Paradyn Parallel Performance Tools

Developer’s Guide

Release 4.1
April 2004

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@s. wi sc. edu

Developer’'s Guide 4/13/04

Table Of Contents

IR © 1Y = 1 S S
1.1 Document reiSion NiStOrY...........uuuueiiiiiiiii e e 5......
1.2 New functionality for release 4.0.........cccooeriiiiiiiiiiiiiii e 5.
1.3 New functionality for release 3.0........cooooriiiiiiiiiiiiiii e B.....
1.4 New functionality for release 2.1.........ccccoooeiieiiiiiiieeeccer e, B.....
1.5 Paradyn subsystems and source code StruCtUre.............ccoeeeeeevveeiiieeeenenns 7...
2 Paradyn Rckage DependenCIES........uuuiiiiiiiiiiiiieeiee e 9......
3 Paradyn Front-nd...........ccooiiiiiiioeiiecceeee e e e 11.......
3.1 DAt IMABNAGEL.cceeeieiiee et e et e et e e e e et e e e e e a e e e e enaa e e 11......
3.2 VISE MABNAGET......ceiiiiiiiiiiieee ettt e e e 13......
3.3 VISItNIBAAS ... ettt e 14.......
3.4 User Interfice (Ul) thread...........ooooiiiiiiiiii 16....
3.5 Performance Consultant thread..............cccoovvviiiiiiiiiiiiie e 19....
Y S I o] = Y USRS 20........
5 Paradyn DAMON........ccooiiiiiiiieieiiieii ettt e e e e e e e e e eaeararan 21.......
S 00 R | 1o o 18 o 1o o TSRS 21......
5.2 APPlICAtiON PrOCESSESuvtuueiiiiii i i e eeeeee e e ee ettt e e e e e e e e e e e e e e e eeeeaeeaaaaaas 22.....
5.3 ODbject file ProCeSSING......ccceiiiiiiiiiiiiiiii e 22.....
5.4 Shared-0DjeCt PrOCESSING.....ccuiiiiiiiiieii et 22....
5.5 Performance data sSampling.............ccceeiiiiiiiieiiiiiiieeee e 26....
5.5.1 Shared-memory sampling..........coooeiiiiiiiiiiiiii e 21...
5.5.1.1 Synchronization issues for shared-memory sampling27
5.5.1.2 The need for a get-remote-time() primdi..................... 28
5.5.1.3 Management of instrumentatioanables in shared memo?@
5.5.2 Alarm Sampling.......ccooiiiiiiiiiiiii 31....
5.6 Retroactve inStrumentation..............oooiiiiiiiiiiiiiiiiiieeeeee e 31...
5.7 DYNAMIC HEAPS.cciieiiiiitiiiiiiae ettt e e e e e e e e e e e eeeeeeeannnna 34......
5.8 Trampoling GUAIS.........ccooiiiiiiiiiiii e 36.....
5.9 Instrumentation of multi-threaded programs................vvviiiiiiiiiiieeeeennenn, 37..
5.9.1 INrOAUCHION......ciiiiiiiiiiiee e 37.....
5.9.2 Paradyn Program Instrumentation.............ccccuvuviiiiiiieiiiinineneeeen. 38..
5.9.3 DESIGN ISSUES.....ceeiiiiieiiiiiiiiie e e e e e e e e e ettt s e e e e e e e e e e eaaeaaanans 38.....
5.9.4 CUIMeNt DESIGN.....cciiiiiiieieeiieieeeeeiiier e 38....
5.9.4.1 Datad MANAGET.......uuiiiiieieeeeeeeeieeeeeeiiiira e e e e e e 38...
5.9.4.2 Instrumentation details............ccccuvvviiiiiiiiiiiiiiiiieeeeee, 39..
5.9.4.3 Base Tampoline...........coouuiiiiiiiiiiiiiie e 39..
5.9.4.4 Mini TrampoliNe...........uuueeiiiiiiiiiiiiiieie e 39..
5.9.4.5 Thread Creation.............ccooiiiiiiiiiviiiiiiiiiiieeeceee e 39...
5.9.4.6 Thread Deletion..........ccccoeeeveeeeiiiiiiiiiieeiiiiiiiiieeee L A0
5.9.4.7 INfErior RPCS.....uuuiiiiiiii e 41...
5.9.5 Virtual TIMErScoooeiiiiiiiiiiiiiiieiceieeeee e A
5.9.6 Current Status and LIimitationS.............cccovvveiiiiiiiiiiiiiiiineeeeeeeeee 42..
5.10 TIMEI LEVEIS ..ottt e e e e e e e e e e e e e e e eaeeeannnnn s 42......
B X8O POIT... e e a e 44.........
A N1 010)7 G Lo] PSSO PUTUPPPPPRR aQ........
8 Run-time instrumentation Drary...........cccouviiiiiii 52....
9 MDL iMPIEMENTALION........ccciiiiieeeeeee e et e e e e e e e e e e e e e e eeeeaaaaaa 53......

Developer’'s Guide April 13, 2004 Release 4.1

Table Of Contents

9.1 IMPOIANT FIlES.t 5......
9.2 Lexical and syntax analySiS..........c.ouuuuuuiiiiiiiiii e e h5....
9.3 Semantic analysis and intermediate code generation...............cccccevvvvnenn 57
9.4 Where these classes are defined.............coooiiiiiiiiiiiiiiiii e 58...
10 Igen INterBCe GENEIALION.cciii i i e e e e eeeeeeeeeee e e e e e e e 58......
10.1 OVEIVIBN OF IgBN ... e e e e e eaeeneane 58.....
10.1.1 SYNOPSIS..euttttteiiiiiiiiiiieee et e e e e e e e e e e e e 58.....
O 20 2 © 11 | o 11 | PSP 59......
LO. 1.3 MEIMOIY ..ttt ettt e e e e e e e e e e e e e e e e eeenannns 50.....
10.12.4UPCAIIS oo 59......
10.1.5 Interface template............uuiiiiiiiiiee e 59....
10.2 IgEN GIAMIMIAL.ceieeeiiiieeeee et e e et et e e e e e et e e e e e eeeb e e e e e eeabn e e eaeesnnneeeens aq......
11 MAKETIE ISSUBS.....ceeeeieeiiiiieie et e e e e e et e e e e e e e e aeeeeaees 62.......
11.1 Overview of Makefile olganizationccccceeeeeeiiieiieec e 62...
11.2 Site-dePENUEIYCISSURS. .. .uuieiieeeeeeeeeeeeeeeeieettttt e e e e e e e e e e e e e eeeeeeebannn s 63.....
11.3 The DEPENDS fil€.....ccco oottt 64.....
0 o =T o T 1 = USSP PPPRP 64.......
11.5 BUilding 0N WINAOWSooeiiiiiiiiiiiie ettt e e e e e e e e eeeeeeenenees 64.....
12 MPI APPlCAtioN SUPPOIL....oiiiiiiiiiiieee e 65......
2 R \V | [o BT o] o o FS PP 65......
12.1.1 MPICH job startup proCedure..............uuuuuiiiiiineeeeeeeeeeeeeeeeeiiiiiieens 6a..
12.1.2 Supporting MPICH on other platforms..........ccccccccveiiiiiiiiiins 66.

Developer’'s Guide April 13, 2004 Release 4.1

List of Figures Page -iv

Figure1l: Paradyn (and dyninstAPI) SUDSYSIEMS.cccoiiiiiirincre e 7
Figure2: Paradyn/dyninstAPl module structure and dependencies.ccccoevceveeveeiieseenen, 8
Figure3: ViSi Manager INEITACEcooeiiieeeee ettt 14
Figure4: VISIthreadGlobals Struct MEMDENS.ccoeiiiiiieire s 15
Figure5: Processclassand shared ODJECLS.cceevviiieiiice e 23
Figure6: image, module, pdFunction, and instPoINt ClasSES.ccceveeieveeneniiesee e 24
Figure7: Datastructures of the Paradyn daemon.cccoirininininiciesee e 26
Figure8: Pseudo-code for startTimer and stopTimer Operationsccceeeeveeveeseesiesnenne 28
Figure9: Pseudo-code for shared-memory sample of atimerccocevevieneninncenenceeee 28
Figure 10: Final pseudo-code for startTimer/stopTimer OPerationscccevererereniereneenns 29
Figure 11: Final pseudo-code for timer Samplingcccoveeeieeieeie e 29
Figure 12: variableMgr and SHMMQEooioiieeeee e e 30
Figure 13: Retroactive instrumentation eXample.cccooerirenenineneeee e 34
Figure 14: Crucial MDL fIl€5 ...uoiueiieieieeeseee ettt st 54
Figure15: An example demonstrating how appl y() functionswork.ccccecoveviviiieennnnn, 57
Figure 16: Important MDL CIESSES.cccoiiriiriirieiirieieee ettt 58
Figure17: MPICH Job Launch ProCeAUIEcceeieiieiieie et 67
Figure 18: Paradyn MPICH Job Launch Procedureccooiiiiinienenie e 68

Developer’'s Guide April 13, 2004 Release 4.1

Page 5

1 OVERVIEW

This guideis intendedo helpdeveloperswho wantto understandhe Paradynsourcecode.lt is a
roughoverview to helpwith modifications gxtensionsandporting efforts. This documenis con-
stantlybeingmodifiedandextended This documenassumesghatyou arefamiliar with thefunda-
mentals of Bradyn from the technical papers, manuals, and use of the tool.

We encouragaesearchdevelopmentsbasedon Paradynand hopethat this documentis of
somehelp. The ultimate sourceof adviceon Paradyn(otherthanthe sourcecodeitself!) is the
Paradyn deelopment group. Feel free to contact usaatadyn@s. wi sc. edu.

1.1 Document revision history

[0 v4.0: minor revisions

* Added section on instrumentation of multi-threaded programs

0 v3.0: major revision

* Added nev section on Linux-specific implementation: Section

* Added nev section on retroacste (catchup) instrumentation: Sectiomb

» Added nev section on multiple inferior instrumentation heaps: Se&i@n
* Add nev section on base-trampoline re-entragaards: Section 5.8

[0 v2.1: minor revision

* Expanded this\ervien with summary of n& functionality and subsystem dependencies
* Added nev section on MDL implementation: Sectién

* Expanded discussion of site dependencies aitd tonfiguration in Sectiofil.2
(and Sectiori1.5 for Wndows)

* General update and correction of typos
0 v2.0: major revision

1.2 New functionality for release 4.0

In additionto the new featuresof summarizedn the User’s Guide releasenotes(Sectionl.3),
new functionality for Riradyn 4.0 includes:

* Revamped management of instrumentatianables and shared memory

» Paradynand Dyninst runtime instrumentatiorlibraries have beendecoupled;Paradynnow
loads the Dyninst Rlibrary separately

* Now using "n&v" multi-file Solaris /proc intedce

* Reoganization to separate Dyninst anar&dyn code

» Support for system call interruption on x86 when doing RPCs

* Increased diciengy of accessing instrumentatioanables in MT applications

Developer’'s Guide April 13, 2004 Release 4.1

Page 6

1.3 New functionality for release 3.0

In additionto the new featuresof summarizedn the User’s Guide releasenotes(Sectionl.3),
new functionality for Riradyn 3.0 includes:

ports for x86/Linux and MIPS/Irix
support for Irix natre MPI and MPICH on x86/Linux and x86/Solaris

multiple inferior instrumentationheapswhich supportbasetrampocality to instrumented
functions and consequent atomic single-instruction instrumentation points

retroactve (catchup) instrumentation
callgraph-based Performance Consultaigeng search
instrumentation re-entrapguards

1.4 New functionality for release 2.1

In additionto the new featuresof summarizedn the User’s Guide releasenotes(Sectionl.3),
new functionality for Riradyn 2.1 includes:

application re-linking requirement remexd for SRRC/Solaris
(Paradynnow dynamicallyloadsits run-timeinstrumentatiodibrary andworkswith unmodi-
fied application xecutables on SHRC/Solaris and x86/Wdows)

automatic code block identification [on Solaris platforms]

(eliminating the requirementto re-link the applicationprogramusing explicit code block
markers,now alsorelevant for x86/Solaris).This removesthe needfor DYNI NSTst ar t code
andDYNI NSTendcode markerswhichwerepreviously necessaryo delimit “interesting”appli-
cation code, and also leads into thetmaw feature:

meigedprocessingf staticallyanddynamically-linked modules allowing generalizednod-
ule and function>eclusion [on Solaris platforms].

In generalthecodefor handlingstaticallyanddynamicallylinked codeon Solarishasunified.
This unificationremovesthe requiremeniof re-linking target applicationprogramswith the
DYNI NSTst ar t code andDYNI NSTendcode markers.It alsogenerallyincreaseshe amountof
applicationcodewhichis instrumentedandnecessitatesxplicitly excludingmoremodulesn
the Raradyn configuration files.

handling of stripped dynamic libraries [under Solaris]
The run-timelinker’'s dynamicsymboltable (. dynsym) is now parsedallowing instrumenta-
tion of stripped shared objects and stripped dynaracigable files on FRC&x86/Solaris.

2-pass function relocation angpansion [on SRRC architecture]

Previously, when relocatinga function which could not be instrumentedn place, Paradyn
madea single passover the function machinecodeand patchedargetsfor machineinstruc-
tionswhich specifya codeaddressluringthis singlepass.This meantthatinstructionswhich
specifieda destinationaddressnsidethe samefunction (suchasbranchinstructions)did not
have correcttargetsif any extra codeneededo beinsertedbetweerthe original locationand
thetargetaddressFunctionrelocationis now donein two passesthe first passdetectdoca-
tions at which extra instructionswill needto be inserted,and the secondpassrelocateshe

Developer’'s Guide April 13, 2004 Release 4.1

Page 7

function, patchingaddresdargetsinsideof thefunctionaccrordingly This featureis only cur-
rently implemented on the 8RC architecture.

better handling of optimized code [on/G®C architecture].

A numberof sequencewnhich appeaiin heasily optimizedSFARC codearecorrectlyparsed
andinstrumentedy Paradynversion2.1whichwerenot correctlyhandledoy the Paradyn2.0
release.To datethesecode sequencetave only beenfound in heaiily optimized system

libraries (especiallyibc).
* more poverful, simplified MDL syntax for metric definition

» enhanced metrics for I/O in MPI programs [on the SP2]

» scalability to monitor lager numbers of processes

» easieyparameterized sourceild (with PVM support nav a huild option)

1.5 Paradyn subsystems and sour ce code structure
Paradyn consists of geral subsystems which are listed in Figlre

par adyn
par adynd

dyni nst API

dyni nst APl _RT
rtinst

visilients

util
t hread
i gen

Vi Si

Paradyn front-end.
Paradyn daemon.

A separatdibrary for dynamicinstrumentationalso usedas part of the
Paradyn daemon.

dyninstAPI run-time instrumentation library (not used layaeyn).
Paradyn run-time instrumentation library

Visualizationclient programsfor performancedata:rthist (run-time his-
togram),table, barchart,phase@ble, terrain and tclVisi. Also the term-
Win program for output data of application processes

Utility functions used by other sub-systems.
General purpose custom multithreading package.
RPC interbce generator

Visi interface library

Figure 1. Paradyn (and dyninstAPI) subsystems.

“Paradyn”is the front-end control processwhich typically runs on desk-topworkstations.
“Paradynd”is the Paradyndaemorprocesghatrun on eachhoston which you run your applica-
tion program.“dyninstAPI“ containsthe code of the dynamicinstrumentatiorapplicationpro-

graminterface,or dyninstAPt . In a future releasethe “dyninstAPI” directorywill containjust
the dyninstAPllibrary but todayit is anintermediatestagein the separatiorof thatfunctionality
from the Paradyndaemon:rtinst” is the sourcefor thelibrary I i bdyni nst RT thatis linkedinto

1.also &ailable fromnt t p: / / www. cs. umd. edu/ proj ect s/ dyni nst AP

Developer’'s Guide

April 13, 2004 Release 4.1

Page 8

eachapplicationprogramto supportParadyns dynamicrun-time instrumentation:visiClients”
are separateun-time visualizationprogramsthat can be startedby Paradynto display perfor-
mancedata. The remainingitems (“util”, “thread”, “igen” and“visi”) are librariesand utilities
used by parts of@adyn and dyninstAPI: component dependencies are summarized inZigure

Core subdirectory Component dependencies
Utl [Msi |Igen [Other
Basic Components:
l'i bpduti | util
I'i bpdt hread thread
l'ibvisi Visi h exe
i gen* igen hé&lib
dyninstAPI:
I'i bdyni nst API dyninstAPI h dyninstAPI_R
l'i bdyni nst APl _RT | dyninstAPI_R h
Key Subsystems:
l'i bdyni nst RT rtinst h
par adynd* paradynd h&lib exe |paradyn, dyninstAPI, rtinst
par adyn* paradyn h&lib [h/.l |exe |(libpd)thread, paradynd
Visualizess:
bar Chart * visiClients/barchart |h&lib |h&lib paradyn
phaseTabl e* visiClients/phasedble | h&lib [h&lib paradyn
rthist* visiClients/hist\fsi h&lib [h&lib paradyn
tabl eVisi* visiClients/tableVsi |h&lib [h&lib paradyn
tcl Visi* visiClients/tcIMsi h&lib [h&lib paradyn
terrain* visiClients/terrain lib [h&lib [paradyn]

Figure 2: Paradyn/dyninstAPI module structure and dependencies.
Libraries and associatednclude files are commonmoduledependenciesyften supplemented
with process interface routines generated by Igen from interface specifications. Occasiponally
direct source sharing is also empled (e.g., beteen the dyninstAPI and paradynd).

Note: the terrain visi hasnot yet beenportedto Windows.While the samesouirce structue

applies, as described in the discussion Whallows, diferences ag dealt with in Sectiohl.5
The root of the Paradynsourcecodetree hasone directory for eachone of thesemodules.

Each module directory iswdded into seeral sub-directories:

h: this directory containsthe exportedinterfaceof the module,usuallyC or C++ headeffiles, or
lgen interfice specifications (files with $uwxf.I).

sr c: thisdirectorycontainghe sourcecodefor the moduleandheadefilesthatarenot partof the
exported interéce.

compilationdirectorieg(<ar ch>- <vendor >- <os>, asprovided by sysnamdrom the GNU config-
uration system,one for eachsupportedplatform): Thesedirectoriescontaina Makefile and
machinederived files that are built as part of the compilationprocesssuchasintermediate
files generated by Igen, fieand bison, and object files.

Developer’'s Guide April 13, 2004 Release 4.1

Page 9

Eachmoduledirectoryalsocontainsa configuratiorfile (make. modul e. t npl) thatis included
by the Malefile in the compilation directories.

Therootdirectoryof the sourcecodetreealsocontainsa Makefile, which canbe usedto build
all of the component®f the systemandthreeconfigurationfiles thatareincludedby the Make-
files in the compilation directories of each module:

make. conf i g: generaldefinitionsfor all Paradynmodules suchascompilersandotherprograms
to use,flags,searchpathfor includefiles, libraries,etc. Thisfile generallyneedgo be updated
for eachinstallation,with the desiredconfigurationoptions,valid pathsto the programsand
libraries; see Sectiohl for further details.

make. | i brary. t npl : general definitions for modules that generate libraries.
make. progr am t npl : general definitions for modules that generate programs.

The build also usesa shell/commandscript, bui | dst anp, provided in the scriptsdirectory
(which also includes a cgpf sysnane).

A more completedescriptionof the configurationand Makefilesusedin Paradynappearsn
Sectionll.

2 PARADYN PACKAGE DEPENDENCIES

This sectionlists the packagesieededo build Paradynon Unix systemssomeWindows differ-
encesarementionedhere,but seeSectionl1.5for details.For eachpackageyve list wherein the
Paradynsourcecodethe packageas neededthe versionof the packagecurrentlyused,how to get
the packageand someadditionalinformation.If you notice ary packageshat we have missed
listing belaw, please let us kno

(0 gcc/gt++:
* Whee usedccompiling all of Rrradyn.

» \ersion: We currently build usinggcc 3.2.2; Paradynmay compile with gcc-2.95,gcc-2.96
(theso-called’‘Red Hatgcc”), or with gcc-3.0 but we supportgcc3.2.2andrecommendising
it for its improved standards compliance and reliahility

* How to eet: ftp://ftp.gnu.og/gnu/gcc

» Commentscloseto impossibleto work withouta goodC++ compiler We usesomenon-stan-
dard features (such as long long), which may not be supported by other compilers.

* Windows:VisualC++6.00r 7.0 (VC.NET) is usedinstead Compiling Paradynwith gcc/g++
is still untested on this platform.

