
DynC API Programmer’s Guide

Version 1.1 beta

1

Contents

1 DynC API 3

1.1 Motivation . 3

1.1.1 Dyninst API . 3

1.1.2 DynC API . 5

1.2 Calling DynC API . 5

1.3 Creating Snippets Without Point Information . 6

2 DynC Language Description 6

2.1 Domains . 7

2.2 Control Flow . 7

2.2.1 Comments . 7

2.2.2 Conditionals . 8

2.2.3 First-Only Code Block . 8

2.3 Variables . 9

2.3.1 Static Variables . 10

2.3.2 An Explanation of the Internal Workings of DynC Variable Creation 11

2.3.3 Creating Global Variables That Work With DynC . 11

2.3.4 Data Types . 12

2.3.5 Pointers . 13

2.3.6 Arrays . 13

2.4 DynC Limitations . 13

2.4.1 Loops . 13

2.4.2 Enums, Unions, Structures . 13

2.4.3 Preprocessing . 13

2.4.4 Functions . 14

A The Dyninst Domain 15

2

1 DynC API

1.1 Motivation

Dyninst is a powerful instrumentation tool, but specifying instrumentation code (known as an Abstract Syn-

tax Tree) in the BPatch_snippet language can be cumbersome. DynC API answers these concerns, enabling

a programmer to easily and quickly build BPatch_snippets using a simple C-like language. Other advan-

tages to specifying BPatch_snippets using dynC include cleaner, more readable mutator code, automatic

variable handling, and runtime-compiled snippets.

As a motivating example, the following implements a function tracer that notifies the user when entering

and exiting functions, and keeps track of the number of times each function is called.

1.1.1 Dyninst API

When creating a function tracer using the Dyninst API, the programmer must perform many discrete lookups

and create many BPatch_snippet objects, which are then combined and inserted into the mutatee.

Look up printf:

std : : vector<BPatch funct ion ∗> ∗ p r i n t f f u n c ;

appImage−>f indFunct ion ("printf" , p r i n t f f u n c) ;

BPatch funct ion ∗BPF printf = p r i n t f f u n c [0] ;

Create each printf pattern:

BPatch constExpr entryPattern ("Entering %s, called %d times.\n") ;

BPatch constExpr ex i tPat t e rn ("Exiting %s.\n") ;

For each function, do the following {

Create snippet vectors:

std : : vector<BPatch snippet ∗> entrySnippetVect ;

s td : : vector<BPatch snippet ∗> ex i tSn ippetVect ;

Create the intCounter global variable:

appProc−>malloc (appImage−>f indType ("int") , s td : : s t r i n g ("intCounter")) ;

Get the name of the function:

3

char fName [1 2 8] ;

BPatch constExpr funcName (func t i on s [i]−>getName (fName , 1 2 8)) ;

Build the entry printf:

std : : vector<BPatch snippet ∗> entryArgs ;

entryArgs . push back (entryPattern) ;

entryArgs . push back (funcName) ;

entryArgs . push back (intCounter) ;

Build the exit printf:

std : : vector<BPatch snippet ∗> ex i tArgs ;

ex i tArgs . push back (ex i tPat t e rn) ;

ex i tArgs . push back (funcName) ;

Add printf to the snippet:

entrySnippetVect . push back (BPatch funct ionCal lExpr (∗ p r i n t f f un c , entryArgs)) ;

ex i tSn ippetVect . push back (BPatch funct ionCal lExpr (∗ p r i n t f f un c , ex i tArgs)) ;

Increment the counter:

BPatch arithExpr addOne(BPatch assign , ∗ intCounter ,

BPatch arithExpr (BPatch plus , ∗ intCounter , BPatch constExpr (1))) ;

Add increment to the entry snippet:

entrySnippetVect . push back(&addOne) ;

Insert the snippets:

appProc−>i n s e r t Sn i ppe t (∗ entrySnippetVect , f un c t i on s [i]−> f i ndPo int (BPatch entry)) ;

appProc−>i n s e r t Sn i ppe t (∗ ex i tSnippetVect , f un c t i on s [i]−> f i ndPo int (BPatch exit)) ;

}

4

1.1.2 DynC API

A function tracer is much easier to build in DynC API, especially if reading dynC code from file. Storing

dynC code in external files not only cleans up mutator code, but also allows the programmer to modify

snippets without recompiling.

