialized data. To make use of this feature, these functions are called with data
vectors of a specialized type, zvec_t, whose constructor takes only a size:

Release Jan 1999 4



ss_m::file/record ( ssm ) Shore Storage Manager ss_m::file/record ( ssm )

rc_t rc;
char h[HEADER_SIZE];
vec_t hdr(h, sizeof(h));

// ... fill in hdr

// create a vector representing 1000
// contiuous bytes of zeroes
zvec_t zdata(1000);

rc = ss_m::create_rec(lvid, lfid, hdr,
HEADER_SIZE + 1000, zdata, result);

ERRORS
All of the above methods return a w_rc_t error code. If an error occurs during a method that is updating
persistent data (the create, update, append, and truncate methods will update data) then the record/file could
be in an inconsistent state. The caller then has the choice of aborting the transaction or rolling back to the
nearest save-point (see transaction(ssm) ).

See errors(ssm) for more information on error handling.

EXAMPLES
To Do.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
vec_t(common), pin_i(ssm), scan_file_i(ssm), intro(ssm),

Release Jan 1999 5