0 GNU make:

* Whee usedbuilding all modules in &adyn

* \ersion: currently using mad3.74

* How to eet: ftp://ftp.gnu.og/gnu/male-3.74.tagz
 Commentswe use includes, conditional defines, and other features specific to GNdJ-mak

* Windows:nmake s usedinsteadwhich hasa differentsyntaxandcapabilitiesnecessitating
separatesetof make configuratiorfiles callednnake. confi g, nmake. *. t npl . Theseconfig-

Developer’'s Guide April 13, 2004 Release 4.1

Page 10

uration files may be deleted if yoe’'not working with Windows.
Perl|5:

Whee used:in the ‘tcl2¢’ scriptto corvert ParadynTcl files to C++; alsoused(thoughthis
could be easily changed) imke. confi g

\ersion: perl5.xxx

How to get: http://mox.perl.com/ and explore, or http://wuarchve.wustl.edu/sys-
tems/gnu/perl5.002.tayz

Commentspossible to nerite tcl2c in almost anlanguage.
Windows:currently not needed on this platform.

Tcl/Tk:

Whee useduserinterface of Rradyn, tcl\si package, barChart, tablsy/ etc.
\ersion: Tcl-8.3.3, Tk-8.3.3 (or higher in the 8.3 series). 8ignot supported.
How to get: http://tcl.actvestate.com andkplore.

CommentsTcl/Tk enables greater portability foaRadyns user integce.

Windows:we recommendisingthe pre-huilt binary Tcl/Tk packagdrom tcl.actvestate.com
on Windows systems.

Xaw, Xext, Xt:

Whee used:3D terrain visi.

\ersion: Xaw-5.0, Xet-4.10, Xt-4.10 (or higher).

How to get: http://wwwx.org/ and &plore.

Commentsother \ersions may require re-compiling rthist.
Windows:not used on this platform.

Bison, Flex:

Whee usedigen, MDL.

Version: bison v1.24 or 1.25 (1.875 is not supportedy 8.2 (or higher).
How to get: ftp://ftp.gnu.og/gnu/bison-1.24.tagz and flg-2.5.2.tagz

Windows:theseareneededo build par adynd. We recommendhatyou getpre-huilt versions
which are includedin the cygwin package(www.cygwin.com).You could also build them
from the sources.

libelf: (Linux only)
Whee usedparadyn daemon, dyninstAPI.

\ersion: Use a versionappropriatefor your kernelversion.For example,RedHat 6.2 users
can use libelf-0.6.4-4.i386.rpm, Red Hat 7.1 users can use libelf-0.6.4-7.i386.rpm.

How to get: An RPM is included in Red Hat distubons.

CommentsThis packagecontainsthe libelf library and headersusedby Paradyns daemon
and dyninstAPI to access ELF files under Linux.

Developer’'s Guide April 13, 2004 Release 4.1

Page 11

[0 ONC RPC: (Windows only)

» Whee usedParadyn daemon, dyninstAPI, libpdutil

* \ersion:v1.10 or later

* How to ¢et: ftp://grilled.cs.wisc.edu/~paradyn/etc/oncrpcll2winnt.tar.gz

» Commentsthe ONC RPC implementation of Sun RPC for Windows originates from Martin
F. Gergeleit (http://set.gmd.de/~mfg/oncrpc.html), however, the file RPC/ XDR. H needs to be
exchanged with the one in the Paradyn release to compile successfully with Visual C++ 6.0.

O rshd:

* Windows:if you wish Paradyn to be able to automatically start applications and Paradyn dae-
mon processes on remote Windows systems, an rsh daemon process, such as WRSHDNT, is
required to be running on the remote system.

3 PARADYN FRONT-END

The Paradyn front-end is a multi-threaded system that consists of several modules: the data man-
ager, the user interface, the visualization manager, and the Performance Consultant. Each of these
modules is a separate thread. The Paradyn process starts by creating each module's thread, and
invoking initialization routines for each thread. After each thread is initialized, the commands in
the Paradyn configuration files are processed, and control is passed to the threads.

The User-Interface thread (Ul) is responsible for receiving user's commands and managing
the display windows (the Paradyn Main Console Window, the Where Axis, and the Performance
Consultant Window). The Data Manager thread (DM) is responsible for handling requests from
other threads for data collection, for receiving performance data from the Paradyn daemons and
delivering them to the requesting threads, and for managing information about phase, metrics, and
the resource hierarchy. The Performance Consultant thread (PC) is responsible for the automated
search for performance bottlenecks in the application. The Visi Manager thread (VM) is responsi-
ble for managing visualization processes (like the run-time histogram and barchart processes) and
for communication between each visualization process and the Data Manager.

The source code for the Paradyn process is divided in several directories, including one direc-
tory for each thread: DM hr ead, PCt hr ead, Ul t hr ead, and VM hr ead. There is also a directory
called TCt hr ead, which has code to handle tunable constants. (Tunable constants are not a thread,
however, they are managed by the Ul thread). The net directory contains the parser for the Para-
dyn Configuration Language; the vi SI t hr ead directory contains the code for visi threads, which
are created by the VMthread when a new visualization process is started; the pdwvai n directory
contains the Paradyn main routine.

The following sections describe the major modules of the Paradyn front-end.

3.1 Data Manager

The Data Manager (DM) is one of the threads of the Paradyn main process. The Data Manager
handles requests from other threads for data collection, delivers performance data from the Para-
dyn daemon(s) to the requesting thread(s), and maintains and distributes information about the
metrics and resource hierarchies for the currently defined application.

Developer’'s Guide April 13, 2004 Release 4.1

Page 12

Performance data collection

The Data Manager handles requests from other threads for performance data collection. For this
purpose, the DM provides the “public’ procedure dataManager: : enabl eDat aRequest

(Dvpubl i c. C). This procedure will receive, among other parameters, the metric/focus pair we
want to enable, the perfStreamHandle of the calling thread, the identifier of the phase for which
data is requested, and other necessary information. This procedure will then call the correspond-
ing procedures to enable the data collection process in the Paradyn daemon(s).

In general, all the requests to the DM from other threads, are handled in the file DVpubl i c. C.

Performance data delivery from the Paradyn daemon(s)

Once the data has been successfully enabled, the Paradyn daemon(s) will start sending datato the
requesting threads through the DM. The DM will receive trace records and send them to the
reguesting thread (Divper f st r eam C).

Metrics and resource hierarchies management

There are objects that can be created and destroyed and the DM has to notify the corresponding
threads about all these changes. If anew resource is created, for example a new process, then the
Paradyn daemon will make a“call back” to the DM, and then the DM will notify the correspond-
ing threads (e.g. the UI). Call backs are defined in the file Dvai n. C.

DM objects

The major objects used in the DM thread are described below. The file in which the class of each
object is defined is given in parenthesis.
These objects, once created, are never destroyed:

resour ce (DM esour ce. h): the static items basically manage a “database” of all resources. The
non-static items gives you information about a single resource.

resour ceLi st (DM esour ce. h): a“list” of al resourcesin the system.

metric (Dvetric. h): contains al the information related to a metric (e.g. name, units, type,
etc).

phasel nf o (DMphase. h): information about phasesin the system.

These objects, once created, can be destroyed:

metricl nstance (DMret ri c. h): this class contains information about the particular “instances’
of all metrics created during the execution of the application being analyzed. (If a metric is
“enabled”, we are creating a new metric instance; if the same metric is “disabled’, we are
destroying it).

per f or manceSt r eam (DVper f st r eam h): the per f or manceSt r eamclass is basically a consumer
of performance data. Its main function is to provide the means to receive data from the Para-
dyn daemon(s) and send it to the requesting threads.

par adynDaenon (DMdaenon. h): a handle to a running Paradyn daemon (par adynd). This class
provides method functions for process and daemon control as well as for enabling and dis-

Developer’'s Guide April 13, 2004 Release 4.1

Page 13

abling data collection. At this moment, if a particular paradynd is removed (e.g., exits), then

Paradyn has to exit too. In other words, we can’'t destroy a Paradyn daemon in the current

implementation.

All DM objects should be referred to by their handles outside of the DM thread. The only
operation that clients should perform with DM handles is equality testing (this operation will
always be supported by DM handle types, so clients can compare handle values directly), any
other information that a client needs about a DM object can be obtained by passing the appropri-
ate handle to adat avanager interface routine.

Within the DM thread, care should be taken when using pointers to objects that are not persis-
tent (met ri cl nst ance and per f or manceSt r eam)

DM handles are not reused over the execution of Paradyn, but net ri cl nst ance and per f or -
manceSt r eamhandles may beinvalid. For example, enabling a metric/focus pair, disabling it, and
then re-enabling it may result in two different metriclnstance handles to be associated with the
pair.

3.2 Vis Manager

The Vis Manager is athread in the Paradyn process. It contains information about the visualiza-
tions in the system, and it accepts requests from other threads to start or to kill visualization pro-
cesses. When the visi manager receives a request to start a new visualization, it creates a vis
thread. The vis thread then starts the external visualization process, and acts as an interface
between the visualization process and the Paradyn process.

Visi Manager types

The following is a description of the types used by the vis thread (these types are defined in
VM ypes. h):

VMi si s: The visi manager keeps a vector of VWi si s elements. Each element in the vector con-
tains information about a visualization that has been added to Paradyn. The visi manager uses
this information to start the visualization process. (Note: the mat ri x and nunvatri ces ele-
ments are not currently used.)

VMact i veVi si @ The visi manager keeps a vector of VMacti veVi si elements. There is one ele-
ment in this vector for each visualization process that is currently executing. When a new
visualization processis started, anew element is added to this vector, and when avisualization
process exits, its corresponding element is removed. The visi manager uses the information in
each element to communicate with the visualization process. Each element contains informa-
tion about the type of visualization that is running, and about the visi thread that is associated
with the visualization process.

vi si _t hread_ar gs: Thisstruct is used when the visi manager thread creates avisi thread. It con-
tains information that the visi thread needs to start the visualization process. (Note: the matrix
element is not currently used.)

Developer’'s Guide April 13, 2004 Release 4.1

Page 14

Visi Manager interface routines

Vis manager interface routines provide information about visualizations in the system, and pro-
vide a mechanism to control visualization process creation and deletion. These routines are
definedinwMm 1 .

VMACt i veVisis Returns a vector of information about al visualization processes
currently running.

VMAvai | abl eVi si s Returns a vector of information about all the different visualiza-
tionsthat are part of Paradyn.

VMAddNewVi sual i zat i on | Takes information about a visualization process, and adds it to its
list of Wi si s elements.

VMCr eat eVi si Starts a visualization process.

VMDest r oy Vi si Kills avisualization process.

VWi si Di ed Called by a visi thread when its associated visualization process
has exited. It cleans up any state that the visi manager thread has
been keeping for this process.

Figure 3: Visi Manager interface

3.3Vis threads

Vis threads are the only threads that are not persistent over the execution of the Paradyn process.
There may exist zero, one, or more instances of avisi thread at any time. They are the only threads
that can be created and destroyed at any point in Paradyn’s execution.

A visi thread is created by the visi manager thread when it receives arequest to start a visual-
ization process. The vis thread starts the external visualization process, and acts as an interface
between Paradyn and the visualization. There is one vis thread for every visualization process
that is executing. The visi thread receives requests from the visualization to change its set of per-
formance data, and forwards these requests to other threads in the Paradyn process. From the
other threads, the visi thread receives performance data and meta data that it packages and for-
wards to the visualization process.

Because there can be multiple instances of avisi thread, visi threads must use thread local data
to keep any unique information that they need to interact with their associated visualization pro-
cess.

Visi thread types

Types used by the visi thread are defined in Vi SI t hr eadTypes. h. Each vis thread has an element
of type VI Sl t hreadd obal s in itslocal data. This element contains state information about the
visualization process it is associated with, and about the other threads with which it needs to com-
municate. Figure 4 provides a description of this struct.

Developer’'s Guide April 13, 2004 Release 4.1

Page 15

Field Use

unp Used to call user interface RPCs.

vip Used to call vist manager RPCs.

dnp Used to call data manager RPCs.

visip Used to communicate with the visualization process.

ps_handl e Used as an identifier by the data manager, data manager calls and
callbacks typically have aper f St r eanHandl e argument.

fd File descriptor used to communicate with the visualization process.

buf f er A buffer of performance data (the visi thread sends data to the visu-
alization process a buffer full at atime).

qui t Flag that tells the visi thread to exit.

start_up Flag that tells the vis thread that there is some initialization that it

bucket Wdth

cur r PhaseHandl e

needs to do.

Bucket width associated with the data buckets that are being sent by
the data manager to the visualization process.

Handle for the current phase.

args Arguments used to start the visualization process.

mlist List of metric/focus pairs that the visualization process is currently
subscribed to.

request, Stores information about any outstanding enable requests that have

retrylist, been made by the visualization.

nunEnabl ed. . .

Figure 4: VISIthreadGlobals struct members.
The Visi thread and the Visi interface

Each vis thread is a client instance of the visi interface, and each visualization processis a server
instance of the vis interface. The vis interface is defined invi si . h. The visi server routines are
implemented in Paradyn’s visualization library (visiLib). This library is then linked with visual-
izations that want to receive Paradyn performance data. For a complete description of visiLib see
the Paradyn Visi Programmer’s Guide.

The visi thread implements the visi interface client routines. These are upcalls that are made
by the visualization process to the Paradyn process, and they provide a mechanism for avisualiza-
tion process to subscribe or un-subscribe to performance data, or to start a new phase. When the
visi thread receives an upcall from a visualization process, it typically makes one or more calls to
other threads in the Paradyn process to satisfy the visualization’s request.

Developer’'s Guide April 13, 2004 Release 4.1

Page 16

The Visi thread and the Data Manager

The vis thread makes data enable, and disable requests to the data manager thread on behalf of
the visualization process. A data enable request is asynchronous, so the visi thread must keep state
about the request until it receives an asynchronous upcall from the data manager with the
response. Once the visualization has subscribed to some performance data, the data manager
thread will send this data to the visualization’s visi thread. The visi thread packages the data and
sendsit to the visualization process.

The visi thread is a data manager client thread, and thus implements data manager client rou-
tines. Since there are other data manager client threads in the Paradyn process, each thread con-
tains code that implements its version of the data manager client thread routine, and then it
registers this routine as a callback with the data manager thread. When the data manager makes an
upcall to adata manager client thread, the client thread's callback routineis called.

To communicate with the data manager, the visi thread must first create a performance stream.
When the visi thread makes a request to create a performance stream it also registers all its call-
back functions with the data manager. The data manager returns a performance stream handle that
isused in all subsequent communications between the visi thread and the data manager.

Interface routines

The visi thread acts more as a client thread in the Paradyn process, and thus only has one server
routine defined in Vi SI t hread. | :

VI SIKi |l Visi: caled by the VM thread when arequest is made to kill the visualization pro-
cess.

Thefilevi SI t hr eadmai n. C contains the VISIthread main loop, and callback routines for Ul,
and DM upcalls.

Thefilevi Sl t hr eadpubl i c. C contains VISIthread server routines, and visi interface upcalls.

3.4 User Interface (Ul) thread

The user interface (Ul) thread handles all graphical displaysin Paradyn. It has several tasksto per-
form, including the Where Axis Window, the Tunable Constants Window, the Paradyn Main Con-
sole Window, the Performance Consultant Window, the Error Dialog Window, the Call Graph
Window, etc. For the most part, these tasks are handled via the Tcl/Tk package. Simultaneously,
however, the Ul thread must listen for Igen messages from the data manager thread; the most
numerous being “ new-resource” messages, which require the Ul thread to add items to the Where
Axisdisplay.

Ul main loop
Ul mai n() of fileu mai n. Cisthe entry point to the Ul thread. After creating a number of tunable
constants, it callsinitialize_tcl_sources() toread in Paradyn’s Tcl code. The source (.t cl

files) for such code isin the par adyn/ t cl directory. When compiling Paradyn, the “tcl2c” script
converts the .tcl files into a tcl2c.Cc file, which contains a function

Developer’'s Guide April 13, 2004 Release 4.1

Page 17

initialize_tcl_sources(). Caling thisfunction (as Ulmain does now) readsin all of our Tcl
scripts. For this reason, the .t ¢l files do not need to be distributed in a binary release of Paradyn.

Ul mai n() soon calsnsg_bi nd() on XConnect i onNurber () of the X display. In thisway, we
can wait for X events. X provides a number of functions (such as XNext Event ()) to do thismore
cleanly, but since the Ul thread needs to wait not just on X events but also for Igen messages, this
roundabout approach is needed.

The main Ul loop is as follows. The routine pr ocessPendi ngTkEvent sNoBl ock() is called
to process any pending X events (i.e., any Tcl/Tk graphical events) without waiting. Then, we call
libthread’s nsg_pol | (), which will wait for either an Igen message, an X event, or a keyboard
event (previous calls to msg_bi nd() determines what nsg_pol | waits for). We then determine
which of the 3 events occurred, and process the event accordingly. For X events we call
processPendi ngTkEvent sNoBl ock(); for keyboard events, we call stdinProc(); for Igen
events we call the appropriate Igen waitLoop() routine. pr ocessPendi ngTkEvent sNoBl ock()
simply calls Tk_DoOneEvent () until no more Tk events are pending. In this way, we handle
mouse clicks, etc., in al of Paradyn’s windows.

Where Axis

In paradyn/src/ U thread, files dealing with the where axis are whereAxis.h and .C,
wher edtree. h and . C, wher eAxi sTcl . h and . C, wher e4t reeConst ant s. h and . C, r oot Node. h
and . C, and abstractions. h and . C. Miscellaneous graphical routines are supplied in scrol | -
bar.h and.candtkTool s. h and . C. Classes helping calculate exactly which node was clicked
onareinsi npSeq. h and . Cand gr aphi cal Path. h and . C.

Class abstractions (abstractions. h and. C) holds al of the where axes, and also main-
tains variables to manage the Tk window. Method add() is called when a new where axis (a new
abstraction) is created. getCurrent() returns the current where axis structure.
get Curr Abstracti onSel ections() returns the set of resources selected. Class wher eAxi s
(whereAxi s. h and . C) holds information on a single where axis. Variable r oot Pt r is the root
node of thiswhere axis. Classwher e4t r ee (wher e4t r ee. h and . C) holds information on asingle
node in the where axis. Member theChil dren holds the vector of children of this node.
addChi | d() iscalled when anew child is created. draw() draws the node and recursively draws
the children. Method dr aw | i st box() draws a node’s listbox; method scrol | _1'i st box() han-
dles scralling it. Class r oot Node (r oot Node. h and . C) defines the input class to the template
classwher e4t ree<>. Filewher eAxi s. t ¢l contains the part of the where axis code that is written
in the Tcl/Tk language. It mainly concerns the frame of the window and its menus. The body of
the where axis is drawn in C++ code using a combination of calls to internal Tk C language rou-
tines and Xlib routines (for speed).

Performance Consultant window (Search History Graph)

In paradyn/src/Uthread, files dealing with the Performance Consultant display are
shgPhases. h and shgPhases. C, shg. h and shg. C, shgRoot Node. h and shgRoot Node. C,
shgTcl . h and shgTcl . C, and shgConst s. h and shgConst s. C. Files shared with the where axis
are wher e4tree. h and wher e4tree. C as well as helper classes provided in scrol | bar. h and
scrol | bar. C, tkTool s. h and t kTool s. C, si npSeq. h and si npSeq. C, and gr aphi cal Pat h. h

Developer’'s Guide April 13, 2004 Release 4.1

Page 18

and gr aphi cal Pat h. C. shgPhases. h and shgPhases. C provide class shgPhases, which man-
ages the collection of search history graphs (one per phase). Method change() switches displays;
draw() draws the current search history graph; addNode() adds a node to the current graph;
addEdge() connects a node to its parent; and, confi gNode() changes a node's semantics (i.e.
true, false, unknown, etc.). shg. h and shg. C provide class shg, which manages a single search
history graph. There are many internal similaritiesto thewher eAxi s class. r oot Pt r holds the root
node of this shg. draw() draws the shg. addNode() adds a node to the shg; confi gNode()
changes a node’s semantic meaning; addEdge() connects anodeto its parent. wher e4t r ee. h and
wher e4t r ee. C manage an individual node of classshg; it was discussed above in the where axis.
shgRoot Node. h and shgRoot Node. C manage class shgRoot Node, the template input parameter to
class wher e4t ree<>. File shg. tcl constrains the part of the Performance Consultant window
written in the Tcl/Tk language. It mainly concerns the frame of the window and its menus. As
with the where axis, the shg itself in the center of the window is drawn entirely with callsto inter-
nal Tk C routines or Xlib routines, for speed.

Tunable constants

The tunable constants dialog is managed in tcl Tunable.tcl in paradyn/tcl. Routine
tunabl el nti al i ze() setsthings up; routine pr ocessShowTunabl eDescri pti ons() createsthe
Tunable Descriptions dialog.

t cl Tunabl e. h and t cl Tunabl e. C (in par adyn/ src/ Ul t hr ead) provide the implementation
of a“tclTunable” command that is called from the above .t cI files to gain access to the internal
tunable constants database.

The interna tunable constants database is maintained files t unabl eConst . h and t unabl e-
Const . C(inparadyn/ src/ TCt hr ead).