In this example, the files myEntryDynC.txt and myExitDynC.txt contain dynC code:

// myEntryDynC . t x t

stat ic int intCounter ;

p r i n t f ("Entering %s, called %d times.\n" , dyninst ‘ function name , intCounter++);

// myExitDynC . t x t

p r i n t f ("Leaving %s.\n" , dyninst ‘ funct ion name) ;

The code to read, build, and insert the snippets would look something like the following:

First open files:

FILE ∗ en t r yF i l e = fopen ("myEntryDynC.txt" , "r") ;

FILE ∗ e x i t F i l e = fopen ("myExitDynC.txt" , "r") ;

Next call DynC API with each function’s entry and exit points:

BPatch snippet ∗ entrySnippet =

dynC API : : c r ea t eSn ippe t (ent ryF i l e , entryPoint , "entrySnippet") ;

BPatch snippet ∗ ex i tSn ippe t =

dynC API : : c r ea t eSn ippe t (e x i tF i l e , ex i tPo int , "exitSnippet") ;

Finally insert the snippets at each function’s entry and exit points:

appProc−>i n s e r t Sn i ppe t (∗ entrySnippet , entryPoint) ;

appProc−>i n s e r t Sn i ppe t (∗ ex i tSn ippet , ex i tPo in t) ;

1.2 Calling DynC API

All DynC functions reside in the dynC_API namespace. The primary DynC API function is:

BPatch Snippet ∗ c r ea t eSn ippe t (<dynC code >, <l o ca t i on >, char ∗ name) ;

5

where <dynC code> can be either a constant c-style string or a file descriptor and <location> can take

the form of a BPatch_point or a BPatch_addressSpace. There is also an optional parameter to name a

snippet. A snippet name makes code and error reporting much easier to read, and allows for the group-

ing of snippets (see section 2.3.2). If a snippet name is not specified, the default name Snippet_[<#>] is used.

<dynC code> Description

std::string str A C++ string containing dynC code.

const char *s A null terminated string containing dynC code

FILE *f A standard C file descriptor. Facilitates reading dynC code from file.

Table 1: createSnippet(...)! input options: dynC code

<location> Description

BPatch_point &point Creates a snippet specific to a single point.

BPatch_addressSpace &addSpace Creates a more flexible snippet specific to an address

space. See section 1.3.

Table 2: createSnippet(...)! input options: location

The location parameter is the point or address space in which the snippet will be inserted. Inserting a

snippet created for one location into another can cause undefined behavior.

1.3 Creating Snippets Without Point Information

Creating a snippet without point information (i.e. calling createSnippet(...) with a BPatch_addressSpace)

results in a far more flexible snippet that may be inserted at any point in the specified address space. There

are, however, a few restrictions on the types of operations that may be performed by a flexible snippet. No

local variables may be accessed, including parameters and return values. Mutatee variables must be accessed

through the global domain.

2 DynC Language Description

The DynC language is a subset of C with a domain specification for selecting the location of a resource.

6

2.1 Domains

Domains are special keywords that allow the programmer to precisely indicate which resource to use. DynC

domains follow the form of <domain>‘<identifier>, with a back-tick separating the domain and the iden-

tifier. The DynC domains are as follows:

Domain Description

inf The inferior process (the program being instrumented). Allows access to func-

tions of the mutatee and it’s loaded libraries.

dyninst Dyninst utility functions. Allows access to context information as well as the

break() function. See Appendix A.

local A mutatee variable local to function in which the snippet is inserted.

global A global mutatee variable.

param A parameter of the mutatee function in which the snippet is inserted.

default The default domain (domain not specified) is the domain of snippet variables.

Table 3: DynC API Domains

Example:

i n f ‘ p r i n t f ("n is equal to %d.\n" , ++globa l ‘ n) ;

This would increment and print the value of the mutatee global variable n.

2.2 Control Flow

2.2.1 Comments

Block and line comments work as they do in C or C++.

Example:

/∗

∗ This i s a comment .

∗/

int i ; // So i s t h i s .

7

2.2.2 Conditionals

Use if to conditionally execute code. Example:

i f (x == 0){

i n f ‘ p r i n t f ("x == 0.\n") ;

}

The else command can be used to specify code executed if a condition is not true. Example:

i f (x == 0){

i n f ‘ p r i n t f ("x == 0.\n") ;

} else i f (x > 3){

i n f ‘ p r i n t f ("x > 3.\n") ;

} else {

i n f ‘ p r i n t f ("x < 3 but x != 0.\n") ;

}

2.2.3 First-Only Code Block

Code enclosed by a pair of {% <code> %} is executed only once by a snippet. First-only code blocks can

be useful for declaring and initilizing variables, or for any task that needs to be executed only once. Any

number of first-only code blocks can be used in a dynC code snippet.