Status lines

The status lines (which appear in the Paradyn main console window) are managed internally by
Status. h and Status. C (in paradyn/ src/ U t hread). Some of the code to manage the status
lines is written in Tcl/Tk; file status.tcl (in paradyn/tcl) has that code. Status lines for
nodes/processes are distinguished from generic Paradyn and application status lines, appearing in
a separate resizable and scrollable area of the console window.

Paradyn Main Control window

Most of the Paradyn main window is managed by Tcl/Tk code. File mai nMenu.tcl (in
paradyn/tcl) creates the window, its menus, etc. Routines in shg.tcl, whereAxis.tcl,
t cl Tunabl e. t cl are invoked when the Performance Consultant, Where Axis, and Tunable Con-
stants, respectively, are chosen from the main window’s menu. These files have been discussed
previoudly. start Vi si.tcl isinvoked when “Start A Vis” is chosen from the main window’s
menu. met s. t ¢l isinvoked when Paradyn needs a metric selection from the user (in responseto a
visualization add request). appl i c. t cI| maintains the dialog box for starting a new application.

Developer’'s Guide April 13, 2004 Release 4.1

Page 19

3.5 Performance Consultant thread

The Performance Consultant (PC) thread conducts an automated search for performance bottle-
necks. One search may be conducted per phase, for a maximum of two simultaneous searches
(one global, one current). The Performance Consultant thread interacts with the DM thread to
enable/disable metric/focus pairs and for information about resources, and interacts with the Ul
thread to control the content of the Performance Consultant window. The Performance Consultant
may be viewed as a stream of incoming data, a set of experiment definitions, and a search control
strategy for starting and halting individual experiments.

The data stream

Data is obtained by making instrumentation enable requests of the daemon via the data manager.
The incoming stream of data is handled by a series of filters. A filter is defined by two base
classes, dataProvider and dataSubscriber. There are three types of filters in the Performance Con-
sultant:

PCfilter (dataProvider):
in: raw data manager data for a single metric/focus pair,
out: average metric/focus values for uniform time intervals,
subscribers: one or more PCret ri cl nst S.

PCnetricl nst (dataSubscriber, dataProvider):
in: PCfi | t er output for uniform timeintervals for a set of metric/focus pairs,
out: computed from data plus specified arithmetic operator, for a particular time interval,
subscribers: one or more experiments.
experi ment (dataSubscriber):
in: PCret ri cl nst output (asingle value),
out: changeConcl usi on, changeTr ut h calls to the search node,
subscribers: none.

Experiment definition

A PCretric is a set of data manager metrics plus an arithmetic operation (currently +, -, *, /,
max). A hypothesisis a specification of a condition to test for plus the data and computation nec-
essary to perform the test. The computation is specified asaPCnet ri ¢ plusathreshold. An exper-
iment is defined by a hypothesis plus a particular focus. Using the hypothesis definition, the
appropriate metric/focus pairs are enabled for the PCnet ri c; once data starts flowing from the
data manager the resulting value is periodically compared to the threshold. The set of hypotheses
is hierarchical and isreferred to asthe Why Axis.

Search control
All data structures for one search are gathered in an instance of PCsear ch: PCet ri cl nst Ser ver

is the data source; sear chHi st or yGraph is a DAG which contains all info about the tests per-
formed; and two static Pri ori t yQueues, one global and one current, hold all ready search nodes.

Developer’'s Guide April 13, 2004 Release 4.1

Page 20

Thetotal cost of instrumentation is controlled by three thresholds: a cost limit, the total number of
active experiments, and the total number of pending enable requests.

Starting up a particular experiment

1. Get estimated cost: when a node is expanded, a request is made to the Data Manager for the
predicted cost for each new child node; pointers to the new PCmetric filters are stored on a
waiting list cost Server: : cost Recor ds. When the cost is received from the Data Manager,
the record is retrieved, and method updat eEst i mat edCost () isinvoked for the appropriate
PCmetric filter. The PCMetric filter notifies the experiment, which invokes
sear chHi st or yNode: : esti mat edCost Not i fi cati on(). The shn routine places the node
onto the PC run queue.

2. Enable request(s): when a node is launched from the PC run queue, one or more enable
requests are made to the Data Manager for the metric/focus pairs used by that experiment.
Noneto all of these pairs may already be enabled, in which case the existing data filter is sub-
scribed to and no new request goes to the Data Manager. As each response comes back from
the Data Manager, the PCmetric filter is notified; when all required datais enabled, the exper-
iment is notified and the node display is changed to active.

3. Change to true: when a node's status changes from unknown to true, both parent and children
may be affected. If the parent is virtua, its truth value is just the OR of its children’s, so its
truth value may change. If the node has not been expanded, it is so at this time, and estimated
cost is requested for each child (step 1 above). If the node has been expanded in the past, then
the child nodes will already have an estimated cost; they are added back to the run queue to
await step 2 above. In most cases a change from false to true is not possible, since nodes are
deactivated when they become false: this can happen, however, if the node is persistent or if
the node’s parent changes.

4. Changeto false: when anode's status changes from unknown to false it is deactivated and not
expanded. If it changes from true to false then it must be deactivated, plus its parent(s) and
children must be notified. Every node but the root must have at least one true parent to remain
active, so notifying the children generally results in deactivating them.

4VI1Sl LIBRARY

VisiLibisalibrary and remote procedure call interface for accessing Paradyn performance datain
real-time. VisiLib provides an open interface to Paradyn data, and allows a programmer to build
external visualization processes (Visis). All performance visualizations in Paradyn are imple-
mented as visis. The vis programmer uses the interface defined in vi sual i zat i on. h to access
performance data. VisiLib uses the Igen interface that is defined in vi si . h to communicate with
Paradyn. vi sual i zat i on. C contains the implementation of routines defined in both these header
files. VisiLib also defines a type (Dat aGri d) that is the visualization’s interface to performance
data. A complete description of VisiLib can be found in the Paradyn Visi Programer’s Guide.

Developer’'s Guide April 13, 2004 Release 4.1

Page 21

5 PARADYN DAEMON

The Paradyn daemon (par adynd) is the back-end of the Paradyn tool. When running a parallel
program (such as MPI), there will be several daemons running at the same time, one on each
node. Each par adynd communicates, using Igen RPC calls, with the Paradyn front-end. Thereis
no direct communication between the Paradyn daemons (except in the case where a daemon is
responsible for starting other daemons).

5.1 Introduction

Paradyn daemons have severa responsibilities:

Starting and controlling the execution of application processes.

Reading the application’s symbol table.

Reading the application’s binary image to find instrumentation points.

Evaluating metrics, generating code, and inserting instrumentation into application processes.

a b~ 0w DN PRE

Periodically sampling performance data from the application and forwarding values to the
Paradyn front-end (Section 5.5).

Daemons are started by the Paradyn front-end using r sh or rexec (when the Paradyn front-
end runs on a different machine/node than the application) or f or k/exec (when the Paradyn front-
end runs on the same machine/node as the application; Windows uses Cr eat ePr ocess). The
front-end passes the flavor of the daemon (e.g. PVM, MPI, etc.), the name of the machine where
the front-end is running and socket address for connection as command line arguments to the dae-
mon. The daemon then connects to the front-end. When PVM is being used, only one daemon is
started by the front-end. This daemon then uses pvm spawn to start the other daemons on all
nodes of the PVM virtual machine. (The code to parse arguments and connect to the front-end is
in main.C, and the code to start spawning other Paradyn daemons with PVM s in
pvm support. C.)

The interface between the par adynd processes and the Paradyn front-end is defined in file
par adyn/ h/ dyni nst RPC. h. In most cases the par adynd acts as a server, receiving requests from
the Paradyn front-end, but there are also many upcalls from the par adynd to the front-end. Most
RPC calls defined in the interface are implemented in dynr pc. C, where calls to other modules of
the par adynd process are made as appropriate.

Daemons start application processes using f ork/ exec (Windows uses Cr eat ePr ocess).
Daemons usept r ace or / pr oc file system calls to insert instrumentation into the application pro-
cesses (Windows uses ReadPr ocessMenory and Wi t ePr ocessMenor y). The standard output and
error messages of the application and Paradyn daemon are redirected to a Tcl/Tk front-end termi-
nal window. Output from Paradyn daemon is displayed in a different color from that of the appli-
cation.

The function cont rol | er Mai nLoop() (defined in perf Stream C) is the main loop of the
par adynd. At each iteration of thisloop, the daemon checks for data coming from the application
processes through the pipes, for requests by the front-end, and for signals received by the applica-
tion processes.

Developer’'s Guide April 13, 2004 Release 4.1

Page 22

Before going into its main loop, each daemon received metric definitions from the Paradyn
front-end. The representation of the metricsis provided in the par adyn/ h/ dyni nst RPC. h file.

5.2 Application processes

The class process (defined in process. h/process. C) provides a representation for application
processes. It provides machine independent abstractions for creating new process, running, stop-
ping, reading, writing, and intercepting signals of application processes.

Several methods of the class process have platform-dependent implementations, in the form of
ptrace calls or ioctl cals to the /proc file system. This platform-dependent functions are
implemented in the operating system specific files(e. g. sol ari s. C, ai x. C).

The class i nf eri or Heap, also defined in process. h/ process. C, provides a representation
for the inferior heap in the application process, and functions for allocating and de-allocating
memory blocks. The inferior heap is a block of memory in the application process address space
where the daemon writes instrumentation code. In addition, on platforms not supporting shared-
memory data sampling (Section 5.5), the application also stores its counters and timers here.

5.3 Object file processing

The Paradyn daemon reads the object file of an application processto find the symbols (functions,
modules, and global data) and instrumentation points. The classi mage (defined insynt ab. h) pro-
vides a representation for the application’s object image. The first step in the processing of the
object fileisto read the a. out format file and obtain the symbols, and the address and size of the
code and data segments. The class symbol (defined in uti | / h/ synbol . h) provides a representa-
tion for symbols. The file uti | / h/ Qoj ect . h defines abstract classes for object files. Each plat-
form has its own implementation: bj ect - el f 32. h (for Solaris 2.x), and bj ect - xcof f. h (for
AlX).

Once the symbol table is processed, the functions of the application process are defined. The
classpdFunct i on provides arepresentation for functions. For each function, the method f i ndl n-
st Poi nt s of the class pdFunct i on isinvoked to find the instrumentation points for that function.
The method f i ndl nst Poi nt s() has oneimplementation for each architecture supported by Para-
dyn (currently sparc, mips, x86, and power). The implementations are in files i nst - sparc. C,
inst-mps.C, inst-x86.C,andinst-power.C

Classi nst Poi nt provides a representation for instrumentation points, defining the address of
the point, the instructions to be relocated, and other relevant information. The class is defined in
the architecture dependent files (i nst - sparc. C, i nst - power. Cand i nst - x86. C).

5.4 Shaed-object processing

Paradyn supports instrumentation of dynamic executables. A dynamicexecutableis one that is
created by dynamically linking shared libraries (called shared object3. When the Paradyn dae-
mon processes an a. out file of a dynamic executable, many of the symbols are undefined. These
undefined symbols are from shared objects that are bound at runtime by the run-time linker.

Developer’'s Guide April 13, 2004 Release 4.1

Page 23

Figure 5 shows the data structures used by the Paradyn daemon to keep track of shared object
information for each process. This figure shows three process objects, one for each process run-

process 1 process 3
a.out a.out
shared objects shared objs
base addr | base addr| base addr
image, | image, | image \ c 7

\ AN AN

\i

aout |/|libc.so.1 | libm.so.1 |libdl.s0.1|libmp.so.1| a.out
image || Image | | image || image || image || image
A Y S |

/ r ocess 2 N
P Images shared

shared objs by all processes
a.out

Figure5: Process class and shared objects.
Process 1 and process 2 are the same executable and share a. out and shared object images.
Process 3 is a different executable, running on the same host, which has some of the same
shared object images as process 1 and 2, but a different a. out image.

ning on the host. Each process contains pointers to image structures. There is one image object for
each unique executabl e file and shared object file processed by the Paradyn daemon. In this exam-
ple, process 1 and process 2 are executing the same a. out files; they both contain pointers to the
samea. out image. Process 3is executing adifferent a. out file; it contains a pointer to adifferent
a. out image. Each process object also contains alist of pointersto shared object imagesand alist
of base addresses associated with these shared objects. Since two different executables can have
the same shared object mapped into their address space at different addresses, the addresses of the
instrumentation points of functions in shared objects may differ across processes. Rather than cre-
ate multiple image objects for shared object files, each process keeps track of the base address of
where it has the shared object mapped and then contains a pointer to the shared object’s image.
Thisway, only one image object needs to be created for each unique shared object or a. out .

Developer’'s Guide April 13, 2004 Release 4.1

Page 24

Figure 6 shows the relationship between the i mage, nodul e, pdFuncti on, and i nst Poi nt
classes in the Paradyn daemon. Each image contains a set of modules, and each module consists
of a set of functions. For each such function, a pdFunct i on object is created. This class contains
information about each function, such as the function’s name, address, and size. Each function
also contains severa instrumentation points. Currently, function exit, function entry, and pre- and
post-call site instrumentation points are defined for each function. Paradyn creates an i nst Poi nt
object for each of these instrumentation points.

Image

modules |

| pdFunctions
I | |

instPoints instPoints

——— r

Figure 6: image, module, pdFunction, and instPoint classes.
Each image consists of a number of modules, each module consists of functions, and each
function consists of a number of instrumentation points.

All address information stored in i nst Poi nt and pdFunct i on objects is kept relative to the
image in which it is contained. This means that when inserting instrumentation into functions that
are contained in a shared object, the base address value stored in the process object must be added
to the addressin the instPoint to find the correct location to write to in the process's address space.
As aresult, new i nst Poi nt, pdFuncti on, and i mage objects do not need to be created for every
process that dynamically links a particular shared object.

Metric Evaluation and Code Generation

When a user or the Performance Consultant enable a metric/focus pair, the daemon must evaluate
the metric, generate code, and insert instrumentation into the application process. Most of the
code to do the metric evaluation isin file mdl . C. The metric is evaluated producing an intermedi-
ate code representation in the form of abstract syntax trees (class Ast Node defined in file

Developer’'s Guide April 13, 2004 Release 4.1

Page 25

ast . h/ ast . C). The abstract trees are then translated into machine code, which can be inserted
into the application processes. There are different implementations of the code generator, one for
each supported architecture, infilesi nst - sparc. C, i nst - power. Candi nst - x86. C.

Each metric/focus pair is associated with counters or timers, which are objects allocated in the
inferior heap and operated by the instrumentation code inserted in the application process. Each
allocated timer or counter is represented in the Paradyn daemon in the variableMgr class.

The classi nst I nst ance, defined in i nst P. h, provides a representation for instrumentation
instances (a chunk of code inserted at some instrumentation point in a process). The functions
addl nst Func() and del et el nst Func(), defined ini nst . C, are used to insert and delete instru-
mentation instances in an application process. addl nst Func() allocates base and mini-trampo-
lines as needed, generates branches from the instrumentation points to the base trampolines, and
from trampolines to other trampolines.

Each enabled metric/focus pair is represented by an object of class machi neMet FocusNode. A
machi neMet FocusNode contains objects of class pr ocessMet FocusNode. The processMet Fo-
cusNode has objects of classt hr eadMet FocusNode, which represent the threads that are sampled
as part of the metric focus request. A processMet FocusNode also contains objects of class
i nst r CodeNode. Each one of these represent instrumentation code for either the constraint or the
metric itself. An i nstr CodeNode contains objects of type i nst r Dat aNode. An i nst r Dat aNode
represents an instrumentation variable for a constraint or a temporary counter associated with the
selected metric, or it could represent the sampled value for the metric focus request itself. In order
for code to be shared, objects of classi nst r CodeNode can be shared. Thisis done by thei nstr -
CodeNode objects pointing to the same internal object, not by users pointing to the samei nstr -
CodeNode Object. In the same manner, t hr eadMet FocusNode objects can be shared. Thisis done
so samples taken for an instrumentation variable can just be sent to just one node (the possibly
shared internal object of t hr eadMet FocusNode objects associated with the variable).

Each counter or timer is kept track of in the variable manager (classvari abl eMyr). Sampling
isdone by thevari abl emgr sampling al of the counters and timersit hasidentified as being sam-
pled. The sampled values are passed by the vari abl eMyr (actually in class var I nst anceHK) to
the associated t hr eadMet FocusNode internal object, aggregated with the values from other pro-
cesses or threads, and forwarded to the Paradyn front-end.

Developer’'s Guide April 13, 2004 Release 4.1

Page 26

Figure 7 shows the et r i cFocusNode data structure and its relation to other data structures.

nmachi neMet FocusNode

I

pr ocessMet FocusNode

U

t hr eadMet FocusNode i nstr CodeNode

| /

i nst r Dat aNode i nst RegNode

I
I
| i nstl nstance i nst Poi nt Ast Node
vari abl e : ¢ ¢ ¢
I
: i nst Poi nt * pdFuncti on dat aReqNode *
vari abl eMgr | Y
__________ _! nodul e
bolded nodes can be (internally) shared Y
* = possibly multiple children objects per parent i mage

Figure 7. Data structures of the Paradyn daemon.

5.5 Performance data sampling
Performance data sampling is (along with dynamic instrumentation) one of the major tasks per-

formed by the Paradyn daemon. Typically, instrumentation code inserted into an application will
write performance data to various counters and timers. Periodically (up to 5 times per second), the

Developer’'s Guide April 13, 2004 Release 4.1

Page 27

Paradyndaemonis responsiblegor samplingthesecountersandtimers,to be forwardedto the
Paradyn front-end for processing by the Performance Consultant and visis.

Sincetheactualcountersandtimersresidein theapplications addresspaceit is notimmedi-
atelyobvioushow par adynd canefficientlysamplethem.Sincea Paradyndaemoralwaysrunson
the samenodeasthe applicationit is controlling, efficiency and perturbationare concernsCer-
tainly, par adynd could pausethe processand extract the datausing pt r ace or / pr oc, but this
would betoo slow andintrusive. In this section,we will describethe two (very different)imple-
mentationsof samplingcurrentlyimplementedn par adynd. Thefirst (andmuchmoreefficient)
is called shared-memorysampling the secondis called alarm-sampling Alarm-samplingis no
longer used. Shared-memory sampling is implemented on all platforms.

5.5.1 Shared-memory sampling

In a shared-memorgamplingpar adynd, a shared-memorgegment(createdwith shnget () on
UNIX, Cr eat eFi | eMappi ng underWindows) holdsthe countersandtimersthatneedto be sam-
pled.Boththeapplicationandpar adynd in turn attachto this segment(usingshmat () onUNIX,

OpenFi | eMappi ng and MapVi ewX Fi | e on Windows). Sincepar adynd is attachedto the seg-
ment,it cansamplethe countersandtimerssimply by readingdirectly from the segments mem-
ory—the applicationneednot know or carethatit is being sampled.This contrastswith alarm
sampling (Sectio®.5.2), which requires the application todan actie role in sampling itself.

Therearetwo complicationsthat arisewhenimplementingshared-memorgampling.First,
sincethe applicationmay be writing to a counteror timer while par adynd is samplingit, there
needgo be somesynchronizationSeconddueto the semanticof samplinganactive timer (one
which hasbeenstartedbut not stopped)par adynd needsthe ability to obtainthe virtual (CPU)
time of the application.Operatingsystemdacking sucha primitive cannotuse shared-memory
sampling, and must use alarm sampling instead.

We naw discuss these twcomplications in greater detail.

5.5.1.1 Synchronization issues for shared-memory sampling

Sinceinstrumentatiortodeinsertednto anapplicationmaywrite to a counteror timer justasit is
beingsampledread)by par adynd, caremustbetakento ensurehata consistenvaluegetssam-
pled.

For counters(integers),no specialprecautionsare neededlf paradynd samplesan integer
while it is beingmodified,theneitherthe old or new valuewill be sampledSincebothvaluesare
consistent, either is suitable.

Samplingtimersis morecomplicated Considerthe pseudo-codéor st art Ti mer /st opTi mer
operations(Figure8), and for paradynd’s shared-memorysampling of a timer (Figure9).
Assumethat we are measuringthe time spentin functionf oo() . To do this, the entry point of
f oo() Isinstrumentedvith st art Ti mer () andtheexit pointis instrumentedvith st opTi mer () .
Furthermoreassumehatf oo() is along-runningfunction (say 5 minutes),so a long time can
elapsebetweenthe st art Ti mer () and st opTi mer (). If samplingoccursafter the timer was
started but beforeit wasstoppedt - >t ot al will notincludethetime thathaselapsedsincethe
latestcall st art Ti mer () . Line 3in Figure9 ensureshatthe sampledvalueincludesthatintenal.

Developer’'s Guide April 13, 2004 Release 4.1

Page 28

startTimer (tTinmer *t) {

(1) if (t->count++ == 0) {
(2) t->start = get-current-tinme()
(3) }
}
stopTinmer(tTinmer *t) {
(1) if (--t->count == 0) {
(2) t->total += get-current-time() - t->start

(3) }
}
Figure 8: Pseudo-code for startTimer and stopTimer operations

(1) sanpl ed-value = t->total;

(2) if (t->count > 0) {
/1 applic has done a startTiner but not (yet)
/1 a correspondi ng stopTi nmer

(3) sampl ed-val ue += get-renmote-tine() - t->start

}
Figure 9: Pseudo-code for shared-memory sample of atimer

It assumeghe existenceof a get-remote-time()primitive—a way for par adynd to somehav
obtainthe currenttime of the applicationbeingmeasured(The termremotecomesfrom the fact
that the’re different processes.)

Now that we understandhe basiccodefor st art Ti ner, st opTi ner, and sampling,we can
explain the needfor synchronizationlmagineif a sampleis taken after the applicationhasexe-
cutedline 1 in Figure8 but beforeit hasexecutedary of line 2. In thatcasepar adynd will seethe
count field non-zero, so it willxecute line 3 of Figur8, using an undefinedalue oft - >start !

Clearly, somekind of synchronizations neededNotethataninterruptof somesort(suchasa
threadcontect switchor a signalhandler)couldhapperat ary time, andif suchcodere-enterghe
instrumentatiorcode,deadlockwould result.In short,usinglocks would renderinstrumentation
codeunsafefor reentrang. Our solutioninvolvesprotectorvariables two counterswvhich arepart
of the timer structure.Thestart Ti mer andst opTi ner operationsancrementthe first protector
variable,then performtheir work, thenincrementthe secondprotectorvariable. The sampling
routine readsthe secondprotectorvariable,thenthe count, start,andtotal fields, andfinally the
first protectorvariable.Note thatthe protectorvariablesarereadin thereverseorderthatthey are
written. If the (sampledvaluesof) the two protectorvariablesareequal,thenthe sampledvalues
of the count,start,andtotal fieldsareconsistentlf not, the samples throvn out, andthetimeris
re-sampledater. Figurel10 and Figurell showv the new codefor st art Ti ner, st opTi ner, and

sampling.

5.5.1.2 The need for a get-remote-time() primitive

We have not found a way to implementthe get-remote-time(primitive in line 3 of Figure9 (and
line 4 of Figure11) on all platforms;this preventsshared-memorgamplingfrom beingubiqui-
tous.Simply put, thereisn’'t a standardvay in UNIX to obtainthe virtual (CPU) time of another
procesqin this case par adynd nheedsto obtainthe virtual time of the applicationprocess)The

Developer’'s Guide April 13, 2004 Release 4.1

Page 29

startTimer(tTinmer *t) {

(D t - >pr ot ect or 1++;
(2) if (t->count++ == 0) {
(3) t->start = get-current-tinme()
(4) }
(5) t - >pr ot ect or 2++;
}
stopTinmer(tTinmer *t) {
(1) t - >prot ect or 1++;
(2) if (--t->count == 0) {
(3) t->total += get-current-tinme() - t->start
(4) }
(5) t->protector2++
}

Figure 10: Final pseudo-code for startTimer/stopTimer operations

(1) prot2 = t->protector?2;

(2) sampl ed-value = t->total;

(3) if (t->count > 0)

(4) sampl ed-val ue += get-renmote-tine() - t->start
(5) protl = t->protectorli;

(6) if (protl==prot2) {

(7) use sanpl ed-val ue; report it to front-end
(8) } else {
(9) throw out the sanple; re-sanple |ater

}

Figure 11: Final pseudo-code for timer sampling

/ pr oc file system does provide away; hence, shared-memory sampling isimplemented on Solaris
(both sparc and x86). Under Windows, we use the Get Pr ocessTi nes function to obtain the CPU
time of another process.

5.5.1.3 Management of instrumentation variablesin shared memory

The instrumentation variables (ie. the variables that the instrumentation code reads and writes to),
are managed (at the top level) by an object of classvari abl eMyr. Each process object contains a
vari abl eMgr object. A variableMgr contains objects of type var Tabl e, which manage the vari-
ables of a certain type. Currently there are three var Tabl e objects, one for counters, one for wall
timers, and one for process timers. Each varTable contains a vector of var | nst ance objects. A
var | nst ance represents an instance of an instrumentation variable. For single-threaded pro-
cesses, this variable would have one location, while for multi-threaded processes, this variable
would have n locations, where n is the hard-coded maximum number of threads for the daemon. If
need be housekeeping information can be associated with each variable location. One case in
which we store housekeeping information for (technically, a location of) a variable is if we are
sampling a variable. In this case, we store information so sample data can be sent to the corre-
sponding threadM etFocusNode.

Each var | nst ance has associated with it an address pointing to an area of shared memory
where it's variable(s) (multiple in the case of a multi-threaded process) is stored. This variablein

Developer’'s Guide April 13, 2004 Release 4.1

Page 30

the shared memory is the actual variable which is written to by the instrumentation code in the
application. The following figure should illustrate these relationships further.

/“vari abl eMgr N shmMgr I
shared memory manager
/ var Tabl e (onefor intCounters)\ (y manager)
segment 1 segment N
ctrl ctr2 ctr3 ..
Lo b
I P
thrl T~ |
3varlnstance
thr2 objects \l
thr3 !
|
\
MAX
\
/ var Tabl e (oneforwaIITimers)\ ~_ _ — ////l
ctrl ctr2 ctr3 ... _ 7 :
- - I
[P O O ,
IEH=-- |
thrl /
3varl nstance /
thr2 objects y
thr3 /
/
MAX /
\ % 4
/
/ var Tabl e (onefor processTi mer% P 7
s
ctrl ctr2 ctr3 e
_ ~
I P T I I =
| =
ya { P
thrl
3varl nstance
thr2 objects
thr3
o J
Figure 12: variableMgr and shmMgr
Developer’'s Guide April 13, 2004 Release 4.1

Page 31

The shmMgrcurrentlyjust usesonesharednemorysegment,however, this will be expanded
in thefuture soadditionalsharednemorysegmentscanbe createdf free memoryis exhaustedn
existing segments.Notice thatwith the currentconfigurationthe memoryallocationrequestgor
eachvar I nst ance will be oneof afew sizes.The sizecould bethe sizeof onei nt Count er (in
the caseof a single-threadeg@rocess)the sizeof i nt Count er timesMAX_THREAD, the sizeof one
t Ti mer, or the sizeof t Ti mer timesMAX_THREAD. The shmMgrwill be optomizedfor allocation
and deallocation requests of these sizes.

5.5.2 Alarm sampling

This method is no longer used, but is left here as reference. Sinceshared-memorgampling
isn’t ubiquitous,we have retainedthe methodof samplingusedin earlierrelease®f Paradyn;we
call it alarm-samplingbecausesamplingis triggeredvia a SIGALRM in the application.During
initialization of theruntimelibrary (Section8), theapplicationis setup sothatit executegherou-
tine DYNI NSTal ar nExpi re() (in RTinst.c of the run-time instrumentationlibrary, rti nst,
directory)severaltimespersecondThis in turn callsDYNI NSTr epor t Sanpl es, which calls DYN-

| NSTsanpl eVal ues() . DYNI NSTsanpl eVal ues() is an interestingfunction; at first glance, it
appearempty However, in alarm sampling,par adynd actually instrumentsghis routineto call
DYNI NSTr epor t Count er () Or DYNI NSTr epor t Ti mer () asappropriatéor eachcounterandtimer
thatneeddo be sampledTheseroutinesin turn call DYNI NSTgener at eTr aceRecor d() to (rather
inefficiently) sendthis informationto the Paradyndaemorvia a pipe.Fromthere,alarmsampling
is similar to shared-memorgampling— both portionsof par adynd forwardthe sampleddatato
Paradynby calling theupdat eval ue() methodof themetricinstanceg(net ri c. C), which eventu-
ally forwards lulk data to Rradyn via théat chSanpl eDat aCal | backFunc() Igen routine

5.6 Retroactive instrumentation

[Relevantfiles: par adynd/ src/ met ri c. C containsmostof thelogic for this mechanismand
dyni nst APl / src/inst-{pl atforn}. Cfiles contain helper functions.]

Retroactve (catchupor ketchup [sic]) instrumentatioris a specialmechanisnto dealwith a
problemwhich ariseswith dynamicinstrumentation\Whena functionis instrumentedvith code
nearthe beginning of a function, andthis instrumentations insertedwhile the programis run-
ning, the possibility arisesof the instrumentatiorbeingmissedoby the currentlyrunningfunction.
In instrumentatiorwherecodeinsertednearthe endrelieson codeinsertednearthe beginning, or
wherethefunctiononly runsonce theinsertedcodemayenteraninconsistenstate or noteverbe
executed.

A goodexampleis thetiming of afunction.At thebeginningof thefunction,atimeris started.
At the end,atimer is stoppedlf the functionis executing,the timer will not be startedfor this
executionof thefunction:thisis a problemif a singleexecutionof thefunctionrunsfor long peri-
ods of time.

The solution is to retroactvely executethe snippetsof instrumentationwhich have been
missedat the time which the function is beinginstrumentedUnfortunately it is impossibleto
know all of the prior executionhistory of an uninstrumentegbrocesslt is possible however, to
recreatea partial (minimal) history which correspondgo the functionscurrently found on the
call-stack:to arrive at the currentcall-stackstate,eachfunction musthave beenenteredbut not
exited) and madea call to its successofbut not returnedfrom sucha call). Any corresponding

Developer’'s Guide April 13, 2004 Release 4.1

Page 32

entry-point and pre-call instrumentation snippets would have also been executed in a previously
instrumented execution, and therefore these snippets should be retroactively executed.

Notethat it isentirely likely that additional functions have been called and already exited, e.g.,
acall located earlier in a function than the call currently found on the stack, but there is insuffi-
cient residual evidence to reliably suggest that their associated instrumentation snippets should
now be executed. (A complete control-flow graph for each function would allow some such cases
to be determined, but many cases would require missing dynamic control-flow information.) This
means that the retroactively-constructed instrumentation state is necessarily incomplete where
there is an instrumentation dependence other than the following cases:

» (parent) function entry precedes any internal calls to (child) functions precedes function exit,
and

» function pre-call precedes function post-call (within the context of any function).

Fortunately, these are exactly the relations typically used in instrumentation to delimit inclu-
sive (i.e., entry to exit, or equivalently pre-call to post-cal) and exclusive (i.e., entry to exit
excluding internal calls) metrics for functions (or function calls). Other relations may be defined,
such as between two calls or arbitrary points, however, there is insufficient residual information
for retroactive instrumentation to be reliably used in such cases and conforming metrics must
therefore not rely on associated snippets being executed.

Paradyn already contains a mechanism for causing code to be run in the inferior process: the
inferior RPC. By using this mechanism when appropriate, we can preempt the execution of the
current function and execute required snippets of retroactive instrumentation.

The following algorithm is used to determine if it is appropriate to launch a catchup inferior-
RPC for a specific snippet of instrumentation:

* If theinstrumentation is to be placed at the function entry point, and that function is currently
anywhere on the call stack, a catchup inferiorRPC should be launched to executeit.

» If the instrumentation is to be placed just before a call site, and that call site isin fact on the
stack, a catchup inferiorRPC should be launched for it. In other words, if the PC of the call
siteison the stack, but not at the top.

This check is performed in the pr ocess. Cfileinthefunctiontri gger edl nSt ackFr ane.

There are afew additiona aspects which need to be addressed:

* Onsome architectures (SPARC in particular), instrumentation must be deferred if it is not safe
to insert code immediately. If this happens for instrumentation which depends on the instru-
mentation being considered for catchup, we must not do the catchup. Executing the early code
without the late code may cause more inconsistencies than executing only the late code. A
special case of this, is when the function at the top of the stack cannot be instrumented due to
the PC currently being located within a potential instrumentation footprint: not only should
catchup instrumentation not be executed for this particular function instance, it should also not
be executed for any other instances of this function found lower on the stack, as the function
itself is currently uninstrumentable, and there is correspondingly no catch-up to be done.

* On x86 architectures, where traps are used in tight instrumentation points (see Section 6),
inferiorRPC execution may be interrupted by the delivery of a signal raised by a current trap
instruction: since processing traps is relatively time-consuming, interruption at such pointsis
quite likely. The usua trap handling by DYNI NSTt r apHand| er, which expects to be delivered

Developer’'s Guide April 13, 2004 Release 4.1

Page 33

an instrumentation-trap PC value, must recognize and ignore an inferiorRPC-adjusted PC
value, and resume execution of the inferiorRPC(s) before returning to re-execute (and handle)
the interrupted trap (and its associated instrumentation). Note that traps in code executed by
callsto functions from the inferiorRPC require appropriate handling.

* The ordering of catchup instrumentation within each function and on the stack can be very
important. For each set of instrumentation snippets to be inserted, alist of instrumentation to
be executed via inferiorRPC must be kept: ordering should be chronological with respect to
the implied program execution (derived from the call stack) to arrive at the current state, i.e.,
starting from the base of the stack, each subsequent frame is considered in turn to decide
whether to launch catchup inferiorRPCs for that frame. When the catchup inferiorRPCs are
launched, they must follow this order.

» The address of the PC at each stack frame must be mappabl e to the function in the program to
which it corresponds. In the cases where the PC is instead within our instrumentation code, we
must properly find the function to which that instrumentation corresponds.

* When we are within instrumentation code on the stack, we must amend the above check for
being within acall site to take into account that we usually relocate the cal | instruction itself
to within the instrumentation code base-trampoline.

» Furthermore, if the pending instrumentation snippet happens to be new/additional instrumen-
tation for the current instrumentation point, careful analysis needs to be made to determine
whether catchup execution is required. If it has been added to the existing base/mini-trampo-
line infrastructure at a point after the current location, then it will be executed normally and
catchup execution is inappropiate, otherwise a catchup inferiorRPC should be launched to
execute it. For example, if the call-stack contains an instrumentation mini-trampoline for the
same instrumentation point as the pending instrumentation snippet, then catchup execution is
required for prependednippets but should not be executed for appendedni ppets.

» The catchup inferiorRPCs must be executed immediately, while the inferior is paused. If the
inferior is alowed to execute anything other than our inferior RPC, the function may exit and
re-enter before the inferior RPC is launched. If this happens, it is quite possible for the inferi-
orRPC to run while the same instrumentation is executing within the inferior on the same data.
Thisis particularly bad with our timers, which have critical sections which assert on failure.
Therefore, we cannot finish the checking of instrumentation and rely on the main par adynd
loop to launch the inferiorRPCs, we must make a special loop which launches them, and
which keeps the inferior process paused between inferiorRPCs. Note that it is fine for a
catchup inferiorRPC to be launched to start or stop atimer when interrupting atimer operation
corresponding to a distinct metric/focus instance, but not the same metric/focus instance since
in that case the timers are identical. Luckily, if we find ourself interrupting one of our timer
operations, then we can be assured that we are executing an already-instrumented function
and there is consequently no need for retroactive instrumentation.

* In the case of successful instrumentation of an on-stack function with an exclusive metric
(which relocates it’s currently active call instruction to our instrumentation base-trampoline)
and execution of appropriate (entry and pre-call) retroactive instrumentation for it, it is ulti-
mately necessary to update the return address of the succeeding stack frame to return to imme-
diately after the call instruction relocated in the base-trampoline instead of the now-
overwritten location. This thereby ensures the usual execution of corresponding post-call

Developer’'s Guide April 13, 2004 Release 4.1

Page 34

instrumentation, which would otherwise be missed, or worse, the resumption of execution
within a now-corrupted instruction sequence.

An example of retroactive function instrumentation is shown in Figure 13

mai n() Virtual instrumentation
SubA() execution record
subB() if (...) mai n. entry
subC() mai n. pre-cal | (subA)
| oop SubA. entry
\\ subDL() if (...) su_bA.return
subD2() if (...) nai n. post - cal | (subA)
subD3() mai n. pre-cal | (subB)
until (...) subB. entry
subB() subB.return
mai n. post -cal | (subB)
Code structure mai n. pre-cal | (subC)
Interrupt execution of subD2 O|subC. entry
to (reteo-)instrumentsubC subC. pre-cal | (subD1)
subDl. entry
Call-stack subDl. return
Fr. currAddr subC. post -cal | (subD1)
0| subC. pre-cal | (subD2)

0. subD2+32 subD2. ent ry
1. subC. subD2 |0 |-
2. mai n.subC

Figure 13: Retroactive instrumentation example.

The program has been interrupted during the execution of subD2 (with the call-stack as
shown) with a request to instrument subC. I n addition to instrumenting the appropriate points
in subC, to support theillusion that subC was already instrumented it is necessary to
retroactively execute its entry-point [J and subD2-precall [I instrumentation snippets (if they
congtitute part of the instrumentation request). Italicized parts of the virtual execution record
can’t be recovered from available state information. To ensure that following the completion of
subD2, execution will correctly continue with any subD2-postcall instrumentation snippets, it
is also necessary to update the return address of subD2’s stackframe [J with that of the base-
trampoline now containing the relocated call instruction.

5.7 Dynamic Heaps

Paradyn and Dyninst use a dynamic heap to store code and data for instrumentation and inferior
RPCs in the application process. Dynamic heaps enable an arbitrary amount of instrumentation
code to be placed in the application process. Also, on platforms with restricted single-instruction
branch ranges (e.g., RISC processors), they can be directed to allocate memory near a particular
address in memory. These directed allocations are used to place base trampolines within the range

Developer’'s Guide April 13, 2004 Release 4.1

Page 35

of a single instruction branch from the corresponding instrumentation point. Dynamic heaps are
currently not used on Windows.

All memory allocation requests in the Paradyn daemon and Dyninst mutator are made
through i nf eri or Mal | oc, defined in process. C. i nferiorMal | oc maintains the inferiorHeap
data structure, which organizes the memory that has been allocated in the application process for
Paradyn/Dyninst, and includes a list of free memory. i nf eri or Mal | oc takes a parameter named
si ze, the number of bytesto be allocated in the application process. For directed allocation it also
takes an optional near parameter, a pointer to which the requested memory should be close. (The
definition of close is platform-specific and defined at compile-time, as explained below.) Finally,
i nferiorMalloc takes atype parameter to specify the type of heap segment used to satisfy the
request. The type parameter includes all heap segments except the low memory heap, which is
explained below.

Ordinarily, i nferi orMal | oc can satisfy a request by finding suitable space in the inferi-
orHeap free list. When it cannot, it makes an inferior RPC to DYNI NSTos_nal | oc in the run-time
instrumentation library (defined in RTheap. c). DYNI NSTos_mal | oc allocates new segments of the
address space of the application process for use as heap segments by Paradyn/Dyninst. i nferi -
or Mal | oc calls DYNI NSTos_nmal | oc in two circumstances. (1) when there is not enough memory
in the free list to satisfy the request, or (2) when the request is directed, but there is not enough
free memory within the range of the near pointer. DYNI NSTos_nmal | oc takes three parameters: the
number of bytes to allocate, and low and high address boundaries. DYNI NSTos_nal | oc is not
intended to satisfy asinglei nf eri or Mal | oc request, but rather to allocate new heap segmentsin
the inferior process from which subsequent all ocation requests can be satisfied; the size parameter
isthus usually much greater than that of the current i nf eri or Mal | oc request. On directed alloca
tions, the address boundaries are the range of the address space in which the new memory can be
allocated. When the request is undirected, they are opened to the entire address space. When an
inferior RPC to DYNI NSTos_mal | oc returns, i nf eri or Mal | oc satisfies its current request from
the new heap segment, and adds the remainder of the new segment to the free list.

i nferiorMalloc iSaggressivein its use of DYNI NSTos_nal | oc. If DYNI NSTos_mal | oc can-
not satisfy itsfirst request, i nf eri or Mal | oc makes several additional callsto DYNI NSTos_nal | oc
with increasingly relaxed parameters. For example, it will reduce the request size of the new seg-
ment, and lift the address space boundary restriction. This retry sequence happensin thef or loop
of i nferiorMlloc.

DYNI NSTos_nal | oc has two mechanisms for alocating new memory. On platforms that use
directed alocation, it callsmal | oc if the near pointer iswithin the range of the heap of the inferior
process. Otherwise, DYNI NSTos_mal | oc calls const rai ned_mmap, which in turn calls nmap.
const rai ned_nmap reads/ pr oc to determine the layout of its own address space. The platform-
specific memory information returned from/ pr oc istranslated into an array of a generic structure
called dyni nst nm t . Within this array const r ai ned_mmap searches for a hole into which mem-
ory of size and location satisfying the DYNI NSTos_nmal | oc request can be allocated. It then calls
mmap to try to alocate that memory. As some platforms may restrict the location of mmapped
memory, const r ai ned_nmap makes a call to mmap for every hole it finds until one is successful.
If none are successful it returns an error to inferiorMalloc (which may retry
DYNI NSTos_mal | oc using relaxed parameters). When it is successful, DYNI NSTos_mal | oc returns
the address of thefirst byte in the newly allocated memory.