A first-only code block is equivalent to the following:

stat ic int f i r s tT ime = 0 ;

i f (f i r s tT ime == 0){

<code>

f i r s tT ime = 1 ;

}

DynC will only execute the code in a first-only section the first time a snippet is executed. If createSnippet(...)

is called multiple times and is passed the same name, then the first-only code will be executed only once:

the first time that any of those snippets with the same name is executed. In contrast, if a snippet is created

by calling createSnippet(...) with a unique snippet name (or if a name is unspecified), the first-only code

will be executed only once upon reaching the first point encountered in the execution of the mutatee where

the returned BPatch_Snippet is inserted.

8

Example Touch:

{%

in f ‘ p r i n t f ("Function %s has been touched.\n" , dyninst ‘ funct ion name) ;

%}

If createSnippet(...) is passed the code in Example Touch and the name "fooTouchSnip" and the

returned BPatch_snippet is inserted at the entry to function foo, the output would be:

Function foo has been touched .

(mutatee e x i t)

If the dynC code in Example Touch is passed to createSnippet(...) multiple times and each snippet

is given the same name, but is inserted at the entries of the functions foo, bar, and run respectively, the

output would be:

Function foo has been touched .

(mutatee e x i t)

Creating the snippets with distinct names (e.g. createSnippet(...) is called with the dynC code in Ex-

ample Touch multiple times and the snippets are named "fooTouchSnip", "barTouchSnip", "runTouchSnip")

would produce an output like:

Function foo has been touched .

Function bar has been touched .

Function run has been touched .

(mutatee e x i t)

A cautionary note: the use of first-only blocks can be expensive, as a conditional must be evaluated each

time the snippet is executed. If the option is available, one may opt to insert a dynC snippet initializing all

global variables at the entry point of main.

2.3 Variables

DynC allows for the creation of snippet local variables. These variables are in scope only within the snippet

in which they are created.

For example,

int i ;

9

i = 5 ;

would create an uninitialized variable named i of type integer. The value of i is then set to 5. This is

equivalent to:

int i = 5 ;

2.3.1 Static Variables

Every time a snippet is executed, non-static variables are reinitialized. To create a variable with value that

persists across executions of snippets, declare the variable as static.

Example:

int i = 10 ;

in f ‘ p r i n t f ("i is %d.\n" , i ++);

If the above is inserted at the entrance to a function that is called four times, the output would be:

i i s 10 .

i i s 10 .

i i s 10 .

i i s 10 .

Adding static to the variable declaration would make the value of i persist across executions:

stat ic int i = 10 ;

in f ‘ p r i n t f ("i is %d.\n" , i ++);

Produces:

i i s 10 .

i i s 11 .

i i s 12 .

i i s 13 .

A variable declared in a first-only section will also behave statically, as the initialization occurs only once.

{%

int i = 10 ;

%}

10

2.3.2 An Explanation of the Internal Workings of DynC Variable Creation

DynC uses the DyninstAPI function malloc(...) to allocate dynC declared variables when createSnippet(...)

is called. The variable name is mangled with the name of the snippet passed to createSnippet. Thus, vari-

ables declared in dynC snippets are accessible only to those snippets created by calling createSnippet(...)

with the same name.

If the variables are explicitly initialized, dynC sets the value of the variable with a BPatch_arithExpr(BPatch_assign...)

snippet. Because of this, each time the snippet is executed, the value is reset to the initialized value. If,

however the variables are not explicitly initialized, they are automatically set to a type-specific zero-value.

Scalar variables are set to 0, and c-strings are set to empty, null-terminated strings (i.e. "").

If a variable is declared with the static keyword, then the initialization is performed as if in a first-only

block (see section 2.2.3). Thus, a variable is initialized only the first time that snippet is executed, and

subsequent executions of the variable initialization are ignored.

2.3.3 Creating Global Variables That Work With DynC

To declare a global variable that is accessible to all snippets inserted into a mutatee, one must use the

DyninstAPI BPatch_addressSpace::malloc(...) method (see Dyninst Programmer’s Guide). This code

is located in mutator code (not in dynC code).

myMutator.C:

. . .

// Creates a g l o b a l v a r i a b l e o f type in named g l o ba l In tN

myAddressSpace−>malloc (myImage−>getType ("int") , "globalIntN") ;

// f i l e 1 and f i l e 2 are FILE ∗ , en t ryPoin t and e x i tPo i n t are BPatch point

BPatch snippet ∗ sn ippet1 = dynC : : c r ea t eSn ippe t (f i l e 1 , &entryPoint , "mySnippet1") ;

BPatch snippet ∗ sn ippet2 = dynC : : c r ea t eSn ippe t (f i l e 2 , &ex i tPo int , "mySnippet2") ;

a s s e r t (sn ippet1) ;

a s s e r t (sn ippet2) ;

myAdressSpace−>i n s e r t Sn i ppe t (snippet1 , &entryPoint) ;

myAdressSpace−>i n s e r t Sn i ppe t (snippet2 , &ex i tPo in t) ;

11

// run the mutatee

((BPatch process ∗) myAdressSpace)−>cont inueExecut ion () ;

. . .

file1:

{%

globa l ‘ g loba l IntN = 0 ; // i n i t i a l i z e g l o b a l v a r i a b l e in f i r s t −only s e c t i on

%}

i n f ‘ p r i n t f ("Welcome to function %s. Global variable globalIntN = %d.\n" ,

dyninst ‘ function name , g loba l ‘ g loba l IntN++);

file2:

i n f ‘ p r i n t f ("Goodbye from function %s. Global variable globalIntN = %d.\n" ,

dyninst ‘ function name , g loba l ‘ g loba l IntN++);

When run, the output from the instrumentation would be:

Welcome to func t i on foo . Global v a r i ab l e g loba l IntN = 0 .

Goodbye from func t i on foo . Global v a r i ab l e g loba l IntN = 1 .

Welcome to func t i on foo . Global v a r i ab l e g loba l IntN = 2 .

Goodbye from func t i on foo . Global v a r i ab l e g loba l IntN = 3 .

Welcome to func t i on foo . Global v a r i ab l e g loba l IntN = 4 .

Goodbye from func t i on foo . Global v a r i ab l e g loba l IntN = 5 .

2.3.4 Data Types

DynC supported data types are restricted by those supported by Dyninst: int, long, char *, and void *.

Integer and c-string primitives are also recognized:

Example:

int i = 12 ;

char ∗ s = "hello" ;

12

2.3.5 Pointers

Pointers are dereferenced with the prefix *<variable> and the address of variable is specified by &<variable>.

For example, in reference to the previous example from section 2.3.4, the statement *s would evaluate to

the character h.

2.3.6 Arrays

Arrays in DynC behave much the same way they do in C.

Example:

int array [3] = {1 , 2 , 3} ;

char ∗names [] = {"Mark" , "Phil" , "Deb" , "Tracy" } ;

names [2] = "Gwen" // change Deb to Gwen

i n f ‘ p r i n t f ("The seventh element of mutArray is %d.\n" , g loba l ‘ mutArray [6]) ; //Mutatee array

i f (in f ‘ strcmp (∗names , "Mark") == 0){} // This w i l l e v a l ua t e to t rue .

2.4 DynC Limitations

The DynC, while quite expressive, is limited to those actions supported by the DyninstAPI. As such, it

lacks certain abilities that many programmers have come to expect. These differences will be discussed in

an exploration of those C abilities that dynC lacks.

2.4.1 Loops

There are no looping structures in DynC.

2.4.2 Enums, Unions, Structures

These features present a unique implementation challenge and are in development. Look to future revisions

for full support for enums, unions, and structures.

2.4.3 Preprocessing

DynC does not allow C-style preprocessing macros or importation. Rather than #define statements, con-

stant variables are recommended.

13

2.4.4 Functions

Specifying functions is beyond the scope of the DynC language. DyninstAPI has methods for dynamically

loading code into a mutatee, and these loaded functions can be used in DynC snippets.

14

A The Dyninst Domain

The dyninst domain has quite a few useful values and functions:

Identifier Type Where Valid Description

function_name char * Within a function Evaluates to the name of the current func-

tion. Call to createSnippet(...) must

specify a BPatch_point.

module_name char * Anywhere Evaluates to the name of the current mod-

ule. Call to createSnippet(...) must

specify a BPatch_point.

bytes_accessed int At a memory operation Evaluates to the number of bytes accessed

by a memory operation.

effective_address void * At a memory operation Evaluates the effective address of a mem-

ory operation.

original_address void * Anywhere Evaluates to the original address where the

snippet was inserted.

actual_address void * Anywhere Evaluates to the actual address of the in-

strumentation.

return_value void * Function exit Evaluates to the return value of a function.

thread_index int Anywhere Returns the index of the thread the snippet

is executing on.

tid int Anywhere Returns the id of the thread the snippet is

executing on.

dynamic_target void * At calls, jumps, returns Calculates the target of a control flow in-

struction.

break() void Anywhere Causes the mutatee to execute a break-

point.

stopthread() void Anywhere Stops the thread on which the snippet is

executing.

Table 4: Dyninst Domain Values

15