Developer’'s Guide April 13, 2004 Release 4.1

Page 36

On dl platform the run-time instrumentation library contains a static buffer of heap space
called DYNI NSTdat a. It is added to the freelist used by i nf eri or Mal | oc, and will be used to sat-
isfy memory alocation requests if it is sufficiently large and, for directed allocations, suitably
located. On platforms that don’t use directed allocations all i nf eri or Mal | oc requests are satis-
fied in the static heap before adynamic heap is allocated (i.e., before a call to DYNI NSTos_mal | oc
is made).

From DYNI NSTdat a a small static buffer called the low memory buffer is reserved during
heap initidlization. Its purpose is to ensure there is always enough space in the inferior process to
make a new dynamic heap allocation. The only time the low memory buffer is used is when an
inferior RPC to DYNI NSTos_mal | oc is made. It is distinguished from the other heap segments by
its heap type | owrenHeap, which no other heap segment has.

Restrictions in the range of address space that can be used to allocate a new heap segments
are determined in two ways. First, the caller of i nferi or Mal | oc can use directed allocation to
make an explict restriction. The range of a directed allocation depends on the range of control
transfer instructions of the processor. This range is computed by the r egi on_I o and r egi on_hi
macros in the architecture header files (e.g., ar ch- sparc. h). If the control transfer range is unre-
stricted, these macros are defined to include the entire user-accessible portion of the address
space. Second, platform-specific characteristics of the address space may preclude some ranges
from being safe places for new heap segments. For example, it is not safe to allocate new seg-
ments near the top of the stack, as the stack may eventually grow into the segment. The run-time
instrumentation library set these limits with two variables, DYNI NSTheap_| oAddr and
DYNI NSTheap_hi Addr. Their values are checked by DYNI NSTos_ral | oc and they take precedence
over directed alocation constraints. On some platforms (e.g., Solaris) these values can vary from
process to process, and are thus initialized at run time after consultation with / pr oc.

5.8 Trampoline Guards

The basic trampoline structure has one dangerous flaw: it is possible to inadvertently cause an
infinite recursion in the instrumentation which will cause the instrumented program to crash. Spe-
cifically, instrumentation can never safely call any other function (even in a library) which is
instrumented. Making instrumentation safe in this manner is both difficult to ensure and limiting.

To avoid this effect, Paradyn now includes guards in the trampoline structure which will pre-
vent any recursion from taking place. These guards detect if the current base tramp is being exe-
cuted inside instrumentation, and if so skips the instrumentation contained within the trampoline.
The end result of this is instrumentation can call any function with impunity, without having to
worry about side effects. Currently these guards are implemented on AIX, IRIX, and SPARC-
Solaris. Support on other platforms will be available shortly.

To motivate our use of trampoline guards, let’s use an example. A typical metric used by Para-
dyn isthe io-wait metric, which instruments the system call wri t e() with awall timer. Inside the
instrumentation, we use f pri nt f () to report timer rollbacks and we assert that the timer is not
started twice without being stopped. With this setup, any timer rollback would cause an infinite
recursion in the process being instrumented. Specifically, the call to f pri nt f () would cause the
timer to be started again whenwr i t e() was called. Thiswould trigger the assertion, which would
print an error and terminate the program. Unfortunately, the act of printing the error would cause
the timer to be started yet again and trigger another assert. Using the trampoline guards in this

Developer’'s Guide April 13, 2004 Release 4.1

Page 37

case will ensure that the call to fprintf () within the timer routine will not set off any other
instrumentation.

On platforms where the guards are implemented, an additional word of memory isallocated in
the processes address space. This flag (*process: : tranpFl agGuar dAddr) is used to store
whether the current execution point is inside a base tramp or not. The value actually used is plat-
form-dependent. When a base tramp is entered, the value of the flag is checked. If the flag is true,
then the intrumentation is skipped. Otherwise, the flag is set to true and the instrumentation
entered.

The trampoline guards have the following general structure:

<save registers>

if (flag ==true) then skipto <restore regi sters>

<set flag to true>

<enter ninitranp>

<set flag to fal se>

<restore registers>

Note that the guard code is added at the base trampoline level, so it is correct to speak of the
guard code at an instrumentation point, rather than the guard code for a piece of instrumentation
code. All the mini-tramps that are called by the same base tramp are guarded by an unique piece
of guard code that resides in the base tramp. At the present time, there is no way to guard (against
recursion) only certain minitramps. Whether a base tramp is guarded or not is determined when it
isfirst inserted and is unchangeable.

By default, all Paradyn instrumentation is inserted with the trampoline guard enabled. This
also has another strong benefit: Paradyn can now call functions without disturbing the data being
reported about the inferior process. For example, if a piece of instrumentation calls an instru-
mented function which is particularly CPU hungry, then the CPU usage for the function when
called by instrumentation will not be reported.

5.9 Instrumentation of multi-threaded programs

5.9.1 Introduction

The purpose of this document isto describe the general issuesrelated to the implementation of
the instrumentation of threaded programs using Paradyn (MT-Paradyn). Here, we will explain
what the model is, what data structures are used, how the instrumentation actualy works, and
what the current limitations are.

The Paradyn implementation is based on a two-level thread model. The program to be instru-
mented consists of several threads which run at user level. Each thread is assigned to a particular
kernel thread (or light-weight process, LWP) and runs on that LWP from the kernel’s perspective.
All user-level threads share a single address space, and control operations (pause, resume, register
operations) are performed on LWPs.

Developer’'s Guide April 13, 2004 Release 4.1

Page 38

5.9.2 Paradyn Program Instrumentation

In the single-threaded version of Paradyn, instrumentation code is inserted and data (counters
and timers) gathered on a per-process basis. Whenever a new metric/focus pair is created, we
insert code into the process and create the corresponding counter or timer data structure.

With a multithreaded application, the situation is quite different. Any modifications we make
to the process may be executed by all the threads in the process, as the process’ address space is
shared among all threads. MT-Paradyn’s instrumentation is more sophisticated to handle this situ-
ation, allowing us to distinguish between threads in the code we insert. This alows us to gather
data on both a per-process and a per-thread basi s, without cumbersome locking requirements.

5.9.3 Design Issues

Some of the most important design issues are:
» Every thread shares the same instrumentation code.

» Each thread has its own copy of all counters and timers containing data collected from the
process.

» Threads may be created and destroyed at arapid pace.

5.9.4 Current Design

MT-Paradyn requires more sophisticated instrumentation to gather accurate per-thread data
about a process, and must also record that data in a manner which is quick to access (from the
application) and able to handle threads being created and deleted on a rapid basis. We will first
describe the extended data layout, and then the instrumentation changes required to access the
new data layout.

5.9.4.1 Data manager

The application stores sampled data valuesin a shared memory segment which both the appli-
cation and daemon share. The data structures in this shared segment assume there is only one
writer (the application) and multiple readers (the application and the daemon). All timers are pro-
tected by a pair of protector variables, which are used to perform non-blocking synchronization
between the application and the daemon. This is described in the Developer’'s Guide.

The implementation of MT-Paradyn keeps this single-writer, multiple-reader approach. We
guarantee that there will be only one writer to any cell in the shared segment by giving each thread
aunique ID (called the thread index) which is used to map into this table. Since no two threads
share the same index, it is not possible for there to be two writers. The mechanism we use to cal-
culate this ID for each thread is described in the instrumentation section.

For each counter or timer (collectively called a"variable") in the process, we create a vector in
the shared memory segment. Currently this vector is a contiguously alocated array. When the
instrumentation in the application is triggered, it looks up the appropriate index of the array and
updates the variable it finds there. When the daemon is gathering the sampled datait simply scans
the entire array to gather the data for all threads. The data layout can be visualized as a two-
dimensional array, with the row being a specific variable and the column marking a unique thread.

Developer’'s Guide April 13, 2004 Release 4.1

Page 39

There is no requirement, however, that variables be contiguous -- only that the per-thread datais
contiguous within a variable.

5.9.4.2 Instrumentation details

Some of the most important instrumentation issues are:
» Caeculation of the thread index
* Minimal overhead added to instrumentation code
» Handle creation and deletion of threads quickly

5.9.4.3 Base Trampoline

Figure 2 shows the updated base trampoline layout. We have added an "M T Preambl€e" section
before the pre-instrumentation and post-instrumentation sections. This MT preamble is responsi-
ble for calculating the thread index. Once the thread index is calculated it is stored in a register
which is reserved (within Paradyn), so that each mini trampoline can look up the thread index in
that register.

The thread index is determined by afunction call to the runtime instrumentation library, which
performs aseries of stepsto calculate the index. First, the value in the reserved register is checked.
The runtime library keeps an array mapping thread indices to thread library 1Ds, which allows us
to check this very quickly. If the index register is correct, that value is returned. Thisis an optimi-
zation, which isuseful if instrumentation is executed quite often. If this quick lookup fails, we fall
back to looking up the index in a section of thread-local storage allocated by the runtime library.

If both of these methods fail to determine the thread index, we conclude that the thread has
been newly created and perform the appropriate steps (described in Section 4.5), which finish
with anew index being allocated. In any case, the calculated thread index is stored in the reserved
register.

5.9.4.4 Mini Trampoline

Whereas singlethreaded Paradyn’s instrumentation operated on data structures stored at fixed
addresses, MT-Paradyn operates on structures whose addresses are thread-dependent. However,
our data layout minimizes the complexity of this operation. Since each variable consists of a con-
tiguous array of per-thread structures, accessing the appropriate structure for a given thread
reduces to an array access. The appropriate formulais: base + (sizeof(variable) * thread index).
Both the size of the variable and the base address are known at instrumentation time and hard-
coded into the instrumentation. In practice, the size is kept to a power of 2, so the overhead
required for amini trampoline is the cost of a shift and an add.

Timers inserted have an additional layer of complication: the necessity to gather per-thread
time instead of per-processtime. Thisis described in the Virtual Timer section, below.

5.9.45 Thread Creation

Our implementation attempts to have the minimal overhead necessary when thread creation is
detected. We can detect new threads at any instrumentation point, since the code to do sois called
by the thread index calculator if the thread in question has not been seen. This allows us to func-

Developer’'s Guide April 13, 2004 Release 4.1

Page 40

tion well with thread libraries we don’t have internal information for. If we know the internal start
function for the thread library we manually instrument it, and capture thread creation events that
way.

When thread creation is detected, a short series of steps is performed by our instrumentation
and the thread is continued. Unlike the previous versions of Paradyn, there is no waiting required
for daemon-side setup.

The application performs the following steps to handle a newly-created thread:
1) Determine the start function (the argument to thread_create()).

2) Allocate an index from the list of freeindices.

3) Start the virtual timer for this thread (see Virtual Timers).

4) Signal the daemon about the new thread, including the thread library ID, the thread index,
and the start function.

At this point the thread continues through whatever instrumentation was inserted. This
requires that that thread’s slots in the data manager be empty and ready to write into. Thisis guar-
anteed by the daemon, and handled at thread deletion (below).

When the daemon receives the new thread message, it performs various actions:
1) Report the new thread to the front end.
2) Build a controller structure for the new thread.

5.9.4.6 Thread Deletion

We detect thread deletion via instrumenting the various thread_exit() functions. As with
thread creation, there is very little application-side processing associated with deletion. However,
since we reuse thread indices, there is synchronization which must occur:

1) Stop the virtual timer for thisthread (see Virtua Timers).
2) Mark the thread’s index as pending deletion.

3) Signal the daemon about thread deletion.

4) Continue and exit.

When the daemon receives the signal, it performs the following operations:
1) Take the final sample for all timers and counters inserted.
2) Delete all daemon-side data structures corresponding to the thread.
3) Ensure that that thread’s slot in every counter and timer isin an
clean state.
4) Mark the thread's index as reusable.

This alows us to reuse indices from deleted threads, and ensures there will be no data corruption
if two threads are assigned the same index.

Developer’'s Guide April 13, 2004 Release 4.1

Page 41

5.9.4.7 Inferior RPCs

We often have the need to run a piece of code at a particular time, instead of a particular place
(as with normal instrumentation). Our mechanism for doing thisis called an inferior RPC, since it
mimics the remote procedure call mechanism. The current implementation of Paradyn ensures
that an inferior RPC which is requested on a particular thread runs on only that thread. This holds
to our single-writer model, and is changed from previous implementations.

5.9.5Virtual Timers

Although we wish to gather data on a per-thread basis, there is no consistent way to gather
per-thread CPU time. What is available is per-LWP CPU time, which is not necessarily the same
if threads migrate between LWPs. We virtualize our own per-thread CPU timers on top of the pro-
vided per-LWP timers. We call these timers "Virtual Timers".

Virtual timers support three operations. start, stop, and query. Virtual timers are started and
stopped in the application, though they could be stopped by the daemon as well. Querying atimer
can be done both from the application and the daemon.

The structure of avirtual timer is very close to that of a standard Paradyn timer. It consists of
the following members:

» Two protector variables (protl and prot2)

o Astart’ time

* A ’total’ (accumulated) time

e TheLWP thistimer is currently running on
 A’count’ (whether the timer isrunning or not)

The virtual timer is started by performing the following steps:
1) Increment protl
2) Get the current LWP for thisthread and save it in the timer
3) Get the current CPU time for this LWP and storeit in’start’
4) Set thecount to 1
5) Increment prot2

Similarly, avirtual timer is stopped by performing the following:

1) Increment protl

2) Get the current CPU time for this LWP

3) Subtract the valuein "start’ and increase 'total’ by the
difference.

4) Set the count to 0

5) Increment prot2

Finally, avirtual timer can be "sampled" to provide a per-thread CPU time from both the daemon
and the application by performing these steps.

Developer’'s Guide April 13, 2004 Release 4.1

Page 42

1) Get the value of prot2

2) If the VT counter is 0, get the valuein "total" as the queried
time.

3) Otherwise:

3.1) Get the LWP the timer is running on.

3.2) Get the current CPU time for this LWP

3.3) The queried timeis equal to (current - start) + total

4) Get the value of protl

5) Compare protl and prot2, and if they are unequal go to step 1

Thereisone virtual timer associated with each thread. The virtual timer is stopped when a thread
is removed from active running, and restarted when the thread is rescheduled. This allows us to
get accurate per-thread CPU times, given only per-LWP CPU time.

5.9.6 Current Status and Limitations

MT-Paradyn has been ported to two platforms, AlIX and Solaris. On both platforms we cur-
rently require that threads are run in 1:1 mode. This is the default on Solaris, and can be set on
AlX by settingthe environment variable AIXTHREAD_SCOPE to 'S'. We hope to removethis
l[imitation in the future. We aso intend to port MT-Paradyn to Linux.

We support OpenMP programs under Solaris and AlX, but only asmultithreaded programs.
This means that the underlying structure of the OpenMP program is exposed to the user, which is
not desirable. A future version of Paradyn will be able to display OpenMP constructs in a clear

way.

5.10 Timer Levels

Paradyn includes support for two timer levels for both process and wall timers. This alows
unique time querying functions, native time units, native time bases, availability test functions,
and other features to be associated with timer levels. One of the levelsis the hardware timer level
which can be used for time querying functions that are less in time cost or greater in granularity
than the software timer level, typical when directly accessing the hardware. The other timer level
isthe software timer level, which is for time querying functions that access the time through soft-
ware and is less desirable than a possible hardware timer level. The notions of software and hard-
ware in regards to timer levels were not meant to be rigid, but serve to inform that the hardware
timer level has a smaller time cost and/or higher granularity than the software timer level. There
are platforms which don’t have both timer levelsimplemented, yet at |east one timer level needs to
be implemented for each platform for process and wall timers. An example of a platform with
only onetimer level isthe sparc-solaris version of Paradyn. The software timer level for this plat-
form has low time cost and high granularity so hardware timer levels for process and wall timers
are not implemented on this platform. At any point in time, there might also exist platforms for
which a hardware level version of atimer is not possible with the platform’s current state of tech-
nology.

A boolean availability test function is associated with each timer level in order to aid in choos-
ing which timer level to use. The hardware timer level will be chosen if the availability test func-
tion informs that the level isavailable. If the level is not available, the software timer level will be

Developer’'s Guide April 13, 2004 Release 4.1

Page 43

chosen (assuming it is available). However, it is possible to override this mechanism by setting the
environment variables PD_SOFTWARE_LEVEL_WALL_TIMER or
PD_SOFTWARE_LEVEL_CPU_TIMER which will cause the software level timer to be chosen
over the hardware level timer. The timer level that is chosen can be displayed in the terminal by
setting the environment variable PD_SHOW_TIMER_INFO.

One benefit that came with this multiple timer level feature, though not inherently related, is
that the rtinst library no longer needs to convert time into a standard time unit (used to be micro-
seconds). Now time querying functions in the rtinst library can return time in the native time unit
that was queried. The daemon now will do the appropriate conversion from the native time unit
into a generic time object (timeStamp for wall time and timeLength for cpu time). This offloads
work from the time querying functions in the rtinst library and hence the application also. Sam-
pling by the daemon occurs no more frequently than 5 times per second which is much less fre-
guent than the number of times an application calls a time querying function when
instrumentation is being done.

The notion of a level in Paradyn is represented by a class called timeMechanism (para-
dynd/src/timeMechanism.h). The notion of a set of levelsis represented by a class called timeM-
anager (paradynd/src/timeMgr.h). The timeMgr handles all interaction to a timer level and
therefore there should not be a need to access a timeMechanism object directly. For example, the
timeMgr class has member functions for installing a timer level (installLevel), determining the
best available timer level (determineBestLevels), or retrieving the native or converted time (get-
Time, getRawTime). The timeMgr class was made a template class in order to handle different
requirements for interacting with timer levels. The first template argument is used for the different
contexts for which given function pointers may be called. For example, the function pointer for a
process time querying function is a member of the process class. This function pointer needs to be
called differently than the function pointer for the wall time querying function, which is not a
member function. The second template argument specifies the type of the argument required
when calling the time querying function. For example, the process time querying function for the
multi-threaded Solaris version of Paradyn requires the light weight process id to be passed as an
argument.

In an execution of Paradyn, there will always be one and only one instantiation of atimeMgr
for handling the wall timers, named wallTimeMgr. Functions for instantiating and accessing the
walTimeMgr are in paradynd/src/init.[hC]. There, will be one instantiation of a timeMgr for
every process a daemon is monitoring. The timeMgr instantiation for process timers is the vari-
able cpuTimeMgr which is a member of the process class. The process class has functions for
interacting with the cpuTimeMgr such as initCpuTimeMgr, getCpuTime, and getRawCpuTime.

The selection of which timer level to choose is done solely by the daemon. The daemon than
informs the rtinst library of which time querying function to use by assigning the function pointer
pDY NINSTgetCPUtime or pDY NINSTgetWalltime in rtinst the address of the chosen time que-
rying function. The daemon verifies that the chosen timer level is also available in the rtinst
library by checking the value of the rtinst variables hintBestCpuTimerLevel and hintBestWallTi-
merLevel.

Implementing a new timer level

In order to implement anew timer level, there are particular functions that need to be modified
or added. For both process and wall timers, in the RTinst library, in the appropriate RTetc-<plat-

Developer’'s Guide April 13, 2004 Release 4.1

Page 44

form>.c file, the time querying function associated with the level (DY NINSTgetCPUtime_hw or
DYNINSTgetCPUtime sw) will need to be implemented. In this same file, in the
PARADY Nos _init function, the appropriate variable hintBestWall TimerLevel or hintBestCpuTi-
merLevel needs to be assigned the macro define HARDWARE TIMER_LEVEL or
SOFTWARE_TIMER_LEVEL depending on whether the hardware timer level is available.

For implementing a process timer there are changes that need to be made in the daemon also.
In the operating system specific file in dyninstAPl/src (eg. linux.C) the function process::initCpu-
TimeMgrPIt needs to be updated so that the new timer level isinstalled in the cpuTimerMgr. Also
in this file, the function process::getRawCpuTime_hw or process::getRawCpuTime_sw that cor-
responds to the timer level, needs to be implemented. These functions are the process time query-
ing functions used by the daemon. Also, support functions and class variables may need to be
added to the process class. This may involve an update to process.h for adding member functions
or variables to the process class.

For implementing a wall timer, in the directory paradynd/src in the init-<platform>.C file, in
the function initWallTimeMgrPlt, a level needs to be installed for the new timer level into the
wallTimeMgr. Thisfileis also where wall time querying and availability test functions should be
implemented. For example, for the Windows platform in init-winnt.C, the function
dm_isTSCAvail tests whether the hardware level wall timer is available and the function
dm_getTSC queries the hardware level wall time for the daemon.

6 X86 PORT

Instruction representation

The representation of x86 instructions is different from other platforms. Because the size of
instructions are variable, we represent an instruction by an object of class instruction, which is
defined in the file ar ch- x86. h. The representation includes a type descriptor, the size of the
instruction in bytes, and a pointer to the actual instruction (in the memory mapped executable

image).
When instructions are processed, we need to decode instructions in order to find the size and

type information about each instruction. The instruction decoder isimplemented in thefile ar ch-
x86. C. The decoder isinvoked through a method in class instruction (get Next | nst r uct i on).

Parsing the executable image

Asin other platforms, the executable is parsed one function at atime. We start at the beginning of
each function and decode instructions sequentially until we reach the end of the function (whichis
defined by the address of the next symbol in the symbol table).

The entry point is defined as the first instruction in the function. Call points are call instruc-
tions. Return points are return instructions and jumps that leave the current function. There is no
check for tail-call optimization on the x86.

Developer’'s Guide April 13, 2004 Release 4.1

Page 45

Data mixed with code (e.g. jump tables) is a problem as they could cause us to decode instruc-
tions incorrectly. We use some heuristics to try to identify some jump tables that may be within
the code. We look for indirect jump instructions of the form

jmp dword ptr [reg + addr]

wherer eg is one of the general registers and addr an immediate address, which is the base the
jump table. If the base address is within the current function and precedes the jump instruction,
we may have parsed instructions incorrectly and we don’t instrument the current function. In most
cases, the jump table isjust after the jump instruction, or near the end of the function. In this cases
we can try to guess the size of the table by looking at the words following the base address and
checking if their contents is an address within the current function. If so, we assume that it is part
of the jump table and keep looking at the following addresses until we find an address that is not
within the current function. Those locations that are found to be part of the symbol table are
skipped. While this heuristic can not guarantee that we can find all jump tables, it is effective in
detecting the jump tables generated by many compilers. A more general solution to this problem
would require data and control flow analysis of the executable.

Since instrumentation points may not have enough bytes to replace with a jump (5 bytes), we
may need to get additional instructions and add them to the smaller points. We can get instructions
from before or after the point. For the entry point, we can only get extrainstructions from after the
point. For return we would usualy only get instructions before the return, but since it is common
to have nops or i nt 3 instructions after a return, we can also use those instructions. For call sites,
we only get instructions from before the point for reasons that are explained later (although most
callsare 5 bytes and don’t need extrainstructions).

We must check that there are no jumps into the middle of a sequence of instructions that we
add to a point. To do that, we keep alist of al known jump targets, and check the instruction
sequences against this list. The target of all direct jumps found while the image is parsed are
added to the list, and al so the addresses in the jump tables found by the heuristic described above.
Since we can have jumps to other functions, we add the necessary number of instructions to the
point here, and check later, when the point is instrumented that there are no jumps to the middl e of
the instruction sequence. Since there may be some indirect jumps for which we don’t know the
target, we may have problems if we use an instruction sequence that can be the target of an indi-
rect jump. With the jJump table heuristic above, we should be able to handle most cases.

Inserting instrumentation

Whenever we need to replace a sequence of multiple instructions, we must check that there are no
jumps into the middle of the instructions. To do that, we keep alist of all known jump targets, and
check the instruction sequences against this list. The list contains the target of all direct jumps
found while the image is parsed, and the addresses found by the heuristic to skip jump tables
(described above). Since there may be some indirect jumps for which we don’'t know the target,
we may have problemsif we use an instruction sequence that can be the target of an indirect jump.
With the jump table heuristic, we should be able to handle most cases.

When we replace an instruction sequence with ajump, we must aso check that the programis
not currently executing in the middle of the sequence. Since we are modifying that sequence, we
could execute the wrong code. If thisisthe case, we change the program counter to the address of
the relocated instruction in the basetramp. We could also have a problem if we had calls in the

Developer’'s Guide April 13, 2004 Release 4.1

Page 46

middle of an instruction sequence. The call could be active, and eventually the callee could return
to an invalid location. For this reason, we avoid putting cals in the middle of instructions
sequences that are replaced with jumps. We should also check all possible contexts of the applica-
tion (threads and exceptions), but thisis not being done yet.

In some cases, we can’t find enough instructions to replace with ajump, but we may be ableto
insert an indirection. We take enough space for two jumps in the entry point (if possible). If
another point does not have enough space for along jump (5 bytes), but has enough space for a
short jump (2 bytes), and that point is within a short distance from the entry point (less than 128
bytes), we can insert ajump to the basetramp in the second jump slot of the entry point, and insert
ashort jump to thisslot. In this case, whenever we activate the second point (which uses the entry
point slot), we must also activate the entry point, even if there are no instrumentation requests for
the entry point

Function Relocation

If there are not enough instructions to replace with ajump, and we cannot make an indirect jump
to the basetramp, we expand and relocate the function. This involves creating a copy of the func-
tion with nop instructions inserted into those instrumentation points that are too small to replace
with a jump instruction. The nops expand the instrumentation points, making them large enough
to hold 5-byte jJump instructions. A jump to the expanded copy of the function isthen placed at the
entry to the original function. It should be noted that function expansion and relocation often
causes the targets of PC-relative call and jump instructions to be incorrect, since the relative loca-
tions of these instructions has changed. This requires that we update the displacements of some
PC-relative instructions. In the extreme case, where the target address of a 2-byte jump instruction
is no longer within the range of the jump, we must change the 2-byte jump into a 5-byte jump.

The relocation of afunction is done the first time arequest to instrument the function is made.
This occurs even if the current instrumentation request is for an instrumentation point that islarge
enough to replace with a jump. Currently there are three types of functions that we do not relo-
cate. These are functions that contain a jump table, are too small (less than 5 bytes), or are too
large (greater than 16384 bytes). In such functions, when we can't find enough instructions to
replace with ajump, we must insert a breakpoint instruction (i nt 3). When the breakpoint is exe-
cuted it generates an exception that can be caught in the application or by the Paradyn daemon.
The address of the base tramp is entered into a hash-table, that is used by the breakpoint handler
to find the address of the base tramp. The handler then changes the context of the application so
that it executes the base tramp. On Solaris, the handler runs in the application, while in Windows
and Linux, it runsin par adynd.

Base trampoline

The base trampoline for the x86 has some differences from other platforms. First the relocated
instructions do not always go in the same place. Only the instruction at the point goes at the usual
dot for relocated instructions, in the middle of the base tramp code. Any extra instructions from
before the point, are relocated to the beginning of the trampoline, and extrainstructions from after
the point are relocated to the end of the trampoline, right before the jJump back to the application
code. One of the advantages of placing the instructions in different points of the base trampoline
is that we can add jump instructions to a point when we need extra instructions. For example, if

Developer’'s Guide April 13, 2004 Release 4.1

Page 47

we have areturn after a conditional jump, we can use that jump to insert ajump to the base tram-
poline for the return. Since the jump is relocated to the beginning of the trampoline, if the jumpis
taken the rest of the trampoline code will not be executed (which is the right thing).

The base trampoline for the x86 is not of fixed size, like in other platforms, since the size of
the relocated instructions is variable. Unlike in the other platforms, where there is a template for
the base trampoline code, in the x86 the code is generated when the trampoline is created.

There isone special case when theinstruction at the point isaconditional jump. We relocate it
to the top of the base trampoline, and change the code so that the trampoline is executed only if
the branch is taken.

Code generation

The code generated for the x86 platform uses virtual registers, that are allocated on the stack.
They are addressed as an offset from the frame pointer register (EBP). The virtua register are
allocated on the base trampoline.

Example

Here we show the instrumentation of a function, and sample trampoline code.

f: pushl %ebp

f+1: novl %esp, Y%ebp

f+3: subl $0x4, %esp

f+6: movl $0x0, Oxfffffffc(%ebp)
f+13: subl %eax, Yeax

f+15: incl %ax

f+16: novl %eax, Oxfffffffc(%ebp)
f+19: cnpl $0x3e8, Y%eax

f+24: j1 <f+15>

f+26: subl %eax, Yeax

f+28: | eave

f+29: ret

f+30: nop

f+31: nop

Thisfunction has two instrumentation points: the entry point (the first instruction, at addressf)
and the return point (ther et instruction, at address f+29). Both places have one byte instructions,
that can’t be replaced by a jump. For the entry point, we can add the instructions at f+1 and f+3,
which sum to atotal of 6 bytes. For the return point, we need to add instructions from before the
return. We need to add the instructions at f+28 (I eave), f+26 (subl), and f+24 (j I).

Developer’'s Guide April 13, 2004 Release 4.1

Page 48

After the insertion of instrumentation for the entry and return points, the function will ook
like:

f: j mp baseTranpO

f+5: *** garbage ***

f+6: movl $0x0, Oxfffffffc(%ebp)
f+13: subl %ax, %eax

f+15: incl %ax

f+16: novl %eax, Oxfffffffc(%ebp)
f+19: cnpl $0x3e8, %eax

f+24. jnmp baseTranpl

f+29: ret
f+30: nop
f+31: nop

(Note that most debuggers will not disassemble this code correctly, they get confused by the
garbage at location f+5).
Base trampoline for the entry point:
/1 relocated extra instructions frombefore the point go here
/1 there are no extra instructions frombefore the point in this case

/1 pre-point instrunentation

baseTr anpO: j mp <baseTranpO+5>// slot to skip pre instrunentation
baseTr anp0+5: pushl %bp /1 set-up stack frame for mnitranps
baseTr anp0+6: novl %esp, Yebp

baseTr anp0+8: subl $0x80, %esp // allocate virtual registers

baseTr anp0+14: pusha /1 save registers

baseTr anp0+15: pushf

baseTr anp0+16: jmp <minitranp> // junp to minitranp

baseTr anp0+21: popf /1 restore registers

baseTr anp0+22: popa

baseTr anp0+23: | eave /1 undo minitranp stack frame

baseTr anp0+24: addl 0x29, DYNI NSTobsCost // update observed cost

/1 relocated instruction at entry point

baseTr anp0+34: pushl %bp

/1 post-point instrumentation

baseTr anp0+35: j mp <baseTranpO0+51> // skip post-instrunentation
baseTr anp0+40: pushl %bp /1 set-up stack frame for mnitranps
baseTr anp0+41: novl %esp, Yebp

baseTr anp0+43: subl 0x80, %esp /1 allocate virtual registers

baseTr anp0+49: pusha /1 save registers

baseTr anp0+50: pushf

Developer’'s Guide April 13, 2004 Release 4.1

Page 49

baseTr anp0+51: jmp <baseTranp0+48> // slot for junp to mnitranp
baseTr anp0+56: popf /] restore registers

baseTr anp0+57: popa

baseTr anp0+58: | eave /1 undo mnitranp stack frane
/1 relocated extra instructions at entry point

baseTr anp0+59
baseTr anp0+61

: nov|
: subl

Y%esp, Yebp
$0x4, Y%esp

/1 junp back to application code

baseTr anp0+64

: j mp 0x805038a <f +6>

The base tramp for the return point:

/1 relocate instructions before the point

baseTr anp1+0: j1 0x8050393 <f +15>

baseTr anpl+6: subl % ax, %eax

baseTranpl+8: | eave

/1 pre-point instrunentation

baseTr anpl+9: j mp <baseTranpO+5> // slot to skip pre instrumentation
baseTranpl+14: pushl %ebp /1 set-up stack frame for m nitranps
baseTranpl+15: novl %esp, Yebp

baseTranpl+17: subl 0x80, %esp /1 allocate virtual registers
baseTranpl+23: pusha /] save registers

baseTranpl+24: pushf

baseTr anpl+25: jmp <minitranmp> // junp to mnitranp

baseTr anp1+30: popf /] restore registers

baseTranpl+31: popa

baseTranpl+32: | eave /1 undo mnitranp stack frane
baseTranp1+33: addl 0x29, DYNI NSTobsCost // update observed cost

/1 relocated instruction at point

baseTranpl+43: ret

/1 post instrumentation -- never reached in this case

baseTranpl+44: j mp <baseTranpl+63>//slot to skip post instrumentation
baseTr anp1+49: pushl %ebp /1 setup stack frane

baseTr anp1+50: novl %esp, Yebp

baseTranpl+52: subl 0x80, %esp /1 allocate virtual registers

baseTr anpl+5: pusha /] save registers

baseTranpl+44: pushf

baseTr anpl+45: jmp <baseTranpl+60> // slot for junp to mnitranp
baseTr anp1+50: popf /] restore registers

baseTranpl+51: popa

baseTranpl+52: | eave /1 undo stack frame

/1 relocated extra instructions fromafter the point go here

/1 there are no extra instruction fromafter the point in this case

/] return to user code
baseTranpl+60: jnp <f+30>

The base tramp for the return point is similar to the base tramp for the entry point, except that
the extra instructions added to the point, thej | , the subl and the | eave, which were taken from

Developer’'s Guide April 13, 2004 Release 4.1

Page 50

beforethe point, arerelocatedo the beginning of thetramp.In this example,if thej | instruction
branches, no instrumentation code will Beauted.

The folloving example shws a minitramp for at art Wl | Ti mer primitive:

m ni tranp: novl $0x8044f 390, Oxfffffffc(%bp) // load ti mer address
/1 in virtual register

m nitranp+7: pushl Oxfffffffc(%bp) /1 push argument

m ni tranp+10: novl $0x80585a4, Yeax /1 load function address

m ni tranp+15 call *%ax /1 call startwallTiner

m nitranmp+17: addl $0x4, ¥%esp /] pop argunent

m ni tranp+23: nmovl %eax, Oxfffffffc(%bp) /] store result

m ni tranp+26: j mp <baseTr anp>

Thereferencedo oxfffffffc(%bp) arereferencedo a virtual register (We arenotdoing
code optimizations, though there are gnapportunities to optimize this code.)

7 LINUX PORT

Inferior process modification and information througliace and/ proc
[dyni nst APl /src/linux.C

The first major differencein Linux from Solarisis thatthe/ pr oc interfacedoesnt support
mary of the processcontrolfeaturesTheLinux / pr oc filesystemis a generallyread-onlysetup,
with most files simply pnading information about the process in attlormat.

Within / pr oc, thereis adirectoryfor eachprocessratherthanafile on Solaris.Eachdirectory
containsdifferentfiles for differentpiecesof informationaboutthe processlin Solaris,eachfile
containgheprocessmemoryspaceandlOCTLs onthatfile areusedto gatherotherinformation
and control that process.

/ proc/ */ mem containsthe process’'memoryspace put it is currentlyread-only dueto con-
cerns about the possibility oferwriting kernel memory in corner cases.

I proc/ */ st at containsalist of numberan ASCII format,space-delimitedJsedinformation
includes the process state (that is a char), and the process CPU times.

/ proc/ */ maps containsa list of mappedregionsin the processmemoryspace alongwith
device numberandinodenumberif theregionis afile mappedo memory Thisis especiallyuse-
ful in finding shared libraries which are loaded into memory

I proc/ */ exe is a link to the eecutable file for the process.

See ‘man proc’ antusr/ src/ | i nux/ fs/ proc for further information.

Instead of usingpr oc to control and modify the process, we use the gldesice interface.

For readingfrom the processmemoryspace we first try to simply readfrom / proc/ */ mem
andif thisfails,we usept r ace(PTRACE_PEEKTXT, ...) whichreadsasinglewordfrom thepro-
cessat a time. Therefore we mustimplementa function which readsa word at a time from the
processrealignsthewords,andre-packgheminto the propermemorylocationin the parentpro-
cess.

For writing to the processnemoryspacewe usept r ace(PTRACE_POKETXT, ...) andwrite
the data one wrd at a time, properly realigned to the addresses in the inferior process.

To obtaintheregistersfrom theinferior processwe usept r ace(PTRACE_GETREGS, ...) and
pt r ace(PTRACE_GETFPREGS, ...) which write the rgisters to a wbffer.

Developer’'s Guide April 13, 2004 Release 4.1

Page 51

To changethe registersin the inferior processywe usept r ace(PTRACE_SETREGS, ...) and
pt race(PTRACE_SETFPREGS, ...) which write the registersfrom a buffer to the inferior pro-
cess.

NOTE: Theregisterpt race commandsareonly availablein linux-2.0.35and higher We no
longer support olderarsions of linux-2.0.x!

To obtainthe actualstateof the inferior processrunning, stopped.etc.), we readfrom the
/I proc/ */stat file. Thethird spacadelimitedfield is a charactemhich specifieghe status/R’ is
running, ‘T’ is stopped, etc.

To wait ontheinferior procesdor signalswe usewai t pi d, which simply waitsuntil theinfe-
rior processecevesasignal.We thencheckto seeif thesignalis onewe shoulddealwith. If it is
not, the signal is forwardedback to the processusing pt r ace(PTRACE_CONT, ...), the last
parameter of which is the signal to send to the inferior process.

To continue the inferior process, we BI®ACE_CONT acain with no signal.
To stop the inferior process, we simply usel (SI GSTOP) .

To obtainthe CPUtime of theinferior processye readthevaluesfor theinferior processiser
andsystemCPUtime from / proc/ */ st at , anddo the properarithmetic.The valuesarein ticks,
or timeslices,which on a standardx86 Linux systemoccur at a rate of 100/secondThis is
checledfor, however, througha one-timepieceof codewhich findsthe systemidle time in ticks
and in seconds and figures out the ticks/second.

Handling shared libraries in the inferior processni nst API / src/ i nuxDL. C]

The procesdor handlingsharedibrariesin the inferior processs very similar to the process
usedon Solaris.The maindifferences the problemof finding theld.so library, which handlesall
of theothersharedibraries.OnLinux 2.0.xsystemsthe/ pr oc/ */ maps file shavsall of themap-
pings,alongwith device numberandinodenumberinformation,but thereis nowayto find thefile
from this informationdirectly. Therefore thereis no way to tell which file is Id.so. The method
usedis to searchthe expecteddirectoryfor afile matchingthe pattern®i d*. so”, findingits device
andinodenumberandcomparingt againsteachmapping.Then,the sharedibrary handlingcan
continueby the ELF methodusedin Solaris.On Linux 2.2.xandhigher however, the maps files
alsocontainsa pathto eachsharedibrary. In this case the pattern“i d*. so” is checled against
these, and the file is found much more easily

Inserting a shared library into the inferior process
process: : dl openDYNI NSTIl i b [dyni nst APl /src/linux. C]

In orderto inserta sharedibrary into the inferior processwe dependon insertingcodeinto
theinferior to call dl open on our library. This works well on Solaris,andfor someprogramson
Linux. However, theversionof libc currentlyusedon Linux (glibc 2.x) doesnotincludethe pub-
lic interfaceto dl open. Insteada separatdibrary calledlibdl.so is used.If we insertcodeto call
dl open into a programnot alreadylinked to libdl.so, it will not work. Fortunately the internal
_dl _open functionis availablein all Linux programswhich aredynamicallylinked. By inserting
codeto call this functioninsteadwe canassurecompatibility with all dynamically-linked Linux
programs.

Developer’'s Guide April 13, 2004 Release 4.1

Page 52

To deal with differencesin glibc, we search for the __1i bc_ver si on symbol, which contains
aversion string. If the string matches a known version of glibc, we work with that version. If the
string is not found, or the version is unknown, we use the 2.0.x method.

Inglibc 2.0.x, _dl _open takes the same parameters as dl open, and the processis as ssimple as
changing the name of the function to call.

Inglibc 2.1.x, _dI _open takes an extra parameter of the modules which called di open. Inthis
case, we need to provide this address, which is straightforward. Additionally, _dl _open uses a
special function call convention because it isinternal to glibc. Instead of pushing the parameters
onto the stack, it passes all threein registers. To deal with this problem, we have to avoid the Ast -
Node structure and generate araw call and modify the registers for the parameters directly.

NB: This will probably change with each minor version change of glibc, and this code must
be updated.

Inferior RPCY dyni nst API / sr ¢/ process. C]

The mgjority of the usual method for executing inferior RPCs works fine on Linux. The prob-
lem is only in the checking for and dealing with the case where the inferior process is within a
system call. It is dangerous to simply change the location to which the system call will return
(which is the most simple approach), as this can corrupt the return value from the system call.
Using PTRACE_SYSCALL seems promising, but this call traps at the entry and exit of the next sys-
tem call, and so it would need to be used for every system call in the program, rather than just the
current one: this is grossly inefficient. Instead, we ssmply find the location the system call will
return to, and set atrap (or illegal instruction, actually) there. When thisis hit, we restore the orig-
inal code, save the registers, and move the process to the code we wish to execute. Since theregis-
ters were save after the system call instead of duringit, the return value is safe.

Paradyn front-end threading package [libthread]

The threading package in Paradyn makes use of set j np and | ongj np. Thisis not generally a
problem, except that we use a function pointer to the appropriate set j np and | ongj np functions
on that platform. In Linux, set j mp issimply amacro to si gset j np, with the additional parameter
specificied. This necessitates changing the threading package to use a macro for set j np in the
Linux case, as afunction pointer simply will not work.

8 RUN-TIME INSTRUMENTATION LIBRARY

The run-time instrumentation library (rti nst, |ibdyni nst RT) contains auxiliary functions and
datafor dynamic instrumentation. It contains functions to get wall and process time used by a pro-
cess, to start and stop metric timers, to sample timers and counters, to report valuesto the Paradyn
daemon, to report resources (such as message tags), and to report that a process is forking or
doing and exec.

When an application process starts, it receives a signal that is caught by the Paradyn daemon
(thissignal is set up by pt race or / proc file system calls). At this point, the daemon inserts the
initial instrumentation in the application process. The initial instrumentation consists of inserting
cals in some functions and system calls to call initialization and termination functions, or to

Developer’'s Guide April 13, 2004 Release 4.1

Page 53

reports events of interest, such as new resources, afork, or an exec. The following functions are
instrumented:

mai n: call to DYNI NSTi ni t () and the entry point of mai n, and DYNI NSTexi t () at the return point.
exi t : call to DYNI NSTexi t () at the entry point.

f ork: call to DYNI NSTf or k() at the return point

execve: call to DYNI NSTexec at entry point, call to DYNI NSTexecFai | ed() at return point.

pvm send: call to DYNI NSTr ecor dTag() at entry point.

DYNI NSTsanpl eVal ues: call to DYNI NSTr epor t NewTags() at the entry point.

The function DYNI NSTi ni t () is called at the start of the application process to initialize the
run-time instrumentation library. Its main function is to set an alarm that sends a signal to the
application process periodically. The alarm handler, DYNI NSTal ar nExpi re() , iS responsible for
calling the functions to sample timers and counters and report the values to the Paradyn daemon.
It also calls DYNI NSTr epor t BaseTr anps() to report the cost of instrumentation.

Enabled timers and counters are sampled by a call to DYNI NSTsanpl eVal ues() . Thisis an
empty function, but it isinstrumented each time a metric is enabled, so that timers or counters are
sampled when this function is caled. The code that is inserted cals either
DYNI NSTr eport Ti mer () Or DYNI NSTr eport Count er () to read the timer or counter. The values
are reported through a pipe that is created when the application is started by the Paradyn daemon,
or by a stream socket that is created after the application has forked.

New dynamic heap segments are alocated in the application process by calling
DYNINSTos_malloc. Section 5.7 describes dynamic heaps in detall.

Other functions of rtinst are called to report new resources, such as message tags
(DYNI NSTr epor t NewTags()), and to handle fork and exec by an application (DYNI NSTf or k() and
DYNI NSTexec()).

9MDL IMPLEMENTATION

The Metric Description Language is used to specify what performance data to collect, and
where. For the language specification, see the Paradyn User’'s Guide. For a good high-level
description of the implementation techniques, see the paper “MDL: A Language and Compilerfor
DynamicProgram Instrumentatioh (Hollingsworth et. al.). The purpose of this section isto pro-
vide a better understanding of the MDL code, describing features and issues that are not docu-
mented elsewhere, and for providing a complementary and hopefully better reference than the
code itself.

The MDL code consists of two parts: the front-end Paradyn process and the back-end Paradyn
daemon. The front-end MDL code does lexical analysis, syntax analysis, and some type checking
(which is part of the semantic analysis in the parlance of programming languages); the back-end
does the rest of semantic analysis and intermediate code generation. The reason for the semantic
checking being done by both the front-end and the back-end is due to the feature of dynamic
instrumentation: the decision about what to instrument is deferred until after execution starts.
Therefore, there are certain things that the front-end cannot check and must be relegated to the
back-end. An example is an MDL expression containing a function call. The front-end can only
check that the arguments of the call are valid MDL expressions and that the function call is used
in valid syntactic context; whether the function existsin the application and is instrumentable can

Developer’'s Guide April 13, 2004 Release 4.1

Page 54

only be checked by the back-end MDL. However, the idea is to push static checking as much as
possible into the front-end, so that errors can be caught early before the metrics are specified at
runtime. Flex and Bison are used for lexical and syntax analysis.

The intermediate code generation is the process of trandating a piece of MDL code into a
DAG of Ast Nodes (see Section 5.4). The code generation is the process of trandating the Ast -
Nodes into trampolines and inserting them into the application. This section does not describe the
code generation of MDL, which is part of Paradyn’s dyninstAPI (see the Dynamic | nstrumenta-
tion API Guide). Wefirst list the important files of the MDL implementation. We then go through
each stage of the analyses. At the end of this section we give a short reference list of the defini-
tions of some frequently seen C++ classesin the MDL implementation.

9.1 Important files

Figure 14 lists the most important files in the MDL implemetation together with brief descrip-
tions.

par adyn/ h/ dyni nst RPC. | Anigen file containing class definitions for all of the
MDL components such as Metric, Constraint, State-
ment, and Expression. Used by both the front-end and
the back-end.

paradyn/src/ met/mdl . h Constant definitions and definitions for classes

mdl _var, mdl _env. If you see some constants with all
upper case letters while reading the MDL code,
chances are that they are #def i ne’d in thisfile. An
mdl _var isan MDL variable, and themdl _env isa
repository of ndl _var s. You can think of ndl _env as
the symbol table of MDL plus some methods. The
MDL variables are collected into the static data mem-
ber ndl _env: :all _vars. MDL variables are pushed
intomdl _env: : al | _vars when their scopes are
entered, and popped out when their scopes are exited.
Used by both the front-end and the back-end.

paradyn/src/ met/ gl obal s. h Thisfile contains the declaration of global variables
that both the front-end and the back-end need accessto.
The global variablesinclude al MDL metrics, con-
straints, and resourcelists. These MDL componentsare
collected during the syntax analysis phase. Used by
both the front-end and the back-end.

par adyn/ src/ met / met Scanner . | Theinput fileto Flex for lexical analysis. All tokens
and keywords can be found here. Only used by the
front-end.

Figure 14: Crucial MDL files

Developer’'s Guide April 13, 2004 Release 4.1

Page 55

paradyn/ src/ et/ met Parser.y Theinput fileto Bison for syntax analysis. Containsthe
entire MDL grammar, and hence is the definitive refer-
ence for the syntax and for determining whether some
features are (should be) supported. Metrics, con-
straints, statements, etc. are created as part of the
parse/grammar actions and collected into the global
repositories declared in gl obal s. h. Only used by the

front-end.

paradyn/src/met/mil . C Type checking and appl y() functions. See Section 9.2.
Only used by the front-end.

par adynd/ src/ ndl . C The mgjor file of the back-end of MDL. Semantic

checking and intermediate code generation. Only used
by the back-end.

paradynd/src/metric.C The definition of the classnet ri cDef i ni ti onNode,
which describes metric instances. There are two types
of node: aggregates and non-aggregates. For the aggre-
gates, an et ri cDef i ni ti onNode contains a vector of
other met ri cDef i ni ti onNodes, for non-aggregates, a
node contains a vector of dat aReqNodes. Only used by
the back-end.

Figure 14: Crucial MDL files

9.2 Lexical and syntax analysis

Lexical and syntax analysis are done by the Paradyn front-end. The associated files are under
the directory par adyn/ src/ net . It isimportant to be familiar with Flex and Bison before reading
met Scanner . | and met Par ser . y, and it isa good ideato get familiar with these two files, or the
parts that you are interested in, before going on to others.

We do not explain the details of the files here?, as the code itself serves exactly that purpose.
Here we only point out some of the interactions among the files to help navigate.

The scanning and parsing of the configuration files starts from the routine met Mai n() in
met Mai n. C. Thisroutine calls open_N parse() that calls the Bison function yypar se(), which
in turn triggers the scanner and parser actions in met Scanner.| and net Parser. y>. Files
meCl ass. Cand net Par se. h are support files for the scanner and parser, for example; they contain
the definition of st ruct par seSt ack.

A bulk of the work done by the Paradyn front-end is type checking, which is done after Flex
and Bison have already disected and collected all the syntactic parts. In the code, this occursin

2. Those who do not need to know the details of MDL implementation, yet have to consult et Par ser . y
for MDL grammars, may wonder what the symbols $$, $1, $2, etc. mean in et Par ser . y. $$ represents
the left-hand-side of the rule, and $i represents the ith component on the right hand side of therule, with i
starting from 1. The type of those $-symbolsisstruct parseSt ack as specified by the line #def i ne
YYSTYPE struct parseStack inbothnet Scanner.| andnet Parser.y.

3. Infact, Flex functions are called by Bison functions.

Developer’'s Guide April 13, 2004 Release 4.1

Page 56

metMain.C 'Smdl_apply() , after open_N_parse() isdone. The type checking isimplemented in
routines with a heavily overloaded name: apply() . Many developers consider the apply() func-
tions one of the most difficult to understand parts of the MDL implementation, probably because
there are so many of them—not only in the front-end, but also in the daemon—and each apply()

does different things. For a good grasp of those functions, we need a clear picture of the corre-

sponding C++ classes and their relationships. File paradyn/src/met/dyninstRPC.1 isthe place
to look for the class definitions of those syntactic components such as mdl_metric,
mdl_constraint, mdl_stmt , €tc. Let’s use an example to show how apply() functions work.

Below isametric called “ procedureCalls’ taken from config/paradyn.rc

metric procedureCalls {
name “procedure_calls”;
units operations;
unitStyle unnormalized;
aggregateOperator sum;
style EventCounter;
flavor = { winnt, unix, cow, pvm, mpi };

constraint procedureConstraint /Code/* is replace counter {
prepend prelnsn $constraint[0].entry
(* procedureCalls++; *)
}
constraint moduleConstraint /Code is replace counter {
foreach func in $constraint[0].funcs {
prepend prelnsn func.entry (* procedureCalls++; *)
}
}

base is counter {
foreach func in $procedures {
append prelnsn func.entry constrained
(* procedureCalls++; *)

We draw atree (Figure 15) to show the action of the parser. The tree also reflects the syntactic
structure in this metric, with the relationship of the parent and children of the “nodes’ being a
containing relationship (e.g, procedureCalls metric containsa base statement and two con-
straints). We number each node to make the exposition clearer. Shown in parentheses are the
actual C++ classes implementing the components.

The way apply() member functions work is essentially a pre-order visit of the tree starting

from the root. mdl_metric::apply() (node 1) gets called, which would call the apply() mem-
ber function on the statements in the base part of the metric (node 2), then
mdl_for_stmt::apply()(node 3) , which in turn calls mdl_instr_stmt::apply()(node 4),
and then mdl_icode::apply()(node 5) , etc. After the subtree rooted at node 2 is done, the

subtree rooted at node 7 is visited, and so on until the whole tree is “applied”, and
mdl_metric::apply()(node 1) returns.

Developer’'s Guide April 13, 2004 Release 4.1

Page 57

1 procedureCalls (mdl_metric)

11
2
base... (mdl_stmt) 7 procedureConstraint (mdl_constraint) moduleConstraint (mdl_constraint)
, | i _ | o
‘foreach...(mdl_for_stmt) ‘ ‘ prepend... (mdl_instr_stmt) ‘ ‘ foreach... (mdl_for_stmt) ‘
| 9 |
4‘ append... (mdl_instr_stmt) ‘ * procedureCalIs++;*)(de_icode)‘ ‘ prepend... (mdl_instr_stmt) ‘13
| 0 |
5

‘14

(* procedureCalls++; *) (mdl_icode)

(* procedureCalls++; *) (mdl_icode)‘ procedureCalls++; (mdl_expr) ‘

6‘ procedureCalls++; (mdl_expr) ‘ ‘procedureCaIIs++; (mdl_expr)‘ 15

Figure 15: An example demonstrating how appl y() functionswork.

While visiting the tree, different checks are done inside appl y() depending on which object
the function is invoked. For instance, when ndl _v_expr: : appl y() isinvoked on the expression
procedur eCal | s++, it checksthat pr oceducecal | s isof valid type (integers or counters).

At run-time, the sequence of appl y() member functions starts from the mdl _appl y() innet -
Mai n(), inthefilemet Mai n. C.

9.3 Semantic analysis and inter mediate code gener ation

Semantic analysis and intermediate code generation are done by the back-end of Paradyn.
This part of MDL comprises a few files under par adynd/ sr c, with the mgor one being ndl . C.
Thetwo ndl . C's(onein the front-end, one in the daemon) use the same class definitions in par a-
dyn/ h/ dyni nst RPC. | . In other words, the C++ classes for MDL metrics, constraints, statements,
etc. encapsulate a superset of the functionalities needed for both the front-end and the daemon.
Because of this, we can see some dummy function definitions in either file, since all definitions
must be present to pass the compiler, even though they may not actually be used.

Due to the above reason, and also for symmetry, the semantic analysis and intermediate code
generation of the daemon are also implemented with the hierarchies of appl y() member func-
tions. Again, the code is executed in the same pre-order-visit tree-like fashion as in the example of
Section 9.2, with the exception of replace constraints as we will explain in a moment. This time,
we generate intermediate code instead of mere checkings inside each appl y() . For instance, for
the expression procedureCal | s++ (node 6 in Figure 15), mdl _v_expr: : appl y(Ast Node*) iS
called, and we generate an Ast Node* asaresult of evaluating this expression. After node 1 is suc-
cessfully applied, anet ri cDef i ni ti onNode is generated.

In the front-end, the syntax analysisis done on every syntactic component in the configuration
file, yet the intermediate code and trampolines are only generated for those components that are
actualy used. For our example, if the metric procedureCal | s is not enabled with a focus, it
would not get processed by the back-end, and no intemediate code or trampolines would be gener-
ated for it. Furthermore, the two replace constraints (see the Paradyn User’s Guide for a descrip-
tion of replace constraints) procedur eConstrai nt and modul eConstrai nt would be applied

Developer’'s Guide April 13, 2004 Release 4.1

Page 58

only if their match paths (/ Code/ * and / Code respectively) match the focus. If neither one
matches the focus, neither would be applied; if one matches the focus (note that there would be at
most one match), the instrumentation statements inside the matching replace constraint are
applied, and the instrumentation statements in the base of the metric are not. Thisis one exception
inour appl y() treevisitin our example: some subtrees may not be visited, hence applied, at all.

When the back-end receives a request to enable a metric-focus pair, it uses the MDL to gener-
ate intermediate code in the form of a DAG of Ast NodeS. The Ast Nodes specify what code to
generate for the metric-focus pair. For each metric-focus pair anet ri cDef i ni ti onNode IS cre-
ated (increateMetricl nstance() inparadynd/src/metric.C). ThenetricDefinitionNode
contains the DAG of Ast Nodes and the information about where the generated instrumentation
code (trampolines) should be inserted. After thenetri cDefi niti onNode issuccessfully created,
the trampolines are generated and inserted into the application executable, see Ast Node: : gener -
at eCode() and Ast Node: : gener at eCode_phase2() (code generation is part of dyninstAPI).

9.4 Where these classes are defined

The classes below are important to the MDL implementation. Although tools like ctags/etags
can be used to pinpoint their definitions, they are listed here just for reference. (This is a very
short list, hope to add some more).

Class Whereit isdefined

Ast Node dyni nst APl /src/ast. h

dat aReqNode paradynd/src/nmetric.h
function_base dyni nst APl / src/ syntab. h

i nst Poi nt dyni nst APl / src/ i nst Poi nt - power. h

dyni nst APl / src/instPoint-sparc.h
dyni nst APl / src/i nst Poi nt-x86. h

resource par adynd/ src/resource. h

nmet ri cDefiniti onNode paradynd/src/netric.h

Figure 16: Important MDL classes.

10 IGEN INTERFACE GENERATION

10.1 Overview of Igen
|gen automates the creation of remote interfaces. Interfaces are like remote procedure calls, but

the endpoints (client and server) can be threads or processes. Igen supports generation of RPC
calls using either threads or XDR (or PVM?) as transport.

10.1.1 Synopsis

igen -xdr | -thread | -pvm|[-header | -code] <spec>.|

Developer’'s Guide April 13, 2004 Release 4.1

Page 59

10.1.2 Output

The <spec>. | file specifies the interface template to use to generate the source and header
files. All generated fileswill use <spec> in their name:

<spec>. C—bundlersfor the types that can be passed.

<spec>. CLNT. C—client side code for users of the interface.

<spec>. SRVR. C-server code for providers of the interface.

<spec>. h,<spec>. CLNT. h, <spec>. SRVR. h —class headers.

Note that member functions declared in <spec>. SRVR. h are not generated by Igen, except

for the class constructor and mainLoop. These functions are called by the server when it receives
arequest from the client. These functions must be provided by the programmer.

10.1.3 Memory

Igen frees all memory that it allocates, with one exception. Return typesin the client code may
be a structure or an array class. The memory allocated for these return types will not be deallo-
cated by Igen.

10.1.4 Upcalls

Upcalls from the server to the client are supported, however, they will only be seen when
the client is waiting for a response from a synchronous call to the server. There is away to force
the client to attempt to handle an upcall. The client has a member function awaitResponce which
will handle any upcall requests that exist, but awaitResponce will block. The file descriptor
should be checked to seeif it is ready for reading before calling awaitResponce.

10.1.5 Interface template

An interface looks like:

$remote <interfaceName> {
$base <int>;
$version <int>;
$virtual [$async | $array] <member function definitions>
$virtual $upcall [$async] <member function definitions>
$cmember type variable;
$smember type variable; }

The $array keyword causes igen to genarate an array class and use this as the array type. The
class has a member specifying the size of the array and a pointer to the data.

The $virtual keyword causes the igen generated functions to be declared virtual. For upcalls,
the client function is declared virtual. For non-upcalls, the server function is declared virtual.

The $smember and $cmember keywords cause igen to put the type and variable declaration
into the client or server class. $smember specifies that the server classis to include the type and
variable as a public data member. $cmember specifies that the client class is to include the type
and variable as a public data member.

Developer’'s Guide April 13, 2004 Release 4.1

Page 60

The $base keyword defines the first message tag to use for creating request and responce mes-
sage types. Since TAGS should be unigque to an application, this value should not confilct with
other interfaces that might get linked into the same process.

The integer after the keyword $version indicates the protocol version of this interface. For
XDR based protocols this version is verified when the client and server rendevous. For thread
based interfaces, Igen relies on the fact that changes to an interface generally change the signature
of at least one function in the interface, and that version incompatabilities should be resolved by
the C++ linker in that case.

The member functions are the basis of the interface. A provider of an interface defines the
member functions in the class <interfaceName>. lgen generates a shadow class <interface-
Name>User with the same member functions. The <interfaceName>User member functions are
really RPC style stubs that invoke the remote member functions.

The $upcall keyword permits interfaces to support upcalls. Upcalls are away for an interface
to indicate to its user that an "interesting” event has occured. Upcalls are by default synchronous,
but can be made asynchronous by adding the keyword $async after the keyword $upcall.

The $async keyword placed before a function definition prevents igen from generating a wait
for reply after make the remote procedure call. No reply will be made by the receiver of the
remote procedure call.

10.2 Igen grammar

[Words in lowercase are nonterminals; words with punctuation in them (e.g., $), surrounded
by quotes, and in al CAPITALS areterminals.]

completeDefinition -> parsableUnitList

| error

parsableUnitList -> parsableUnitList parsableUnit
| lambda

parsableUnit -> interface_spec
| typeSpec

interfacePreamble -> interfaceName { interfaceBase interfaceVersion
interface spec -> interfacePreamble definitionList } ;
interfaceName -> |DENTIFIER
interfaceBase -> $base UNSIGNED_INT_LITERAL ;
interfaceVersion -> $version UNSIGNED _INT_LITERAL ;
forward _spec -> ‘forward’ IDENTIFIER ;
definitionList -> definitionList definition

| lambda
optUpcall -> $virtual

| $async

| $virtual $async

| $upcall $async

Developer’'s Guide April 13, 2004 Release 4.1

optFree
optRef

definition

optignore
optAbstract
classOrStruct
typeSpec
optDerived
fieldDeclList
fieldDecl
typeName
optConst
pointers

funcArg

nonEmptyArg

arglist

Developer’'s Guide

Page 61

| $virtual Supcall $async
| lambda
-> $free
| lambda
> &
| lambda
-> optFree optUpcall optConst typeName pointers optRef
IDENTIFIER (arglist) ;
| $cignore["$]* $cignore
| $signore[~$]* $signore
-> $ignore["$]* $ignore
| lambda
-> ‘apstract’
| lambda
-> optAbstract ‘class
| ‘struct’
-> classOrStruct IDENTIFIER optDerived {
fieldDeclList optignore} ;
-> IDENTIFIER
| lambda
-> fieldDeclList fieldDecl
| lambda
-> optConst typeName pointers IDENTIFER ;
-> |IDENTIFIER
| IDENTIFIER : : IDENTIFIER
| IDENTIFIER < typeName pointers >
-> ‘const’
| lambda
->* pointers
| lambda
-> optConst typeName pointers
| optConst typeName pointers IDENTIFIER
| optConst typeName & IDENTIFIER
| optConst typeName &
-> funcArg
| nonEmptyArg, funcArg
-> nonEmptyArg
| lambda

April 13, 2004 Release 4.1

Page 62

11 MAKEFILE ISSUES

11.1 Overview of M akefile organization

Thefilesmake. confi g, make. program t nmpl , and make. | i brary. t npl (located at the root of the
Paradyn source code tree) are the basis for compiling the Paradyn system. They define generic
rules and Makefile dependencies, and are flexible enough that most Makef i | es for Paradyn sys-
tem components are kept short and simple. The shadow files nmake. confi g, etc., are similar and
only required by nmale on Windows; they are also ssimpler, supporting only that one platform.

A Makefile for a given platform (such as SPARC/Solaris) and given program (such as Para-
dyn, Paradynd, or Igen) is typically organized as follows. Severa Makefile variables are first
defined; for example, you will see lines such as USES_TCLTK=t rue and USES_FLEX=t r ue in the

Paradyn platform Makefiles*. Then the Makefile executes the linei ncl ude . . / . . / make. confi g,
which reads in the file make. confi g. This file defines default dependencies, default compiler
flags, library paths, include directories, and so on. At many points, nake. conf i g will check to see
if certain Makefile variables (such as USES_TCLTK and USES_FLEX) are defined; if so, it performs
additional tasks.

For example, if USES_TCLTK is defined, then make. conf i g setsthe TCL2C makefile variable to
the appropriate path (for when thet cl 2c script isrun), adds the path to the Tcl/Tk include filesto
the compiler flags, and adds the path to the Tcl/Tk libraries to the compiler’s library-search path.

After make. confi g is read in, the Makefile may make a few changes to the Makefile vari-
ables, as nake. confi g has assigned them. For example, the line CXXFLAGS += - &3 would make
C++ compile its files with the highest level of optimization (because the Makefile variable Cxx-
FLAGS isin turn used by GNU make when compiling C++ files).

Next, a Makefile should have the linei ncl ude . ./ make. modul e. t npl . Thisfile is the plat-
form-independent part of the module build (just as the Makef i | e isthe platform-specific part). Its
function is to set Makefile variables that will be used by . ./ ../ make. program t npl , which is
included next. The most important of these Makefile variables are TARGET (which specifies the

name of the final binary that the linker should write to)°, SRcs (which specifies the source files),
L1 BS (which specifies additional libraries not automatically defined by make. confi g), and SYS-
LI BS (similar to LI BS, but intended for non-Paradyn libraries). Note that these Makefile variables
are usually appended to, as opposed to overwritten.

For example, we seethelineLI BS += -1 pdutil -1 pdthread inthe nmake. nodul e. t npl for
Paradyn, instead of thelineLI BS = -1 pdutil -1 pdthread. Thisisimportant, because typicaly,
make. confi g will already have defined some initial values for these Makefile variables, which
should be appended to, rather than overwritten.

Makefilesfor libraries (such as VisiLib) follow asimilar approach; the major differenceisthat
atthelaststep../../make. library.tnpl isincludedinstead of . ./ ../ make. program t npl .

4. Note that most Makefile tests concern whether something is defined (i f def), and therefore any non-
empty definition is equally considered: be careful to comment-out or undefine undesired definitions
rather than ineffectively setting USES=f al se (which will still be considered defined!). For consistency,
t r ue isthe prefered definition when one is required.

5. Some modules require to (sometimes) build/install multiple TARGETS or an alternative ALT_TARCET.

Developer’'s Guide April 13, 2004 Release 4.1

Page 63

Note that there are features used in the make configuration files that are specific to the GNU

version of make (we currently use version 3.74) and may not be understood by other makes.

11.2 Site-dependency issues

While the top-level vakefi | e is (Unix) system-independent), the file make. confi g will need to
be edited to conform to your system'’s configuration. For example, the path to your Tcl/Tk library,
the path to your flex library, and the path to X-Window’s include files will likely differ from set-
tings we have used. You should edit the make. confi g file and make the following changes:

The destinations for installing Paradyn libraries and programs are specified, relative to the
core of the Paradyn source distribution, by LI BRARY_DEST and PROGRAM DEST. Note that
while alternate locations may be specified, modification of the standard Paradyn build and
install directory structure is not recommended. Whenever make is performed from the
toplevel source (core) directory, a check is made to determine whether these directories
dready exist, an attempt is made to automatically create them. If this fails, or make is run
directly from modul e subdirectories without these directories existing (and writable), the build
will likely be unsuccessful, asit relies on installing and using components as they are built.

Search for BACKUP_CORE, and replace its path with either “. . /. .” or the location of the root of
the Paradyn distribution (PARADYN_ROOT). Most siteswill not need to use this variable; it spec-
ifies alternate locations to search in the event that the primary TO_CORE variable doesn't find
that it was looking for. Search the make. confi g file for uses of TO CORE and BACKUP_CORE to
get an understanding of how they are used as (primary and secondary) directory prefixes.

Search for the line TCLTK_DI R and replace the path with the location where Tcl/Tk has been
installed on your system. Also check that the names of your Tcl and Tk libraries corresponds
to those listed in TCLTK_LI BS: on some systemsthe libraries may be calledt cl 8. 3 and t k8. 3
instead of simply t cI andt k. More specifically, the directory $(TCLTK_DI R) / | i b should con-
tainlibtcl.aandlibtk.a (or the equivalent names specified by TCLTK_LI BS).

Search for FLEX_DI R and change its value to the location where the flex library (1i bf1.a or
l'ibfl.1ib) hasbeeninstaled onyour system.

Depending on where the X-Windows include files have been installed on your system, you
may need to tell the compiler where to find them. Search for USES_X11 and observe the con-
tents of what's already there. There are checks for different platforms and corresponding
changes. For some platforms, nothing is done because in our configuration, the compiler
doesn’t need to be told where the X-Windows include files are, where the X-Windows librar-
ies are, and so on. Depending on your system setup, you may need to make some changes here
to X11_LI B, X11DI Rand possibly others.

Check that utilities, such as YACC (bi son) and PERL (version 5 or later) are available with the
names (and perhaps paths) specified.

A private make. confi g. 1 ocal fileisread (if it exists) after make. confi g itself, and can be
used to override general make configuration defaults. Thisis generally an appropriate place to
(optionally) define BUl LD_MARK and BUI LD_NuM (build identifiers), etc.

The nnake. confi g file for Windows is similar (and generally ssmpler) and should be modi-
fied as described above. One additional configuration option relates to the use of Unix shell

Developer’'s Guide April 13, 2004 Release 4.1

Page 64

utilities (such as those freely available from Cygnus) or roughly-equivalent standard Windows
commands: currently if nmaleis run from ashell (and the SHELL environment variableis duly
defined) then the more functional Unix utilities are used.

11.3 The DEPENDS file

The first time a program is compiled for a given platform (e.g., paradynd/ sparc-sun-
sol ari s2. 4), the equivalent of the command make depend is automatically issued. It creates a
file DEPENDS in the platform directory which contains header file dependencies for all of the
source code files; these dependencies will automatically be included by make. program tnpl .
You can manually recreate thisfile (a good ideaif you change the source code in such away that
you modify what . h files are included in one or more . Cfiles) by typing meke depend.

If the Makefile variable EXPLI CI T_DEPENDS is not defined, then the make system will (for
consistency) perform anmake depend every time a source file changes. This can take a good bit of
time, so you may wish to define EXPLI CI T_DEPENDS in a platform-specific Makefile to avoid this
(or you could define it in make.config to make it the default). Simply put the line
EXPLI Cl T_DEPENDS=t r ue in the appropriate location (before make. pr ogr am t npl isincluded).

Note that automatic generation of DEPENDS files is not supported under Windows. The
DEPENDS files must be manually updated as dependencies change.

11.4 1gen Files

Paradyn, VisiLib and Paradynd use Igen-language files (with the . | suffix) to define the remote
procedure call interface between them. Whenever you change . | files, it is important to re-com-
pile all Paradyn components which use them. To do this, type “nmake cl ean” followed by make in
the appropriate platform directories for these programs.

11.5 Building on Windows

Currently, we are using the Visual C++ 6.0 compiler and Microsoft nmale programsto build Para-
dyn on Windows. However, Paradyn will not build with a stock installation of Visua C++ 6.0
because of outdated header files. To build Paradyn using Visual C++ 6.0, first replace these head-
ers by installing arecent Platform SDK, which is available for free download from Microsoft. We
also support building Paradyn with Visual C++ 7.0 (VC.NET), which includes a Platform SDK
that is recent enough to build Paradyn. (Of course, one might wish to upgrade to arecent Platform
SDK inany case, as upgrades usually contain bug fixes and feature improvements.)

Because the configuration and Makefiles used on other platforms are not compatible with
nmale, there are a different set of configuration files for Windows called nmake. confi g,
nmake. nodul e. t npl , nmake. | i brary.t npl and nnmake. program t npl. Each file is the equiva
lent of the similarly named configuration file for the Unix platforms. To compile a module, go to
the Windows platform directory in the module (i 386- unknown- nt 4. 0) and type nmake (Or nmake
i nstal |'). Thereisno top-level Makefile (the cor e/ Makef i | e will not work with nmale), though
the scri pts directory contains both Unix shell (make-nt.sh) and command (make- nt . bat)
scripts that will try to compile everything.

Developer’'s Guide April 13, 2004 Release 4.1

Page 65

The following packages are needed to build Paradyn: bison, flex, Tcl/Tk, and ONC RPC (an
implementation of Sun RPC). One of the include files in the ONC RPC package, RPC/ xdr . h,
needs to be modified to compile with the Visual C++ compiler. (We have these packages installed
under p: / par adyn/ packages/w nnt, and this path should be updated as appropriate for your
system. A gzipped tarfile of ONC RPC v1.12 with the RPC/ xdr . h file already modified is avail-
ablefromftp://grilled.cs.w sc.edu/ paradyn/ et c/oncrpclli2w nnt.tar.gz).

To run the Paradyn daemon on Windows, the dynamic link library oncrpc. di 1 must be in
some directory that is listed on your PATH environrment variable, so that the Paradyn daemon can
use Sun RPC calls to communicate with the Paradyn front-end. Additionally, to run the Paradyn
daemon on Windows NT or 2000, a recent version of the library dbghel p. dl I must be in the
same directory as par adynd. exe (Windows XP supplies a correct version). A sufficiently recent
version is packaged with the Paradyn binary release. Alternatively, arecent versionis available as
a free download from Microsoft; at the time of this writing, it was distributed as a part of the the
“Debugging Tools for Windows’ package.

12 MPI APPLICATION SUPPORT

Paradyn currently supports native MPI on AIX/SP and MPICH on x86/Linux and x86/Solaris.
Metrics based on MPI library functions are defined in the usual way in the Paradyn configuration
file (par adyn. r ¢). This section describes specia support for starting MPI applications (i.e.,
distributed collections of MPI processes) under Paradyn control. Since application startup is not
specified in the MPI standard, the mechanisms used by each implementation typically vary and
Paradyn requires implementation-specific support for each case. In all cases, support is currently
only available for creating/starting MPI applications under Paradyn control, rather than attaching
to existing collections of MPI application processes.

12.1 MPICH Support

Paradyn includes support for MPICH applications on collections of workstations. The current
implementation has several limitations which are given below.

» Cluster nodes should share a common file system with the host used to launch the application.
For each MPI application being launched, the Paradyn frontend creates a startup file that
should be accessible from al nodes in the cluster. In the future, the frontend may ship thisfile
to other nodes via an rcp-like mechanism or use environment variables to avoid this need.

» Only x86/Linux and x86/Solaris platforms are currently supported, both as homogeneous and
heterogeneous collections. A proper SPARC/Solaris implementation would require an ability
to access function arguments off the stack (parameter 7 and higher).

» Paradyn requires MPICH version 1.2.0. Older versions of MPICH can be supported by re-
linking an MPI application with the profiling library 1'i bpnpi ch. a and the Paradyn wrapper
library I i bpdnpi ch-1. 1. 0. a.

» Paradyn currently does not support any MPICH drivers other than the default P4 driver, how-
ever, other drivers can be handled in a similar fashion. The pure shared memory
driver(shmem) can be supported by enabling the default follow-fork instrumentation in the
daemon. The same method may be sufficient for the mixed P4+shmem driver, however, the

Developer’'s Guide April 13, 2004 Release 4.1

Page 66

last driver performs several exec() system callsat startup which may not be handled reliably
by Paradyn. A potential solution may be to allow t he exec() callsto happen unnoticed,
which should not involve many changes in the daemon.

12.1.1 MPICH job startup procedure

Consider an MPI application that is to be started on 3 nodes (A, B, C) viathe following com-
mand: mpirun -np 3 hello. Figure 17 provides a step-by-step description of the default P4
driver startup procedure. In the diagrams, black/solid arrows indicate process creation, red/dashed
arrows indicate communication and blue/dotted arrows indicate process control.Long dashed lines
indicate machine boundaries. Figure 18 describes startup of the same hel | o application under
Paradyn. The core ideais to make MPICH start Paradyn daemons instead of the real application
nodes. It is the daemon’s responsibility to launch the application after that.

12.1.2 Supporting MPICH on other platforms

Most of the described infrastructure is platform-independent. To support MPICH on a new plat-
form, one may not need to change the frontend. Following is alist of the required changes to the
daemon. See par adynd/ src/init-1inux. Cfor details.

e Instrument f or k() with the specialized DYNI NSTnpi _f or k() routine instead of the standard
DYNI NSTf or k(). Currently, we do not need to follow f or k() in MPI applications. The goal
of the DYNI NSTnpi _f or k() routineisto perform cleanup after f or k() .

e Do not instrument theexec() call.

* Invokeinst MPI () to instrument several MPI functions with tag and group- recording code
snippets.

Developer’'s Guide April 13, 2004 Release 4.1

Page 67

Figure 17: MPICH Job Launch Procedure

Host A The npi run command isissued on Host A.
mpirun -np 3 hello

Host A The npi r un script performs certain preprocessing
steps: creates apr ocgr oup file with the three host
@ names and sets up environment variables, if neces-
sary. After that, it launches the first copy of the

application locally, passing the pr ocgr oup file
name (Pl 1234) as an argument. This program
instance (the “master”) plays a special rolein the
master

startup process, but it becomes an ordinary compu-
tational process once all nodes are started.

The master starts running and hitsthe MPI _I ni t ()
function. Thisfunction analyzesthe procgroup file
and creates computational processes (slaves) on
the other nodes (B and C). Actual process creation
may happen either through an rsh-like program or
through the special P4 daemon. Each daveis
started with the master location (hostA, port#)
passed through the command line:

hel | o - pd4ansl ave host A port#

Noticethat user-supplied command line arguments
are hidden from the slaves at this point.

The daves run until they hit the MPI _I ni t () func-
tion. This function analyzes the command line
arguments and connects back to the master. The
master ships the user-supplied command line argu-
ments to the slaves, completes the initialization
and all processes start running.

Developer’'s Guide April 13, 2004 Release 4.1

Page 68

Figure 18: Paradyn MPICH Job Launch Procedure

Host P
Paradyn: create the script
pdd. AAA _saGEA
rsh
Host A
v

The user enters a complete mpirun command in a
Paradyn command file or in the Paradyn (Setup,
Define a New Process) command field. Paradyn
parses the command line, creates a helper script,
replaces the program name with the script namein
the command line and executes the command line
on the specified target machine. The purpose of the
script isto start paradynd with proper arguments
(frontend_host, frontend_port, prog_name).
These arguments can not be included in the user-
specified command line, because MPICH hides it
from slave processes (paradynd’s) until they com-
plete VPl _Init().

mpi r un proceeds as described in Figure 17 and
starts the first pdd script. The script launches para-
dynd, paradynd starts the user application, stops it
at the beginning of mai n() and communicates to
the frontend.

Host P

The user hits the “Run” button and the application
starts running. This instance becomes the master,
SO it attempts to create slaves, but runs our scripts
on the remote hosts instead. The scripts create
Paradyn daemons. The Paradyn daemons create
inferior processes and communicate to the front-
end. The frontend adds these processes to the
resource hierarchy and tells paradynd’ sto continue
them. Finally, slave processes hit MPI _I ni t (),
notify the master of arrival and the MPI applica-
tion starts running.

Developer’'s Guide

April 13, 2004 Release 4.1

	Developer’s Guide
	1 Overview
	1.1 Document revision history
	1.2 New functionality for release 4.0
	1.3 New functionality for release 3.0
	1.4 New functionality for release 2.1
	1.5 Paradyn subsystems and source code structure
	Figure�1: Paradyn (and dyninstAPI) subsystems.
	Figure�2: Paradyn/dyninstAPI module structure and dependencies.
	Libraries and associated include files are common module dependencies, often supplemented with pr...

	2 Paradyn Package Dependencies
	3 Paradyn Front-end
	3.1 Data Manager
	Performance data collection
	Performance data delivery from the Paradyn daemon(s)
	Metrics and resource hierarchies management
	DM objects

	3.2 Visi Manager
	Visi Manager types
	Visi Manager interface routines
	Figure�3: Visi Manager interface

	3.3 Visi threads
	Visi thread types
	Figure�4: VISIthreadGlobals struct members.

	The Visi thread and the Visi interface
	The Visi thread and the Data Manager
	Interface routines

	3.4 User Interface (UI) thread
	UI main loop
	Where Axis
	Performance Consultant window (Search History Graph)
	Tunable constants
	Status lines
	Paradyn Main Control window

	3.5 Performance Consultant thread
	The data stream
	Experiment definition
	Search control
	Starting up a particular experiment
	1. Get estimated cost: when a node is expanded, a request is made to the Data Manager for the pre...
	2. Enable request(s): when a node is launched from the PC run queue, one or more enable requests ...
	3. Change to true: when a node’s status changes from unknown to true, both parent and children ma...
	4. Change to false: when a node’s status changes from unknown to false it is deactivated and not ...

	4 Visi Library
	5 Paradyn Daemon
	5.1 Introduction
	1. Starting and controlling the execution of application processes.
	2. Reading the application’s symbol table.
	3. Reading the application’s binary image to find instrumentation points.
	4. Evaluating metrics, generating code, and inserting instrumentation into application processes.
	5. Periodically sampling performance data from the application and forwarding values to the Parad...

	5.2 Application processes
	5.3 Object file processing
	5.4 Shared-object processing
	Figure�5: Process class and shared objects.
	Process 1 and process 2 are the same executable and share a.out and shared object images. Process...
	Figure�6: image, module, pdFunction, and instPoint classes.
	Each image consists of a number of modules, each module consists of functions, and each function ...
	Metric Evaluation and Code Generation
	Figure�7: Data structures of the Paradyn daemon.

	5.5 Performance data sampling
	5.5.1 Shared-memory sampling
	5.5.1.1 Synchronization issues for shared-memory sampling
	Figure�8: Pseudo-code for startTimer and stopTimer operations
	Figure�9: Pseudo-code for shared-memory sample of a timer
	Figure�10: Final pseudo-code for startTimer/stopTimer operations
	Figure�11: Final pseudo-code for timer sampling

	5.5.1.2 The need for a get-remote-time() primitive
	5.5.1.3 Management of instrumentation variables in shared memory
	Figure�12: variableMgr and shmMgr

	5.5.2 Alarm sampling

	5.6 Retroactive instrumentation
	Figure�13: Retroactive instrumentation example.
	The program has been interrupted during the execution of subD2 (with the call-stack as shown) wit...

	5.7 Dynamic Heaps
	5.8 Trampoline Guards
	5.9 Instrumentation of multi-threaded programs
	5.9.1 Introduction
	5.9.2 Paradyn Program Instrumentation
	5.9.3 Design Issues
	5.9.4 Current Design
	5.9.4.1 Data manager
	5.9.4.2 Instrumentation details
	5.9.4.3 Base Trampoline
	5.9.4.4 Mini Trampoline
	5.9.4.5 Thread Creation
	5.9.4.6 Thread Deletion
	5.9.4.7 Inferior RPCs

	5.9.5 Virtual Timers
	5.9.6 Current Status and Limitations

	5.10 Timer Levels
	Implementing a new timer level

	6 x86 Port
	Instruction representation
	Parsing the executable image
	Inserting instrumentation
	Base trampoline
	Code generation
	Example

	7 Linux port
	Inferior process modification and information through ptrace and /proc [dyninstAPI/src/linux.C]
	Handling shared libraries in the inferior process [dyninstAPI/src/linuxDL.C]
	Inserting a shared library into the inferior process process::dlopenDYNINSTlib [dyninstAPI/src/li...
	Inferior RPCs [dyninstAPI/src/process.C]
	Paradyn front-end threading package [libthread]

	8 Run-time instrumentation library
	9 MDL implementation
	9.1 Important files
	Figure�14: Crucial MDL files

	9.2 Lexical and syntax analysis
	Figure�15: An example demonstrating how apply() functions work.

	9.3 Semantic analysis and intermediate code generation
	9.4 Where these classes are defined
	Figure�16: Important MDL classes.

	10 Igen Interface Generation
	10.1 Overview of Igen
	10.1.1 Synopsis
	10.1.2 Output
	10.1.3 Memory
	10.1.4 Upcalls
	10.1.5 Interface template

	10.2 Igen grammar

	11 Makefile Issues
	11.1 Overview of Makefile organization
	11.2 Site-dependency issues
	11.3 The DEPENDS file
	11.4 Igen Files
	11.5 Building on Windows

	12 MPI Application Support
	12.1 MPICH Support
	12.1.1 MPICH job startup procedure
	Figure�17: MPICH Job Launch Procedure
	Figure�18: Paradyn MPICH Job Launch Procedure

	12.1.2 Supporting MPICH on other platforms

